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Abstract.
Thermal interaction of fluids and solids, or conjugate heat transfer (CHT), is en-

countered in many engineering applications. Since time-accurate computations of such cou-
pled problems can be computationally expensive, we consider loosely-coupled and strongly-
coupled solution algorithms in which higher order multi-stage Runge-Kutta schemes are em-
ployed for time integration. The higher order time integration schemes have the potential to
improve the computational efficiency at arriving at a certain accuracy relative to the tradition-
ally used 1st and 2nd order implicit schemes. The spatial coupling between the subdomains is
realized using Dirichlet-Neumann interface conditions and the coupled domains are solved in
a sequential manner at each stage (Block Gauss-Seidel). In this paper, the stability of two par-
titioned algorithms is analyzed by considering a one dimensional model problem. The model
problem consists of two thermally coupled domains where the governing equation within each
subdomain is unsteady linear heat conduction.

In the loosely-coupled approach, a family of multi-stage IMEX schemes is used for
time integration. By observing similarities between the second stage of the IMEX schemes
and the θ scheme with θ = 0.5 (Crank-Nicolson), the stability of the partitioned algorithm in
which the Crank-Nicolson scheme is used for time integration is first analyzed by applying the
stability theory of Godunov-Ryabenkii. The stability of the IMEX schemes is next investigated
by numerically solving the model problem and comparing the results to the conclusions of
the stability analysis for the Crank-Nicolson scheme. Due to partly explicit nature of the
IMEX schemes, the loosely-coupled algorithm becomes unstable for sufficiently large Fourier
numbers (similar to the Crank-Nicolson scheme). When the ratio of the thermal effusivities
of the coupled domains is much smaller than unity, time step restriction due to stability is
sufficiently weak that computations can be performed with reasonably large Fourier numbers.
Furthermore, the results show better stability properties of the IMEX schemes compared to
the Crank-Nicolson scheme.

In the strongly-coupled approach, the stability and rate of convergence of performing
(Gauss-Seidel) subiterations at each stage of the higher order implicit ESDIRK time integra-
tion schemes are analyzed. From the stability analysis, an expression for the rate of conver-
gence of the iterations (σ) is obtained. For cases where σ ≪ 1, subiterations will convergence
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rapidly. However, when σ ≈ 1, the convergence rate of the iterations is slow. The results ob-
tained by solving the model problem numerically are in line with the performed analytical
stability analysis.

Keywords: High order implicit time integration, Conjugate heat, Partitioned algorithm, Sta-
bility.

1. INTRODUCTION

Thermal interaction of flows and structures, also referred to as conjugate heat transfer,
arises in many engineering applications. Numerical simulations help to obtain a better un-
derstanding of the physics of the coupled problem and hence to increase the efficiency and/or
safety of designs.

In order to take advantage of the already existing efficient and highly optimized sep-
arate fluid and solid codes, the coupled problem needs to be solved in a partitioned manner.
In the partitioned method, the domain is decomposed into sub-domains and separate fluid and
solid codes are used for solving the temperature field within their respective regions. Any
two subdomains are coupled through a set of transmission conditions at the interface (to en-
sure that the interface equations are satisfied) where one transmission condition is assigned to
one side and the other to the opposite side of the interface [1]. Therefore, in the partitioned
approach, the interface equations are solved in a weakly coupled or segregated manner [1].

To advance the coupled problem in time, implicit time integrations are considered
in order to circumvent time step restrictions due to probable stiffness in the problem. In
the partitioned method, with implicit time integration, some or all of the interface terms are
treated explicitly, depending on the arrangement with which the two coupled domains are
solved (parallel (Block Jacobi) or sequential (Block Gauss-Seidel)). If at each time-step, a
single implicit solve of each of the solvers is performed, the partitioned algorithm is referred
to as loosely-coupled, and otherwise it is referred to as strongly-coupled.

In the literature, for numerical solution of unsteady CHT problems, loosely-coupled
and strongly-coupled solution algorithms with up to second order implicit time integration
schemes have been reported. Since time-accurate computations of such coupled problems
can be computationally expensive, we consider loosely-coupled and strongly-coupled solu-
tion algorithms in which higher order multi-stage Runge-Kutta schemes are employed for
time integration. The higher order time integration schemes have the potential to improve
the computational efficiency at arriving at a certain accuracy relative to the traditionally used
1st and 2nd order implicit schemes [2]. The spatial coupling between the subdomains is real-
ized using Dirichlet-Neumann interface conditions and the coupled domains are solved in a
sequential manner at each stage (Block Gauss-Seidel). In this paper, the stability of two par-
titioned algorithms is analyzed by considering a one dimensional model problem. The model
problem consists of two thermally coupled domains where the governing equation within each
subdomain is unsteady linear heat conduction.

In the loosely-coupled approach a family of higher order multi-stage mixed implicit-
explicit (IMEX) Runge-Kutta schemes is used for time integration. The higher order IMEX
schemes consist of the ESDIRK schemes for implicit integration of the spatially discretized



governing equations within each subdomain and equal order and number of stages ERK
schemes for explicit integration of all or part of the coupling terms. For the partitioned solu-
tion of the mechanical coupling of flows and structures, van Zuijlen and Bijl [2] demonstrated
the temporal order preservation of the IMEX schemes without the need to perform subitera-
tions and their computational efficiency relative to the second order Backward Differencing
scheme (BDF2). By noting similarities between the second stage of the IMEX schemes and
the θ scheme with θ = 0.5 (Crank-Nicolson), the stability of the partitioned algorithm in
which the Crank-Nicolson scheme is used for time integration is first analyzed. Following
Giles [3] (in which the stability of a loosely-coupled algorithm with Backward Euler for time
integration was analyzed), the stability theory of Godunov-Ryabenkii is used to perform the
stability analysis. The stability of the IMEX schemes is next investigated by numerically solv-
ing the model problem and comparing the results to the conclusions of the stability analysis
for the Crank-Nicolson scheme.

In the strongly-coupled approach, the stability and rate of convergence of performing
(Gauss-Seidel) subiterations at each stage of the higher order implicit ESDIRK time integra-
tion schemes are analyzed following the stability analysis in Henshaw and Chand [1] (in which
the θ scheme is used for time integration). From the stability analysis, an expression for the
rate of convergence of the iterations is obtained. By solving the model problem numerically,
the results are compared to the performed analytical stability analysis.

In what follows we first give a description of the one dimensional model problem.
Next, the semi-discrete form of the coupled problem is obtained by discretizing the coupled
domains in space using vertex-centered finite volume method. This is followed by a brief
overview of the ESDIRK and IMEX time integration schemes. Next, the stability of loosely-
coupled and strongly-coupled partitioned algorithms in which the higher order Runge-Kutta
schemes are used for time integration is analyzed using the one dimensional model problem.

2. MODEL PROBLEM

In this section, the description of the model problem used for analyzing the stability
of the partitioned algorithms is presented. The one dimensional model problem consists of
thermal coupling of two domains Ω1 = [−L1, 0] and Ω2 = [0, L2] which are separated by the
interface I at x = 0. The governing equation within each sub-domain is transient linear heat
conduction. The boundary-value problem is given by:

(ρcp)m
∂Tm(x, t)

∂t
= −∂qm(x, t)

∂x
, for x ∈ Ωm,m = 1, 2 (1)

qm(x, t) = −km
∂Tm(x, t)

∂x
, for x ∈ Ωm,m = 1, 2 (2)

where Tm and qm represent the temperature and heat flux fields within each domain respec-
tively with m the index of the subdomain. For simplicity, each sub-domain has homogenous
material properties (constant k thermal conductivity, cp heat capacity, and ρ density). The



initial and boundary conditions are:

T2(I, t) = T1(I, t), (3)

k1
∂T1(x, t)

∂x

∣∣∣∣
I
= k2

∂T2(x, t)

∂x

∣∣∣∣
I
, (4)

T1(−L1) = T1,lbc, T2(L2) = T2,rbc, (5)

Tm(x, t = 0) = T o
m(x) for x ∈ Ωm,m = 1, 2. (6)

The non-interface boundaries (5) are constant Dirichlet conditions. To couple the solution of
the subdomains at the interface, as (3) and (4) show, the Dirichlet-Neumann interface condi-
tions are considered. For partitioned algorithms, the stability of the coupling algorithm de-
pends on the correct assignment of the interface conditions. Using a similar model problem,
Henshaw and Chand [1] analyzed the stability and rate of convergence of interface iterations
for Dirichlet-Neumann interface conditions without any particular assumption on the spatial
discretization, with the θ scheme for time integration. The following estimate for the rate of
convergence of the iterations was obtained:

σest ≈
k2
k1

√
α1

α2

, (7)

with αm =
(

k
ρcp

)
m

representing the thermal diffusivity of each subdomain. The estimate was
obtained by imposing the Dirichlet (temperature) condition on Ω2 and the Neumann (the heat
flux) condition on Ω1. Performing interface iterations based on the assigned interface bound-
ary conditions will provide a stable solution if σest < 1, otherwise the two interface boundary
conditions must be interchanged. While this estimate has been obtained for a strongly-coupled
solution algorithm, it can also be used as a criterion for imposing interface boundary condi-
tions for loosely-coupled solution algorithms; that is, for stability of a loosely-coupled parti-
tioned algorithm satisfying (7) is necessary but might not be sufficient. Here, it is assumed
that based on the material properties of the two subdomains, the imposed interface boundary
conditions satisfy the criterion (7), i.e. the temperature condition is assigned to Ω2 and the
heat flux condition to Ω1.

Furthermore, noting that the thermal effusivity of a material is given by e = km√
αm

=√
kmρmcp,m, σest in (7) is equal to the ratio of the thermal effusivities of the coupled domains

(σest =
e2
e1

).
When analyzing the stability of the loosely-coupled solution algorithm, the two cou-

pled domains are considered as semi-infinite. The non-interface boundary conditions (x →
±∞) are then given by T1(x → −∞) = T1,lbc and T2(x → ∞) = T2,rbc.

3. SEMI-DISCRETIZED FORM OF THE COUPLED PROBLEM

The method of lines is used to solve the coupled PDE (space and time discretizations
are carried out separately), with space being discretized first to obtain the semi-discrete form
of the coupled problem. The two domains are discretized in space using vertex-centered finite
volume (VFV) method (see Fig.1).



Figure 1. Discretization of Ω1 and Ω2 subdomains using FVF.

Applying the volume integral form of the governing equation (1) to each control vol-
ume results in:

(∆xρcp)m
d

dt
Tm,j = − qm|j+1/2

j−1/2 m = 1, 2, (8)

where for simplicity cells of equal size are used within each subdomain (for the interface cell,
T1,0, ∆x1 is replaced with ∆x1

2
).

Substituting (2) for qm into (8) and using central difference to approximate the temper-
ature gradients at the cell faces, the semi-discrete form of equation (1), for the interior cells,
with some rearrangements is given by:

(∆xρcp)m
d

dt
Tm,j =

km
∆xm

Tm,j+1 −
2km
∆xm

Tm,j +
km
∆xm

Tm,j−1 = Fm,j m = 1, 2, (9)

where Fm,j is the cell-residual obtained as a result of discretizing the governing equation in
space.

The semi-discrete form of T2,1 is also given by (9) where the value of the interface
temperature T2,I = T2,0 is obtained by prescribing the temperature of the interface node in Ω1

as its value, i.e. T2,0 = T1,0.
In Ω1, the discretization of T1,0 is given by:

(
∆x

2
ρcp)1

d

dt
T1,0 = −q1,0 −

k1
∆x1

(T1,0 − T1,−1) = F1,0, (10)

where q1,I = q1,0 is obtained by prescribing q2,0 as its value:

q1,0 = q2,0 = − k2
∆x2

(T2,1 − T2,0). (11)

The semi-discrete form of the coupled problem can be expressed by the following two
coupled ODE systems:

M1
d

dt
T 1 = F1(T 1, qI , t), (12)

M2
d

dt
T 2 = F2(T 2, TI , t), (13)

where T 1 and T 2 are vectors containing the discrete solution in the FV cells, M1 and M2 are
diagonal matrices containing the product of the cells’ volumetric heat capacities ((ρcp)m,j)
with the cell volumes, and F1 and F2 are the residual vectors. The coupling between the two
systems is through the interface temperature TI and heat flux qI .



4. TIME INTEGRATION

In this paper a family of multi-stage implicit Runge-Kutta schemes (IRK), namely the
Explicit first stage, Singly Diagonally Implicit Runge-Kutta (ESDIRK) schemes, is consid-
ered for time integration which can be made of arbitrary higher orders while retaining the
L-stability property. For a coupled ODE system of the form M dT

dt
= F(T , t), the solution at

each stage of the ESDIRK scheme can be written as:

MT (k) = MT n +∆t
k∑

i=1

aIkiF(tn + ci∆t,T (i)) = MT n +∆t
k∑

i=1

aIkiF (i), (14)

where aIki are the coefficients of the corresponding stage and ci =
∑

j a
I
ij is the location

(quadrature node) of the stage solution at t(i) = tn + ci∆t. High order solution at the next
time level can be achieved by the weighted sum of the stage residuals such that the lower order
errors cancel out:

T n+1 = T n +M−1∆t

s∑
i=1

biF (i), (15)

where bi are the weight factors with
∑

i bi = 1, and s is the number of stages. In this paper,
stiffly accurate ESDIRK schemes are considered where aIsi = bi and thus the solution of the
last stage is equal to the solution of the time-level, T n+1 = T s. Therefore when a fully
coupled approach is used to solve the coupled problem, computing (15) is not necessary.
The coefficients and weights are usually arranged in Butcher tableau (see Table 1). For the
ESDIRK schemes, as the name implies, the diagonal coefficients are equal (akk = γ).

In solving time-accurate advection-diffusion-reaction problems, where separable stiff
and non-stiff components are identifiable, Kennedy and Carpenter [4] present a family of
higher order implicit ESDIRK schemes to integrate the stiff components of the problem (to
retain stability) and a family of higher order explicit ERK schemes (which are computationally
less expensive than the corresponding implicit schemes) to integrate the non-stiff components
of the problem. The resultant family of time integration schemes which is a combination of
implicit and explicit time integration schemes is denoted by mixed implicit-explicit (IMEX)
schemes. In this paper, the coefficients of the implicit ESDIRK schemes are denoted by aIki
and that of the ERK schemes by aEki as shown in Table 1. In order to be consistent with the
ESDIRK schemes, the introduced ERK schemes have the same weight factors bi and ci coeffi-
cients as the ESDIRK schemes. The presented higher order multi-stage IMEX schemes in [4]
are an example of additive RK schemes; while the temporal order of accuracy of each stage is
low order, here second order, by using (15) to the evaluate the solution to the time-level, the
truncation errors of the stages cancel such that the time-level solution has the designed higher
order accuracy.

Analogously and following [2] (where the mechanical coupling of fluids and structures
is considered), for loosely-coupled solution of the coupled problem, the higher order IMEX
schemes presented in [4] are used to advance the solution to the coupled problem in time; the
ESDIRK schemes are used for implicit integration of the spatially discretized governing equa-
tions within the coupled domains and equal order and equal number of stages ERK schemes
are used for explicit integration of all or part of the coupling terms (depending on whether
Block Jacobi or Block Gauss-Seidel is used to solve the coupled problem at each stage).

By expressing the predictor-corrector θ scheme, used in [5] for solving unsteady CHT
problems, in terms of a two-stage IMEX scheme (its butcher tableau is given in Table 2),



c1 0 0 0 0
c2 aI21 aI22 0 0
c3 aI31 aI32 aI33 0
c4 aI41 aI42 aI43 aI44

b1 b2 b3 b4

c1 0 0 0 0
c2 aE21 0 0 0
c3 aE31 aE32 0 0
c4 aE41 aE42 aE43 0

b1 b2 b3 b4

Table 1. A four stage additive RK method consisting of an ESDIRK and ERK scheme.

similarities can be observed between the θ scheme with θ = 0.5 (Crank-Nicolson) and the
second stage of the higher order IMEX schemes. For the second stage of the IMEX schemes,
the coefficients of the corresponding ESDIRK and ERK schemes are respectively given by
aI21 = γ, aI22 = γ, and aE21 = 2γ and those of the (predictor-corrector) Crank-Nicolson
scheme are aI21 = 0.5, aI22 = 0.5, aE21 = 1.

0 0 0
1 θ 1− θ

θ 1− θ

c1 0 0
c2 1 0

θ 1− θ

Table 2. Butcher tableau for the predictor-corrector θ scheme.

In the partitioned approach using an implicit time integration scheme, as a result of the
segregated treatment of the interface equations, the partitioned solution contains an additional
source of error, compared to the monolithic solution, denoted as the partitioning error, ϵ(x, t).
Therefore, there is the possibility of numerical instability not inherent in the monolithic ap-
proach [3]. In what follows, we analyze and investigate the stability of the (loosely-coupled
and strongly-coupled) partitioned algorithms in which the coupled problem is advanced in
time using the higher order time integration schemes.

Noting that the higher order IMEX schemes consist of implicit Runge-Kutta stages,
it is not straight forward to apply the stability theory of Godunov and Ryabenkii to study
the stability properties of the resultant loosely-coupled algorithm. However, based on the
observation regarding the similarities between the second stage of the IMEX schemes and
the Crank-Nicolson scheme, we will proceed with first performing stability analysis for the
loosely-coupled partitioned algorithm in which the θ scheme is used for time integration. The
stability of the IMEX schemes is next investigated by considering some numerical experi-
ments and the results are compared to the conclusions of the stability analysis for the Crank-
Nicolson scheme. We wish to examine if similarities can be observed regarding the stability
of the two time integration schemes and thus providing some guidelines for CHT problems
where the IMEX schemes are suited for.

5. STABILITY ANALYSIS OF θ SCHEME

In this section, the stability of the loosely-coupled solution algorithm in which the
predictor-corrector θ scheme is used for time integration is analyzed. Of particular interest,
is the stability of the algorithm when θ = 0.5 (Crank-Nicolson). Following Giles [3], the
stability theory of Godunov and Ryabenkii is used to analyze the stability of this partitioned
algorithm. In order to simplify the analysis, the explicit corrector step will not be incorporated
into the stability analysis. In the results section, the stability of the algorithm, with the explicit



corrector step included, is investigated numerically. The full details of the stability analysis is
presented in [5].

The one-dimensional model problem used for the stability analysis consists of thermal
coupling of two semi-infinite domains (see Section 2 for the description). The domains are
discretized in space using the vertex-centered finite volume method. By applying the θ scheme
to the semi-discrete form of the problem, the following system of equations for the loosely-
coupled partitioned algorithm with integrating Ω1 first (BGS-12) is obtained:

T n+1
1,j = T n

1,j + θd1(T1,j−1 − 2T1,j + T1,j+1)
n+1

+ (1− θ)d1(T1,j−1 − 2T1,j + T1,j+1)
n j < 0,

T n+1
1,0 = T n

1,0 − 2θd1(T1,0 − T1,−1)
n+1

− 2(1− θ)d1(T1,0 − T1,−1)
n + 2rd2(T2,1 − T2,0)

n m = 1, j = 0,

T n+1
2,j = T n

2,j + θd2(T2,j−1 − 2T2,j + T2,j+1)
n+1

+ (1− θ)d2(T2,j−1 − 2T2,j + T2,j+1)
n j > 0,

T n+1
2,0 = T n+1

1,0 ,

T n
2,0 = T n

1,0,

(16)

where r is defined by:

r =
(ρcp∆x)2
(ρcp∆x)1

, (17)

and dm (the Fourier number of Ωm) by:

dm =
∆tkm

(ρcp)m∆x2
m

=
∆tαm

∆x2
m

. (18)

Noting that BGS-12 is used to solve the coupled problem, T n+1
2,0 = T n+1

1,0 and T n
2,0 =

T n
1,0. In the discretization of T n+1

1,0 , the interface heat flux at tn+1, qn+1
1,0 , is predicted using

its previous time step solution (q∗1,0 = qn1,0). Following Giles [3], the stability of the loosely-
coupled partitioned algorithm is analyzed by expressing the form of the solution using normal
modes. For this partitioned algorithm, the form of the normal mode solution is given by:

T n
m,j = znκj

m =

{
znκj

1 m = 1, j 6 0,

znκj
2 m = 2, j > 0

(19)

where the two last equations in (16) are satisfied as a result of the selected normal modes.
Substituting the form of the normal mode solution given in (19) into the difference equations
in (16), we arrive at:

1 = z−1 + d1(κ1 − 2 + κ−1
1 )(θ + (1− θ)z−1) j < 0,

1 = z−1 + 2d1(−1 + κ−1
1 )(θ + z−1(1− θ)) + 2rd2z

−1(κ2 − 1) m = 1, j = 0,

1 = z−1 + d2(κ2 − 2 + κ−1
2 )(θ + (1− θ)z−1) j > 0.

(20)

Solving the first and last equations for κ−1
1 and κ2 and substituting the two into the



second equation in (20), we obtain the equation for the amplification factor, i.e. z:√
1 +

4d1(θ(1− z−1) + z−1)

1− z−1
+

rz−1

θ(1− z−1) + z−1

[√
1 +

4d2(θ(1− z−1) + z−1)

1− z−1
− 1

]
= 0. (21)

When the model problem is solved monolithically using the θ scheme for time inte-
gration, it is unconditionally stable for large Fourier numbers (dm ≫ 1). By considering the
asymptotic solution to z under this assumptions, it is noted that for θ = 0.5, the algorithm is
unstable (see [5]). On the other hand, for Backward Euler (θ = 1), the algorithm is uncondi-
tionally stable. Since the loosely-coupled algorithm with θ = 0.5 is unstable for dm ≫ 1, it
is of interest to obtain the point at which instability initiates. Following [6], (21) is solved for
r and by substituting z = −1 into the resultant equation, the value of r at which instability
initiates is obtained:

rs =
(−1 + 2θ)

√
1 + 2d1(1− 2θ)

−1 +
√
1 + 2d2(1− 2θ)

. (22)

It is observed that rs(θ = 0.5) is not defined. Using l’ Hospital’s Rule to evaluate the
limit, we arrive at the following stability criterion for θ = 0.5:

rd2 < 1. (23)

By substituting the definitions of r and d2 into the criterion, we obtain that

∆t k2
(ρcp)1

∆x1∆x2

< 1, (24)

which imposes restriction on ∆t given the material properties and grid size of the coupled
domains.

5.1. Numerical results

In this section, the stability of the algorithm is investigated (with the explicit corrector
step incorporated) by solving the model problem numerically. The results are compared to
the analytical stability analysis. Each subdomain has a length of Lm = 0.5. The following
initial condition is imposed on the global domain: T (x, t = 0) = 1, x ∈ Ω1 and T (x, t =
0) = 0, x ∈ Ω2. The non-interface boundary conditions are set to T1(x = −0.5) = 1 and
T2(x = 0.5) = 0. Each subdomain is discretized using VFV method with Nm = 500 (Nm:
number of nodes in Ωm). The materials of the coupled domains are varied according to Table 4
(see Table 3 for specifications of the material properties). The value of θ is set to θ = 0.5. The
coupled problem is solved by integrating Ω1 first (BGS-12). For each case, ∆t is incremented
until the computations become unstable. The approximate ∆t and Fourier numbers dm at
which simulations become unstable are presented in Table 4.

For θ = 0.5, it was derived (excluding the corrector step) that for stability rd2 < 1.
For all the three cases in Table 4, it is observed that instability initiates when this criterion
is not satisfied. Therefore, (23) also provides a good estimate of the stability limit when the
explicit corrector step is incorporated into the scheme.



Table 3. A list of properties of some materials.

Material ρ [ kg
m3 ] cp [

J
kg·K ] k [ W

m·K ] α [m
2

s
] e [W ·s

1
2

K·m2 ]

Steel 7500 500 48 1.28 · 10−5 1.34 · 104
Water 1000 4800 0.6 1.25 · 10−7 1697.06

Air 1 1000 0.06 6.0 · 10−5 7.75

Table 4. Stability of the loosely-coupled algorithm with Crank-Nicolson for time integration.

case σest r d1 d2 ∆t rd2

steel-air 5.8 · 10−4 2.7 · 10−4 8.0 · 102 3.8 · 103 6.3 · 101 1.0016
steel-water 1.3 · 10−1 1.3 · 100 8.0 · 101 7.8 · 10−1 6.3 · 100 1.0016
steel-steel 1 · 100 1 · 100 1.0 · 100 1.0 · 100 7.8 · 10−2 1.0001

6. HIGHER ORDER IMEX SCHEMES

In this section, the model problem is advanced in time with the higher order multi-
stage IMEX schemes presented in Section 4. We consider solving the coupled system, at each
stage, integrating Ω1 first (BGS-12). In computing the temperature field in Ω1 at the implicit
stage, denoted by (k), application of the ESDIRK schemes to the semi-discrete equation of
the interior cells, given by (9), results in:

(ρcp∆x)1T
(k)
1,j − (ρc∆x)1T

n
1,j = ∆t

k∑
i=1

aIki (F1,j)
(i) , j < 0 (25)

where F1,j is defined in (9).
In computing the interface cell temperature T1,0 at the implicit stage of the ESDIRK

schemes (the semi-discretized form of T1,0 is given in (10)), the explicit coupling term q1,0
is integrated with ERK schemes which are consistent with the applied ESDIRK schemes
(the bi and ci coefficients of the two integration schemes are the same). In other words, the
semi-discrete form of T1,0 is integrated in time using the higher order IMEX schemes. The
discretization of T (k)

1,0 is given by:

(
ρcp

∆x
2

)
1
T

(k)
1,0 − (ρcp

∆x
2
)1T

n
1,0 = ∆t

k∑
i=1

aIki

(
− k1
∆x1

(T1,0 − T1,−1)

)(i)

+∆t
k−1∑
i=1

aEki (−q1,0)
(i) . (26)

The solution to the time-level T n+1
m is obtained by using (15) where through cancela-

tion of the lower order error terms, T n+1
m will retain its higher temporal accuracy.

6.1. Stability of IMEX schemes

In this section, the stability of the IMEX schemes is investigated by considering some
numerical experiments. The results are compared to the conclusions of the stability analysis
for the Crank-Nicolson scheme obtained earlier.



The same test case with the same parameters (Lm = .5, Nm = 500) as in Section
5.1 are used for the investigation. The third order IMEX (IMEX-3) scheme is used for time
integration. For each case, ∆t is incremented until the computations become unstable. The
approximate ∆t and Fourier numbers dm at which simulations become unstable are presented
in the table.

Table 5. Stability of the loosely-coupled algorithm with IMEX-3 for time integration.

case σest

∆x1 = ∆x2 ∆x2,C = 0.5∆x2 ∆x1,C = 0.5∆x1

r d1 d2 ∆tuni
∆tC
∆tuni

∆tC
∆tuni

steel-air 5.8 · 10−4 2.7 · 10−4 6.5 · 105 3.1 · 106 5.1 · 104 1.8 1.8

steel-water 1.3 · 10−1 1.3 · 100 8.2 · 102 8.0 · 100 6.4 · 101 2.2 1.9

steel-steel 1 · 100 1 · 100 3.8 · 100 3.8 · 100 3.0 · 10−1 2.0 2.0

The results using the BGS-12 sequence are presented in Table 5. Similar results were
obtained using BGS-21. Due to partly explicit nature of the IMEX scheme, it is expected
that the loosely-coupled algorithm becomes unstable and as the results in the table indicate,
instability occurs for all the cases considered.

In [5], it is reasoned that σest defined in (7) (the ratio between thermal effusivities of the
domains) can be used as a measure of the physical strength of the coupling. Therefore, when
σest ≪ 1, the coupling is referred to as physically weak and as σest → 1 the strength of the
coupling increases. For each case considered here, the corresponding values of σest obtained
from (7), has also been included in the table. When the coupling between the domains is
physically weak (σest ≪ 1), the IMEX schemes remain stable to large Fo numbers. However
as σest approaches unity, the stability of the schemes reduces. By referring to the numerical
results obtained for the Crank-Nicolson scheme (Table 4), a similar trend is observed. In
addition, compared to the stability limit of the Crank-Nicolson scheme, the IMEX schemes
demonstrate better stability properties, in particular for the case of steel − air coupling.

Based on the stability criterion for the Crank-Nicolson scheme, (24), the ∆t for sta-
bility depends linearly on the mesh spacings ∆xm. To investigate if this relation also holds
for the stability of the IMEX schemes, the grid in one domain is decreased by a factor of two
(denoted as ∆xm,C) while retaining the grid size fixed in the other. The last two columns of
Table 5 imply that a linear relation appears to hold between ∆t and ∆xm, as the approximate
∆t at which instability initiates (denoted in the table by ∆tC) is approximately twice as large
as ∆tuni.

7. STABILITY OF THE STRONGLY-COUPLED ALGORITHM

It was observed in the previous section that as the thermal coupling between the
domains becomes physically stronger, the stability (and temporal accuracy) of the loosely-
coupled algorithm using the IMEX schemes for time integration reduces. Under such cir-
cumstances, it is more appropriate to use a strongly-coupled solution method where interface
iterations are performed to stabilize and/or increase the temporal accuracy of the partitioned
solution. In this section we study the stability and rate of convergence of performing (Gauss-
Seidel) interface iterations at each stage of the higher order ESDIRK schemes in a strongly-
coupled solution algorithm. The stability of the algorithm is analyzed for the model problem



described in Section 2. The analysis follows that of Henshaw and Chand [1] where the θ
scheme was used for time integration.

The problem is discretized in time but kept continuous in space. Application of the
higher order ESDIRK schemes to (1) yields (noting that (2) is substituted for qm in (1)):

T (k)
m (x)− T n

m(x) = ∆tαm

k∑
i=1

aIki

(
d2Tm

dx2

)(i)

, for x ∈ Ωm,m = 1, 2 (27)

where T
(k)
m (x) ≈ Tm(x, t

(k)) is the monolithic solution to the coupled problem, and t(k) =
tn + ck∆t. After some re-arrangements, the above equation can be written along with the
corresponding boundary conditions as:

d2T
(k)
m

dx2
− 1

∆taIkkαm

T (k)
m = Sm, for x ∈ Ωm,m = 1, 2 (28)

T
(k)
2 (I) = T

(k)
1 (I), (29)

k1
dT

(k)
1

dx

∣∣∣∣∣
I

= k2
dT

(k)
2

dx

∣∣∣∣∣
I

, (30)

T
(k)
1 (−L1) = T1,lbc, T

(k)
2 (L2) = T2,rbc, (31)

where

Sm =
−1

∆taIkkαm

[
T n
m + αm∆t

k−1∑
i=1

aIki

(
d2Tm

dx2

)(i)
]
, for x ∈ Ωm,m = 1, 2 (32)

are the known explicit contributions. The analysis is based on assuming that the previous
solutions (to the time step or stage(s)) are equal to the exact solutions. In order to obtain the
solution to the stage T

(k)
m , the implicit equations (28)-(31) need to be solved. Here, Block

Gauss-Seidel iterations are considered to solve the equations. If we denote {T j
m}j>0 a se-

quence of iterates, we would like to see if the sequence converges to the monolithic solution,
i.e. T (j)

m → T
(k)
m as j → ∞ starting from an initial guess. Following [1], Ω1 is integrated first

(BGS-12) in solving the coupled problem iteratively. Let us define the following iteration for
j > 0:

d2T
(j)
m

dx2
− 1

∆taIkkαm

T (j)
m = Sm, for x ∈ Ωm,m = 1, 2 (33)

T
(j)
2 (I) = T

(j)
1 (I), (34)

k1
dT

(j)
1

dx

∣∣∣∣∣
I

= k2
dT

(j−1)
2

dx

∣∣∣∣∣
I

, (35)

T
(j)
1 (−L1) = T1,lbc, T

(j)
2 (L2) = T2,rbc. (36)

By subtracting out a particular solution to (28) and (31) that satisfies the homogeneous
Dirichlet conditions at the interface, an iteration for the partitioning error ϵ(j)m (x) = T

(k)
m −T

(j)
m



is obtained:

d2ϵ
(j)
m

dx2
= β2

mϵ
(j)
m , for x ∈ Ωm,m = 1, 2 (37)

ϵ
(j)
2 (I) = ϵ

(j)
1 (I) (38)

k1
dϵ

(j)
1

dx

∣∣∣∣∣
I

= k2
dϵ

(j−1)
2

dx

∣∣∣∣∣
I

(39)

ϵ
(j)
1 (−L1) = 0, ϵ

(j)
2 (L2) = 0 (40)

with βm defined as:

βm =

√
1

aIkkαm∆t
. (41)

Carrying out the rest of the analysis following [1], we arrive at the equation for the
amplification factor:

A = −k2
k1

β2

β1

tanh(β1L1)

tanh(β2L2)
= −k2

k1

√
α1

α2

tanh(β1L1)

tanh(β2L2)
(42)

In [1], it is mentioned that in many cases β1L1 ≫ 1 and β2L2 ≫ 1 for which
tanh(β1L1) ≈ 1 and tanh(β2L2) ≈ 1. Under this assumption, the approximate rate of
convergence of the iterations (|A|) is given by (7).

For the iterations to converge |A| < 1, otherwise, as pointed out in Section 2, the
imposed interface boundary conditions must be interchanged. It is observed that Dirichlet-
Neumann formulation with Gauss-Seidel iterations will encounter difficulties when the sub-
domains have similar material properties |A| ≈ 1 as opposed to |A| ≪ 1 where the material
properties of the two subdomains are far apart. For such cases (|A| ≈ 1), methods to increase
the rate of convergence of the iterations should be used, the simplest of which is the use of
under-relaxation [1].

7.1. Numerical results

In this section, the model problem is solved numerically using the strongly-coupled
algorithm for several cases (the material properties of the coupled domains are varied). For
each case an average rate of convergence of iterations per stage of the ESDIRK, σ(k)

comp, is
computed and compared with the estimate σ

(k)
est obtained by performing stability analysis, (7).

The same test case used for analyzing the stability of the IMEX schemes is considered with
the following parameters: Each subdomain has a length of Lm = 0.1 and is discretized using
VFV method with Nm = 5000. The materials of the coupled domains are varied according
to Table 6. The four-stage third order ESDIRK (ESDIRK-3) is used for time integration (note
that the first stage is explicit). Computations are performed using ∆t = 0.1. Following [1],
σ
(k)
comp is obtained using:

σ(k)
comp =

(
R(N)

R(1)

) 1
N

, (43)

where for BGS-12, the residual is defined as R(j) =
∣∣q1(I)(j) − q1(I)(j−1)

∣∣. Interface itera-
tions are performed at each stage until R(N) < 10−8. To present the results in Table 6, for
each stage, σ(k)

comp is averaged over 10 time steps.



Table 6. Rate of convergence of interface iterations at each stage of ESDIRK-3

case
σ
(k)
comp

σ
(k)
eststage− 2 stage− 3 stage− 4

steel-air 5.7 · 10−4 5.7 · 10−4 5.7 · 10−4 5.8 · 10−4

steel-water 1.1 · 10−1 1.1 · 10−1 1.1 · 10−1 1.3 · 10−1

steel-steel 9.9 · 10−1 9.9 · 10−1 9.9 · 10−1 1 · 100

As the results show, σ(k)
est provides a good estimate of the rate of convergence of subit-

erations for each stage of the ESDIRK. Furthermore, for each case, it is observed that σ(k)
comp

is almost the same for all stages. The main reason is the equality of the diagonal coefficients
of the stages in the ESDIRK schemes.

8. CONCLUSIONS

Thermal interaction of fluids and solids, or conjugate heat transfer (CHT), is encoun-
tered in many engineering applications. Since time-accurate computations of such coupled
problems can be computationally expensive, we considered loosely-coupled and strongly-
coupled solution algorithms in which higher order multi-stage Runge-Kutta schemes were
employed for time integration. The higher order time integration schemes have the poten-
tial to improve the computational efficiency at arriving at a certain accuracy relative to the
traditionally used 1st and 2nd order implicit schemes. The spatial coupling between the sub-
domains was realized using Dirichlet-Neumann interface conditions and the coupled domains
were solved in a sequential manner at each stage (Block Gauss-Seidel). The paper focused on
the stability of two partitioned algorithms. A one dimensional model problem (which consists
of two thermally coupled domains where the governing equation within each subdomain is
unsteady linear heat conduction) was used for the stability analysis.

In the loosely-coupled approach, a family of higher order multi-stage mixed implicit-
explicit (IMEX) Runge-Kutta schemes was used for time integration. The higher order IMEX
schemes consist of the ESDIRK schemes for implicit integration of the spatially discretized
governing equations within each subdomain and equal order and number of stages ERK
schemes for explicit integration of all or part of the coupling terms. By observing similar-
ities between the second stage of the IMEX schemes and the θ scheme with θ = 0.5 (Crank-
Nicolson), the stability of the partitioned algorithm in which the Crank-Nicolson scheme is
used for time integration was first analyzed by applying the stability theory of Godunov-
Ryabenkii. The stability of the IMEX schemes was next investigated by numerically solving
the model problem. The results were compared to the conclusions of the stability analysis
for the Crank-Nicolson scheme. Due to partly explicit nature of the IMEX schemes, the
loosely-coupled algorithm becomes unstable for sufficiently large Fourier numbers (similar
to the Crank-Nicolson scheme). When the ratio of the thermal effusivities of the coupled do-
mains is much smaller than unity, time step restriction due to stability is sufficiently weak that
computations can be performed with reasonably large Fourier numbers. Furthermore, the re-
sults showed better stability properties of the IMEX schemes compared to the Crank-Nicolson
scheme. In addition, the results suggested that in the stability of the IMEX schemes, a linear
relation appears to hold between time step size and the grid spacing of the domains, similar to
what is observed in the stability criterion of the Crank-Nicolson scheme.



In the strongly-coupled approach, the stability and rate of convergence of performing
(Gauss-Seidel) subiterations at each stage of the higher order implicit ESDIRK time inte-
gration schemes were analyzed. From the stability analysis, an expression for the rate of
convergence of the iterations (σ) was obtained. For cases where σ ≪ 1, subiterations will
convergence rapidly. However, when σ ≈ 1, the convergence rate of the iterations is slow.
The results obtained by solving the model problem numerically were found to be in line with
the performed analytical stability analysis.
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