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pigments: a literature review of the e�ect 
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Abstract 

This review is to be considered part of the development of the MEMORI dosimeter, to evaluate the impact of climate 
(relative humidity, temperature, illumination, etc., including volatile organic compounds) on moveable objects. In the 
framework of the MEMORI project, Ghent University was given the task to assess pigment degradation upon acetic 
acid exposure, and to collect information on pigments’ stability. Moreover, to obtain a wider knowledge on the stabil-
ity of common pigments, the effect of a variety of parameters was reviewed from literature. Discolouration and degra-
dation of pigments significantly alter the legibility of polychrome works of art, so that the development of monitoring 
methods to ensure the preservation of cultural heritage objects is of primary importance.
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Background
Colour is one of the most important properties of 

objects, in archaeology and art history. �is review is 

aimed at collecting information on the stability of tradi-

tional inorganic mediaeval pigments under a variety of 

conditions. �e pigments considered are whites (lead-

white and calcium carbonate), yellows (ochres, orpi-

ment, massicot, lead tin yellows), orange-reds (ochres, 

realgar, vermillion, litharge, red lead), blues (ultrama-

rine, blue ochre, smalt, azurite, Egyptian blue), greens 

(green earths, malachite, verdigris and other Cu contain-

ing materials), brown (umbers) and black (carbon black). 

Pigments as Naples yellow (Pb2Sb2O7/Pb3(SbO4)2), lead 

chromate yellows (PbCrO4/PbCr1−xSxO4), Prussian blue 

(KFe[Fe(CN)6]·xH2O/Fe4[Fe(CN)6]3·xH2O), zinc white 

(ZnO), etc., although known to degrade, are not included 

in this review, as they were not available during the 

Middle Ages [1]. For the purpose of this review, mainly 

chemical and archaeometrical literature was reviewed, 

so that an explanation for the on-going degradation pro-

cesses could be provided as revealed by advanced analyti-

cal techniques.

�e starting point for such data collection has been the 

MEMORI project [2], directed at studying and under-

standing the impact of the air quality inside museum 

exhibition cases and storage premises on complex objects 

of cultural relevance. Relevant factors are relative humid-

ity (RH, stable, fluctuating), temperature, illumination 

conditions, inorganic pollutants, and volatile organic 

compounds; the latter being extensively studied dur-

ing the MEMORI project [3, 4]. Moreover, information 

on the influence of other factors was collected from lit-

erature. �e results of investigations of works of art are 

combined, when possible, with specific studies on pig-

ments reactivity performed in the lab using powders 

or mock-ups. Attention is given to the evolution of the 

interpretation of specific processes as a result of scientific 

advancement in understanding the on-going chemical 

reactions. �is review is not limited to the application of 
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a specific analytical technique for detecting and under-

standing degradation processes; on the other hand, it 

focusses on the so far identified alterations, their impact 

on the polychromy appearance, and their causes.

Centuries of practical knowledge allowed artists and 

artisans to select materials which were not suscepti-

ble to fading or discolouration, and recommendations 

on unstable pigment mixtures (therefore not recom-

mended), or on the use of specific pigments with selected 

binders, are common in artistic literature and treatises 

(see, for example, Cennini’s “Il Libro dell’Arte” [5]). Art-

ists and artisans were anyway constantly experimenting, 

and the material selection was performed according to 

their savoir faire and to practical considerations [6, 7], 

often using unstable mixtures during the actual produc-

tion of the object, which nowadays result in hardly legible 

works of art. Also, the material history of the polychrome 

objects, being subjected to the environment, including 

seasonal climatic changes and extreme conditions such 

as in fires and floods, to biological activity, and to pol-

lution related to the industrial revolution (sulphur and 

nitrogen compounds SO2, SO3, NOx [8–11]), is bound 

to provoke alterations on those materials sensitive to cli-

matic factors, to biological activity, and to anthropogenic 

pollutants. Finally, another important aspect to consider 

is the human intervention on the objects, which is here 

reunited under the umbrella term of “conservation treat-

ments”. Relevant activities which might alter the stability 

of pigments in paint layers include, but are not limited to, 

harsh cleaning procedures and restorations performed by 

using unsuitable/incompatible materials and methods, or 

interventions regarding (lack of ) climatic control. Finally, 

also the scientific approach to materials characterization 

might modify irreversibly the sample during the analysis. 

It is important to mention that these factors often act in 

synergy.

�e review is articulated in sections corresponding 

to the main element present in the pigment, according 

to increasing atomic number. When possible, a general 

introduction to the sensitivity of the class of pigments 

is given, with more details for each single pigment. An 

overview of the observed alterations and the main factors 

involved in the process (climate, material selection, bio-

logical activity, analysis and conservation treatments) is 

given in Table 1.

Low atomic number (Z) elements

Carbon blacks (C)

Carbon blacks (disordered C) are worldwide commonly 

used in arts and crafts throughout the centuries [1, 12]. 

�ey are of natural of artificial origin, and the micro-

scopical structure of the pigment is related to its origin 

and manufacture process [13, 14]. �ey are stable to light 

and humidity, but burn at high temperatures. �eir cur-

ing properties in oil are poor, often requiring the addition 

of siccatives [12, 15]. Evidence of degradation is observed 

upon exposure to oxidizing agents, and especially when 

impurities are present (e.g. presence of residual salts/

uncarbonized moieties in carbonaceous pigments 

applied by using the fresco technique) [12, 15, 16]. Whit-

ening is also reported for bone black [amorphous carbon 

with apatite Ca3(PO4)2] in oil binding medium, possibly 

related to the photodegradation of the aromatic struc-

ture, probably catalysed by lead (present as a siccative, 

or pigment) [17]. In another study, by the same authors, 

a variety of issues was identified related to the causes of 

discolouration of carbon blacks, such as the formation 

of lead carboxylates from the reaction of the siccative 

with the binder, or the alteration of lakes present in the 

mixture, or the degradation of the aromatic carbon com-

pounds. �e latter process is related to both the manu-

facturing process of the carbon based pigment, and the 

presence of siccatives [15]. Upon infrared laser irradia-

tion, the colour of mock-ups prepared with organic and 

inorganic binders changed, showing evidence of darken-

ing [18], while a 248 nm (UV) laser induced no changes 

[19].

Ultramarine blue (Na8[Al6Si6O24]Sn)

�e term lazurite refers to the blue mineral of the soda-

lite group (Na8[Al6Si6O24]Sn), lapis lazuli to the rock 

from which it is extracted. Notwithstanding its enor-

mous price related to its rarity and colour, natural ultra-

marine was extensively used throughout history, as a 

decorative stone [1, 20], as a colourant for ceramics 

[21–23], and in paintings and manuscripts both in Asia 

and Europe starting from the 6th century [24], as well as 

in pre-Columbian cultures [25]. In European contexts, 

this extremely valuable material was mined in present-

day Afghanistan and traded via Venice [1, 20], and it was 

reserved to specific iconographic elements of the com-

position, such as Christ and the Virgin’s blue cloaks [1, 

20, 26, 27]. It was used both in tempera and oil, to pro-

duce either mixtures (with crimson or a white pigment 

for example) or pure layers, of different opacity accord-

ing to the binder (e.g. oil based blue glazes painted over 

a cheaper blue layer [1, 26]). �e high price and mar-

vellous colour somehow promoted the development of 

adulterations, and finally the synthesis of artificial ultra-

marine in 1828 by Guimet, and in the same year, but 

with a different process, by Gmelin [1, 20, 28]. Natural 

ultramarine is stable to light, including lasers [18, 29], 

heat, acids and alkalis [20, 30, 31]. No oxalates were 

formed upon exposure of the pigment to oxalic acid [32]. 

It was however observed that in presence of SO2 (pollu-

tion), the pigment discolours only when liquid water (e.g. 
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condensation) is present [9]. �e sulphur present in the 

crystalline matrix of lazurite does not affect pigments 

that are otherwise sensitive to hydrogen sulphide (H2S), 

such as leadwhite [20]. No alteration could be observed 

on decorative plasterworks in the Alhambra (Spain) [33], 

neither on manuscripts [24]. However, a greyish altera-

tion of the paint surface (“ultramarine sickness”) can 

be sometimes detected, but it seems that many factors 

can cause discolouration of lazurite paint layers, such as 

the oil degradation in presence of humidity [20], or the 

discolouration of smalt in case of mixtures [20, 34]. It is 

reported in literature that ultramarine sickness is related 

to an acidic attack of the pigment by pollutants, biologi-

cal metabolites, or even acidity of the binder [35, 36]. 

�is hypothesis seems to be confirmed by the fact that, 

in oil medium, when the basic pigment leadwhite was 

added to the mixture (to enhance curing, increase opac-

ity and adjust the shade), no visible alteration can be 

detected, the leadwhite somehow protecting the other 

pigment [35]. �e zeolitic structure of the mineral allows 

for ion exchanges [20], and for trapping volatile mole-

cules, such as the S3
− chromophore [37], and CO2 whose 

presence was recently related to natural ultramarine 

from Afghanistan [38]. Artificial ultramarine discoloura-

tion revealed a variation in the aluminium coordination, 

resulting in the opening of the cage and release of the 

chromophore [31, 39, 40]. Such a cage-opening process 

can be initiated either by high temperatures, acids [31, 

38, 39] or alkalis [31]. Moreover, as known for sulphur-

saturated zeolites [41], it appears that ultramarine can 

have a catalytic effect on the binder breakdown, and that 

such property can be related to a pigment pre-treatment 

(heating), which can explain the inconsistent appearance 

of degradation [42].

Calcium (Z = 20)

Calcium containing pigments are of mineral, biogenic, 

fossil or artificial origin, mainly corresponding to groups 

of carbonates, sulphates, phosphates, or fluorides [1]. A 

variety of Ca, CaMg carbonates, and sulphates was used 

as white pigment (chalk, bianco di San Giovanni: CaCO3; 

huntite: CaMg3(CO3)4 and dolomite: CaMg(CO3)2; gyp-

sum: CaSO4·2H2O), as well as mixed with glue to pre-

pare ground layers in northern and southern Europe, 

respectively [1, 20, 43–45] and to prepare parchment 

for manuscripts [46]. �e calcination of bones gives a 

white pigment mainly containing apatite Ca3(PO4)2 [1]. 

Calcium compounds were as well used as extenders (for 

example with leadwhite, to achieve transparency effects), 

and for lakes, as chemical or physical supports [20, 47]. 

�e purple mineral fluorite (CaF) was also used as a pig-

ment, mainly in fifteenth to sixteenth century central 

European artworks [1, 48, 49].

Chalk pigments [(Ca,Mg)CO3: natural/arti�cial, lime white, 

shell white]

Calcite (CaCO3) can be considered stable under normal 

circumstances. It decomposes to lime (CaO) and CO2 

when heated, and it is dissolved by acids with release of 

CO2 and formation of the corresponding salt. SO2 pol-

lution is responsible for the formation of gypsum, which 

is soluble and produces mechanical stress, as its volume 

is larger than that of the starting material [20, 45]. Gyp-

sum (CaSO4·2H2O) is a common degradation product 

in wall paintings and manuscripts [46]. Being alkaline, 

these pigments are not suitable for mixing with pigments 

such as verdigris [50], but they are stable to sulphide con-

taining materials (pollutants or pigments) [45]. �e lists 

of occurrences reported by [45] and [20] mainly refer to 

calcite containing ground layers, although the use as a 

pigment is ascertained. Calcium carbonate pigments are 

not suitable for use in oil medium, as they don’t have hid-

ing power [45], but they are used in mixtures with other 

white pigments to adjust the shade and hue, as well as in 

wall paintings [7]. In proteinaceous binder, interactions 

are reported between pigment and medium [51].

Huntite and dolomite, Mg-rich carbonates having for-

mula CaMg3(CO3)4 and CaMg(CO3)2, respectively, are 

also identified as white pigments in rock art paintings. 

As many other carbonatic materials, they are converted 

to Ca-oxalates (weddellite CaC2O4·2H2O and whewellite 

CaC2O4·H2O) in presence of oxalic acid, with the excess 

magnesium being included in dolomite and magnesite 

MgCO3 (which can be considered as intermediate deg-

radation products, sensitive to oxalic acid), in the very 

soluble magnesium oxalates MgC2O4·xH2O, and finally 

lixiviated [52]. �e attack from polluted water can as well 

form gypsum CaSO4·2H2O and the extremely soluble 

magnesium sulphate MgSO4, and calcite. �e adsorption 

of water negatively affects the stability of paint layers, as 

swelling occurs [52].

�e use of a buon fresco technique implies the use of 

Ca(OH)2 as a binder, which recrystallizes into calcium 

carbonate, surrounding the pigments and binding them 

to the wall surface. �e formed calcite is subjected to 

degradation processes involving acids, from biological 

activity or binders degradation (when details are added 

a secco) [32, 53]. Carboxylic acids from binding media 

are expected [54]. However, these compounds were not 

always detected in samples [55]. On the other hand, Ca-

carboxylates were successfully identified at the boundary 

between the ground layer and the paint in egg tempera 

samples [56, 57]. �ey were as well detected on artworks 

(laboratory and in  situ), especially underneath the var-

nish and on top of the ground layers [58, 59], and on 

manuscript samples. �ere, a correlation between cal-

cium oxalates and the loss of the proteinaceous signal 
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in green areas was highlighted, so that the binder’s deg-

radation is catalysed by Cu-ions, present in the green 

pigment, and oxalic acid is released [57, 60]. Chalk is 

lightfast [45], and gypsum does not show discolouration 

upon Nd:YAG laser irradiation [18]. Ion beam analysis 

proved to be potentially harmful to chalk, as discoloura-

tion was observed [61].

Iron (Z = 26)

Yellow, red, brown ochres (Fe2O3, FeOOH, Fe3O4; MnxOy)

Ochres are natural products related to rock weathering, 

whose predominant phases are phyllosilicates (clays). 

�e presence of less than 2% chromophores, such as 

iron oxides and hydroxides, the red haematite (α-Fe2O3) 

and yellow goethite and lepidocrocite (α-FeOOH and 

γ-FeOOH respectively), is sufficient to impart a deep 

colour to the rock [1, 12]. Other minerals are com-

monly present and can help to ascertain provenance 

and paragenesis, such as quartz (SiO2), feldspars ((Na, 

K)AlSi3O8), micas and clays (complex hydrosilicates), 

gypsum (CaSO4·2H2O), ferrihydrite Fe10O14(OH)2, 

maghemite (γ-Fe2O3) and magnetite (Fe3O4), iron sul-

phates [jarosite group, KFe3
3+(SO4)2(OH)6], etc. [1, 12]. 

If manganese oxides (MnO, MnO2, Mn3O4) are present 

together with the iron oxides, the shade of the ochre is 

darker and suitable for producing various shades of 

brown (Siennas and umbers), and for shadow rendering 

[1, 12]. �e shade of iron oxides and oxi-hydroxides can 

be adjusted by roasting processes, which produce darker 

shades (yellow to red-brown; red to purple-dark red) [1, 

12]. In fact, haematite, the anhydrous oxide, is the most 

stable, being the end product of heating goethite and 

lepidocrocite (150–400  °C); and maghemite (γ-Fe2O3) 

can also be produced if organic matter is present [12]. 

�e transformation of magnetite (Fe3O4) to haematite is 

also reported [62, 63]. �ese materials are very stable and 

maintain their colour when ground to powders, moreo-

ver their occurrences are numerous: diffusion, stability, 

lightfastness and inertness make their use as pigments 

straightforward [1, 12, 64]. In oil layers, Fe-ions pro-

mote photo-oxidative reactions, while Mn-ions act as a 

siccative [12]. In proteinaceous binder, interactions are 

reported between pigment and medium [51]. In rabbit 

skin glue, haematite shows a high degree of interaction 

with the binder, making the paint layer more stable than 

for other pigments [65]. �e instability to light reported 

for some umbers [66] seems to be attributable to the 

presence of tarry materials and other impurities [12]. As 

for the red and yellow ochres, burning produces a darker 

shade (burnt umber, burnt Sienna) [1]. Ochres are sta-

ble to light, moisture, alkali, and dilute acids, and are 

inert in mixtures. �eir stability to acids is testified upon 

oxalic acid exposure, which causes only the formation of 

Ca-oxalates, from the other components of the ochre [32, 

67]. �ey are, however, sensitive to high temperatures, 

such as fires [12, 68], or local heating effects related to the 

use of lasers for cleaning [19, 69, 70] or for spectroscopi-

cal analysis (i.e. Raman spectroscopy, [62, 63, 71, 72]). 

A UV (248 nm) laser showed darkening of yellow ochre 

and raw Sienna, as a result of dehydration, conversion 

to haematite and modification of the manganese phases 

present [69], but low fluences of the same laser caused 

little modification of this ochre [19]. High fluence of 355 

and 633 nm laser, caused the conversion of yellow ochre 

to haematite [29, 72]. �e effect of NIR laser irradiation 

(1064  nm) was as well investigated, showing significant 

discolouration of both yellow and red ochres when mixed 

with gypsum (no organic binder) [18], and an increase of 

haematite content after irradiation of ochres [70]. More-

over, some issues are encountered on wall paintings. In 

fact, coquimbite/paracoquimbite Fe2(SO4)3·9(H2O) were 

identified in Pompeii, together with magnetite Fe3O4 

and gypsum CaSO4·2H2O, as a result of the degrada-

tion of the fresco paint layer due to SO2 pollution [73]. 

On wall paintings in the Tournai Cathedral, on the other 

hand, anhydrous haematite was found to be converted to 

iron oxy-hydroxides due to the humid conditions, which 

resulted in a visible discolouration of some red areas [53].

Green earths (Fe, Mn, Al, K-containing hydrosilicates)

�e green coloured iron-containing silicates glauco-

nite ((K,Na)(Fe3+,Al,Mg)2 (Si,Al)4O10(OH)2) and cela-

donite (K[(Al,Fe3+),(Fe2+,Mg)] (AlSi3,Si4)O10(OH)2) can 

be found in outcrops all over the world [1, 74]. After 

crushing and grinding, the material is ready to use as a 

pigment, showing good stability and lightfastness in all 

media, although in oil the hiding power is relatively poor 

[1, 74]. Both these characteristics supported the wide use 

of such pigments. Green earths are soluble in both acids 

and alkalis, and they turn brown upon heating, as diva-

lent iron is oxidised to its trivalent counterpart [74]. �ey 

were as well used as lake substrates [74]. Green earth oil 

layers exposed to humidity and heat showed discoloura-

tion, pinpointing differences based on the binder compo-

sition, and ageing conditions [75].

Vivianite (Fe3(PO4)2·8H2O, blue)

Vivianite is an hydrated iron phosphate. Its blue colour 

arises from intervalency charge transfer between Fe2+/

Fe3+ [1, 37], as a consequence of oxidation of some of the 

Fe2+ in colourless vivianite [47]. Occurrences of vivian-

ite deposits and of its use as pigment are listed in litera-

ture [1, 47, 76–80]. As a pigment, it only shows medium 

stability [47, 81]. �e discolouration of this blue mono-

clinic phosphate to a greenish hue is attributed either to 

unbalanced Fe2+/Fe3+ ratio, or to its oxidation to green 
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triclinic metavivianite Fe3(PO4)2(OH)2·6H2O [1], and 

finally to yellowish brown amorphous santabarbaraite 

Fe3(PO4)2(OH)3·5H2O [76, 82, 83]. Oxidation is expected 

to be faster in air, and to slow down once the pigment 

is embedded in a binder [47]. On top of these oxidation 

reactions, heat related damages can be observed starting 

already at 70 °C, causing colour changes in both pure viv-

ianite [84] and oil paint layers containing it [85]. �e deg-

radation seems to preferentially affect larger grains [85].

Cobalt (Z = 27)

Smalt (CoO·nSiO2, blue)

Smalt is a synthetic cobalt-doped potash glass. More 

details on smalt fabrication and (early) occurrences 

are given elsewhere [1, 20, 86–88]. It was not only used 

as a pigment, but as an additive to improve oil curing 

as well [34, 47, 86]. Coarse grinding of the blue glass 

was required in order to obtain a satisfactory colour, 

which seems to have affected the degree of alteration 

[34, 89]. �e discolouration of smalt can be observed in 

25–50 years, and it can be related to various phenomena: 

on one hand, the similarity of optical properties (refrac-

tion index) of the glass and of the oil, on the other the 

instability of potassium glass, Co and K ions being the 

two species considered as responsible [1, 20, 34, 90]. In 

fact, smalt use is recommended in wall paintings (secco 

technique) and in aqueous media only [86]. Environmen-

tal moisture proved harmful to oil paint layers, to potash 

glasses [89], and to wall paintings [91]. �e first theories 

on the cause of smalt discolouration in oil assume the 

role of Co as a catalyst in the binder’s oxidation, with 

the formation of an organometallic compound at the 

grain boundary [34, 92]. Moreover, a change in cobalt 

coordination occurs and it is attributed to the oxidation 

of cobalt [92]. Later studies [89, 93, 94], however, dem-

onstrated that the distribution of potassium in degraded 

particles of smalt is not homogeneous, while cobalt is 

confined to the particles, and that K ions are leached 

out of the glass affecting its K:Co ratio, the pH, and the 

Co(II) coordination, which result in colour change. As a 

consequence of K+ leaching, the coordination of Co2+ 

changes from tetrahedral to octahedral (X-ray absorption 

spectroscopy studies (XAS) [90, 94], vibrational spectros-

copies and elemental analysis [95]), causing the colour 

loss; simultaneously, the glass network is modified as the 

Q3 component related to alkali content decreases, and 

hydration is observed [95]. �e change in pH might addi-

tionally damage the glass network. �e leached K+ ions 

interact with the aged oil, increasing its water sensitiv-

ity, forming soaps and causing blanching [35, 47, 89, 95, 

96]. �e paint composition might affect the discoloura-

tion, by providing chemical species to buffer the potas-

sium leaching. If calcium is present in the glass network, 

the pigment appears to be less sensitive [47, 89, 90, 96]. 

When smalt is mixed with leadwhite in oil, lower degrees 

of alterations are observed, probably because lead soaps 

are favoured compared to the potassium ones, so that 

leaching of alkali is not as relevant as in pure smalt paint 

layers [34, 90, 96, 97]. �e discolouration of smalt and 

the rough surface of degraded particles significantly alter 

the appearance of oil paintings where it was used for the 

sky, or other parts intended to be bright blue [34, 89, 94, 

96, 98–101]. Smalt egg tempera samples proved sensitive 

to environmental conditions in museums, so that such a 

paint layer might be successfully used as a dosimeter to 

evaluate the air quality in terms of conservation issues 

[102]. In glue binder, the role of humidity and airborne 

pollutants in accelerating glassy pigments degradation 

was demonstrated, where leaching of both potassium and 

cobalt ions occurred. No evident effect of SO2 and NOx 

synergy was observed though [87]. In fresco wall paint-

ings, smalt is expected to deteriorate due to the very alka-

line conditions, to the presence of liquid water (including 

condensation, capillary rise and infiltrations), to the small 

particle size increasing the surface reaction, and to the 

possible contamination by pollutants. Again, leaching of 

alkali is observed, and in some strongly degraded smalt 

particles showing cracks, cobalt and other divalent ions 

are leached as well, probably due to aggressive environ-

mental conditions (humidity, basic pH) [88, 91, 96]. On 

top of ions lixiviation and weathering of the glass, exam-

ples of heat degraded smalt are reported in wall paintings 

affected by fire [103].

Copper (Z = 29)

It was recently observed that historical copper-based 

pigments are not only limited to malachite, azurite, 

verdigris and copper resinate. In fact a variety of salts 

(organic acids salts such as copper citrate [104], silicates, 

phosphates, sulphates, chlorides, etc.) were as well used 

as pigments [105, 106], and should not be regarded any-

more as degradation products only. Moreover, the situa-

tion is complicated by inconsistent nomenclature use in 

artistic literature [1, 105]. It is well known that malachite 

and azurite are not stable in fresco, and that they tend to 

discolour in oil [50]. Studies on metallic copper exposed 

to a museum-like environment demonstrated its sensi-

tivity to organic acids, including from the binder, so that 

Cu(II) compounds are always formed [107–110]. More 

details on the reactivity of copper salts in acidic condi-

tions are given for each pigment in the next sections.

Azurite (2CuCO3·Cu(OH)2, blue)

Azurite (2CuCO3·Cu(OH)2) was the most diffused 

blue pigment during Middle Ages, and before [1, 20]. 

It appears to be stable to light and atmosphere, and 
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shows good performances both in oil and tempera 

mediums [111, 112], although its poor hiding power 

in oil is reported in literature [113]. Degradation of 

azurite in frescoes seems related to pH and grain size 

[91, 114]. Azurite degrades to green compounds: mal-

achite (CuCO3·Cu(OH)2) and paratacamite/atacamite 

(Cu2Cl(OH)3) are some examples [28, 64, 111, 112, 

115–118]. Humidity and chloride ions from various 

sources cause the formation of black copper oxides 

(CuO) and green chlorides (nantokite CuCl, para-

tacamite/atacamite or botallackite Cu2Cl(OH)3 [103, 

116, 118–121]). Azurite degrades to black tenorite 

CuO when exposed to heat in presence of alkali [20, 

68, 91, 103, 113, 114, 121–123], while cold alkaline 

conditions might not affect it [111], or cause conver-

sion to malachite [119], or the formation of tenorite 

via formation of copper hydroxide Cu(OH)2 [35, 64, 

114]. On the other hand, it is decomposed by acids, 

such as oxalic acid to form oxalates (CuC2O4·nH2O, 

mooloite) [32, 55, 116]. It has been reported that 

the combination of oxalic acid and chlorides in wall 

paintings results in Cu-hydroxychlorides Cu2Cl(OH)3 

and Ca-oxalates [59]; and that no Cu-oxalates were 

observed in azurite paint layers [58]. On the other 

hand, oxalates attributable to the biodegrada-

tion of an organic binder were found in both a gyp-

sum preparation (weddellite/whewellite) and in the 

overlying azurite-containing paint layer [116]. Cu-

carboxylates are rarely formed, as leadwhite, often 

mixed with azurite, is more reactive; moreover, as 

azurite is preferred in a tempera medium, carbox-

ylic acids are less present [56]. In proteinaceous 

binder, other interactions are reported [51]. Verdigris 

xCu(CH3COO2)·yCu(OH)2·zH2O might be formed 

when high relative humidity interacts with an azurite 

containing paint layer, degrading the oil binder [64]. 

Also, the yellowing of the binder/varnish can alter the 

blue shade to a green one in oil paintings [111]. Small 

particles are reported to have less colouring power 

and to be more sensitive to chemical interaction [35], 

and to dissolve in organic binding media [111]. In egg 

tempera, azurite is not affected by light, while ther-

mal ageing, high relative humidity, and pollutants 

affect the paint film (oxidative processes) [112]. Also, 

the copper interacts with the proteinaceous moieties 

to form metalloproteins [112]. Azurite turns bluish-

black when exposed to H2S vapours [124], especially 

in frescoes [111], as covellite CuS is formed. The 

effect of laser irradiation on azurite is the formation 

of black CuO, which depends on the particle size and 

therefore on the temperature increase [112, 114, 125]. 

Selective biological activity is observed towards lead 

pigments [124].

Malachite (CuCO3·Cu(OH)2, green)

Malachite (CuCO3·Cu(OH)2) is more stable 

than azurite (2CuCO3·Cu(OH)2) and verdigris 

(xCu(CH3COO2)·yCu(OH)2·zH2O), therefore showing 

less or slower reactivity towards many factors [119, 123]. 

It is known to be permanent in all binding media, light-

fast and alkali proof. Its deeper colour is obtained by 

coarse grinding, and as a consequence of having relatively 

low refractive index, it shows better performances in 

tempera than in oil [50, 126]. Due to its chemical com-

position, malachite is subject to interactions with acids, 

bases, humidity, temperature and circulating ions. In 

presence of humidity, malachite stains can be observed, 

which are actually caused by proteinaceous binders deg-

radation [64]. Moreover, ions such as Cl− present in the 

mortar, sand or in the bricks, can react with the basic car-

bonate to form copper hydroxychlorides ((Cu2Cl(OH)3) 

atacamite, clinoatacamite, paratacamite botallackite) 

[119, 121, 123, 126–128] and the copper chloride nan-

tokite [103]. Sulphate ions are also likely to be present in 

wall paintings, especially from the degradation of calcite 

to gypsum, from gypsum preparation layers [53], or from 

SO2/SO3 pollution.

Copper basic sulphates (CuSO4·yCu(OH)2·zH2O: bro-

chantite, langite, posnjakite, antlerite) are formed accord-

ing to pH, humidity and temperature [119, 127, 129]. 

Copper chlorides and sulphates can further react to form 

other salts [127]. In tempera medium, it seems that the 

carbonate function is affected, more than in fat media, 

and more when no varnish is present to protect the 

paint layer from ageing [122]. Malachite particles in the 

form of spherulites were identified in brownish tempera 

layers, the discolouration being caused by the pigment-

binder reaction [130]. In oil or oil/resin medium, it can 

turn into copper resinates [126] and other organometallic 

compounds [131, 132]. Copper carboxylates, originating 

from the binding media interacting with the pigment’s 

cation, were observed for both tempera and oil binders 

[55, 133, 134]. Acidic conditions are commonly found in, 

and surrounding, polychrome objects, as a result of bio-

logical activity on the object [53] or of degradation of the 

organic binders (e.g. oxalic acid [129, 135]). Diluted acids 

decompose malachite (for example acetic, hydrochloric, 

nitric acid [126]), causing the release of Cu2+ ions, and 

the formation of the most stable phase according to pH 

and other present ions. �e release of acetic and for-

mic acid by the organic building materials of the display 

cases has been ascertained [136–138]. �e copper oxalate 

mooloite was studied [32] and identified in various works 

of art [53, 135]. Bluish Cu acetates, corresponding to the 

well-known pigment verdigris, were identified on pure 

pigment powders exposed to acetic acid atmospheres 

[109]. H2S vapours cause darkening by formation of the 
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bluish sulphide covellite, which is formed on the pure 

malachite pigment [126, 139], although in paint layers 

this has not yet been identified [124, 126]. On the other 

hand, it seems that Cu act as a biocide towards microor-

ganisms that produce sulphuric acid, leading to a selec-

tive H2S attack on non-copper pigments [124]. In fresco 

wall paintings, malachite can discolour due to the alka-

line pH of the lime binders, especially when the particle 

size is small. �e exposure to high temperature (fires) can 

lead to the formation of black copper oxides [1, 91, 103, 

121, 139, 140], especially in frescoes due to alkaline con-

ditions [126]. On exposure to laser light, pure malachite 

darkens [139], as a consequence of reduction of Cu2+ to 

form dark cuprite Cu2O and black tenorite CuO [141, 

142]. �e same reactions take place when heating mala-

chite above ca. 360 °C [125].

Verdigris (copper acetates: xCu(CH3COO2)·yCu(OH)2·zH2O, 

bluish green)

Verdigris is currently used to indicate a variety of blue-

green compounds resulting from the exposure of copper 

to various acidic media (vinegar, for example) [1, 143]. 

�e instability of verdigris is well known [50]. Improved 

performances seem related to oil/oil-resin rich paint lay-

ers, or to the selection of the neutral respect to the basic 

form (less reactive towards the acidity of the oil), or by 

adding yellow glazes on top of it [1, 144]. Verdigris is less 

stable than malachite and azurite to salt solutions, form-

ing Cu2+ salts when the appropriate anions are present, 

such as nitrates, sulphates, chlorides [119, 123]. It pro-

motes oil curing and it retards its oxidation [20]. Verdi-

gris (neutral and basic), as well as the copper carbonate 

pigments azurite and malachite, shows the tendency to 

react with the oil binding media to form copper soaps 

[35, 67, 145], to brown and darken, as Cu+ is formed by 

ambient light absorption (photoreduction), and oxy-

gen promotes the formation of brown peroxide species 

[146]. Cu-salts of organic acidic compounds are formed 

in verdigris-containing paint layers (or at the interface 

with the varnish), as fatty and resin acids can extract cop-

per ions from the verdigris pigment [133, 147]. It seems 

important to mention that such reactions are equilibria, 

and therefore the addition of overpaint, or the removal 

of paint or varnish layers during restoration, might affect 

the chemical structure of the aged layer [133]. Copper 

acetates and resinates catalyse the oxidation process of 

oil films and influences the curing of the oil [133, 134, 

147, 148]. In tempera, verdigris seems less prone to dis-

colouration, but still reactions of Cu-extraction can 

take place [133, 146]. Copper acetates are very soluble 

in acidic conditions, and copper oxalates are formed in 

presence of oxalic acid from various sources [32]. In alka-

line conditions, blue copper hydroxides are formed [20]. 

When exposed to H2S, the pure pigment turns dark, as 

covellite is formed; however, this compound has not been 

identified yet in paint layers [20, 124]. Verdigris should 

not be mixed with orpiment or leadwhite, as darkening 

occurs [50]. Verdigris is not sensitive to lasers [141, 142, 

149, 150], but it darkens during particle induced X-ray 

emission (PIXE) analysis [151]. It is involved in cellulosic 

materials degradation, especially for critic conditions of 

illumination and SO2 concentrations [20].

Copper resinate (copper salts of abietic acid, green)

Copper resinate was used as a glaze, prepared by mix-

ing Cu-acetates (verdigris) with oil and/or resins. In this 

process, some of the acetates remain unreacted [147]. 

When mixed with oil, the coordination of the copper ion 

changes [147, 151]. Copper carboxylates are formed from 

the oil fraction of the binder, while metalloproteins may 

appear if egg tempera was used [147]. It darkens with 

light exposure [98, 132] and in alkaline conditions [132]. 

Also, being an artificial pigment, its production process 

might affect its stability, if reactive moieties are not care-

fully removed [98]. �e lipidic fraction of the paint layer 

undergoes photo-oxidation, with Cu acting as a catalyst: 

local molecular arrangement changes are likely to be 

involved in colour changes [20, 147]. Upon prolonged 

exposure to X-rays, Cu2+ is reduced to Cu+ [151].

Egyptian blue (CaCuSi4O10)

�e artificial pigment Egyptian blue (a silica-rich glass, 

whose colour is related to the presence of the min-

eral cuprorivaite, CaCuSi4O10 [152, 153]) is a very sta-

ble pigment (to acids, alkali, light) [28]. It is related to 

Egyptian green, whose colour is due to the presence of 

Cu-doped (max 2%) parawollastonite (CaSiO3), which 

does not show evident degradation issues (it trans-

forms into the polymorph pseudowollastonite above 

1150  °C) [154]. Egyptian blue requires coarse grinding 

to maintain its colour, showing poor hiding power [155]. 

Some discolouration can anyway be observed on Egyp-

tian blue, towards greenish or black compounds. It is 

reported to degrade to a green coloured material as Cu2+ 

ions are leached and react with Cl− ions from the glass 

itself or from circulating solutions to form carbonates 

and chlorides [156–158]. Degraded Egyptian blue was 

found to contain chlorides (atacamite and eriochalcite 

CuCl2·2H2O) [158]. Moreover, the yellowing/darkening 

of the organic materials (varnishes, gums) can alter the 

appearance of this blue pigment, and pigment-binder 

interactions could promote selective darkening, thanks to 

the release of copper ions from the pigment itself, pos-

sibly in relation to pH, impurities and gum type [155]. 

No evidence of black tenorite CuO formation was found 

[155, 159].
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Copper chlorides (atacamite, paratacamite, clinoatacamite, 

botallackite: Cu2Cl(OH)3, green)

�e polymorphs of copper hydroxychlorides 

(Cu2Cl(OH)3) pose relevant nomenclature issues, espe-

cially as regards paratacamite which is often used as a 

synonym for clinoatacamite, even though the two min-

erals have different formulas ((Cu,M)2Cl(OH)3) and 

Cu2Cl(OH)3, respectively, where M  =  Zn, Ni) [1, 160]. 

Chlorides of Cu were identified as pigments in objects 

from different cultures [1, 118, 161, 162], and recently 

atacamite was found in colonial art [163], in China [164] 

and in Alhambra’s plasterwork [59]. As a pigment, it 

can be natural or synthetic, and the particles’ morphol-

ogy and composition can clarify its origin [162, 164]. It 

is expected to form as a degradation product of Cu con-

taining pigments, or artefacts such as bronzes, in pres-

ence of humidity and chloride anions [115, 119, 121, 158, 

160, 165, 166]. It is however not stable in acidic condi-

tions (oxalic acid, for example), which promotes the for-

mation of mooloite (CuC2O4·nH2O) [127]. Also, among 

the polymorphs, different stabilities are observed, botal-

lackite being the first formed and more unstable, while 

paratacamite seems the favoured species at ambient 

temperature [167]. �e polymorph paratacamite has so 

far been identified as degradation product on other Cu-

containing pigments [64, 117, 119, 123, 129]. However, 

an interesting example is reported in literature: after the 

1966 flood in Florence, green paratacamite was formed 

on azurite-containing wall paintings [115]. To treat sul-

phated walls, ammonium carbonate ((NH4)2CO3) and 

barium hydroxide (Ba(OH)2) were used. �e green para-

tacamite alterations turned blue after the treatment, but 

not permanently. In fact, in the alkaline conditions given 

by the treatment, paratacamite is dissolved by the ammo-

nium carbonate, and blue Cu(OH)2 formed. �is hydrox-

ide is not stable and it degrades either to black CuO or 

to hydroxychlorides. �is latter reaction is more probable 

due to the continuous ingress of Cl− ions via capillary 

rise in walls, thus generating more green products, mak-

ing this treatment not suitable in presence of degraded 

azurite [115].

Copper sulphates (brochantite, antlerite, langite, posnjakite: 

CuSO4·yCu(OH)2·zH2O, green)

Green copper sulphates are commonly found as degra-

dation products on copper artefacts exposed to polluted 

environments [105]. Brochantite was identified as a pig-

ment as well [1], but it can transform into the more stable 

polymorphs, antlerite, langite or posnjakite, according to 

the given conditions of relative humidity, inorganic pol-

lutants (SOx) and biological activity (affecting the pH 

and the type of acids) [127, 129, 168]. Posnjakite was also 

identified as a pigment [162, 169]. Brochantite, as well as 

posnjakite and antlerite are also intermediate reaction 

products between copper carbonates and copper oxa-

lates, and are therefore sensitive to oxalic acid [127].

Arsenic (Z = 33)

Geologically, orpiment (As2S3) and realgar (As4S4) occur 

together, and are often associated with antimonates and 

other sulphides [1, 30]. Orpiment and realgar were highly 

appreciated especially in Egypt and China for their rich 

yellow and red–orange shades [1, 170–174], even though 

the pigments were considered “unpleasant” by many art-

ists, and not recommended to use in combination with 

copper and lead based pigments, such as verdigris and 

leadwhite [1, 30, 170]. Orpiment and realgar exist as 

minerals, as well as synthetic pigments [175], and of the 

two arsenic sulphide pigments, the first one is the most 

stable. Realgar, being unstable, was less often reported 

in works of art [1, 176–179]. It has a polymorphic pho-

todegradation product, pararealgar As4S4. Permanence 

of arsenic sulphide pigments is problematic, especially 

on exposure to the green region of the visible spectrum 

[174, 180]. Moreover, smaller particles are more read-

ily degraded [174]. �e sensitivity to green light has to 

be taken into account when lasers need to be used, such 

as during Raman spectroscopic analysis [177, 181, 182]. 

Arsenates (As5+) are formed from orpiment, realgar and 

emerald green degradation: these ions are water soluble 

and migrate throughout the whole painting, accumulat-

ing at interfaces between layers, around Fe/Mn rich par-

ticles, and according to the local pH conditions in the 

paint layer. Due to this water-based transport, appro-

priate cleaning solvents must be selected, and relative 

humidity controlled [180, 183]. It seems that polysaccha-

ridic media, or egg yolk, negatively affect the stability of 

the arsenic sulphide pigments [184].

It needs to be pointed out that pararealgar was recog-

nized as a mineral in 1980 [171], and that only recently 

the mechanisms of arsenic sulphides degradation was 

investigated [174, 183]. Care needs to be taken when con-

sidering published data, according to the year of publi-

cation and used techniques (compare for example [171] 

with [174]).

Orpiment (As2S3, yellow)

Permanence of orpiment to light was known to be poor, 

although some intact paint layers could be found on 

some illuminated manuscripts [176, 178, 179]. Coarser 

grain size seem to retard the colour change [30]. In water, 

upon heating, and in oxidizing conditions (ozone, NOx, 

for example) it decomposes to arsenic trioxide (As2O3), 

and hydrogen sulphide (H2S) is formed as well in pres-

ence of humidity [9, 176]. Relative humidity alone seems 

to have no effect, while degradation is observed when 
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both humidity and light are present [64]. Light exposure 

causes discolouration [30, 128, 182, 185, 186]. Orpiment 

darkens upon heating, it burns in air producing white 

arsenolite (As2O3) and volatile SO2, and it decomposes in 

water (the artificial product having smaller particles, dis-

solves faster). It is soluble in many inorganic acids, and 

in alkaline conditions as well, which make the pigment 

unsuitable for use on wet plaster [123, 176]. It is reported 

to be unstable in oil [170]. When mixed with lead and 

copper pigments, darkening occurs, for example the case 

of leadwhite is reported in literature [30, 50, 176].

Realgar and pararealgar (As4S4, reddish orange)

Realgar, exposed to light, degrades [30]. However, the 

formed yellow compound is not orpiment, as believed 

until 1980, but pararealgar [171, 187]. Exposed to (green) 

light, both high and low temperature realgar transform 

into brittle, bright yellow pararealgar [106, 177, 181], 

and finally to arsenic trioxide (As2O3) [106, 180, 188]. 

�e phenomenon is complex and involves intermediate 

phases such as χ-realgar. Pararealgar is also to be consid-

ered an equilibrium phase [175, 177, 189]. Heating causes 

darkening of the colour of realgar, χ-realgar, as well as 

of pararealgar, which is not permanent: in fact the high 

temperature polymorph converts to the low tempera-

ture realgar with time [189]. As orpiment, it burns in air 

and shows similar solubility [176]. �e role of the binder 

on realgar’s stability is not completely understood, yet 

it could protect the pigment from discolouration [177]. 

Seen that the photodegradation of realgar yields a yellow 

material, which was long thought to be orpiment, but was 

finally identified as pararealgar [171], one might question 

the identification of orpiment in museum objects [177], 

as well as consider the possibility of pararealgar as a pig-

ment [106, 173, 178, 190–192].

Mercury (Z = 80)

Vermillion (HgS, red)

�e deep red coloured cinnabar (HgS), as well as its syn-

thetic counterpart vermillion (HgS), produced either by 

wet or dry processes [193, 194], were extensively used [1]. 

Roman sources [195], however, seemed to use the term 

minium to identify this material, giving room to misin-

terpretations and nomenclature issues [1]. It was already 

known to Romans [195, 196] that mercury sulphide dark-

ens when exposed to light, although not systematically 

[1, 193, 194, 197–199]. Moreover, HgS was not recom-

mended for use in fresco, as humidity and pH affect its 

stability [103, 123, 200], but still it was used on wall paint-

ings [73, 193, 201–203]. Paint layers of pure vermillion 

are very vulnerable [199], while no darkening is observed 

when it is mixed with leadwhite [19, 20, 193, 204]. An 

increased resistance to laser radiation is also observed 

for other mixtures, such as vermillion with chrome yel-

low, madder, Prussian blue, and bone black, although the 

single pigments’ behaviour is hardly predictable [19]. Red 

lead, often mixed with vermillion to improve the curing 

of the oil binder, seems to have a protective effect on HgS 

[20, 199]. A series of reactions of vermillion with other 

pigments, different binders and substrates are reported in 

literature [65, 198, 205]. �e presence of a varnish layer, 

and of organic binders, moreover, seems to protect the 

paint layer, by absorbing the incident light (more effec-

tively when the varnish is thick and/or yellowed, and 

with different efficiency according to the composition, 

i.e. UV light is strongly absorbed) and by physically pro-

tecting the pigment grains from contact with chlorine-

containing materials (disinfectants, dirt, etc.) [199, 206]. 

Sulphation of the red paint layers in Pompeian wall paint-

ings was observed, and seems to be connected with the 

Cl− induced degradation of vermillion [106, 202]. �e 

blackening of vermillion was often attributed to the for-

mation of a black compound, supposedly metacinnabar 

(β-HgS) [194], although no positive identification could 

be obtained [198]. Binder type and pigment/binder ratio 

affect the pigment’s stability, and glazes seem to have a 

role in preserving the red hue of vermillion, by filter-

ing some of the incident light and protecting the pig-

ment from external sources of chlorine [199]. �e same 

metacinnabar is hypothesized in wall paintings [121, 139, 

202], but only identified on laser irradiated vermillion 

[70, 142]. Pure vermillion is sensitive to lasers of various 

wavelength and irradiation, so that the original struc-

ture is lost [141, 142, 206]. Black β-HgS was identified by 

X-ray diffraction (XRD) on IR-laser damaged red α-HgS 

[70], and by X-ray photoelectron spectroscopy (XPS) 

[141]. Dark Hg2S was detected as well, by XPS by [150]. 

XRD and XPS studies suggest a photoreduction of HgS to 

Hg0/Hg2
2+, instead of polymorph transformation [150]. 

Finally, the photodegradation of vermillion was explained 

in terms of formation of metallic mercury and HgCl2, due 

to the halogen impurities present in the pigment, identi-

fied thanks to secondary ion mass spectrometry (SIMS) 

analysis [207], and to X-ray spectroscopic analysis [208]. 

�e role of Cl-ions, present as an impurity in the pig-

ment, coming from marine aerosol, from the used binder 

or from pollution, in the degradation of vermillion has 

been ascertained thanks to the identification of chlorine 

species [197, 199, 202, 203, 207–209]. Calomel (HgCl)2 

was identified by portable and micro-Raman spectros-

copy, while HgCl2 and metacinnabar were not [33, 59, 

73, 199]. �e photosensitivity of vermillion depends on 

one hand on the presence of halogen impurities [199, 

202, 207], and on the other on the particles’ size and rela-

tive humidity [64]. �e cause of the discolouration is, 

however, still under debate (elemental mercury or dark 
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Hg–S–Cl species, as well as grey mercury chlorides) [33, 

73, 199, 207]. In tempera, vermillion is only slightly sensi-

tive to 248 nm laser pulses, while in oil medium it shows 

the lowest discolouration threshold for that laser wave-

length compared to a selection of pigments [19, 193, 199, 

210]. It is also reported that in oil medium the darkening 

is worse than in watercolour [194]. In this latter case, ver-

million is reported to be sensitive to light, with oxygen 

and humidity accelerating the darkening [66]. No mer-

cury oxalates were ever identified on vermillion paint lay-

ers [56].

Lead (Z = 82)

Lead pigments are not suitable for use in fresco, but 

they were still used due to their good hiding properties 

and to the low prices compared to other pigments [5, 

123, 200, 211–213]. �e degradation processes of the 

various Pb pigments yield a range of compounds which 

cause discolouration, strongly affecting the readability of 

the polychromy [200]. Lead pigments on ceramic arte-

facts are sensitive to sulphur containing pollutants, to 

acidic solutions (rain; CO2; microbial activity), to light 

and air: anglesite PbSO4, cerussite PbCO3, hydrocerus-

site 2PbCO3·Pb(OH)2 and lead sulphide PbS are formed 

[166]. Anglesite, attributed to lead pigment degradation 

was identified on wall paintings as well [214]. To laser 

irradiation, reduction of the lead compounds (lead-

white, massicot, red lead) occurs on the surface, so that 

the dark colour is attributed to formation of metallic 

lead, or Pb2O [150]. �e subsequent oxidation of lead 

explains the reversibility of such a colour change [150]. 

�e temperature increase related to the laser irradia-

tion causes the formation of massicot on both minium 

and leadwhite [150]. Care needs to be taken when a 

laser source is used for analytical purposes, such as dur-

ing Raman spectroscopic investigations, as the lead pig-

ments and their degradation products, such as PbO2 

and PbS, might be altered, affecting the interpretation of 

the degraded areas [215, 216]. All lead pigments turned 

black after exposure to H2S vapours (formation of galena, 

PbS), with increasing reactivity for basic moieties, such 

as Pb(OH)2 units in leadwhite [124]. It is reported that 

biological colonization on wall paintings can selectively 

affect lead (II) compounds, causing brown discoloura-

tions identified as PbO2 or PbS [211, 217], while copper 

pigments act as biocides [124, 212]. Lead dioxide forma-

tion is favoured in humid alkaline conditions, such as in 

frescoes, when peroxides are produces, either by micro-

organisms or by photo-oxidation of organic materials 

[213]. When exposed to salt solutions, and light, the most 

stable phase for all the lead pigments is cerussite [123, 

200, 218]. In oil, lead compounds were not only used as 

pigments, but as siccatives as well [219, 220]. Moreover, 

lead soaps are formed in, or on the surface of, oil paint 

layers containing lead based pigments (leadwhite, lead 

tin yellow type I, litharge, red lead) and are investigated 

as they affect the appearance of paintings [54, 55, 107, 

145, 219–228]. Lead oxalates were observed on leadwhite 

treated with oxalic acid [32], and on real samples con-

taining red lead and lead tin yellow [56]. Plumbonacrite 

3[2PbCO3·Pb(OH)2]·PbO was detected as well [56].

Leadwhite (2PbCO3·Pb(OH)2)

�e term “leadwhite” refers to a variety of white lead 

based materials, of which the most common, and most 

important from the artistic point of view is the basic 

lead carbonate corresponding to the mineral hydrocer-

ussite (2PbCO3·Pb(OH)2) [1, 229], possibly including 

cerussite as well, according to the fabrication process 

[1, 20, 229]. Considering it is a carbonate, it is relatively 

stable, although soluble in acids [20, 98, 229]. Also, it 

shows catalytic effects [230]. Upon heating, massicot 

(orthorhombic PbO) is formed, then litharge (tetragonal 

PbO) and finally red lead (Pb3O4) [229]. It was used in 

every medium. Black discolouration is observed on fres-

coes and watercolours [20], and it is reported for manu-

scripts as well [60, 231]. �e blackening is attributed to 

the formation of either PbO2, as a result of exposure to 

oxidizing agents or from microbiological activity, or PbS 

[9, 20, 98, 200, 211–213, 232]. �e role of S-containing 

pigments on the blackening of leadwhite is not fully 

understood [191, 229], while atmospheric and biological 

sources of H2S strongly affect watercolours [20, 191, 231] 

and manuscripts [60, 190, 191, 204]. If PbS is formed, a 

reconversion treatment (oxidation) can be applied to 

restore the white shades of degraded polichromy. How-

ever, the formed lead sulphate (PbSO4) is not sufficiently 

stable to make the treatment recommended [139, 212]. 

Humidity seems to be involved in many degradation 

processes, especially in synergy with atmospheric pollut-

ants such as SO2 and NOx [9, 64, 166]. �e presence of 

sulphuric pollutants is responsible for the formation of 

lead sulphide, lead sulphates, and cerussite/hydrocerus-

site [124, 166]. �e sensitivity of leadwhite to laser light 

was studied extensively, especially with respect to laser 

cleaning and laser based analysis of works of art, but 

the alteration process is not fully understood, the bind-

ing medium probably influencing the results [70, 142, 

150, 210, 215, 233, 234]. Analytical evidence of forma-

tion of metallic lead and lead (II) oxides upon IR laser 

irradiation is provided in literature [70, 234]. A visible 

laser (632 nm) caused the appearance of a massicot-like 

alterations on leadwhite, possibly via a plattnerite (PbO2) 

intermediate, which is related to impurities in the lead-

white [72]. Low fluence UV-laser does not affect paint 

layers prepared with different binders [235]. Moreover, 
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the exposure of the PbO degradation to environmental 

conditions is likely to yield a carbonate-hydroxide lead 

salt, making the degradation reversible to some extent, 

especially in absence of a binder [19, 142, 234]. �e influ-

ence of ion beam based analysis on polychrome objects 

can negatively affect leadwhite paint layers, as hydrocer-

ussite is sensitive to PIXE analysis [151]. On wall paint-

ings, the combined presence of humidity and salts can 

cause the formation of degradation products, some-

times coloured as in the case of NaPb2(CO3)2OH and 

PbO polymorphs, with cerussite being the most stable 

of them all [123, 218]. Leadwhite tempera and oil layers 

show the formation of lead soaps, which negatively affect 

the appearance of the paintings [55, 67, 226]. Leadwhite 

tempera applied on fresco paintings yields PbO2, as the 

reaction takes place in alkaline environment [213]. Also, 

differences in naturally and artificially aged samples are 

observed, the latter being less degraded [230]. Lead oxa-

lates were observed on leadwhite treated with oxalic acid 

[32], and on real samples [56]; lead acetate was detected 

upon exposure to acetic acid [109]. Plumbonacrite 

(3[2PbCO3·Pb(OH)2]·PbO) was detected as well [56].

Litharge (PbO, orange)

In antique sources, the term litharge denotes a variety 

of compounds derived from lead oxidation, and other 

compounds. It is now recognized as the low temperature 

polymorph of PbO, which is tetragonal [1]. As a pigment, 

it was identified on manuscripts and mural paintings 

[1]. It is less stable than massicot to water and to saline 

solutions commonly found in wall paintings [218]. As 

a pigment, litharge is stable to infrared (1064  nm) and 

red lasers (632, 647 nm) irradiation for Raman spectro-

scopic studies [215, 233]. Using a 632  nm laser with a 

power above 9 mW (calculated fluence of approximately 

45  kW/cm2) degradation is recorded [215]. For shorter 

wavelengths, and laser fluence at the sample above 2 kW/

cm2, litharge degrades to massicot [215]. In oil and tem-

pera binder, lead carboxylates are observed, showing 

stronger intensities compared to those formed from lead 

white [55]. �is increased reactivity was probably well 

known to artists and artisans, as PbO was often used as 

a siccative for binders and varnishes [1]. Litharge was as 

well used for the preparation of other pigments [236]. 

It degrades to cerussite and hydrocerussite, as well as 

to lead sulphate and phosphate, in archaeological sites 

attributed to the production of painting materials in 

�era, Greece [236].

Massicot (PbO, yellow)

Also in this case, as for litharge, nomenclature is com-

plex and confusion may arise. Massicot corresponds to 

orthorhombic PbO, the high temperature polymorph of 

this compound [1]. It is reported as a pigment in Egyp-

tian artefacts, mural paintings and manuscripts [1]. On 

wall paintings, the presence of water and of bicarbonate 

ions from atmospheric CO2 dissolution causes the forma-

tion of hydrocerussite and cerussite, the latter being the 

most stable compound of the series, even when interme-

diate salts are formed according to the present anions in 

the saline solutions [123, 218]. As for other lead contain-

ing paint layers, humidity causes first a darkening of the 

colour, and finally the formation of leadwhite [64]. Upon 

exposure to H2S, black galena (PbS) is formed in a thin 

superficial layer [124]. Massicot is stable to laser irradia-

tion, except to 10 mW of 514 nm laser, where a whitish 

degradation is observed [215]. �e effect of infrared laser 

irradiation was investigated as well and it was found to 

cause reduction of the pigments, and discolouration due 

to the formation of metallic lead. �is process is very 

intense for massicot, as the formed metallic particles are 

hardly subjected to re-oxidation, due to their bigger size 

[150].

Red lead (Pb3O4)

Red lead, or minium, has a long history of use in world-

wide artistic and artisanal practices, although nomen-

clature issues are evident [1, 237, 238]. Its synthesis and 

relation with the other lead oxides is well described in lit-

erature [238]. As a pigment, it is not stable in fresco, or in 

watercolour. It was anyway used, for its optical properties 

and cheap price, compared to other red pigments [1, 120]. 

It is reportedly blackened on manuscripts and in glue 

tempera paintings exposed to light and humidity [1, 64]. 

On the other hand, it is reported that medium-rich pro-

teinaceous red lead paints are stable to light, the binder 

protecting the pigment [239]. Moreover, the pigmented 

layer has different properties than an unpigmented one 

[51]. It is soluble in diluted acids (nitric, chloridric, oxalic, 

acetic), with formation of the corresponding salts, and 

when heated it transforms to litharge [1, 240]. It is sensi-

tive to sulphur containing compounds, as H2S and SO2 

of atmospheric or biological origin, and pigments such as 

arsenic sulphides (AsxSy), vermillion (HgS) and ultrama-

rine (Na8[Al6Si6O24]Sn), especially in manuscripts, wall 

paintings, and in case the pigment is not mixed with a 

binder, which cause the formation of dark grey PbS [1, 60, 

93, 124, 238, 241] and of whitish PbSO4 [59, 68, 233, 242]. 

�is was known to artists and artisans, as demonstrated 

by the presence of a blank space between yellow orpi-

ment and red lead in a 12th century illuminated manu-

script, although mixtures of the two pigments do not 

behave consistently. �e reaction between red lead and 

orpiment produced galena, which could further degrade 

into sulphates, and lead arsenate species [241]. Mimetite 

Pb5(AsO4)3Cl was as well identified as a reaction product 
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of minium and orpiment [186]. Moreover, it seems that 

minium promotes the blackening of leadwhite, when the 

pigments are mixed [204]. Some cases of red lead light-

ening are reported as well, and are related to the forma-

tion of lead sulphates and/or carbonates, according to the 

atmospheric pollutants and to the initial amount of PbO 

in red lead [68, 93, 200, 237, 238], via the formation of 

plumbonacrite [228].

�e black discolouration of red lead due to light expo-

sure was initially attributed to the formation of black 

PbO2, but this compound is not stable to light [1], and 

it was rarely positively identified [93, 120, 238], while 

mixed oxides are also hypothesized [59]. PbO2 could be 

a metabolite of microorganisms such as fungi [217, 239]. 

�e parameters responsible for the blackening of minium 

are identified as light [5, 240, 243], including laser light 

(514 and 488 nm, [215]), the pigment’s composition, and 

climate. �ese parameters all contribute to yield a grey 

discolouration at first, and finally a chocolate brown one 

[240]. Red lead semiconductor properties are responsi-

ble for the reduction of Pb(IV) to Pb(II), and the forma-

tion of PbO; the presence of bicarbonate ions (HCO3
−) 

promotes then the formation of hydrocerussite and/or 

cerussite [123, 218, 244]. �e PbO formed by laser irra-

diation can be re-oxidized to minium [142]. A role of 

Cl− ions is also hypothesized [93, 245]. �e formation 

mechanism of black discolouration products [plattner-

ite (PbO2) and galena (PbS)] was recently investigated: 

no plattnerite could be detected in artificial ageing tests, 

while the natural ageing of fresco red lead samples yielded 

calcite CaCO3, minium Pb3O4, plattnerite PbO2, anglesite 

PbSO4 and gypsum CaSO4·2H2O, with the minium 

grains being gradually converted to alteration products 

(plattnerite and anglesite) via a sulphation step followed 

by solvolytic disproportionation [237, 242]. Plattnerite 

might be formed if acidic pollutants attack the paint layer 

[242]; or when biological colonization is present [238]. 

Red lead is readily affected by organic acids (including 

the oil binder), which causes the final appearance of lead 

carbonate, via lead acetate Pb(C2H3O2)2 [109] and lead 

hydroxide Pb(OH)2 [55], and/or lead soaps [67].

Lead tin yellow (type I: Pb2SnO4; type II: PbSn1−xSixO3)

Two types of yellow pigments based on lead and tin are 

available, type I which is an oxide (Pb2SnO4), and type 

II which is a stannate silicate of lead (PbSn1−xSixO3). On 

their nomenclature, chronology, and occurrences, more 

can be found in literature [1, 20, 246], and references 

therein. As pigments, they show good hiding power and 

siccative properties when used in oil [246]. Other than 

for use as pigments in paintings, lead and tin-based col-

oured opacifiers were used in glass making [1, 20, 246]. 

Both pigments are stable to alkali, but sensitive to H2S 

and sulphides, which causes blackening (PbS) [246]. 

Whereas other lead containing pigment show fire dam-

age, lead tin yellow type I is detected unaltered [245], but 

heating above 900 °C causes decomposition of the mate-

rial [20, 246]. �ey are lightfast, opposite to the other 

Pb based yellow pigment, massicot (PbO), and stable in 

oil medium [20, 246]. Relative humidity has no negative 

effect on either pigment [64]. On the other hand, acidic 

components interact with the materials, including car-

boxylic acids from the ageing oil (lead soaps [56, 225, 

247]), or volatile organic compounds, such as acetic acid, 

of relevance in air quality evaluation in museum environ-

ments (lead acetate Pb(C2H3O2)2 [109]).

Conclusions
�e general understanding of the on-going potentially 

harmful processes regarding inorganic mediaeval pig-

ments is almost completed, and benefitted from the 

development of new analytical techniques. �is work, 

based on chemical and archaeometrical literature, sum-

marizes both evidences of pigments discolouration and 

degradation in works of art, as well as investigations 

based on mock-ups and simulations. Also, results from 

a variety of analytical techniques are here considered, 

as the complexity of the topic requires. In fact, tracking 

and understanding the reactions causing discolouration 

of the studied pigments requires a different approach 

according to the problem: salt dissolution and formation 

(Ca, Cu and Pb-based pigments); reduction or oxida-

tion reactions (Fe, Cu, Hg, Pb-containing pigments); ions 

leaching (ultramarine, smalt; Ca, Cu, Pb-pigments); poly-

morphism and structural modifications of the materials 

(Cu, As, Hg and Pb-pigments). In each case, an adequate 

selection of analytical and imaging techniques should be 

made. Moreover, the role of light (illumination, or laser 

systems) needs to be taken into account, especially for 

photosensitive pigments (As and Hg-containing). Finally, 

humidity, pollutants and contaminants (H2S, SO2/SO3, 

NOx; Cl-compounds) provide reactive moieties.

�e collected information regarding the stability of 

mediaeval inorganic pigments shows how complex the 

conservation of polychrome objects can be. First, the 

understanding of the pigments’ stability to specific fac-

tors is required. Even though pigments are not often 

present without binder in works of art, it is important to 

know their reactivity. �en, the study of pigment-binder 

interactions, and how they affect the single components 

and the paint layer itself needs to be considered. Finally, 

the implementation of air quality control systems and cli-

matic monitoring should take into account the different 

sensitivities of each and every material in museums and 

exhibitions, in storage or on display, in order to ensure its 

preservation for the future generations.
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	Copper resinate (copper salts of abietic acid, green)
	Egyptian blue (CaCuSi4O10)
	Copper chlorides (atacamite, paratacamite, clinoatacamite, botallackite: Cu2Cl(OH)3, green)
	Copper sulphates (brochantite, antlerite, langite, posnjakite: CuSO4·yCu(OH)2·zH2O, green)

	Arsenic (Z = 33)
	Orpiment (As2S3, yellow)
	Realgar and pararealgar (As4S4, reddish orange)

	Mercury (Z = 80)
	Vermillion (HgS, red)

	Lead (Z = 82)
	Leadwhite (2PbCO3·Pb(OH)2)
	Litharge (PbO, orange)
	Massicot (PbO, yellow)
	Red lead (Pb3O4)
	Lead tin yellow (type I: Pb2SnO4; type II: PbSn1−xSixO3)
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