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ABSTRACT. — The stability properties of a class of interacting measure valued processes arisin
in nonlinear filtering and genetic algorithm theory is discussed.

Simple sufficient conditions are given for exponential decays. These criteria are applied tc
study the asymptotic stability of the nonlinear filtering equation and infinite population models
as those arising in Biology and evolutionary computing literature.

On the basis of these stability properties we also propose a uniform convergence theorel
for the interacting particle numerical scheme of the nonlinear filtering equation introduced in
a previous work. In the last part of this study we propose a refinement genetic type particle
method with periodic selection dates and we improve the previous uniform convergence result:
We finally discuss the uniform convergence of particle approximations including branching and
random population size systemis2001 Editions scientifiques et médicales Elsevier SAS
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RESUME. — Cet article porte sur la stabilité d'une classe de processus a valeurs mesures et ¢
interaction liée au filtrage non linéaire et a la théorie des algorithmes génétiques.

Nous présentons des conditions suffisantes simples permettant d’obtenir des taux de conve
gence et des décroissances exponentielles. Nous illustrons notre démarche en appliquant
criteres a I'étude de la stabilité asymptotique des équations du filtrage non linéaire et d’'une
classes de systéemes a population infinie utilisés en biologie et dans la littérature sur les alge
rithmes de type génétique. En s’appuyant sur ces propriétés de stabilité nous démontrons |
théoreme de convergence uniforme dans le temps de schémas numériques basés sur des
témes de particules en interaction. Dans la partie finale nous proposons un algorithme génétiq
plus performant associé a des sélections périodiques et pour lequel il est possible d’amélior
les précédentes estimations. Nous cléturons notre étude en étudiant le comportement en terr
long d’'une classe de méthodes particulaires basées sur des mécanismes de branchements :
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1. Introduction

In this paper, we study the long time behavior of a class of interacting measure
valued processes arising in biology (and particularly in genetic models) and evolutionary
computing, in Physics, in advanced signal processing and particularly in nonlineat
filtering problems. The main results of the present work is to establish a theorem or
the stability properties of the limiting process and a uniform convergence result with
respect to the time parameter for the finite particle approximating model.

We shall consider the following discrete time evolution on the spR¢€) of
probability measures on a measurable sg@tef) given by

Ty = (pn (ﬂn—l)s Vn > 1, (1)

where g € P(E) and the one step mapping, : P(E) — P(E) associates to any
m € P(E), the probability measurg, (;r) given for anyf : E — R in the set of bounded
measurable function8,(E) by

n Kn - el
¢n<n><f>=7”(gnig )f D with (K, £)(x) [ Kat.an s )
" E

with some transition probability kernelékK,,n > 0) and nonnegative measurable
functions(g,,n > 0).

Such discrete evolutions arise in the analysis of some conditioned Markov processe
(and in particular in those showing up in nonlinear filtering problems) and in biology.

Let us present first its connection with nonlinear filtering theory. Recall that the
nonlinear filtering problem consists in computing the conditional distributions of
internal states in dynamical systems when partial observations are made, and rando
perturbations are present in the dynamics as well as in the sensors.

Several presentations of the discrete time filtering model are available in the literature
here we follow rather closely [10]. Some collateral readings such as [4,24—-26] will be
useful in appreciating the relevance of our study.

In discrete time settings the signgX,; »n > 0} is an E valued honhomogeneous
Markov chain with one step transition probabilities,,; » > 1} and initial lawmg. The
observation sequend®,; n > 1} takes its values ilR?, 4 > 1, and it takes the form

Yn = Hn (anl’ Vn) ’ n 2 1’

for some measurable functiali, : E x R — R¢. The sequenc& = {V,; n > 1} are
R?-valued, independent of, and independent random variables. For eaehE and
n > 0 we assume that the varial#tg, (x, V,,) admits a density — g, (v, x) with respect
to Lebesgue measure &f.

Let E(.) denotes the expectation on the original space on which the ¢iaif) is
Markov with the prescribed initial condition.

For any fixed observation sequengg y,, ... Bayes’ formula gives a Feynman—Kac
expression for the desired conditional distributions, namely for any bounded measurabl
function f we have
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ﬂg(f)=E(f(Xn) | Y1=)’1,---,Yn=)’n)
_E((X)Zu(X, y))
E(Z,(X,y))

with

def. ‘ _
Zo(X, y) = [ 3O Xe—).
k=1

It is transparent from this description that

) e y_ ) Kn . el —
73 (f) = o (a2 _y) () 22 Tnsal& K)o vtel e (0 b @)
nn—l(g”)

In these settings the dynamical system (2) is called the nonlinear filtering equation. Ir
some particular situations it can be solved explicitly but in general its simulation requires
extensive calculations.

The discrete dynamics (1) also appears when one considers a killed inhomogeneot
Markov process. Indeed, 1¢X,; n > 0} be a Markov chain taking values BB with
initial distribution o € P(E) and transition probability kernels

VAecE P(X,€Al|X, 1) =K, (X,_1,A).

Using the Markov property we can verify that the Feynman—Kac type distributions given
forany f € B,(E) by

_E(f(Xn)Zy(X)) . def T-
7. (f) = EZ0) with zn(X>—k]:Ilgk(Xk,1> 3)

(with the usual conventiof], = 1) satisfy the desired recursion (1), that is

T (f) _ E(gn (Xn—l)(Knf)(Xn—l)Zn—l(X))/E(Zn—l(X))
" E(gn(Xn—l)Zn—l(X))/E(Zn—l(X))

— nnfl(gn(an)) — ¢n(7[n71)(f)
T[nfl(gn)

These “un-normalized” Feynman—Kac formulae arise naturally in the study of the
distributions laws of a Markov process Kkilled particle. We begin by noting that there is
no loss of generality to assume that the fitness functignske values in0, 1]. Next,
the fitness functions will be regarded as the killing rates of a nonhomogeneous Marko
particle. We adjoin classically t& a cemetery pointA and we define the Markov
transitions kernel$[€n; n > 1} by setting foranyd € £ andn > 1 andx € E

K,(x, A) = g,(x). K, (x, A)

and
VxeE K,(x,{A)=1—g,(x) and K,({A},{Ah)=1
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If {X,; n > 0} denotes the corresponding Markov process£an {A} then we have for
any subsetd € £

_ E(f(X))Z,(X))
E(Z, (X))

whereT2 =inf{n > 0; X, = A} is the life time ofX.

We shall now interpret (1) as the limit of a finite, weakly interacting particle systems
encountered in discrete generation genetic models. This discrete approximation of (1
can be as well used as a numerical approximating model of (2). The advantage o
this approximation scheme among the numerous existing ones is that it guarantees :
occupation of the probability space regions proportional to their fithess thus providing &
well behaved adaptative and stochastic grid approximating model.

To our knowledge the Feynman—Kac interpretation (3) of the limiting system (1) of
the genetic algorithm has never been covered in genetic and evolutionary computin
literature but only in numerical filtering papers [12,13].

The class of measure valued processes described by (1) arises naturally as tt
deterministic limit of the empirical measures of a finite interacting particle system
(abbreviatel PS). To make this more precise we recall that tHelPS approximating
model associated to (1) is the Markov proc€Ss (F,),>o, (€,).>0, P) taking values in
the product spac&” and defined by

’

P(X,€A|T* >n)

N
P (¢ € dz) = ] mo(dz)

p=1
and
N 1 N
P& edz/&a=x)=]] ¢ (ﬁ stf> (dz"), )
p=1 i=1
where dz % dz! x ... x dzV is an infinitesimal neighborhood of the poipt=
L. 2y e ENandx = (xt, ..., xV) e EVN.
Since

N

1Y gn(x) ;
oy 8| = k)
i=1

i—1 Z;\/:l gn(x7)
we see that the motion of the particles is decomposed into two stages

b0-1= (6 g 1) — Er=(Elr - B — &= (6L 6.

The first one updates the positions in accordance with the fitness funggians > 1}
and the current configuration. More precisely, at each tirpel, each particle examines
the system of particleg,_1 = (¢ ;,...,&" ;) and chooses randomly a sitg ,,
1<i < N, with a probability which depends on the entire configuratipn, namely

gn (Srll—l) )
Zj'vzl &n (Sr{—l)
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This mechanism is called the Selection/Updating transition as the particles are selecte
for reproduction the more fit individuals being more likely to be selected. In other words
this transition allows particles to give birth to some particles at the expense of light
particle which die.

The second mechanism is called the Mutation/Prediction. During this stage eact
particle evolves randomly according a given transition probability kernel.

This scheme is clearly a system of interacting particles undergoing adaptation in ¢
time non-homogeneous environment represented by the fitness fungtions> 1}.

In biology and evolutionary computing literature thi&IPS model corresponds to
a discrete generation genetic model with haploid selection. The teapipid refers
to the fact that the selection function depends only on the type of one “parent” rather
than two. TheN-IPS model (4) is sometimes referred as a simple or canonical genetic
algorithm mainly because it does not involve cross-over transitions and it simply uses
a proportional selection mechanism. In this connection the limiting system (1) is also
referred, in genetic terminology, as the infinite population model.

Let us briefly survey some different works related to our subject and motivate our
work.

In view of the previous discussion the measure valued dynamical system (1) and it:
N-IPS approximating model (4) arise in a variety of research areas and similar problem:
have been studied by many authors.

In evolutionary computing literature the connections between the long time behavior
of the finite and infinite population models are discussed for instance in [28,31—
36] but no satisfactory analysis was done to obtain precise stability properties and/o
convergence results. Some authors have made the sanguine assumption that the one ¢
mappingsp, are contractive (see for instance [32], p. 401). As we shall see in the further
development of Section 2 this assumption is very restrictive and the resulting stability
results do not apply to many situations of interest.

In measure valued processes and IPS literature the connections between the stabil
properties of the limiting system (1) and the convergence ofNRE’S scheme have
also been studied in [23]. The author gives an ergodicity criterion on the limiting system
under which theV-IPS scheme converges uniformly with respect to the time parameter.
This result also applies to related genetic algorithms such as the Wright—Fisher mode
but it relies on the fact that the limiting system is homogeneous and uniformly converges
to a distribution (with respect to its initial conditions) and it does not discuss any rates
of convergence.

In nonlinear filtering settings the study of the long time behavior of the filtering
eguation is a more active research area. The motivations here come from the fact that tt
initial law of the signal is usually unknown and it is therefore essential to check whether
or not the nonlinear filtering equation “forgets” any erroneous initial distribution. The
papers [21,22,29,30] are mainly concerned with the existence of invariant probability
measures and in [25] the authors prove that the filtering equation “forgets” any erroneou
initial condition if the unknown initial law of the signal is absolutely continuous with
respect to this new starting point. In the following chain of papers [1-3,5,9,18] the
authors discuss the stability properties of (2) using Hilbert projective metrics and/or
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Oseledec’s Theorem when the state space is finite. The first place in which such Hilbel
projective metrics have been used in filtering settings seems to be [9].

In this paper we propose a new approach based on semi-group techniques ar
Dobrushin ergodic coefficient (cf. [19]). In contrast to the previous referenced papers
an advantage of our methodology is that it is not restricted to filtering or genetic
algorithms and it allows to study any nonhomogeneous systems of the form (1). The
other main result of the paper is to connect the long time behavior of (1) with the uniform
convergence of th&/-IPS approximating model.

Let us state the main results of this paper more explicitly. Our first goal is to study the
long time behavior of the limiting process (1). Ligh,/,; 0 < p < n} be the nonlinear
semi-group associated to (1) and defined by the composite mappings

¢n/p=¢n°"'o¢p+l’ nggna

with the conventionp, , = Id. If we denote by

. Yu,veP(E),

def.
= v = sup|u(A) — v(A)
Ae&

the total variation distance 0R(E) then our main result will then be basically stated
under the following form.

THEOREM 1.1. — If the functiongg,,, n > 1} and the Markov operatorgk,,, n > 1}
are “good enough” then

Vi, v e P(E), M luo(tt) = dujo()lliy =0. 5)

The crucial point is to specify the assumptions needed on the fitness functions
{g., n > 1} and the Markov operator’,,, n > 1} for such result to hold. Throughout
this paper we shall weaken these hypotheses as much as we can in order to include
many examples encountered in nonlinear filtering and genetic algorithm theory.

We will also propose a mixing type condition on the transition probability kerkgls
under which the convergence in (5) takes place exponentially fast in the sense that the
exists some positive constant- 0 such forany & p <n

SUp ”(pn/p(:u) - ¢n/p(v)||tv g e—)\.(n—p).
w,veP(E)

The other main result of the paper is to connect the stability properties of the limiting
system (1) with the long time behavior of the empirical measmfésssociated to the
N-IPS scheme (4). Recall that it was proven in [12,13,15] that the empirical measure

N 1 X

converges in finite time intervals towards the desired distributignn > 0} asN goes
to infinity. The large deviations and the fluctuations for this convergence are developet
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in [16,17], but we let open the question of the long time behavior of this particle
approximations. Here, we shall prove that

THEOREM 1.2. — When the functiondg,; n > 1} and the Markov transitions
{K,; n> 1} are “sufficiently regular” there exists a convergence exponent 0 such
that for any bounded measurable functign

Ct
SUpE ([ f — o ) < oI 1
n=>0

1.1. Notations and terminology

In view of the previous development the interpretation of (1) and the corresponding
particle scheme (4) may vary considerably. Most of the terminology we will use is drawn
from mean field IPS and genetic algorithm theory.

The deterministic nonlinear evolution equation (1) will be regarded as the limiting
measure-valued process associated with a sequengelS schemes. With reference
to genetic algorithm theory the functiofig,; n > 1} will be called the fitness functions
and the transition$k,; n > 1} will be referred as the mutation transitions.

With a slight abuse of the classical mathematical terminology, we shall say that the
limiting system is asymptotically stable when its long time time behavior does not
depend on its initial condition.

To describe more precisely the dynamical structure of (1) we need to introduce som:
additional notations. We first recall that any Markov transition keikiét, dy) on E
generates two integral operators one acting on functiprs5,(E) and the other on
probability distributionsu € P(E)

(Kf)(x) = /.K(x,dy)f(y), (LK) (dy) = /M(dx}K(x,dy)-
E

E

As usualB,(E) is regarded as a Banach space endowed with the supremum norm

I£1I = suplf(x)].

xeE

If K1, K, are two Markov transition kernels dfiwe write K, K, the composite Markov
transition kernel given by

KiKo(x, dz) = / Ki(x, dy)Ka(y. d2).
E

As announced our approach is based on semi-group technigues and we will use tt
powerful tools developed by R.L. Dobrushin to study central limit Theorems for
nonstationary Markov chains [19]. We recall thakifis a Markov transition orE then

the ergodic coefficient oK is the quantityw (K) € [0, 1] given by

a(K)=1—B(K) with B(K)%E  sup |K(x,A) — K(z, A)|.

x,yeE,Ae&
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We shall call the numbet (K) the Dobrushin ergodic coefficient &f (see [19]). It can
also be defined as

a(K)=inf> min(K(x, A;), K (z, A)), (6)
i=1
where the infimum is taken over all z € E and all finite partitions oz, {A;; 1<i <
m} withm > 1.
The quantitye (K) is a measure of contraction of the distance of probability measures
induced by the Markov operatd€. Namely, for anyu, v € P(E) we have the well
known formula (see [19])

luK —vK|,
B(K)= sup ————— (7)
n,veP(E) ”M - v”tv

An outline of the development of the article is as follows:

The main result on the asymptotic stability of the limiting system (1) is given in
Section 2. In a preliminary Section 2.1 we examine in more details the dynamical
structure of (1). In a short Section 2.2 we present a very basic proof of Theorem 1.1
in the situation where the state spdtés finite. In Section 2.3 we present a semi-group
technique to study the stability properties of (1) when the state spdsean arbitrary
measurable space. Several examples including nonlinear filtering problems are studie
in some details in Section 2.4. The uniform convergence result aVthieS scheme as
N — o is discussed in Section 3. In Section 3.1 we state and prove our main theorem
In Section 3.2 we present a novel genetic algorithm with periodic selections and we
improve the uniform convergence decays given in Section 3.1. The last Section 3.3 wi
propose a comparison of genetic type variants recently suggested in nonlinear filterin
literature including branching transitions and random population size models.

2. Asymptotic stability theorems
2.1. Introduction

In this section we discuss the asymptotic stability properties of the limiting system (1).
Before getting into the details it may be useful to make a couple of remarks regardinc
the dynamical structure of (1).

In the first place it should be recalled that the limiting system (1) is a two stage process
More precisely, the one step mappirggscan be rewritten as follows

Vr € P(E), () = yn(r) K, With ¥ £ € By(E), wn(m(f)déf'n;f;f))

with a selectiony),, and a mutatiork,,.

This first observation already indicates that the resulting system (1) may have
completely different kinds of long time behavior.

For instance, if the fithess functions are constant functions then (1) is simply based ol
mutation transitions and it describes the time evolution of the distributions of the Markov
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procesq X,; n > 0} with transition(K,, n > 0). In this very special case the theory of
Markov processes and stochastic stability can be applied.

On the other hand, if the transition probability kerngls,; n > 1} are trivial, that
is K, = Id for anyn > 1, then (1) is only based on selection transitions and its long
time behavior is strongly related on its initial value. For instance, i exp(—U), for
somelU : E — R, then for any bounded continuous functign E — R, with compact
support

mo(feY) mwo(f1y+)
mo(e V) n—oo mo(U*)

T (f) =

where, at least ifrg(U*) > 0,
« def. .
U= {xeE; Ux)=essinf,,U}.

The second remark is the fact that the one step mappingasually fail to be
contractive and the classical tools of dynamical system theory cannot be used to stuc
the stability properties of the system (1).

By way of example, let us suppose that the one step mappingsre time
homogeneous (i.eg, = ¢ and K, = K) and the Markov operatoK is a strict
contraction with respect (w.r.t.) to the total variation norm, that is

VYi,veP(E) InK —vKlnw <BEK)In—vin with B(K) <1
Using the above inequality we obtain

o) =Wl =1V (WK =¥ (WKl < B[ (1) = Y (W)l

It is therefore tempting to check thdt is nonexpansive w.r.t. the total variation norm.
Unfortunately, this property is intimately related to the form of the funcgom.et us
examine a situation in whictt is not contractive.

Namely, let us assume that

1 1
E= {Os 1}s n= 580 + E(Sl, and v= 80' (8)

In this situation it is easily checked that

_} _ — Ll)
I =vliw =75 and ¥ G) =yl =—7=—0
so that

g >gO) = V(W) =¥ Wl > Il = Vi

and consequently is not contractive. Let us also remark that in this simple example we
have that

IuK —vKlly=BE)Iw—vl, with B(K) =K (0,0) — K(1,0)],
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for any Markov operatok on E. When the distributiong. and v are given by (8) it
does follow that

o) —dW)lliw = Zﬂ(K)Ll) e = vl
gD +¢©

and hence that
1
(5 <B(K) and g(0) <2(B(K) - 1/2>g(1>> o 1) = SOl > 1t = Voo

In the last example, the homogeneous one step mapgings > 0) are not contractive

but we shall see that the composite mappifgs,; 0< p < n} can still be stable.

To do so, we need to investigate more closely the dynamical structure of the limiting
system (1). Our analysis will be based on the following lemma which roughly says that
the composite mapping#,,,; 0< p <n} have essentially the same form as the one
step mapping$e,; n > 1}.

LEMMA 2.1[12]. —ForanyO< p <n,u € P(E) and f € B,(E) we have

//L(gn/p (Kn/pf))
M(gn/p)

(»bn/p(ﬂ)f =

where the fitness functior{g,,,; 0 < p < n} and the Markov transition$k,,,; 0 <
p < n} satisfy the backward formulae

Kp(gn/p(Kn/pf))
Kp(gn/p)

Kn/p—lf = ) gn/p—l:ngp(gn/p)s (9)

with the conventiong,,,, =1andk,,, = Id.

For the convenience of the reader we indicate that this lemma can be proved using
clear backward induction on the parametgx n).

It is transparent from the backward recursions (9) that the Markov operators
{K,./»; 0< p <n}are composite operators of time-inhomogeneous but linear Markov
operators. More precisely it can be checked directly that

Kyjp—1=380pKn/p=Sn/pSnp+1- " Snn-18n/n (10)
with
K, (gn
Suipf = Ko 8nsp]) /”f), 0O< p<n.
Kp(gn/p)

2.2. Finite state space

In this short subsection we consider the case wheiefinite. We introduce this result
in the article since it shows in a natural and very simple way how some simple properties
on the functiondg,; n > 1} and the stochastic matricéX,; » > 1} combine to give
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the desired asymptotic stability of (1). However, the present result will be strengthenec
in the next subsection. For simplicity we will always assume that

(A) There exists af < ¢ < 1 such that
Vnzlx,zeE e<g,(x)<1 e<K,(x,z)<1
In this situation a clear combination of (9) yields that

gn/p(Z)Kp(xsZ) _ gp+1(Z)Kp(x’Z)Kp+l(gn/p+l)(z)

= <1/63.
gn/p(z/)Kp(xs Z/) gp+1(z/)Kp(xs Z/)Kp+1(gn/p+l)(z/)
Thus
gn/p(Z)Kp(xa )
Snyp(x,2) = = A, 11
v Y &n/p (K p(x,2) )
with

L1+ (E|-1De3
This gives us the following theorem
THEOREM 2.2. — Under assumptiofA) we have that

Vx€E, v €P(E)  |dnjo(p)(x) = dno() ()] < (1—21)"
Proof. —If we put
n/p(x) —SupKn/p(Z x) Kn_/p(x) :ZIQLKn/p(Z’x)s

and

K., (x) = Kuyp (X, %), K., (x) = Kuyp(x,,, X)

using the decomposition (10) we find that
K p-a () <K, () Sy (6510 X))+ Ky 00 (L= S (00 %)
and
Koy 1) =K, )80, 1, %07,) + Ko (0 (L= Suyp (x 10 %,,))-
Thus, from (11) one gets the inequality
( n/p— 1(x) n/pfl(x)) g(l_k)(l(;r/p(x)_]{;/p(x))~
It is then an elementary matter to prove that

Sup|Kn/p(Z’ X) - Kn/p(z/’ x)l < (1_ )")nfp.
2,7

The end of proof of the theorem is now straightforwardz
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2.3. Measurable state space

The purpose of this section is to present a natural sufficient condition for asymptotic
stability of (1) when the state spadeis an arbitrary measurable space. The starting
point to do it is to use the Dobrushin ergodic coefficient (6) to obtain the following
pivotal lemma

LEMMA 2.3.—Forany0< p <n we have

n

sup ”¢n/p(ﬂ) - ¢n/p(v)||tv = ﬁ(Kn/p) < H (1 - a(Sn/q))

uw,veP(E) g=p+1

and therefore for any > 0

o lim Z+la(sn/q) =00 = lim B(K,,) =0.
q=p

o lim E Z a(S,,/q)déf'a(S):Iimsup%logﬂ([(n/p)<—E(S).

n—-oon g=p+1 n—00
e inf a(Sp,/p1) det a(S)=Vn>=p B(K,/) < @ ¥(8).(=p)
0<p1<p2

Proof. —In the first place, note that for anye P(E) and 0< p <n

. M(gn/pf)
Gnyp (W) = tnyp Ky with 1, f=—".
/p /pBn/p /p M(gn/p)
Recalling that
Kp = Snjp+1Snjp+2- - Suyn
and using (7) we obtain

”(pn/p(,u) - ¢n/p(v)”tv = ”Mn/pKn/p - Vn/pKn/p”tv
< IB(Kn/p)”Mn/p - 1)n/p”tv' (12)

Since foranyx € E
¢n/p(8x) = Kn/p(x’ )
it follows that
IB(Kn/p) =Sup||Kn/p(x’ ) - Kn/p(ya -)”tv
X,y

< sup ”(bn/p(,u) - ¢n/p(v)”tv-
n,veP(E)

The reverse inequality is a consequence of (12). Taking into account that

Kn/q—lzsn/qKn/q, Vi<qg <n,
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it is easily seen that

ﬁ(Kn/qfl) < (1_a(Sn/q))ﬁ(Kn/q)a V1i<g <n,

from which one concludes that

n

BKup) < [] (1=a(Suy)

q=p+1

and the first part of the lemma is proved. On the other hand if we use the inequality

H (l_ a(Sn/q)> < eXp—( Z a(Sn/q)>

q=p+1 q=p+1

the end of the proof of the lemma is straightforwarda

In view of the previous considerations we see that the collection of Markov transitions
{S,/p; 0< p <njplays a pivotal role in the study of the asymptotic stability properties
of the limiting system (1).

To control the Dobrushin coefficients ¢§,,,; 0< p < n}, we shall now make the
following natural assumptions

(B) For any timen > 1, there exists a reference probability measiyes P(E) and a
positive numbet, < (0, 1] so thatK, (x, .) ~ A, for anyx € E and

dK,(x,.) 1
{———< —.
dir, &n

n

In contrast to (A) condition (B) doesn’t depend anymore on the fitness functions
{g.; n > 1}. One way to relax (B) is to take advantage of the specific structure of the
fitness functiondg,,,; 0< p < n} defined in Lemma 2.1. The price to pay is that the
resulting condition now depends on the boundedness of the fitness functions. In thi
situation we will use the next condition.

(C) For anyn > 1 there exists am, € [1, co) such that

1
— < g(x)<a,, Vxe€E, vn > 1

an

In addition, the mutation transitions are homogene¢thst is K,, = K) and there exists
anm > lande > 0 and a reference probability measuxes P(E) such that

K™"(x, . 1
ggwg_
&

, VxelE.
di

In the last condition the mutation transitions are assumed to be homogeneous, th
generalization to nonhomogeneous Markov transitions will be straightforward.
We can now show the
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THEOREM 2.4. —
o If condition (B) holds for some sequence of nonnegative numfagrsn > 1} such

that
S 62 =00,

n>1

then we have

lim sup ”(bn/()(M) - ¢n/0(v)||tv =0.

%0 L veP(E)

In addition, suppose that

def.
el.

o1
lim — 5 =&,
n—oop
p=1
then
. 1 )
limsup—log sup [I¢.0(1t) — Gujo(W)llsv < —&~.
n—oo N n,veP(E)

Moreover when

one concludes that forary< p <n

SUP [1n/p (1) = buyp ()11 < €XP— (2. (2 — p)).
n,veP(E)
e When the fithess functions and the mutation transitions satisfy cond@ipfor
somem > 1, ¢ > 0anda det sup, a, < oo then we have forany >m >0

2

1
~logsUpIgno() B0l <~ (1= e ()L @)
n n a

w,veP(E)

Proof. —Under (B) we first note that each coefficients,,,) is lower bounded by,%.
To see this claim, note that for anye £ andA € £

Ky @nipla)X) 2 2p(8n/pla)

Sy ,A) = =
/p(x ) Kp(gn/p)(x) b )‘p(gn/p)

so that (6) implies that
a(Syp) > €2, (14)

The end of the proof of the first part of the theorem is then is clear consequence
of Lemma 2.1. Let us assume that condition (C) holds for seme 1, ¢ > 0 and

o sup, a, < oo. An induction on the parameter yields

—2m K(Km(gn/erm)QD) 2m K(Km(gn/erm)(p)
a g n/p g a
K(Km(gn/p+m)) K(Km(gn/p-‘rm))
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for any 0< p + m < n and any bounded nonnegative functipntE — R. This in turn
implies that

2 me 2

()« <atsyn < (%) a)
a™ £
and inequality (13) is again a consequence of Lemma 21.

Next we consider a corollary of Theorem 2.4 in the time homogeneous situation which
is particularly important in genetic algorithm theory. When the fitness functions and the
mutation transitions are homogeneous (that,is- g andK,, = K) the resulting one step
mapping of the limiting system (1) is again homogeneous and it is defined by

n(gf)
u(g)

o(w) =y (WK  with ¥ () (f) =

forany f € B,(E) andu € P(E).

COROLLARY 2.5.— Let E be a finite state space. Assume that the fithess functions
and the Markov transitions are homogeneous.
o If condition (B) holds for some: > 0 then the corresponding homogeneous one
step mapping has a unique fixed point, that is

Nt € P(E): Moo = P (To),
and for any0 < p < n we have that

SUP llhn/p (W) — Toolliw < €XP—(£2. (n — p)).
HeP(E)

e When the fithess functions and the mutation transitions satisfy cond@ipfor
somem > 1, ¢ > 0anda, = a < oo then the corresponding homogeneous one step
mapping¢ has a unique fixed point,, = ¢ () and for anyn > m > 0 we have
that

1 m e \2
110 S Ino() ol <~ (1= 2 Jax) ()
n neP(E) n a
Proof. —Under our assumptions the one step mappitgjclearly continuous o (E)
(for the weak topology). Since the state sp&tes assumed to be finite the sB{E) is
a compact and convex subsetR®f! and Brouwer fixed-point theorem tells us that there
exist one fixed pointr., = ¢ (7) € P(E). The end of the proof of the corollary is a
straightforward application of Theorem 2.40

We conclude this section with an asymptotic stability result when the fitness function
g, tends to 1 ag tends to infinity, corresponding to the degenerate situation in filtering
theory where the noise can become huge.



170 P. DEL MORAL, A. GUIONNET / Ann. Inst. H. Poincaré, Probab. et Stat. 37 (2001) 155194

THEOREM 2.6.— Let {g,; n > 1} be a collection of measurable and positive
functions such that

1(8) E > [llog gl < 0. (15)

n>1

If the Dobrushin coefficientgx(K,); n > 1} of the mutations transitions are such that

> a(k,) = oo,
n>1
then
lim sup ”(bn/()(M) - ¢n/0(v)||tv =0.
=00, veP(E)
In addition, if
. 1& def _
lim — K, =a(K
n—)OO]/lZa( p) a(K),
p=1
then

) 1
limsup—log sup |[¢.0(i) — Gno(W)lliw < —a(K) €Xp—I(g).
n—oo N n,veP(E)

Moreover when

. def.
lil;fla(Kn) = a(K)
one concludes that for ary< p <n

SUP Nl p (i) — Bn/p(W)]l10 < EXP—(@(K)ET® (1 — p)).
w,veP(E)

Proof. —Under our assumptions we first notice that
Vn >0 |llogg,l < oo,

and therefore for any > 0 andx € E we clearly have

1 .
— < gu(x) <a, witha, =exp|logg,|.

n

By definition of the fitness functionfg,,,; 0< p <n} we also have forany & p <n
andx € E

eil(g) < gn/p(x) < el(g),
from which one concludes that

Kp(gn/p(p)(x) >

> —2(9) g 16
K (@) () € p(@)(x) (16)

Sn/p(¢)(x) =
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for any bounded nonnegative functipn E — R . Recalling that (16) implies that
a(Sn/p) 2 e_ZI(g)a(Kp)

the end of the proof is now a consequence of Lemma 21.
Remark2.7. — It is noteworthy that when (15) is satisfied then the condition

> a(K,) =00

n>1l

is a sufficient condition for the asymptotic stability of the limiting system (1). This
condition is in fact a necessary and sufficient condition for a nonhomogeneous Marko
transition to be strongly ergodic (see for instance [19], part II, p. 76).

2.4. Applications

As we said in the introduction the study of the asymptotic behavior of the limiting
system (1) is motivated by nonlinear filtering and genetic algorithm theory. The purpose
of this section is to indicate some consequences of the previous asymptotic stabilit
properties. In order to illustrate the assumptions of Theorems 2.4 and 2.6 we start witl
some simple examples.

Example 1. — Suppos& =R andK,, n > 1, are given by

1
K,(x,dz) = 5% exp(—a,lz — by (x)|)dz, o, >0, b, € Cp(R).
Note thatK, may be written
K, (x,dz) = exple, (|z] — |z = bu (X)) 2n(dz)
with
1
In(dz) = S0 exp(—ay,|z]) dz.

It follows that (B) holds with log,, = —a, ||,

Example 2. — In nonlinear filtering settings the system (1) represents the dynamical
structure of the conditional distribution of a Markov process given its noisy observations.
For instance the unknown Markov process may be a noncooperative target evolvin
randomly and the filtering problem is concerned with estimating its position at each
time.

In some practical situations such as the so-called proportional navigation for
manoeuvring targets the number of strategies used by the target may be finite. In thi
situation |E| < oo and the action of the process can be modeled with a transition
probability kernel of the form

M
Ki(x,2) = ay(m,x) 1, (2),

m=1
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where{a,(m,.); n>1, 1< m < M} is a sequence of positive functions satisfying
Z,",f:l a,(m,x)=1and{F,; 1<m < M}is asequence of transformations Bn

At each timez and in a new position € E the system uses a new strategym, x) for
choosing the next directioR,, (x). In this case a sufficient condition for the exponential
stability of (1) is to assume that, for anylm < M, n > 1 andx € E the following

hold
M
U F,(x)=E and a,(m,x)>0.
m=1

Example 3. —In gene analysis each individual represents a chromosome and it is
modeled by a binary string of a fixed lengih In this setting the fitness functions
represent the performance of the set of genes in a chromosome.

The corresponding genetic model can be defined as in (4) with the finite state spac
E = {0, 1}* with cardinality| E| = 2¢. As a parenthesis, we recall that if the state space
is finite thenP(E) coincide with the unit £|-simplex A with

IE|
A= {peR'E'; pi=0andy p; :1}.
i=1

For time homogeneous fithess and mutations Corollary 2.5 gives sufficient conditions
under which the homogeneous one step mappifgs a unique fixed point and it also
presents exponential decays.

By way of example, if the mutation transition matrix is such that

Vx,ye E K(x,y) >0,

then (B) holds for the uniform distributioh on the finite seft and

e=min(|E|minK(x,y), )
xy |Elmax, , K (x, y)

Example 4. — Assume that the fitness functions take the form

8n (x) = exp— (IBn U(x)>

for some bounded nonnegative function £ — R, and some sequence of parameters
B. — 0 asn — oo. Itis easily verified that condition (15) of Theorem 2.6 holds as soon

as
Zﬂn < 00.

n>1

Next we present an easily verifiable sufficient condition for (C).

(C) For anyn > 1there exists am, € [1, o0) such that

1
— < g(x)<a,, VxeE, vn > 1
a

n
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In addition, the mutation transitions are time homogenefthat is K, = K) and there
exist a subsetl € &, a reference probability measuiee P(E) and a positive number
¢ € (0, 1) such that

dK (x, .) 1
e<——()<—-, VYxekE, VzeA.

di £
In addition there exists a decompositiati = B; U --- U B,,, m > 1 and 2m reference

probability measure&s, ..., Ay, ¥1, ..., ¥m € P(E) such that for anyl <k <m

dK(x,.) 1
e<——(@)<—, VxeBy, VzeE
d)\.k &
and
dK (x, .
ve(B) >0 and %(z)}s, Vx € E, Vz € B,.
Vi

Under (C)’ one can check that (C) holds with = 2. To see that this sufficient
condition is a reasonable assumption let us present an example of Gaussian transitic
which can be handled in this framework.

Example5. — LetK be the Markov transition off = R given by

1 1
K(x,dz) = Nz exp—3(z - F(0)2dz, (17)

where the drift functionf : R — R is bounded and satisfies
fx) = f(signx)M), Vx| =M.
This transition corresponds to the Markov chain determined by
Xnt1=f(Xy) + W,

where theW, are independent and standard normal. In this situation it is not difficult to
check that the mixing type conditions (&)’ hold with

A:[_M’ M]’ Bl:(_oos _M)’ BZZ(Ms +OO),

)\. —_— 8_MK, )\,2 —_— 8_MK,
Z Z .y . . Z.

When(C)’ holds for some > 0 and some sequence of positive numHbeys n > 1}

such tha & sup, a, < oo then Theorem 2.4 applies to study the stability properties of
the limiting system (1).
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Much more is true. We can use the full force @)’ to prove useful asymptotic
stability results even whes, — oo.

PrROPOSITION 2.8. — Assume thatC)’ holds. Then, for any, v € P(E) we have
that

>oa? =00 = I [l410(1) = $ujo(v) = O.

n>1

Jim = Za >0= hmsup l0g1¢/0(1) = $ujo()ll; <O.

n—0o0
Proof. —For any bounded positive functianwe first notice that

g2
K(gn/p(p) = S)V(gn/pgalA) + — Z)\k(gn/p-‘rl)yk(@lBk)

Ap+1 =1
and
K(gn/p) < )»(gn/plA) + Tkzl)\k(gn/p-‘rl)
This yields

g’ > A(8n/pPLa) + 24 q A (8nyp+1) Vi (0lp,)

Sn/p@ 2 < -
v atiq A(8n/pLa) + D iq Ak (&nyp+1)

which in turns implies that

&3 ) A(gn/pla) + > 1)»k(gn/p+1) 84

a(s, )><
' Mgn/pla) + X0 M (Gnyprr) +1

p+1
as soon as is chosen so that

inf B,) >
ot J/k( ) = €.

The end of the proof is straightforward.co

Until the end of this section we investigate more closely the consequences of the
asymptotic stability results of Section 2 in the study of the long time behavior of the
nonlinear filtering equation (2) when the observation sequence takes the form

Yn = hn (anl) + Vna n 2 1’ (18)

for some bounded measurable functign £ x R¢ — R“. The sequenc® = {V,; n >

1} areR?-valued, independent of, and independent random variables with continuous
and positive densitie§g,; n > 1} with respect to Lebesgue measure. In this situation
and using the notations of Section 1 one can check that the fungjogs and#, are
connected by

Vx,y) € ExRY g,(y,x) =g (y — ha(x)).
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We start with some comments on how the previous results can be used to study th
“memory length” of the optimal filter. The so-called optimal filter of fixed memory
length T is the measure valued procgss-’; n > 0} given by

T

Y,T(f)_{n,f(f) |fl/l<T,
n \E(fFX) | Yur41,...,Y,) otherwise

for any bounded test functioif. In other wordsz " is the conditional distribution

of X, given the last current observatiofig,_,; p=0,...,T — 1}. For practical and
theoretical reasons (see for instance [11,14,25]), it is natural to seek conditions whicl
ensures that the optimal filter of memory lengtiwill converge in a sense to be defined

to the optimal filter as — oo and uniformly w.r.t. time. The following corollary of
Theorem 2.4 answers to this question.

COROLLARY 2.9. —Assume that the signal transition probability kernghs,; n > 1}
satisfy condition(B) for a sequence of positive numbdes; n > 1} so thatinf, ¢, =
¢ € (0,1). Then we have

1
sup- log z,"" — |, < —¢”

Proof. —Let us fix the observation process To clarify the presentation we also
suppress the observation parameteso that we simply note, andx, and=! instead
of ¢, (Y,, .) andz} andz':". Coming back to the definitions of the composite mappings
{¢n/p; 0< p < n}and the distribution$r,, 7!, n >0} itis easy to see that

Ty = (pn/nfT(nnfT) and nnT = ¢n/n7T (nOKn_T>a VYO T <n.
As a consequence of the results of Section 2 we have that
sup||m, — ), < (1— EZ)T < exp—(Te?). O
n>0

In our setting the fitness functions are random in the observation parameter. Instea
of (C) we will use the following assumption

(C)” For any timen > 1 there exists a positive functiam, : RY — [1,00) and a
nondecreasing functiofi: R — R such that

L _ 80— )
a, () gy

<a,(y), VxeE,yeR? (19)

and

lloga, (y +u) —loga, (y)| < &(llul)).
In addition, the mutation transitions are homogene¢thst is K, = K) and there exists
anm > 1l ande > 0 and a reference probability measukes P(E) such that
dK™(x, .) < 1

—, VxekE.

€<
dx e
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As usual and to clarify the presentation we suppress the observation paranseter
that we simply notep, andr, instead ofg,(Y,, .) andx) . Let us select another initial
ondmonu € P(E) and denote by{z/; n > 0} the solution of (2) starting at (i.e.

7§ = u). Next results are simple corollaries of Theorem 2.4 and Proposition 2.8.

COROLLARY 2.10. — Assume tha{C)” holds for somen > 1. If «(K) > 0 and
SUP,>1 [l < oo then for anyu € P(E) we have

m
Z Hap+q(vp+q) =00 == I|m ||7'[“ — 7-[”“ —
p=0qg=1

nlm

lim = ZHaP+q(VP+q)>O:I|msup log||/ — ,]|,, <O

n— 00
np =0g=1

and

SupE (loga,(V,)) < oo = lim E(||z;" — ml|,,) =0.
n>1

Proof. —It is useful here to replace the functiops(y — 4,(.)) by the “normalized”
onesM This choice does not alter the structure of (2).

Let us ?x the observation sequenke Using the same arguments as in the proof of
Theorem 2.4 we first note that for anygOm + p <n

e?a(K) [[a,2,(Ypig) S a(Syp) < 82 a0, Vo)
g=1 g=1

SinceY, = h(X,) + V,, it follows that

||7T# — T[”Htv < H ( — S(X(K)e—ZmG(M) Hap+q(vp+q)>

foranyu € P(E) andn > m > 1 as soon as sy, ||4,|| < M. The end of proof of the
first two implications is now stralghtforvvard Let us prove the third and last one. Writing

C = sa(K)e 2m00n PP (V) = H ap+q(Vp+q)

we first notice that for any > 0

n— m+l

- t _\n—m+1
E((1—CoP(V)) ;P(logap+q(Vp+q) > E) +(1-ce)""

Hence
2

E((1=CoP (V)" < 2’"7 SupE (loga, (V,)) + (1— ce™)" ™" (20)
n>1
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The final step is to note that repeated use of Holder inequality gives

_1

E(|x — ) < [] E((1 - CoP(v)) ™), (21)
p=0

Combining (20) and (21) one concludes that

n—oo

2m2
lim E(||7} —m],,) < TsupE(Iogan(Vn)) vVt > 0.
n>1

Lettingt — oo we end the proof of the corollary.O
COROLLARY 2.11. —Assume thatC)” holds. Ifsup,, [|#, ]| < oo then we have

> E(a,%(Vi)) = co=> lim E(|lz} = 7,ll1,) =0,
n>1

12 1
lim =Y " E(a;%(V, 0= limsup=Ilog E (|| — m,|l:») <O.
Jim_~ ; (a,%(Vp) > msup_10g E (|’ — ) <

Proof. —The basic ideas of the proof were already given in the proof of Proposi-
tion 2.8. Under our assumptions one can check that

et et 20(M)
(04 (Sn/p) P = e
a§+1(Yp+l) a§+1(vp+l)

as soon as syp, |14, |l < M. Thus we have

n

E(lmf — mallw) < [[ (- e*e®ME(a,2,(Vp41))
p=1

from which the end of the proof is straightforwardo
Let us now investigate assumptio@)” through some examples of nonlinear sensor.

Example6.— As a typical example of nonlinear filtering problem assume the
functionsh,, : E — R¢, n > 1, are bounded continuous and the densijegiven by

~()——1 ex( }’Rl>
S = @Rz TP\ T2V )

whereR,, is ad x d symmetric positive matrix. This corresponds to the situation where
the observations are given by

Y, = hn(Xn—l) + V., Vn2>1, (22)

where (V,),>1 is a sequence oR?-valued and independent random variables with
Gaussian densities.
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After some easy manipulations one gets the bounds (19) with
1, _ _
loga, () = S| R, [ ll® + | R, [[I1n 11,

where| R 1| is the spectral radius dt 1. In addition we have
|logay, (y +u) —loga, ()| < Lylul  with L, = [|R, [/,

It is therefore not difficult to check that the assumptions of Theorem 2.11 are satisfiec
when

RY) < oo.

sup(li72, I,
n>1
To see this claim it suffices to note that Jensen’s inequality yields that
log E (a, 2(Va)) = IR, |11 = 2| R, M [I1Aa | E( V).

Finally we note that the last assertion of Theorem 2.10 holds since we have
1
E(loga, (V.)) = S| R H[IAall® + || B[ 1Al E I VaD)-

Example 7. — Our result is not restricted to Gaussian noise sources. For instance, le
us assume that = 1 andg, is a bilateral exponential density

8 () = T exp=(@,[o]), @, > 0.
In this case one gets the bounds (19) with

loga, (y) = aullhall

which is independent of the observation paramete©One concludes easily that the
conditions of Theorems 2.10 and 2.11 are satisfied as soon as

supfay, [[hall} < oo.
n>1

Finally, if
> (@nllhall) < oo

n>1l
one can also check that condition (15) of Theorem 2.6 is satisfied.
3. Uniform convergence of genetic algorithm
3.1. A uniform convergence theorem

In the present section the asymptotic stability results presented in Section 2 are applie
to prove uniform convergence results for the filR&S model.
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THEOREM 3.1. — Let{g,; n > 1} be a collection of bounded and positive functions
on E such that for any: > 1 there exists am, € [1, o0) such that for any € E and
n>1

1
— < g(x) <ay. (23)

If the sequencéa,,; n > 1} is uniformly bounded, so that

def.
a = supa, < oo

n>1
and the limiting systertil) satisfies the following asymptotic stability assumption

VfeBy,(E) lim sup sup|épir,(wW)(f) —dpir W) =0,  (24)

|
T—00 veP(E) p20

then we have the following uniform convergence result with respect to the time paramete

Vf e By(E) A!iinoosgg)E(lnlef—nnﬂ) =0. (25)

In addition, if the limiting system is exponentially asymptotically stable in the sense that
there exists somf, > 1 andy > 0 such that for anyf € B,(E), | fIl <1, u,v € P(E)
andT > Ty

sgg\%mp (W () = bparsy ()| <77, (26)
Pz
then we have for any € B,(E), || f| < 1, the following uniform bounds

5exp(2y’)

N
fl;gE(\nn f=mfl) S —xar (27)
forany N > 1 so that
1 logN
T(N) % [— 9 ] L1370
2y +y’

wherea andy’ are given by

14
o= -
y+v

with ' =1+ 2loga.

Proof. —In what follows we denote by : E — R a bounded measurable function
such that| /|| < 1. To prove our result we will use repeatedly formula (9). For instance
and for later use we immediately notice that

a ggn/p(x)gan/p’ VXEE, vo<p<n’
n/p
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with
n
An/p = H dq
g=p+1

and the usual conventidr, = 1. On the other hand, using the above simplified notations
we have the decompaosition

T, f nnf Z ¢n/p f ¢n/p(¢p( ))f)
with the conventionpo(r";) = . Therefore we also have the inequality

’n,ivf—n,,f‘ Z "pn/p f ¢n/P(¢P( ))f’ (28)

Using (9) we see that each term

|6/ (7)) [ = busp (D (75-0)) £
is bounded by
af/p(‘”;;vfl - ¢p(”;}7\]71>fl‘ + ‘”;:VfZ - ¢p(n1’,\’71)f2\) (29)
with

8 8
fi=22K, (), fo=2L2
An/p An/p

so that|| f1ll, Il f2ll <1
By recalling thatn,f," is the empirical measure associated &b conditionally

independent random variables with common lﬁ’yWﬂ,',V,l) we clearly have the estimate

1
E(|m) f = p(mp a) f]) < N

Collecting the above inequalities one concludes that

2
E(jm) f —muf]) < = (14 na5).

N
This yields for anyl" > 0
AT a?
sup E(|zV — T, < /0,
sup E(lm) f—mf]) <~
Under our assumptions this implies that
4T a?"
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and
'T

_4e
n=0,... SUN

For anyn > 0 we also have the decomposition

with y" =1+ 2loga. (30)

n

ﬂ,ivf—ﬂnfz Z (‘Pn/p(”]l;v)f_¢n/p(¢p(”1];v—l))f)

p=n—T+1

+ ((pn/nfT (jT,iV_T>f - ¢n/n7T(7[n7T)f)'
Under our assumptions this implies that

n

= | < D0 Nbun (1)) f = by (dp (00)) F | + 80 (),

p=n—T+1
where

er(H) L sup SUPly 775 (D) = Bps/p (S

u,veP(E) p=0

In the same way that we deduce (30) from (28) we can establish that far arly

'T

E(m f—mf) < 2 4 er(h). (31)

VN
If we combine (30) with (31) we arrive at

'T

4¢
Sgg)E(]n,ﬁvf—ﬂnfDé +er(f)

JN

foranyT > Ty. Letting N — oo and thenT” — oo we prove (25).
If the exponential bound (26) holds then using the same line of arguments as befor
one can check that for arly > Ty

'T

supE(|nN f —m, ) < +e 7T,
SUDE ([ f ) < 0
Now, if we put
1 logN
T=T(N 1
™= [2 +y } ’

where[a] denotes the integer part afe R, we find that

5exp(2y’
oexXpyl) i, Y
Ne/2 y+y/

SUpE: ([ =, ) <
n>0

assoonad (N)>Ty. O
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The preceding theorem shows that under some mild assumptions on the signal sern
group the confidence intervals

Ab
Noay N
7 A) = oz T A+

rb

W], AGE,

whereb = 5¢”", have reliability 1— £ for any timen > 0. Namely

rb

P(|nnN<A>—nn(A>| <

1
For instance we can say at each timg 0, with a probability greater than 0 that the
exact values ofr,(A), A € £, are in the intervals

10
Na/2

[nrf’(A) _ 2 aN(A) +

N2 ] Aek.

This statement is usually written in the symbolic form

10
Vn>0, VA€, m)(A)~m(A)+ Naz 0.9
Condition (26) guarantees that the measure valued process (1) is asymptotically stab
and corrects with a exponential rate any erroneous initial condition. Sufficient conditions
for (26) to hold are given in Section 2. For instance, if (B) holds for serag0, 1) then
we have

SUPIBp 1/ (W) = Bparrp @) f| < (1 e2)"
Pz

foranyT > 1, u, v € P(E) and for any bounded test functighso that|| /|| < 1.

Let us discuss some consequences of Theorem 3.1 when the stat&spacPolish
space (that is a complete separable metric space). In this situation we first recall the
‘P(E) with the topology of weak convergence can be considered as a metric space witl
metricd defined foru, v € P(E) by

d(u,v) =Y 27" |ty — vful,

m>=1

where {f,,; m > 1} is a suitable sequence of uniformly continuous functions such
that || /.|l <1 for anym > 1 (see for instance Theorem 6.6 p. 47 in [27]). Now the
Kantorovitch—Rubinstein or Vaserstein metric B(P(E)) and associated to the metric
d is defined by

D(Iy, TTp) = inf E (d (1, v)), (32)

where the infimum is taken over all pair of random varialglesv) with values inP(E)
and such thaje has distributionIT; and v has distributionlT,. The metricd being a
bounded function, formula (32) defines a complete metri®P¢R(E)) which gives to
P(P(E)) the topology of weak convergence (see Theorem 2 in [20]).
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If we note T/ the law of the random measureg andIl, the Dirac distribution at
the pointr, Theorem 3.1 leads to

Cte
supD (T, 11,,) < —.
sup (M M) < o7

In nonlinear filtering settings the fitness functions depend on the observation deliverec
by the sensors and the previous theorems cannot be applied directly. Let us come ba
to the nonlinear filtering problem described in Section 2.4 with the observation sequenc
given by (18). To clarify the presentation we will also suppress the observation paramete
Y and we simply note, andr, instead of¢, (Y,, .) andx). As in Section 2.4, it is
convenient to replace the boundedness assumptions (23) by the following condition

(G) For any timen > 1 there exists a positive functiom, :R? — [1,00) and a
nondecreasing functiofi: R — R such that for any(x, y) € E x R

L _ =)
a, ) gy

< a(y), (33)

lloga,(y +u) —loga,(y)| < 6(|ull)
and
suplogE(a,f(V,,))l/2 © <00 and suplh | B M <oco

n>1 n>1

Under the boundedness condition (G), if we replace the limiting condition (24) by

lim — sup SUPE(|¢p+1/p (W (f) = bprr/p W] Y1, ....Y,) =0 (34)

T—00, veP(E) p=0

then, using the same line of arguments as in the proof of Theorem 3.1, one can chec
that (25) holds. In much the same way, if we replace in Theorem 3.1 the exponentia
bound (26) by the following inequality

SgEE(’¢p+T/p(M)(f) = Gprrp WO Y1, ..., Y,) <e T, (35)
P>

then one can check that the uniform convergence result (27) holds with
loga =L+ 6(M).

Example8. — It can be directly checked that the Gaussian and bi-exponential
examples of noise sources given in Examples 6 and 7 satisfy condition (G).

3.2. A genetic algorithm with periodic selections

Our present purpose is to understand why the selection mechanism plays a very spec
role in the behavior of the particle filter. What is important is that each particle interacts
selectively with the system in accordance with the environment represented by the fitnes
functions.
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This remark underlines the very interesting role played by the updating/selection
transition. In nonlinear filtering settings each fithess function is related to the current
observation data and intuitively the selection mechanism stabilizes the particles’ motior
around certain values of the real signal which are determined by the noisy observatio
and thus provides a well behaved adaptative stochastic grid.

We also remark that the updating transition is used at each time and only depends ¢
the current fithess. Another idea is to use the selection mechanism from time to time
In this case the interaction depends on the series of fitness functions and on the pa
particles between two selection dates. The choice of the selection/updating times the
requires a criterion for optimality. It will now be shown that one can take advantage
of the stability properties of the limiting system (1) to develop a more efficient genetic
algorithm.

In the last part of this paper the genetic type scheme presented in Section 2 ar
generalized. The prediction/mutation mechanisms of the former will include exploration
paths of a given lengtl > 1 and the corresponding updating/selection procedure will
be used ever{ steps and it will consideT fithess functions.

This new algorithm with periodic selection is particularly important in nonlinear
filtering settings since in this situation each selection transition deperifi®bservation
values and the resulting genetic algorithm appears to be more efficient in practice.

Our immediate goal is to show that the former genetic algorithm can be reduced tc
the latter through a suitable state space basis. To this end we need to introduce son
additional notations. Toany € {1, ..., T} andT > 1 we associate a sequence of meshes
{t{T:P); n > 0} by setting

t(()T,p) —0, trET,p) =m—-DT +p, Vn>1

The parameter” will be the selection/updating period,will denote the time steps and
the parametep will only be used to cover all the time space basis so that

U {t,ET”’); n>0}=N.

1<p<T

The construction below will depend on the pair paramé&®rp) and on the obser-
vations Y. To clarify the presentation the mutation transition is assumed to be time-
homogeneous, that i§,, = K and we simplify the notations suppressing the pair para-
meter(T, p) so that we simply note, instead of'"?. If, we write for anyn > 0

Ay =ty —ty-1, nz=1,
then we clearly have that
Ai1=p, and A, =T Van>1l
We also notice that the distributions given by

Mm=m,0K®- - ®KeP(E*1), n>0, (36)
—_————

Apy1-1
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are solution of the measure valued process
M =Pn(Mp-1), n=1, (37)
where®, : P(E4") — P(E*1) is the continuous function given by

D, (77) =y, (TI)Kn

and
o U, P(EA) — P(E*") is the continuous function defined by
Gn 1)
VfeC,(E*) W, =1
feCy(E™) m(f) 7G)
with

Ay
gn (x) = H 8t+q (xq)-

g=1
e K, is a Markov transition probability kernel frof*» to E“»+t given by

}Cn ((xls ey xA,,)s d(Zl, ceey ZAn+1)) = K(xA,,, le) XX K(ZAn+l_l’ dZAn+1)'

Remark 3.2. — To check that this model generalizes the one given in Section 2 observe
that it coincide with the previous one whé&h=1 andp = 1.

It is interesting to note that in nonlinear filtering settings each fitness fungtias
related to the current observation data, that is

VxeE g,(x)=g,(Y,, x)

and the distributions (36) represent the conditional distributiof;,ofjiven the random
variables), ..., Y, where

Xn = (X[,,’ [ERE] th+1_1) and yn+l = (Ytn—l—ls RN Ytn+1)’ n > O

Now, the genetic type algorithm associated to (37) is a Markov ch@ginn > 1}
with product state spacg$E*+1)N; n > 0} whereN is the number of particles and
{A,+1; n > 0} the selection/updating periods.

The initial particle systengo = (¢3, ..., ¢Y) takes values ifE21)N = (EP)N and it
is given by

N N
Py({o € dx) = H no(dx?) = H mo(dx])K (x{,dx3) ... K (x%, 1. dx},)
g=1 g=1

and the transition of the chain is given by

N 1 N
PY(gn €dx | Cn—1 =Z) = H d)n (ﬁ Z(Sy‘) (dx’f)
i=1

q=1
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_HZZ ng /) (ZZﬂ,de)"‘K(x%_l,dx;]*>,
g=1li=1 j=19n

where dx = dx* x --- x dx" is an infinitesimal neighborhood of the point=
(. xV)y e (EAn)N and forany I<i <N, 2/ = (2, ...,z ) € M.

If we denote

;n = (gtna HRR gt,prlfl)a Vl’l 2 0

we see that the former algorithm is a genetic type algorithm Witheriodic selec-
tion/updating transitions:

Between the dateg andz, . ; the particles evolve randomly according to the mutation
transition and the selection mechanism takes place at each,time: 1.

The approximation of the desired conditional distributi¢ms; » > O} by the particle
density profiles

N T
T Z 5E,n
is guaranteed by the following theorem

THEOREM 3.3. — Let{g,; n > 1} be a collection of bounded and positive functions
on E such that for any: > 1 there exists am,, € [1, o0) such that for any € £ and
n>1

— < gn(x) < ay.

n

If the sequencéa,,; n > 1} is uniformly bounded, so that

def.
a = Supa, < oo
n>1

and the limiting syster(il) is exponentially asymptotically stable in the sense that there
exists somd, > 1 andy > 0 such that for anyf € B,(E), || f|l <1, u,v € P(E) and
T=>Ty

sgg\%mp (W) = Gprrp (] <7 T,
p=
then we have for any € B,(E), || f|| < 1, the following uniform convergence rates

Sexp(2y’)

N, T(N) ¢ _
rSt;CE)E(’ntn f T[fnf’) < NB/2 (38)
for any N > 1 so that
det [1 logN }
T(N = T,
(N) = [2 Iy 0
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whereg andy” are given by

14

ﬂ: "
y+y

with y” = 2loga.

Proof. —The proof will only be sketched since we will follow essentially the same line
of proof of Theorem 3.1.
First we note that the definition of

M= 80 o b= EoD € (Y)Y
i=1

and the weak law of large numbers yield

E(|n) 1) =T 1(@)]) < Vg € Cy(ES),

liell
VN’

wheren” is the random measure

1 N
7N _ An
"nfl—NE' 185"”*1®K®W®K€M1(E ).
1= Ap—1

Similar to (29) and (30) we obtain for anye C,(E*"+1)

E(|®4(n) 1) (@) — @0 (Th1) @)]) = E(| @0 (1)1) (Ca0) — W, (T)1) (Ca0)])
< % exp(2(loga)A,). (39)

On the other hand we have the decomposition

AN () = m, () =l (f) = ma(f0) = Iy + 15 + I3,

where
A=f®1® ---®1
AVL+171
and

Iy = (f) = u(1h-0) (f),

If =@, (n) 1) (f) — @ (1)_1) (f0),

I§ = @, (1)_1) (1) = ©u (a1 (f).
In order to derive a bound fai? we simply note that

Q7@K ® - Q K)(f1) = 1,171, () (f).

Ap
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Indeed, under our assumptions, this yields
E(’IEJ ) = E(’¢tn/[nfl (ntlj,l)(f) - ¢tn/tnfl(ntnfl)(f)‘) g e_yAn' (40)

Finally, by definition ofp" we have that

E(|Iy]) < %ﬁ (41)

Combining (39), (40) and (41) one can check that

1+2e'7

Nz +e77T  with y’ =2loga

SUpE (|7 "™ f — 7, f]) <
n=>0

from which the end of the proof is straightforwardo
Remark 3.4. — We note that the error bound (38) is an improvement of (27). More
precisely, using the notations of Theorem 3.3 we have that

B 1

=1+ ———>1
o y + 2loga

In view of the preceding construction the genetic type algorithm with periodic selection
T(N) depends on a parameter=1,...,T(N) so that we needl'(N) genetic
algorithms to describe the conditional distributidng; n > 0}.

In other words we need T'(N) particles to approximate the whole solution of the
limiting system (1) with an error bound (38). It is therefore natural to ask how rapid the
approach is in (27) when we ugéT (N) particles. In this last situation it is clear that
the convergence rate is proportional to

1

D=

If we write Dg(N) = N~#/2 the decay rate of the genetic scheme with periodic selection
T (N) we find that
aj2

D, (N) (N— )
= Q0.
Ds(N) T(N) N—00

Remark 3.5. — Theorem 3.3 also applies to the nonlinear filtering problem described
in Section 2.4 with the observation sequence given by (18).
Arguing as before, under (G) and (35) the uniform convergence result (38) holds with

loga =L +6(M).
3.3. Comparison of genetic-type schemes

In this work we have presented a way to combine the stability properties of the limiting
system (1) with the long time behavior of a class of genetic algorithms.
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It remains to discuss the extensions and limitations of genetic-type approximating
schemes. Several variants of the particle scheme studied in this paper have been recer
suggested to approximate the nonlinear filtering equation (see for instance [6—-8] an
references therein).

These variants are less “time consuming” mainly because they use independer
branching corrections but as a result the size of the system is no longer fixed but randon

To be more precise, let us briefly recall these constructions. As before the natura
and classical idea is to approximate the two steps transition of the limiting dynamical
system (1)

- Updating An dif \I/ ( n) PredICtlonJTn+1 =7/T\n Kn
by a two steps Markov chain taking values in the set of discrete and finite measures
Namely,

1 Ny Nn VH~1

Z 5. Branching _ Z S~ Mutation Z
ﬂ” gn ﬂ” Sn n+l - §n+1,

where{(N,, &,), (N,, E,,) n > 0} is a suitably chosen Markov chain with state space
E = Ugen(a} x E*) (with the conventionE® = {A} a cemetery point). Here the
parameterr € N represents the size of the system and the initial number of particles
Ny € N is a fixed nonrandom number which represents the precision parameter of the
scheme.

To check that this abstract formulation contains the genetic algorithm presented ir
Section 1 it suffices to note that it coincides with (5) when the size of the population
Np = N, is fixed and

- No No g (Zi)
PE,edx/&=2)=]]D =~

% (dx”),

p=1i=1 Z] 18n(29)
~ NO

P11 €dx/E, =2) =[] Knsa (2", dxP).
p=1

In this situation, if we put
Y X Nll
M =Card{1< p< N, &F =£'}  thenz) = ZM’ .

where, conditionaly orF,, = o (N, &,)
(M3, ..., MM) = Multinomial(N,; W7, ..., W),
. L (E 1 .
wie 860 L pyisp,). (42)

Sampling according to a multinomial branching law may be “time consuming” mainly
because the random numbeng?, ..., M +) are negatively correlated in order to keep
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fixed the size of the system. Another idea is to use independent numbers (conditionall
with respect taF;,) with a suitable law so that the nonbias condition (42) still holds. Let
us present some classical examples of independent branching numbers

Poisson branching numbers

(N W)*

Binomial branching numbers
VO<k<N, P(Mi =k|F)=ck (W) @-w)"™"
Bernoulli branching numbers

p(M,;:an):{ (VW) k= [N, W,]4+ 1
1-{N,W,} if k=[N,W,],
where[a] is the integer part of € R and{a} =a — [«] .

In the resulting particle schemes the mutation transition is unchanged and consists c
sampling independent transitions according to the kedid€ls n > 1}.

As aresults during the mutation transition the size of the system is unchanged and w
haveN, ;1 = N,.

We note that the multinomial genetic scheme arises by conditioning the branching
particle scheme with Poisson branching to have constant population size (see [6])
Theses three variants of the genetic algorithm are known to approximate the desire
distribution at each time > 0 but their long time behavior is still an open question.

In view of the preceding development it is tempting to apply our approach to prove
uniform convergence with respect to time. Unfortunately when we move from the
genetic scheme with constant size to the branching schemes with random populatio
size we find that we no longer have a uniform convergence with respect to time. More
precisely, in view of (42) the total size proceSs,; n > 0} is an F-martingale with
predictable quadratic variation

n—1 Np

Av=NZ+ > E(IN, = Npoaf2/Fpot) = N2+ 3. S E((M, — N,Wi)?/F,).
p=1 p=0i=1

To see that the integrability of this increasing process completely determines the lon
time behavior of such schemes it suffices to note that

1
E((m) (@) = 7,(D)°) = E(IL— Na/Nol?) = 77 E (A — A0)?)
0
and therefore a uniform convergence result will take place if and only if

SUPE (A7) =Y "E(IN, — N,_1[°) < o0.
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The increasing procegsi,;; n > 0} is usually not uniformly integrable and therefore
one cannot expect to obtain a uniform convergence result. For instance, when we us
Poisson branching numbers the following basic result

E((M, = N,W)?/F,) = N,Wi, V1<i<N,

describes a “typical situation” of independent branching numbers in which the uniform
convergence fails. To see this claim we simply observe that

E((nrfv(l) — nn(l))z) - r_ 0.

This simple example shows that the particle scheme with independent branching
presented in [7] for solving the nonlinear filtering equation does not converge uniformly
with respect to time.

We continue our discussion and examine the long time behavior of the particle schem
with binomial branching numbers. In this situation one can check that

i i\2 i i
E((M,—N,W,)"/F,) =N,W,(1-W,).
If we assume that
1
—-<gx)<a, Vnz21l VxeFE
a

for somea > 1, then one gets

N, ' '
> N,Wi(1-=W)) >N, —d°
i=1

which in turns implies that

1 a?
E((x (D) — 7)) >n<ﬁ0 _ N_g> o

as soon adVp > a?.

The Bernoulli branching law seems to be the most efficient one since the independer
random variabIeSM;, e, Mﬁ”’) have minimal variance and the population size cannot
vanish (see [6-8]). Nevertheless the following simple example shows that even in this
case one cannot expect to approximate the desired system (1) uniformly with respect 1
time.

Let us assume that the state sp&te- {0, 1}, the fithess functiongg,; » > 1} and
the transition kernel§k,,; n > 1} are time homogeneous and given by

g()=3g(0) >0, K(x,dz)=v(dz) = %&)(dz) + %51(@.
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In this simple situation the systeg) = (¢2, ..., 5,1,\"’) consists ofv, i.i.d. particles with
common lawv. This yields

Np

1 )
Ve >0 P(N—Zg@;,)—v(g)

P =1

5
> sg<0>/Np> < (43)

Noticing thatv(g)/g(0) =2=3v(g)/g(1) andg(0) < g(1), on the set

1
szg={ ~ 2 8E) —v@© <eg(0)}
P i=1
we have that
2(0) 1 € I3
1 5N i _§’<2(2—8)<§ and
v, 2iz18(5,)

g 3 3e 9
ERSU —’ S223-0 2
v TihgE)y) 212238 2

as soon as € (0, 1/9). This in turns implies that

[—1 gN(O) .]:0 and [—1 gN(l) ']zl,

and

[EEN

£ =0— (N, Wi} (L— (N, W}}) > 31— 0",

N

) ) . 1
£ =1= {N,W}(1—{N,W}}) > 21(1— 9)2.
It is then clear that on the s&. we have the lower bounds
i i\2 i i 1
E((M, = NyW,)"/Fp) = {N, W, } (1= {N, W, }) > 7 (1 9)".

This, together with (43), shows that

& i N2 1 5
E(Z(M; - N,W}) ) >Za- 98)2<N0 _ 8_2)

i=1

As soon asVy > 5¢ 2 one concludes that

N _ 20" g2t 5)
E((r) () = m(D)°) > 51 %) (NO )
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Hence it follows that for sufficiently larg&/y

N 2 nNO
In contrast to the situation described above in this simple case the genetic algorithm (5
will consist at each time ol i.i.d. particles with common law and

1
V20 E((xN(f)—m(f)) < o

for any bounded test function such that|| < 1.
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