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PHYSICAL SCIENCES

On the stability of Laplace resonance for Galilean
moons (Io, Europa, Ganymede)

SERGEY ERSHKOV & DMYTRO LESHCHENKO

Abstract: This paper presents the application of recent ansatz for estimation of stability
of the Laplace resonance for Galilean moons (Io, Europa, Ganymede). We estimate over
time the eccentricity + semi–major axis in a binary system experiencing the net tidal
friction, including the additional tidal heating which comes from the transformation
of net transfer of angular momentum between the Galilean moons of Jupiter (due to
dynamical features of the Laplace resonance). Presumably, there should be a net transfer
of angular momentum between Io and Europa (for the reason that tidal heating on
Ganymede seems to be negligible with respect to Io and Europa). We established the
fact that Laplace resonance should be valid and stable on a timescale of centuries in
the future, but there might be chaotic perturbations less than 0.1% for the accuracy of
such phenomenon. Moreover, the presented ansatz can be used to predict a scheme for
optimizing the maneuvers of spacecrafts in the vicinity of Ganymede (due to absence of
net transfer of angular momentum between Ganymede and other Galilean moons). The
main conclusion stems from previously suggested approach (Ershkov 2017a) is that there
is a net transfer of angular momentum between Io and Europa, which results in the tidal
heating. The main results are also relevant in view of the future mission for the icy moons
of Jupiter.

Key words: Tidal dissipation, galilean satellites of Jupiter, Laplace resonance, net transfer
of angular momentum.

1 - INTRODUCTION

The Laplace resonance is known to be one of the old famous problems in celestial mechanics, besides
we should especially note that a lot of great scientists have been reporting their researches related
to this phenomenon during the last 200 years.

In accordance with (Peale et al. 1979) the Galilean satellites are numbered in the conventional
manner with 1 to 4 corresponding respectively to Io, Europa, Ganymede, and Callisto (the largest moons
of Jupiter). Let ni denotes the mean orbital motion, the relation

n1 – 3n2 + 2n3 = 0, (1)

is satisfied exactly within infinitesimal observational error. This is the well–known Laplace relation
(here mean orbital motion ni, according to definition, is equal to the average angular frequency of a
body in elliptical orbit, and is defined by ni = π/Ti, where Ti is the orbital period).
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All the Galilean moons are known to be captured in synchronous rotation by Jupiter (except
Europa in the closest past, but currently we can assume – at first approximation – that Europe is
being captured in tidal locking by Jupiter too). We should especially note that tidal locking (also
called gravitational locking or captured rotation (Barnes 2010)) occurs when the long-term interaction
between a pair of co-orbiting astronomical bodies drives the rotation rate of at least one of them into
the state where there is no more net transfer of angular momentum between moon and its orbit
around the Planet.

This condition of ”no net transfer of angular momentum” must be satisfied over the course of one
orbit around the Planet; besides, let us outline that there is no interchange of the angular momentum
between Jupiter and, separately, each of the Galilean moons.

But, nevertheless, Galilean moons (which are related to each other by the Laplace resonance –
Io, Europa, Ganymede) might be interchanging angular momentum between each other, inside the
aforementioned triple Laplace relation (1).

For example, let us consider the case of Io for the presenting with respect to the fact that total
angular momentum inside system “Jupiter–Io” should be variable insofar.

In accordance with the results, which were reported in (Goldreich & Gold 1963), if we only consider
the case where the satellite always presents the same face to the Planet (this is the non-rare case
which is observed in Solar system and includes Galilean moons of Jupiter, the greater satellites of
Saturn as well as the Moon of Earth) then it is easy to understand why the tide raised on satellite may
not influence on its eccentricity. The eccentricity (0 < e < 1) is in this case, as reported in (Goldreich &
Gold 1963):

e =

√
1 +

2EL2

m3M2G
(2)

where E is the energy of the orbit (E = –(GmM)/2a, where a is semi–major axis), L is the angular
momentum, m is the mass of satellite, M is the mass of Jupiter, G is gravitational constant in the
Newton’s law of universal gravitation.

If the satellite is not spinning (in its relative rotation to the Planet) (Goldreich & Gold 1963), then
the tide, which was raised on it’s surface, may only produce a radial perturbation force. This means
that L is not changed by the tide.

Since any energy dissipation in the satellite decreases E and since we have E < 0, and Laplace
resonance (1) helps to maintain Io’s orbital eccentricity (e) at a stable and constant value (0.0041,
according to the data of astrometric observations (Ershkov 2017a)), we find from (2) that there should
be a net transfer of angular momentum between the Galilean moons of Jupiter – due to dynamical
features of the Laplace resonance (1). Presumably, it should be a net transfer of angular momentum
between Io and Europa (for the reason that tidal heating on Ganymede seems to be negligible with
respect to Io and Europa).

As for the satellites with a large amount of fluids layers inside (or on their surface as Ocean),
there obviously exists a physical mechanism of transformation of the incoming net transfer of angular
momentum into the additional tidal heating via interacting of fluid tides or Rossby waves (Tyler 2011,
2014) with the solid structure of the borders of coastline in the Ocean, for example.
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Because Ganymede’s orbital eccentricity is relatively low - on average 0.0015 – we conclude that
tidal heating is negligible now (that’s why the net transfer of angular momentum into the system
“Jupiter-Ganymede” from Io and Europa is also negligible).

If we consider the orbital dynamics of Galilean moons, we should take into consideration the net
tidal heating (including tidal heating which comes to the heat budget from transformation of the net
transfer of angular momentum via crushing of fluid tides on the solid boundaries of fluids layers in
these moons).

The aforementioned assumption is very important for the understanding of natural mechanism at
the explanation of basic governing features in Laplace resonance (1): indeed, it is the net tidal heating
that governs the orbital dynamics of Galilean moons in Laplace relation.

2 - MATHEMATICAL MODEL OF ORBITAL DYNAMICS FOR GALILEAN MOONS, CAPTURED IN
LAPLACE RESONANCE (SEMI-ANALYTICAL ANSATZ)

Having stated the aforementioned physical mechanism, let us consider mathematical model of orbital
dynamics of Galilean moons. According to comprehensive research (Goldreich & Gold 1963), in this
article it was stated that the tides on the Galilean moons are probably more important than tides on
the Jupiter (insofar as their effects on eccentricity were exhibited).

Basing on the aforementioned assumption, let us recall that in (Ershkov 2017a) the systems of
equations (3a), (3b) were presented which have been stated for mutual evolution of the eccentricity e
along with the semi–major axis a of the moons of Planet (in (Ershkov 2017a) such system was denoted
as (A2)). Here and below we note that the tidal effects are introduced by means of the Love number k2,
which is describing the response of the potential of the distorted body in regard to the experiencing
tides, as well as by the quality factor Q, which is inversely proportional to the amount of energy
dissipated essentially as heat by tidal friction; so, tidal effects are introduced in the combination
k2/Q for Planet and satellite.

In particular, we recall that we have (as a first approximation) for the tides raised in the 1 : 1

spin-orbit satellite (Peale & Cassen 1978):

da
dt

= –
21ks2MnR

5
s

Qsma4
e2 (3a)

de
dt

= –
21ks2Mn
2Qsm

(Rs/a)5e (3b)

here the sign s denotes the case of satellite; m is the mass of satellite, M is the mass of Jupiter, n is
the osculating mean motion, Rs is equatorial radius of satellite.

Besides, we should note that according to the Kepler’s law of orbital motion the square of mean
motion is:

n2 =
G(M+m)

a3
(4)

Let us denote just for simplicity

B = ±
21ks2M

√
G(M+m)(Rs)5

Qsm
(5)
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The mathematical procedure for reduction of the system of Eqs. (3) was reported in (Ershkov 2017a),
with only the resulting formulae (5–7) left in the main text of the current research.

For the case of eccentricity e −→ 0, we could obtain from Eqs. (3) (here below 4t should be
considered as a long time-period scale; {a0, e0} = {a(0), e(0)} = const):

e ∼= e0 exp

[
–
B
2

exp (13 e20/2)

a13/20

4 t

]
, (6)

as well as we could obtain the appropriate expression for the semi–major axis

a ∼= a0 exp

(
e0 exp

[
–
B
2

exp (13 e20/2)

a13/20

4 t

])
(7)

where the scale-factor a0 should be given by the initial conditions.

3 - DISCUSSION

The main motivation of this research is the ensueing and elegant application of the recent ansatz
(Ershkov 2017a) for estimation of stability of the Laplace resonance for Galilean moons (Io, Europa,
Ganymede). As for scientific originality of the current research (in comparison with the results of work
(Ershkov 2017a)), the aforementioned analysis let us conclude that there is a net transfer of angular
momentum between Io and Europa, which results in the tidal heating (this main conclusion portends a
flow of constructive research novelty). The main results are also relevant in view of the future mission
for the icy moons of Jupiter.

Let us discuss the application of formulae (6-7) for the orbital dynamics of Galilean moons, as
well as their contribution into the stability of Laplace resonance (1).

The intriguing fact is that there is no any dynamics (Moore 2003) for Io’s orbital eccentricity e: it
remains stable at the same constant value (0.0041, according to the data of astrometric observations
(Peale et al. 1979)) due to a net transfer of angular momentum between the Galilean moons in Laplace
resonance (1). That’s why expression for Io’s eccentricity, calculated from (6), is simply reduced to the
constant (0.0041); therefore we obtain from (7)

a1 = a1(0) exp (0.0041) ∼= 1.0041a1(0) (8)

It means that Io’s semi-major axis is assumed to be increased less than circa on 0.5% (by the net
tidal heating) since its initial magnitude a1(0). Indeed, models of its orbit suggest that the amount of
tidal heating within Io changes with time (Yoder 1979). All in all, we can come to the conclusion from
(4) and (8) that n1 is proved to be simply the appropriate constant in (1).

Ganymede’s orbital eccentricity is relatively (Showman & Malhotra 1997) low - on average 0.0015 -
but it is changing quasi–periodically due to solar and planetary gravitational perturbations (including
the influence of net transfer of angular momentum from Io and Europa). The range of changes
of Ganymede’s orbital eccentricity is 0.0009 – 0.0022 on a timescale of centuries (its eccentricity
oscillates near the average value of 0.0015).

So, we can come to conclusion from (6) that tidal heating is currently the negligible in case of
Ganymede’s orbital dynamics and its semi-major axis (7) is assumed to be increased less than circa
on 0.2% (by net tidal heating) since its initial magnitude a2(0).
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According to formulae (1) and (7) (B < 0 in (5)–(7)), n1 is proved to be decreased exponentially,
but quasi-periodically in the long time–period 4t of observations to the appropriate constant value
in (1).

As for the dynamics of the Europa’s orbital eccentricity (Showman & Malhotra 1997), it quite differs
from the aforementioned Galilean moons (Io and Ganymede): despite of its orbital eccentricity is
sufficiently low - on average 0.009 - it exceeds the Io’s orbital eccentricity more than twice (0.0041)
and the Ganymede’s orbital eccentricity 6 times (0.0015). It means that tidal heating that governs
by the Europa’s orbital dynamics should not be considered as negligible process (that’s why the net
transfer of angular momentum into the system “Jupiter-Europa” from Io and Ganymede is also large
enough insofar). In addition to this, quasi-periodical variation in the tidal heating should be taking
place since the height of the tide will vary with the oscillation in distance between satellite and Planet
(when Europa rotates on its elliptical orbit around Jupiter) (Goldreich & Gold 1963).

So, Europa’s orbital eccentricity is being changed quasi-periodically, with the main tendency of
its exponentially increasing: indeed, according to the formula (6), Europa’s eccentricity oscillates near
the average meaning of 0.009 (let us note that we should choose the sign of B < 0 in expression (5)
for the appropriate dynamics of eccentricity).

Thus, we can come to conclusion from (6) that in case of Europa the tidal heating should be
taken into consideration, but nevertheless, Europa’s semi–major axis is assumed to be increased less
than circa on 0.9% (by the net tidal heating) since its initial magnitude a3(0). According to (4) and
(7), n3 is proved to be decreasing exponentially, but quasi-periodically in the long time-period 4t of
observations to the appropriate constant value in (1).

Ending discussion, we can come to a conclusion that in the expression for the Laplace resonance
(1): n1 is proved to be simply a constant, but {n2,n3} are proved to be decreasing exponentially, but
quasi-periodically in the long time–period 4t of observations to the appropriate constant values in
(1). Thus, Laplace resonance (1) should be valid and stable on a timescale of centuries in the future,
but infinitesimal quasi–periodical perturbations are possible there according to (4)–(7) (0.009)(3/2) =
0.00086 which is less than 0.1% (namely, 0.086%).

4 - CONCLUSION

Having been presented previously in clear mathematical formula interrelating the mean orbital
motions of the largest moons of Jupiter (Io, Europa, Ganymede, and Callisto), the Laplace relation
is proved to be stable during a centuries in case these moons are rotating around their common
centre of mass with Jupiter on elliptic orbits always maintaining the configuration with mean motion’s
resonances in so way that Laplace relation is satisfied exactly within infinitesimal observational error
(which is less than 0.1%).

In a real physical world, there should be a natural mechanism, maintaining the aforementioned
balance of mean orbital motions for the celestial bodies which are locked into the resonance. We
have come to conclusion it should be the net transfer of angular momentum between moons in the
process of their mutual interinfluences for changing by the angular momentum from one to each
other (due to dynamical features of the orbital evolution of moons of Jupiter under the influence
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of the resonance phenomena). Moreover, we should recall that there are only a few known perfect
mean-motion resonances in the Solar system, involving planets, dwarf planets or larger satellites:

1. 2:3 Pluto-Neptune;

2. 2:4 Tethys-Mimas (Saturn’s moons), not classical case;

3. 1:2 Dione-Enceladus (Saturn’s moons);

4. 3:4 Hyperion-Titan (Saturn’s moons);

5. 1:2:4 Ganymede-Europa-Io (Jupiter’s moons, ratio of orbits).

We have investigated the last one of the aforesaid resonances here. In general case, the changing
by the angular momentum between moons of Jupiter occurs chaotically during their mutual motions
but there are restrictions in this process which have been outlined in the current research. It is
worthnoting that illuminating such restrictions allows us to explore the stability of Laplace relation.

There are a lot of theories of tidal dissipation, but most of them could be associated with twomain
types: 1) tidal friction for bodies with fluid layers, 2) solid tidal dissipation. Indeed, the rheological
law for the actual rheological parameters, obeyed by the material of the bodies and their role in
dissipation, differs from one of the aforementioned types to another.

This paper presents the application of ansatz, suggested earlier in (Ershkov 2017a), for estimation
of stability of the Laplace resonance (1). Such the mathematical technique (Ershkov 2017a) helps with
the analytical integration over time of eccentricity + semi-major axis in a binary system experiencing
tidal friction. The described formulation incorporates formulae for the tidal friction that is surely not
appropriate for the aforementioned bodies with fluid layers. In this respect we confine ourselves to
mention the papers (Tyler 2011, 2014) where all the difficulties concerning the most complicated cases
of tidal friction for bodies with fluid layers are remarked.

As noted above, we have found from (2) that in case of Laplace resonance there should be a net
transfer of angular momentum between the Galilean moons of Jupiter - due to dynamical features of
the Laplace relation (1). Presumably, there should be a net transfer of angular momentum between Io
and Europa (for the reason that tidal heating on Ganymede seems to be negligible with respect to Io
and Europa).

As for the satellites with a large amount of fluids layers inside (or on their surface as Ocean), there
should be a physical mechanism of transformation of incoming net transfer of angular momentum
into the additional tidal heating via interacting of fluid tides or Rossby waves with the solid structure
of the borders of coastline in Ocean or other boundaries of fluids layers in the satellites.

The last but not least, let us note that appropriate corrections to formulae (5)–(7) should be
accomplished with the data of astrometric observations: we should adjust analytical solutions with
respect to the actual data of orbits of satellites.

Moreover, the presented ansatz can be used to predict a scheme for optimizing the maneuvers of
spacecraft in the vicinity of Ganymede (due to absence of net transfer of angular momentum between
Ganymede and other Galilean moons).

Finally, we should especially note that a kind of kinematic ansatz for the application of the recent
approach (Ershkov 2017a) with the main aim to estimate the stability of the Laplace resonance for

An Acad Bras Cienc (2021) 93(4) e20201016 6 | 8



SERGEY ERSHKOV & DMYTRO LESHCHENKO STABILITY OF LAPLACE RESONANCE FOR GALILEAN MOONS

Galilean moons (Io, Europa, Ganymede) is presented here. The kinematic ansatz (Ershkov & Shamin
2018a,b) means that instead of considering the dynamical causes for the Laplace resonance, we should
investigate it as to be exceptionally kinematic phenomenon in regard to the influence on elements
of orbit as well as its influence on the net transfer of the angular momentum between Io and Europa
(during the process of their mutual orbital evolution). That’s why themethodology of the study and the
analysis of the results have been presented without a kind of dynamical approach. In this respect we
confine ourselves to mention the paper (Paita et al. 2018) in which all the significant details concerning
the dynamical approach for the Laplace resonance are remarked.

Also, a remarkable articles should be cited, which concern the problem under consideration
(Chernousko et al. 2017) (where fundamental law of angular momentum conservation in application
to the dynamics of celestial bodies has been discussed), (Ershkov 2017b) (where tidal phenomena has
been discussed relate to rotational regimes of satellite around the primary) and (Pathak et al. 2019a,b)
(where resonant phenomena are discussed in the frame of PR3BP). The data that support the findings
of this study are available from the corresponding author upon reasonable request.
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