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Abstract Proper Orthogonal Decomposition (POD) basis interpolation on Grassmann32

manifolds has been successfully applied to problems of parametric model order reduction33

(pMOR). In this work we address the necessary stability conditions for the interpolation,34

all defined from strong mathematical background. A first condition concerns the domain35

of definition of the logarithm map. Second, we show how the stability of interpolation36

can be lost if certain geometrical requirements are not satisfied by making a concrete37

elucidation of the local character of linearization. To this effect, we draw special attention38

to the Grassmannian exponential map and the optimal injectivity condition of this map,39

related to the cut–locus of Grassmann manifolds. From this, an explicit stability condition40
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is established and can be directly used to determine the loss of injectivity in practical41

pMOR applications. A third stability condition is formulated when increasing the number42

p of POD modes, deduced from the principal angles of subspaces of different dimensions43

p. Definition of this condition leads to an understanding of the non-monotonic oscillatory44

behavior of the Reduced Order Model (ROM) error-norm with respect to the number of45

POD modes, and on the contrary, the well-behaved monotonic decrease of the error-norm46

in the two numerical examples presented herein. We have chosen to perform pMOR in47

hyperelastic structures using a non-intrusive approach for inserting the interpolated spatial48

POD ROM basis in a commercial FEM code. The accuracy is assessed by a posteriori error49

norms defined using the ROM FEM solution and its high-fidelity counterpart simulation.50

Numerical studies successfully ascertained and highlighted the implication of stability51

conditions which are general and can be applied to a variety of other linear or nonlinear52

problems involving parametrized ROMs generation based on POD basis interpolation on53

Grassmann manifolds.54

1 Introduction55

In this paper we consider the notion of stability conditions of POD basis interpolation on56

Grassmann manifolds for pMOR. This interpolation method has been used to adapt ROMs57

to parameter changes in various engineering fields, among others, design, optimization,58

control, uncertainty quantification, data-driven systems, etc. Here, we introduce three59

important stability conditions that are quite essential to the interpolation method. Even60

though we illustrate the stability conditions in hyperelastic problems, they are applicable61

to a variety of other linear or nonlinear pMOR problems as well.62



4 Orestis Friderikos et al.

ROMs aim to decrease the computational burden of large-scale systems and solve63

parametrized problems by generating models with lower complexity, but accurately enough64

to represent the high-fidelity numerical simulations. One popular method is the Proper Or-65

thogonal Decomposition (POD) [1,2,3], also known as Kharhunen-Loève Decomposition66

(KLD) [4,5], Singular Value Decomposition (SVD) [6] or Principal Component Analy-67

sis (PCA) [7,8]. We need to emphasize that all these POD techniques are referred as a68

posteriori as they require some knowledge (at least partial) on the solution of the problem.69

Parametric Model Order Reduction (pMOR) is a framework to generate a ROM that70

approximates a full-order system with high accuracy over a range of parameters. In case71

of solving a parametric problem using the POD, the method starts by a sampling stage72

during which the full-order system is solved for some rather small set of training points.73

The state variable field ‘snapshots’ are then compressed using the POD to generate a74

ROM basis that is expected to retain the most characteristic dynamics of its high-fidelity75

counterpart solution. Nevertheless, since the POD bases are generated for a set of training76

points, they are optimal only to these parameter values. Thus, a main drawback of POD is77

the sensitivity to parameter changes and the lack of robustness over the entire parameter78

space. Consequently, any ROM basis generated by the approach outlined above cannot79

be expected to give a good approximation away from the training point. In pMOR, the80

question we have to address is how to compute a good approximation of the POD basis81

related to a new parameter value. Multiple methods have been proposed for adapting82

POD basis to address parameter variation as thoroughly documented in related review83

articles [9,10,11].84
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In the case of nonlinear systems, even though a Galerkin projection reduces the num-85

ber of unknowns, the computational burden for obtaining the solution could still be high86

due to the prohibitive computational costs involved in the evaluation of nonlinear terms.87

Hence, the nonlinear Galerkin projection in principle leads to a ROM, but its evaluation88

may be more expensive than the evaluation of the original problem. To this effect, to89

make the resulting ROMs computationally efficient, POD is typically used together with90

a sparse sampling method, also called hyper reduction, such as the missing point estima-91

tion (MPE) [12], the empirical interpolation method (EIM) [13], the discrete empirical92

interpolation method (DEIM) [14], the Gappy POD method [15], and the Gauss-Newton93

with approximated tensors (GNAT) method [16].94

Parametric model order reduction using POD basis interpolation on Grassmann man-95

ifolds is done initially in the field of computational fluid dynamics which was proposed for96

systems that are linear in state [3,17,18,19]. Similar approach has been scarcely applied97

in hyperelasticity, like in [20], where real time simulations of hypepelastic structures have98

been proposed using POD basis interpolation, in combination with an asymptotic numer-99

ical method. Here, pMOR is used to hyperelastic structures by adapting pre-computed100

POD basis.101

When addressing the question of POD basis interpolation on Grassmann manifolds,102

the main point is that interpolation cannot be done in a linear space. Indeed, any mode p103

POD basis performed on some snapshot matrix S ∈ Matn,Nt
(R) give rise to a truncated104

matrix Sp ∈ Matn,p(R) (where n = 3Ns and Ns, Nt respectively correspond to the num-105

ber of spatial points and temporal points). Now, despite the appearances, computation106

can not be done in the linear space Matn,p(R) of matrices, as the matrix Sp encodes a107
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p dimensional vector subspace. The goal is thus to make interpolation on the set of p108

dimensional subspaces of Rn, which defines exactly the Grassmann manifold G(p, n). Such109

Grassmann manifold interpolation is well documented [18,19,3,21,22], and computation110

can be done explicitly.111

Thus, we might have been satisfied with a simple application of the existing and now112

well-known formulas, using the logarithm map to linearize, and then the exponential map113

to return back to the manifold. Such maps are issued from the Riemannian structure114

of Grassmann G(p, n) and its associated geodesics [23]. However, applying formulae in115

manifolds requires the verification of certain conditions which will be addressed in this116

work. A first condition appears, as the logarithm map is only defined on some subset117

U ⊂ G(p, n) explicitly defined as a subset of non-singular matrices. So linearization can118

only be done once we have checked that all training points are contained in U. In fact,119

such a condition is usually checked, as square matrices are generically non–singular.120

A second condition concerns the use of the exponential map, which is defined on all the121

vector space Rd (with d = p(n−p) the dimension of G(p, n)). Nevertheless, the exponential122

map is not automatically stable since it is only injective inside a subset V ⊂ Rd deduced123

from the cut–locus [23] of the Riemannian manifold G(p, n). Considering all geodesics with124

the same starting point, such a cut–locus is in fact the set of points where such geodesics125

are no longer minimal, and thus the exponential map is no more injective. Without any126

control of such an injectivity condition, the return back of the interpolated curve via the127

exponential map can lead to some disconnected curve on the manifold, which should be128

avoided.129
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An explicit determination of such a cut–locus was already mentioned in [24], without130

any proof, and a result by Kozlov [25, Theorem 12.5] make a clear understanding of such131

a cut-locus using singular values of matrix representation of a velocity vector. We thus132

write an explicit way to compute such a cut–locus, with clear proof. As this result is not133

a classical one, and to be self contained, we had to develop the necessary mathematics to134

obtain such cut–locus of the Grassmann manifold G(p, n), as well as the open subset V.135

In fact, from this cut–locus and its associated subset V, it was possible to improve the136

already known exponential injectivity condition, obtained from the injectivity radius of137

Grassmann manifolds [25], and used in [3] to control computations. In most of our cases,138

indeed, the injectivity condition issued from the cut–locus is better than the one obtained139

from the injectivity radius.140

Finally, a third stability condition is related to the intrinsic non-inclusion defect of141

the interpolated subspaces of different dimensions. Indeed, a closer examination of the142

numerical results showed that the accuracy of interpolation may not improve by increasing143

the number of POD modes. As consequence of this new insight, it is not possible to144

control or predict the interpolation behavior. At first glance, this fact seems inconsistent145

with the expected improvement of the solution by increasing the number of modes. We146

indicate that the non-connectivity of the solutions is inherited from the construction of the147

interpolation formulae using the logarithm and the exponential maps. To prove the fact,148

the basic tool proposed here, is the computation of the principal angles of two POD basis149

of different mode p. By using the principal angles we can determine the geometric distance150

between subspaces of different dimensions [26]. To this end, a new stability condition will151

be tied with the geometric distance which measures the non-inclusion defect between these152
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subspaces. To the best of the author’s knowledge, this finding has never been reported in153

the variety of pMOR involving POD basis interpolation on Grassmann manifolds.154

From all this, we finally get three kinds of stability conditions, each clearly established:155

(1) a first one about the logarithm map domain of definition, (2) a second one on the loss156

of injectivity of the exponential map, via the cut–locus of Grassmann manifolds, and (3)157

a third one about the increasing POD mode, controlled from a well-defined geometric158

distance between subspaces of different dimensions.159

The general framework of pMOR comprises an off-line and an on-line stage. The off-line160

stage characterizes the potentially costly procedure of solving FEM problems associated161

with different values of the physical or modeling parameter (training points). The on-162

line stage consists of the POD basis interpolation on Grassmann manifolds to determine a163

ROM basis for an unseen target parameter. Then, in this work, a non-intrusive approach is164

introduced for the obtained spatial POD basis. Note, that this approach deviates from the165

classical methods that relying on a Galerkin/Petrov Galerkin projection on the governing166

equations. Instead, the ROM-FEM models are implemented by inserting the interpolated167

spatial POD basis using linear constraint equations in Abaqus. It is evident that even by168

constraining the degrees of freedom, the reduced model still embeds the high dimension.169

We remark that we used a commercial code only for evaluating the stability and accuracy170

of the adaption of POD basis via interpolation on Grassmann manifolds. This is because171

it is not our objective to implement a method of nonlinear MOR, although it is a quite172

challenging task to be realized in a commercial FEM code.173

For the mechanical part we have chosen two low complexity problems in hyperelasticity174

using a single parameter for pMOR to elaborate the interpolation stability primarily for175



Stability of POD Basis Interpolation on Grassmann Manifolds for pMOR 9

the clarity of exposition. We hypothesize that the stability issues addressed herein will be176

also inherent and critical for more demanding problems. Specifically, for the pMOR, the177

hyperelastic structures are modeled using isotropic and anisotropic constitutive laws. For178

the anisotropic model, a subclass of transversely isotropic materials is considered where179

the strain energy function is assumed to depend only on two invariant measures of finite180

deformation [27,28,29,30]. At the numerical examples, we have chosen single parameters181

associated to a) the model anisotropy defined by the fiber orientation angle, and b) the182

material coefficients of the hyperelastic constitutive equations.183

The paper is organized as follows. In section 2 and section 3, we will recall the theo-184

retical background so to understand the way to make interpolation of POD basis using185

the corresponding points on a Grassmann manifold. Next, in section 4 we produce all ex-186

plicit algorithms to obtain interpolation on Grassmann manifolds in which three stability187

conditions are defined: one from the logarithm map, a second one from the exponential188

map, and a third one from increasing the number of the POD modes. Then, section 5 is189

devoted to the mathematical proofs needed to have well-defined stability conditions. The190

mechanical part starts with section 6, which covers the basic framework of hyperelasticity191

theory in continuum mechanics for an incompressible transverse isotropic material. In sec-192

tion 7, the interpolation performance is shown for two problems in hyperelasticity, and193

further important computational aspects are discussed. Finally, section 8 highlights the194

main results and some important outcomes.195
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2 Problem Formulation196

We consider some mechanical problem governed by a specific parameter λ ∈ [λmin, λmax] ⊂

R (see section 6). For each parameter λ, the solution is given by a space-time smooth field

(t,X) ∈ [0;T ]×Ω0 7→ uλ(X, t) ∈ R3

where Ω0 is a closed convex subset of R3 and T > 0.197

To avoid costly computations for all values λ ∈ [λmin, λmax], we would like to interpo-198

late between a finite number of FEM solutions ui := uλi , associated to N training points199

λ1, . . . , λN . In fact, it is at the level of the POD performed on the snapshot matrices S(λi)200

(defined in the next section) associated to the solutions ui that this interpolation will be201

considered.202

But one of the essential points of this POD is that it associates to each snapshot matrix203

S(λi) a certain point mi of a Grassmann manifold G, and it is therefore needed at this204

stage to interpolate between points m1, . . . ,mN on G. It is now proposed to detail the205

link between a POD reduction and the construction of a point on a Grassmann manifold.206

3 Proper Orthogonal Decomposition and Grassmann manifolds207

The POD method can be applied to curves defined in Hilbert spaces of infinite dimension.

The initial idea is to determine a subspace of a given dimension p (which is the fixed

number of modes of the POD), reflecting “as well as possible” this curve, as it is very

well explained in [2,19]. In most cases, however, we do not consider the entire curve, but

only a finite number of points of a Hilbert space Hspatial = RNs of finite dimension Ns
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(the number of space points). More precisely, any FEM solution u of our problem under

consideration produces a snapshot matrix

Sjk, 1 ≤ j ≤ 3Ns, 1 ≤ k ≤ Nt

with Nt the number of time steps. Such matrix encodes in fact Nt vectors uk := u(·, tk) ∈

Hspatial, and we write

S := [u1, . . . ,uNt
]

Take now 〈·, ·〉 to be the standard inner product of the Hilbert space Hspatial. To any

p dimensional vector subspace Vp of Hspatial, there is an associated orthogonal projection

πp : Hspatial −→ Vp

and the POD method address the question to minimize the distance function

J (Vp) :=

Nt∑
k=1

‖uk − πp(uk)‖2, ‖ · ‖ :=
√
〈·, ·〉

over all p dimensional subspaces Vp. It then appears that the set of all such subspaces

define a smooth compact Riemannian manifold [31,23]

G(p, n) := {Vp ⊂ Hspatial, dim(Vp) = p} , n := 3Ns

so that any p dimensional vector subspace Vp can be considered as some point m ∈ G(p, n),208

and the question is finally to minimize J (m) over all m ∈ G(p, n).209

In practice, let consider an orthonormal basis φ1, . . . , φp of Vp so that the matrix form

of πp is given by

ΦpΦ
T
p , Φp := [φ1, . . . , φp] ∈ Matn,p(R)
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where Matn,p(R) is the vector space of n × p matrices, and (right) superscript (·)T de-

notes the transposition operation. By direct computation, the distance function J is then

rewritten

J (m) = ‖S−ΦpΦ
T
p S‖2F

where ‖A‖F :=
√

tr(AAT ) is the Frobenius norm on Matn,p(R).210

Now it is classically known that minimization of J is given by Eckart–Young The-

orem [32,33,6,34] and can be obtained via a singular value decomposition of S. Indeed,

take this SVD to be

S = UΣVT , U := [φ1, . . . , φNt ]

with singular values σ1 ≥ σ2 ≥ . . . ≥ σNt
. Then one solution of minimizing J is given by

m0 := span(φ1, . . . , φp)

which is unique whenever σp > σp+1 [2]. Let also define the reduced model Sp of our

snapshot matrix by

Sp := ΦpΦ
T
p S, Φp := [φ1, . . . , φp].

For each snapshot matrix S(λi) associated to training points λi (i = 1, . . . , N), we thus

obtain a point

mi := span(φ
(i)
1 , . . . , φ(i)p ) ∈ G(p, n)

once chosen a fix mode p for the POD. For a new target parameter λ̃, interpolation has211

to be done on the Grassmann manifold G(p, n), which is now detailed.212
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4 ROM Adaptation Based on Interpolation on Grassmann Manifolds213

Computation on manifold, such as the one of Lagrange interpolation, can only be done214

using local coordinates. Such local coordinates are obtained via bijective maps, which are215

defined, in general, on subsets U of the manifold (called the local charts). In the case of216

a Riemannian manifold, one can use the normal coordinates directly deduced from the217

geodesics of the manifold.218

In our case, local charts will be given by logarithm maps, so we obtain smooth diffeo-

morphisms

Log : U −→ V := Log(U) ⊂ Rd

where d is the dimension of the manifold, and the reverse operation is given by the219

exponential map. Nevertheless, such operation has to be well-defined, which is achieved220

when the exponential map is injective.221

Such an injectivity condition was already addressed in [3], using the injectivity radius222

of Grassmann manifolds (see (12)). Other injectivity conditions are presented here, less223

restrictive than the one issued from the injectivity radius (see Remark 4.1).224

Another instability issue is the one of increasing the number p of modes. Indeed, one225

should expect that the interpolation is sharpened by increasing p, which can be controlled226

by computing the geometric distance of subspaces with different dimensions, as defined227

in [26].228

Let us know present in the next subsection 4.1 the necessary assumptions to have a229

well-defined interpolation, while in subsection 4.2 we produce the interpolation algorithm,230

taking into account all necessary stability conditions. Finally subsection 4.3 focus on the231

explicit formulae to compare two subspaces of different dimensions.232
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4.1 Interpolation from logarithm and exponential map: necessary assumptions233

Let us consider back the points N points {mi}Ni=1 in the Grassmann manifold G(p, n),234

all obtained from the ROMs of the snapshot matrices (as detailed in section 3). The goal235

here is to obtain a well-defined interpolation of a spatial POD basis associated with a new236

target point λ̃. This is detailed in subsection 4.2, and we just focus here on the main ideas237

issued from the seminal work in [18]:238

1. Choose a base point m0 in the family m1, . . . ,mN , altogether with its associated239

logarithm map Logm0
(from Definition 5.9).240

2. Compute the velocity vectors vi := Logm0
(mi) all lying in a tangent plane, which is a241

vector space Rd (with d = p(n− p) the dimension of G(p, n)).242

3. Compute a new velocity vector ṽ associated to a target point λ̃.243

4. Obtain an interpolated point m̃ := Expm0
(ṽ) ∈ G(p, n) using the exponential map244

(from (11)) to return back to the Grassmann manifold G(p, n).245

As depicted in Figure 1, it is nevertheless important not to forget that the logarithm246

map Logm0
is only defined on some open set Um0 , taken from (13) and recalled below.247

So a first necessary condition is that248

• (C1): All points m1, . . . ,mN lie in Um0
.249

To check such a condition, recall first that each point m ∈ G(p, n) corresponds to an

orthonormal basis stored in a n× p matrix

Y = [y1, · · · ,yp] ∈ Matn,p(R), YTY = Ip.

Taking now matrices Yi corresponding to mi (i = 0, . . . , N), such condition translates250

into251
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• (C1)-matrix form: For all i = 1, . . . , N , the matrix YT
0 Yi is non singular.252

From this and Theorem 5.12–5.15 we deduce that the velocity vectors vi = Logm0
(mi) all253

lie in the open set Vm0 = Logm0
(Um0). Once computed the new velocity vector ṽ ∈ Rd,254

according to Theorem 5.12, a second necessary condition is then255

• (C2): ṽ is inside the open set Vm0
.256

Such a condition seems to be more intricate than the previous one, but in fact it is simply257

related to the singular values of a matrix. Indeed, in the case 2p ≤ n (which will be our258

case), a velocity vector ṽ is represented by a matrix Z̃ ∈ Matn,p(R) such that Z̃TY0 = 0259

(see (4)). From Lemma 5.14 and Theorem 5.15, condition (C2) simply writes260

• (C2)-matrix form: Taking θ̃1 to be the maximum singular value of Z̃, we have θ̃1 < π/2.261

The first condition (C1) is usually trivially satisfied, and the second one (C2) can be262

evaluated on a range of new parameters λ̃, so to have an interval [λ̃a, λ̃b] of well-defined263

interpolation. This was done on both benchmarks (see Figure 7 and 17).264

Remark 4.1. In the case of the compact manifold G(p, n), the exponential map is defined

on all the vector space Rd, so it is always possible to compute a new point Expm0
(ṽ) on

the Grassmann manifold, so we obtain an interpolation which can be not well-defined.

In the previous work [19,3], an injectivity condition on the exponential map was defined

using the injectivity radius of G(p, n), given by (12), which translate into

‖ṽ‖ =
(
Z̃T Z̃

)1/2
=

(
p∑
i=1

θ̃2i

)1/2

<
π

2

where θ̃i are the singular values of Z̃, leading to a weaker condition than the (C2) one265

(see Lemma 5.11).266
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Remark 4.2 (Violation of stability condition (C2) from an application point of view). Let267

us consider the case of the north hemisphere of the 2D sphere of radius 1, with m0 = N268

being the North Pole. The tangent plane is simply given by R2, and to any velocity vector269

v ∈ R2 corresponds a point on the north hemisphere, using the exponential map. Here,270

the exponential map is non injective for all v ∈ R2 with length greater than π/2. If the271

interpolated curve inside R2 is outside the disk of radius π/2 (see Figure 1), then the272

corresponding interpolated curve on the north hemisphere is disconnected.273

4.2 Interpolation algorithm from Lagrange polynomials274

Le us now produce the algorithm so to obtain an interpolated point m̃ corresponding to275

a target parameter λ̃. Such an algorithm is directly issued from the seminal work in [18],276

but it is modified so to derive a stable realization of interpolation, as we have to consider277

conditions (C1) and (C2) from the previous subsection 4.1.278

As detailed in section 3, the POD of mode p which was applied on snaphsot matrices279

Si (corresponding to the parameter λi for i = 1, . . . , N) define points m1, . . . ,mN on the280

Grassmann manifold G(p, n), and thus matrices in Matn,p(R) with orthonormal column281

vectors.282

Algorithm 4.3 (Interpolation on a Grassman manifold G(p, n)).283

284

Input :285

• Integers p, n such that 2p ≤ n.286

• Matrices Y1, . . . ,YN in Matn,p(R) such that YT
i Yi = Ip, respectively correspond-287

ing to a given set of parameters λ1, . . . , λN288
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• A target parameter λ̃289

Output : A new matrix Ỹ defining a new point m̃ ∈ G(p, n), corresponding to the target290

parameter λ̃.291

Computations :292

1. Choose a matrix Y0 ∈ {Y1, . . . ,YN} such that

(C1) stability : YT
0 Yi is non singular for all i

2. For each i = 1, . . . , N , make a thin SVD and compute an n× p matrix Zi:

Yi

(
YT

0 Yi

)−1 −Y0 = UiΣiV
T
i

Zi := Ui arctan (Σi) VT
i ,

all issued from the logarithm map (Definition 5.9).293

3. Compute an interpolated matrix and a thin SVD

Z̃ :=

N∑
i=1

∏
i 6=j

λ̃− λj
λi − λj

Zi = ŨΘ̃Ṽ

4. (C2) stability: If θ̃1 > π/2, with θ̃1 the largest singular value of Z̃, then return an294

instability message.295

5. Otherwise return the n× p matrix

Ỹ := Y0Ṽ cos Θ̃ + Ũ sin Θ̃

issued from the exponential map 11.296

4.3 Instability problem due to increasing mode297

As one should expect, the accuracy of the interpolation algorithm 4.3 should improve as the

number p of mode increase. In fact, when considering the snapshot matrices S1, . . . ,SN
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associated to parameters λ1, . . . , λN , a POD of mode p define subspaces V1, . . . ,VN of

dimension p (see section 3). By construction, for another mode p′ > p, the corresponding

subspaces V ′1, . . . ,V ′N are such that

Vi ⊂ V ′i.

Take now a new parameter λ̃ and suppose that algorithm 4.3 returns matrices Ỹ and Ỹ′298

which correspond respectively to mode p and p′ > p interpolation. A stability condition299

should be300

• (C3) The subspaces Ṽ and Ṽ ′ respectively associated to the matrices Ỹ and Ỹ′ are301

such that Ṽ ⊂ Ṽ ′.302

More generally, let us consider two subspaces V and V ′ of different dimensions p < p′,

represented by matrices Y ∈ Matn,p(R) and Y′ ∈ Matn,p′(R) such that

YTY = Ip, (Y′)TY′ = Ip′ .

One method to measure the non-inclusion defect between subspaces V and V ′ is to consider303

the geometric distance δ(V,V ′), issued from [26], and defined using principal angles as304

follows: taking singular values of YTY′ ∈ Matp,p′(R) to be σ1 ≥ · · · ≥ σp ≥ 0, we have305

δ(V,V ′) = δ(Y,Y′) :=

(min(p,p′)∑
i=1

arccos2(σi)

)1/2

. (1)306

We are finally able to check stability condition (C3) using the following:307

1. Assume a set of POD modes p ∈Pm and a threshold value TV .308

2. For a given integer p and a given target parameter λ̃, compute matrix Ỹ issued from309

Algorithm 4.3.310

3. For p′ > p compute matrix Ỹ′ issued from the same algorithm Algorithm 4.3.311
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4. As we have ỸT Ỹ = Ip and (Ỹ′)T Ỹ′ = Ip′ from Lemma 5.5, we deduce a geometric312

distance δ(Ỹ, Ỹ′) computed by (1).313

5. Calculate the indicator ε for the non-inclusion between subspaces formalized as follows314

ε = (δmax(Ỹ, Ỹ′)− δmin(Ỹ, Ỹ′))/(δmin(Ỹ, Ỹ′)), p ∈Pm (2)315

6. If ε ≥ TV then return an instability message.316

Let us now describe the utilization of the (C3) stability condition from the application317

point of view. Computing of the geometric distance δ(Ỹ, Ỹ′) leads to an understanding318

of the non-monotonic oscillatory behavior of the error norm due to increasing mode p.319

According to the numerical problems studied here, the first one (see Figure 10) clearly320

shows an oscillatory unstable behavior, while the second one seems stable (see Figure 20):321

we thus compared the two values of the indicator ε given by (2), for each problem, and322

propose TV = 100 as a reference threshold.323

5 Riemannian geometry of Grassmann Manifolds324

The purpose of this section is to recall the main results about Grassmann manifolds, as325

well as new ones about the cut–locus and injectivity condition for the exponential map.326

As far as we know, the normal coordinates are classically defined using the exponential327

map restricted on an open disk deduced from the injectivity radius [25,3]. In fact, it will328

be possible to go beyond such an injectivity radius, using an open set deduced from the329

cut–locus of the Grassmann manifold, all this being detailed in subsection 5.4.330

Note that some results recalled here are classical, either given in their matrix forms [22,331

18,21,19,3,41], or given in a more abstract one [42,25], but it was necessary to write332
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them back for our proofs to be clearly established. All details about general differential333

Riemannian geometry can be found in [43,31,23].334

From now on, let us consider two integers p, n such that p ≤ n and take G(p, n) to be

the Grassmann manifold of p dimensional subspaces of Rn. A first way to obtain a point

m ∈ G(p, n) is to consider a basis y1, . . . ,yp of the associated subspace

m = Vect(y1, . . . ,yp).

Without loss of generality, we can assume the case of orthonormal basis, so m can be

represented by a matrix

Y := [y1, . . . ,yp] ∈ Matn,p(R), YTY = Ip.

Such matrix Y is not unique, as any matrix in the set

{YP, P ∈ O(p)} , O(p) :=
{
P ∈ Matp,p(R), PTP = Ip

}
,

can represent the same point m.335

From this, the Grassmann manifold G(p, n) is obtained as a quotient space [43, Chapter

21] of the (compact) space of p ordered orthonormal vectors of Rn. More specifically [44,

Appendix C.2], first define the compact Stiefel manifold Stc(p, n) to be the set of p or-

thonormal vectors {y1, . . . ,yp} of Rn. Taking any basis of Rn, such a set can be represented

by a rank p matrix

Y := [y1, . . . ,yp] ∈ Matn,p(R), YTY = Ip.

This led to define a fiber bundle [45,46], which is also a submersion [43]:336

π : Y ∈ Stc(p, n) 7→ π(Y) = m := {YP, P ∈ O(p)} ∈ G(p, n) (3)337
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Informally speaking, it means that any point m of the Grassmann manifold G(p, n) can338

be represented by any point Y of the fiber π−1(m) (Figure 2).339

5.1 The Grassmann Manifold and its Riemannian metric340

From the submersion π given by (3), the Grassmann manifold G(p, n) can inherit the341

geometry of the Stiefel manifold Stc(p, n) and its Riemannian structure [23].342

First, the Stiefel manifold Stc(p, n) ⊂ Matn,p(R), is naturally endowed with an inner

product given by

〈Z1,Z2〉 := tr(ZT1 Z2), Z1,Z2 ∈ Matn,p(R).

Now, we need to attach, to each m ∈ G(p, n) a tangent space TmG(p, n), which is a vector343

space isomorphic to Rp×(n−p), equipped with a scalar product (depending smoothly on344

m), so that G(p, n) becomes a Riemannian manifold.345

In fact, there is no canonical way to get a representation of a velocity vector v ∈346

TmG(p, n), as it depends on the choice of a matrix Y ∈ Stc(p, n) defining m (see Figure 2):347

for any Y ∈ π−1(m), we define indeed its associated horizontal space by:348

HorY := {Z ∈ Matn,p(R), ZTY = 0}. (4)349

Finally:350

1. The tangent space TmG(p, n) is isomorphic to any HorY with Y such that π(Y) = m.

An isomorphism is given by

dπY|HorY : HorY 7−→ TmG(p, n).
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2. For any v ∈ TmG(p, n), the unique Z ∈ HorY such that351

dπY · Z = v (5)352

is called a horizontal lift of v.353

3. For any P ∈ O(p), then ZP is another horizontal lift of v (but belonging to the vector

space HorYP) and

dπYP · (ZP) = v.

The Riemannian metric on the Grassmannian G(p, n) is then defined by

〈v1, v2〉m := 〈Z1,Z2〉Y,

with π(Y) = m and Z1 (resp. Z2) a horizontal lift of v1 (resp. v2) in HorY.354

For the proofs of the following subsections, an interesting geometric approach, due to355

Zhou [47], is given by:356

Lemma 5.1. Let m ∈ G(p, n) and v ∈ TmG(p, n), with 2p ≤ n. Then, there exists an

orthonormal basis y1, . . . ,yn of Rn such that

Y = [y1, . . . ,yp] ∈ π−1(m), Z = [θ1yp+1, · · · , θpy2p] ∈ HorY,

θ1 ≥ · · · ≥ θp ≥ 0.

Proof Let us consider any Y ∈ π−1(m) and a horizontal lift Z of v such that ZTY = 0.

We define a thin singular value decomposition of Z, so we can find orthonormal vectors

u1, . . . ,up in Rn and v1, . . . ,vp in Rp such that

Z =
∑

θiuiv
T
i , θ1 ≥ · · · ≥ θp ≥ 0.
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From the condition ZTY = 0 we thus deduce that y1, . . . ,yp,u1, . . . ,up is a family of

orthonormal vectors. Taking now the matrix P := [v1, . . . ,vp] ∈ O(p) and Y′ := YP ∈

π−1(m), we obtain

Z′ := [θ1yp+1, · · · , θpy2p] ∈ HorYP, yp+i := ui,

so we can conclude.357

Remark 5.2. In the case when 2p > n, that is p > n − p, then we can only write a

horizontal lift as

Z = [θ1yp+1, · · · , θn−pyn, 0, . . . ,0︸ ︷︷ ︸
2p−n times

], θ1 ≥ · · · ≥ θn−p ≥ 0.

5.2 Geodesics and distance on Grassmann manifolds358

The Grassmann manifold G(p, n) being equipped with a Riemannian metric, it is possible359

to define the length of any curve c : [0; 1]→ G(p, n):360

L(c) =

∫ 1

0

〈ċ(t), ċ(t)〉c(t)dt (6)361

and so the associated Riemannian distance362

dr(m,m′) := inf{L(c), c(0) = m, c(1) = m′}. (7)363

To obtain an explicit computation of such a distance, one can use the geodesics obtained364

from the Riemannian metric and its associated Levi-Civita connection [23,43] (see also [45,365

III.6]). First recall that for Grassmann manifold, geodesics are obtained explicitly [42,22]:366
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Theorem 5.3. Let m ∈ G(p, n) and v ∈ TmG(p, n) with horizontal lift given by Z ∈ HorY,367

where π(Y) = m and YTY = Ip. Let Z = UΘVT be a thin singular value decomposition368

of Z. Then369

αv : t ∈ R 7→ π (YV cos(tΘ) + U sin(tΘ)) ∈ G(p, n) (8)370

is the unique maximal geodesic such that αv(0) = m and α̇v(0) = v, maximality meaning371

here that such curve is defined on all R.372

Remark 5.4. There is another approach proposed in [47] which produces a more intrinsic

formula for the geodesics. Indeed, let us consider 2p ≤ n and take back the result from

Lemma 5.1. Then one horizontal lift of v can writes

Z = [θ1yp+1, · · · , θpy2p], θ1 ≥ · · · ≥ θp ≥ 0.

where Y = [y1, . . . ,yp] ∈ π−1(m) and y1, . . . ,y2p is an orthonormal family. The unique

geodesic obtained from velocity vector v is then defined by π(Y(t)), with

Y(t) = [cos(θ1t)y1 + sin(θ1t)yp+1, . . . , cos(θpt)yp + sin(θpt)y2p] .

We observe that the norm of the velocity vector is given by

‖v‖ =
√∑

θ2i .

In fact, all matrices given by (8) are lying in Stc(p, n):373

Lemma 5.5. Let m ∈ G(p, n) and v ∈ TmG(p, n). Take Y ∈ π−1(m) and Z ∈ HorY like

in statement of Theorem 5.3. Then for any t ∈ R we have

Y(t) := YV cos(tΘ) + U sin(tΘ) ∈ Stc(p, n), meaning that Y(t)TY(t) = Ip.
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Proof By direct computation we have:

Y(t)TY(t) = cos2(tΘ) + sin2(tΘ) + X + XT , X := sin(tΘ)UTYV cos(tΘ)

= Ip + X + XT .

As we have Z = UΘVT and ZTY = 0 we deduce that

VΘUTY = 0, V ∈ O(p) =⇒ ΘUTY = 0.

and thus sin(tΘ)UTY = 0 for all t, which concludes the proof.374

As a consequence of Hopf-Rinow Theorem [23, Theorem 2.103], any two points of the375

Grassmann manifold can be joined by a length minimizing geodesic. An explicit expression376

of such a geodesic is given also in [25]):377

Theorem 5.6. Let m,m′ ∈ G(p, n) be any two points on the Grassmann manifold G(p, n).378

Then, for 2p ≤ n:379

(1) There exists an orthonormal family y1, . . . ,yn of Rn such that

Y′ = [cos(θ1)y1 + sin(θ1)yp+1, . . . , cos(θp)yp + sin(θp)y2p] ∈ π−1(m′),

Y = [y1, . . . ,yp] ∈ π−1(m),

with θi ∈ [0, π/2] are the Jordan’s principal angles between Y and Y′, meaning that380

θi = arccos(σp−i+1), where 0 ≤ σp ≤ · · · ≤ σ1 are the singular values of YTY′.381

(2) A length minimizing geodesic from m to m′ is given by t ∈ [0, 1] 7→ π(Y(t)) with

Y(t) := [cos(tθ1)y1 + sin(tθ1)yp+1, . . . , cos(tθp)yp + sin(tθp)y2p].

Furthermore, such length minimizing geodesic is unique if and only if θ1 < π/2.382
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In the case 2p > n, the same result holds using

Y′ = [cos(θ1)y1 + sin(θ1)yp+1, . . . , cos(θn−p)yn−p + sin(θn−p)yn−p,

yn−p+1, . . . ,yp] ∈ π−1(m).

Proof Take any Y ∈ π−1(m) and Y′ ∈ π−1(m′). Let now consider a reordered SVD of

the square matrix YTY′:

YTY′ = UΣVT , Σ =


σp . . . 0

...
. . .

...

0 . . . σ1

 , U,V ∈ O(p),

with singular values 0 ≤ σp ≤ · · · ≤ σ1. Define

Ŷ := YU ∈ π−1(m), Ŷ′ := Y′V ∈ π−1(m′)

and write

Ŷ = [y1, . . . ,yp] ∈ Matn,p(R), Ŷ′ = [x1, . . . ,xp] ∈ Matn,p(R)

so we can deduce from ŶT Ŷ′ = Σ the inner products

〈yi,xj〉 = σp−i+1δij , σp−i+1 ∈ [0, 1].

Using a direct induction on i, we obtain a family of orthonormal vectors yp+1, . . . ,y2p

such that

xi = cos(θi)yi + sin(θi)yp+i, θi := arccos(σp−i+1), 〈yi,yp+j〉 = 0

which conclude the proof of (1).383

Now, from Remark 5.4, any other geodesic from m to m′ reads t 7→ π(Y(t)) with

Y(t) = [cos(α1t)y1 + sin(α1t)yp+1, . . . , cos(αpt)yp + sin(αpt)y2p] , π(Y(1)) = m′
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so that cos(αi) = cos(θi) and αi = θi + kiπ, with ki ∈ Z. We deduce that the length of

this geodesic is given by (
p∑
i=1

(θi + kiπ)2

)1/2

.

As (θ+kπ)2 ≥ θ2 for all k ∈ Z and θ ∈ [0, π/2], we deduce length minimization for ki = 0.

Non unicity can only occur if and only if there is non-zero ki ∈ Z such that θi+kiπ = −θi,

so that

ki =
−2θi
π
∈ Z− {0}

which translate into θi = θi−1 = · · · = θ1 = π/2, which conclude the proof.384

As a consequence of Theorem 5.6, for any two points m and m′ of G(p, n) the Rie-385

mannian distance is given by386

dr(m,m′) =

( p∑
i=1

θ2i

)1/2

(9)387

with θi the Jordan’s principal angles as defined in the statement of the theorem. Finally,388

the diameter of G(p, n) (the maximum distance between two points) is given by389

diam =
√
r
π

2
, r = min(p, n− p). (10)390

5.3 Exponential and logarithm map on Grassmann manifolds391

By exploiting geodesics of a Riemannian manifold, it is possible to establish local maps392

using normal coordinates [23] defined from the exponential map.393

In the case of Grassmann manifolds, the exponential map is obtained from the exact394

formulation of the geodesics (see Theorem 5.3).395
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Definition 5.7 (Exponential map). For any point m ∈ G(p, n), let consider the tangent396

plane TmG(p, n) ' Rd, with d = p(n− p) the dimension of G(p, n). Then the exponential397

map is defined by398

Expm : v ∈ TmG(p, n) 7→ π (YV cosΘ + U sinΘ) ∈ G(p, n) (11)399

where Y ∈ π−1(m) and Z = UΘVT is a thin SVD of a horizontal lift Z ∈ HorY of v.400

Such a map is only a diffeomorphism locally, meaning that there exists some open401

set W ⊂ TmG(p, n) containing 0 such that (Expm)|W is a diffeomorphism, which thus402

makes it possible to define local coordinates on W. A first way to do so is to consider the403

injectivity radius and thus the open disk:404

Dm := {v ∈ TmG(p, n), ‖v‖ < π/2} , (12)405

where π/2 is the injectivity radius of Grassmann manifolds [25]. We obtain here a local

map

(Expm)|Dm
: Dm −→ Expm (Dm) .

It turns out that in our case, it is possible to go beyond this injectivity radius. To do so,406

a logarithm map is directly define at each point of the Grassmann manifold.407

First, for any point m ∈ G(p, n), let us define the open set408

Um := {m′ ∈ G(p, n), YTY′ is invertible, π(Y) = m, π(Y′) = m}. (13)409

A more geometric insight of such an open set is given by a lemma directly deduced from410

Jordan’s principal angles (see Theorem 5.6):411

Lemma 5.8. For any m,m′ ∈ G(p, n), take 0 ≤ θp ≤ · · · ≤ θ1 ≤ π/2 to be their412

corresponding Jordan’s principal angles. Then m′ ∈ Um if and only if θ1 < π/2.413
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From now on, let us suppose that 2p ≤ n, while the case 2p > n is straightforward.414

Following Theorem 5.6, we can find an orthonormal family y1, . . . ,yn of Rn such that

Y′ = [cos(θ1)y1 + sin(θ1)yp+1, . . . , cos(θp)yp + sin(θp)y2p] ∈ π−1(m′), (14)

Y = [y1, . . . ,yp] ∈ π−1(m),

and then YTY′ = cosΘ. The classical definition of the logarithm map [3] makes use of a415

thin SVD of416

Y′
(
YTY′

)−1 −Y = [tan(θ1)yp+1, . . . , tan(θp)y2p] (15)417

where singular values are well-defined (as a consequence of Lemma 5.8). From all this, it418

is possible to have the following definition, using the arctan function:419

Definition 5.9 (Logarithm map in Grassmann manifolds). For any m ∈ G(p, n), take

the open set Um defined by (13). Then the logarithm map at m is given by

Logm : m′ ∈ Um 7→ Logm(m′) ∈ TmG(p, n)

where an horizontal lift Z of Logm(m′) is defined using a thin SVD

Y′
(
YTY′

)−1 −Y = UΣVT , Y′ ∈ π−1(m′),

so that

Z := U arctan(Σ)VT .

As a direct consequence of (14) and (15), the horizontal lift Z of v = Logm(m′) encodes

the Jordan’s principal angles between m and m′, as we can write in the orthonormal basis

y1, . . . ,yn of Rn:

Z = [θ1yp+1, . . . , θpy2p].

From Remark 5.4, we deduce that we have Expm(v) = m′, leading to:420
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Lemma 5.10. For any m ∈ G(p, n), the map Logm is a diffeomorphism from Um onto

Logm (Um), with inverse map given by the exponential map at m:

Expm ◦Logm = idUm .

As a conclusion of this subsection, we obtain here normal coordinates on all the open421

set Um, which is in fact an improvement compared to the open set deduced from the422

injectivity radius disk, thanks to the lemma:423

Lemma 5.11. For any m ∈ G(p, n) and n, p such that min(p, n − p) ≥ 2, the open set

Um given by (13) strictly contains Expm (Dm), with Dm given by (12):

Expm (Dm)  Um.

Proof The inclusion follows from Theorem 5.15 as any v ∈ Dm is such that

‖v‖ < π

2
.

To obtain a strict inclusion we follow Remark 5.4 in the case 2p ≤ n. Let us consider an

orthonormal basis y1, . . . ,yn and v with horizontal lift given by

Z = [θ1yp+1, . . . , θpy2p].

Then we can find θ1, . . . , θp such that

‖v‖ =
(∑

θ2i

)1/2
≥ π/2 and θ1 < π/2

using for instance

θi := α <
π

2
with

π

2
≤ √pα.
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5.4 Cut–locus and exponential map injectivity on Grassmann manifolds424

In this final subsection, it is proposed to establish the link between the open set Um425

defined by (13) and the cut–locus of Grassmann manifolds. Such a notion of cut–locus is426

particularly related to the loss of injectivity of the exponential map. As far as we know,427

such a result about the cut–locus was suggested in [24], but without any clear proof nor428

statement.429

Let us take back here the geodesic t ∈ R 7→ αv(t) from (8), with non-zero initial

velocity v ∈ TmG(p, n). Define now

Iv := {t ∈ R, (αv)|[0,t] is length minimal} = [0, ρ(v)],

where ρ(v) is some bounded real number (see [23, Section 2.C.7]). A first result is given430

by [23, Theorem 3.77]:431

Theorem 5.12. Let m ∈ G(p, n) and432

Vm := {v ∈ TmG(p, n), ρ(v) > 1} ∪ {0}. (16)433

Then Vm is an open neighborhood of 0 ∈ TmG(p, n) and the map

(Expm)|Vm
: Vm −→ Expm(Vm)

is a diffeomorphism.434

The image of the boundary ∂Vm then define the cut-locus:435

Definition 5.13 (Cut-locus). For any point m ∈ G(p, n), the cut-locus of m is given by

Cut(m) := {Expm(ρ(v)v), ‖v‖ = 1} .
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In the specific case of Grassmann manifolds, there is a way to explicitly obtain the436

bound ρ(v), while the main ideas are directly taken from [25, Theorem 12.5]:437

Lemma 5.14. Let m ∈ G(p, n) and v ∈ TmG(p, n), with horizontal lift given by some

Z ∈ Matn,p(R). Then we have

ρ(v) =
π

2θ1
,

where θ1 is the maximal singular value of Z and thus, taking back the open set Vm defined438

by (16) we have439

Vm =
{
v ∈ TmG(p, n), θ1 <

π

2

}
∪ {0}. (17)440

Proof From Lemma 5.1, we can consider an orthonormal basis y1, . . . ,yn of Rn such that

Y ∈ π−1(m) and a horizontal lift Z of v are given by (for 2p ≤ n):

Y = [y1, . . . ,yp], Z = [θ1yp+1, . . . , θpy2p],

where 0 ≤ θp ≤ · · · ≤ θ1 are the singular values of any horizontal lift of v.441

Now, from Theorem 5.6 the geodesic α(t) = π(Y(t)) with

Y(t) = [cos(θ1t)y1 + sin(θ1t)yp+1, . . . , cos(θpt)yp + sin(θpt)y2p]

is minimal for all t ≤ π/(2θ1), and is not unique anymore for t = π/(2θ1). From [23,442

Corollary 2.111], α is no longer minimal on [0, π/(2θ1)+ε] for all ε > 0, so we can conclude443

(the proof being the same for 2p > n). The last equation (17) is straightforward.444

Our main result is now:445

Theorem 5.15. For any m ∈ G(p, n) we have

Expm(Vm) = Um
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with Um and Vm respectively defined by (13) and (16). Furthermore, the cut-locus at m

is given by:

Cut(m) =
{
m′, YTY′ is singular, π(Y) = m, π(Y′) = m′

}
.

Proof Taking back Lemma 5.14 recall that

Vm =
{
v ∈ TmG(p, n), θ1 <

π

2

}
∪ {0}

where θ1 is the maximal singular value of any horizontal lift Z ∈ Matn,p(R) of v. Take

now any v ∈ Vm and define an orthonormal basis y1, . . . ,yn of Rn like in Lemma 5.1, so

that for 2p ≤ n

Expm(v) = π ([cos(θ1)y1 + sin(θ1)yp+1, . . . , cos(θp)yp + sin(θp)y2p]) , θ1 < π/2.

From Lemma 5.8 we deduce that Expm(v) ∈ Um and thus Expm(Vm) ⊂ Um.446

The converse is a direct consequence of Theorem 5.6 and Lemma 5.8, all proof being447

the same for 2p > n. Finally, the statement for Cut(m) follows in the same way, so we448

can conclude.449

6 Application to Hyperelasticity450

6.1 Kinematics of Continuum Mechanics Framework451

Let Ω0 ⊂ R3 and Ω ⊂ R3 represent the reference and the current configurations of a body,452

parameterized in X and in x, respectively. The non-linear deformation map ϕ : Ω0 → Ω at453

time t, transforms the referential (material) position X into the related current (spacial)454

position x = ϕ(X, t). The deformation gradient F is defined by455
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F := ∇ϕ(X) =
∂ϕ(X)

∂X
=

∂x

∂X
(18)456

with the Jacobian J(X) = det(F) > 0 (volume ratio). The right and left Cauchy-Green457

tensors are defined as C = FTF and B = FFT , respectively.458

The three principal invariants of C which are identical to those of B are defined as459

I1 = tr(C), I2 =
1

2
[(tr(C))2 − tr

(
C2
)
], I3 = det(C). (19)460

6.2 Incompressible Transverse Isotropic Material461

A material with one family of fibers is considered where the stress at a material point462

depends not only on the deformation gradient F but also on the fiber direction. The fibers463

are modeled by a flow [23] obtained from some unit vector field a0 on Ω0. The direction464

of a fiber at point X ∈ Ω0 is thus obtained by the unit vector a0(X), |a0| = 1.465

Note that the unit vector field a0 induces a unit vector field a on current configuration

Ω defined by

F(X)a0(X) = αa(x)

where the length changes of the fibers along its direction a0 is determined by the stretch466

α as the ratio between the current and the reference configuration.467

Consequently, since |a| = 1, we can define the square of the stretch α following the

symmetries of the deformation gradient

α2 = a0F
TFa0 = a0Ca0.
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6.3 Linearization of the principle of internal virtual work in the spatial description468

The linearization of the internal virtual work in the spatial description reads (see Section469

8.4 in [35])470

D∆uδWint(u, δu) =

∫
Ω

(gradδu : c : grad∆u + gradδu : grad∆u σ)dv (20)471

or in index notation (with Einstein convention on repeated indices),472

D∆uδWint(u, δu) =

∫
Ω

∂δua
∂xb

(δacσbd + cabcd)
∂∆uc
∂xd

dv (21)473

where the term δacσbd + cabcd is the effective elasticity tensor in the spatial description.474

The term δacσbd corresponds to the geometrical stress contribution to linearization (initial475

stress contribution at every increment) whereas cabcd represents the material contribution476

to linearization. The elasticity tensor cabcd in the spatial description is derived from the477

push-forward of the linearized second Piola-Kirchhoff stress tensor which yields the lin-478

earized Kirchhoff stress tensor ∆τ from relation479

∆τ = Jc : grad∆u (22)480

Replacing the direction ∆u of the directional derivative with the velocity vector v, ∆τ481

and grad∆u result in the Lie time derivative Lv(τ ) of τ and the spatial velocity gradient482

l = ḞF−1, respectively. Again, using the minor symmetries of c, the following relation can483

be written484

Lv(τ ) = Oldr(τ ) = τ̇ − lτ − τ lT = Jc : d (23)485
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where Oldr(τ ) denotes the objective Oldroyd stress rate (convected rate) of the con-486

travariant Kirchhoff stress tensor τ and d = sym(l) (symmetric part of l) the rate of the487

deformation tensor. At this point we have to recall that for structural elements (shells,488

membranes, beams, trusses) Abaqus/Standard uses the elasticity tensor related to the489

Green-Naghdi objective rate. The detailed constitutive model used here is given in [27].490

7 Numerical Investigations491

The objective of this section is to assess the stability issues of POD basis interpolation on492

Grassmann manifolds by using two examples of hyperelastic structures.493

7.1 Abaqus implementation of POD-ROM approximations494

To implement a ROM for FEM analysis, a non-intrusive approach is utilized to insert the495

interpolated spatial POD basis into a commercial code. Specifically, a ROM is constructed496

using the multi-point constraint equations in Abaqus [36]. A linear multi-point constraint497

requires that a linear combination of nodal variables is equal to zero:498

A1u
P
i +A2u

Q
j + · · ·+ANu

R
k = 0 (24)499

where uPi is the nodal variable at node P , degree of freedom i and Ai, (i = 1, . . . N)500

are coefficients that define the relative motion of the nodes. In Abaqus/Standard the501

first nodal variable specified (uPi corresponding to A1) will be eliminated to impose the502

constraint. In addition, the coefficient A1 should not be set to zero. For the construction503

of a ROM, p reference points are created corresponding to the total number of POD504
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modes. These reference points are used to define the constraint equations for introducing505

the spatial POD modes and to assign the extra degrees of freedom corresponding to the506

unknown ‘temporal’ variables. Thus, the interpolated spatial basis Φ̃p := [φ̃1, . . . , φ̃p] ∈507

Matn,p(R) representing the subspace m̃ := span(φ̃1, . . . , φ̃p) on G(p, n) is imposed to the508

linear constraint equations as follows:509

u(xl, t, λ̃)−
p∑

h=1

φ̃h(xl)ψh(t) = 0 (25)510

where xl, (l = 1, . . . , Ns) is related to the nodal point positions, φ̃h(xl) represent the511

associated spatial POD h-mode for xl, and ψh(t) is the ‘temporal’ variable assigned to512

the reference point h that has to be determined. Note also that the system of equations513

defined in (25) has to be generated for each degree of freedom.514

Remark 7.1. In fact this is not a standard POD-Galerkin approach since we are not515

projecting the linearized system of equations onto the interpolated spatial POD basis.516

But it serves us to assess the stability and accuracy of the ROM FEM model which is517

constructed by the interpolated POD basis. We mention again that generating an efficient518

ROM model is not the objective of this work.519

7.2 Inflation of a spherical balloon520

The first pMOR example concerns the inflation of a spherical balloon considering the521

material anisotropy defined by the fiber orientation angle as a parameter. The sphere has522

an initial radius of R = 10, thickness h = 0.5 and is loaded by an internal hydrostatic523

pressure of P = 40 (no units). The FEM analysis is performed on an octant S0 of the524

sphere using plane symmetry boundary conditions, as depicted in Figure 3, where three525
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radial points A(R, 0, 0), B(0, R, 0) and C(0, 0, R) are defined on each axis, respectively.526

Three-node shell elements (S3R) are used for the mesh [36]. A total number of 514 elements527

are generated with 228 nodes. The hyperelastic constitutive behavior is implemented in528

Abaqus/Standard with a user-defined subroutine (UMAT) [36].529

Remark 7.2. The fiber orientation has to be defined on each point M ∈ S0 using an530

orthonormal basis of the tangent plane TMS0, which has to be specified.531

The choice made in Abaqus is to consider first an outward normal n(M) to this tangent532

plane and then a first vector E1(M) as the orthogonal projection (normalized) of e1 :=533

(1, 0, 0) onto TMS0. The second unit vector is the cross product E2(M) := n(M)∧E1(M).534

Explicit fiber orientations on the sphere octant535

Now, let us make an explicit definition of the fiber orientations, with parameter some

angle θ using the local basis E1(M),E2(M) on the tangent plane TMS0 as explained in

Remark 7.2. More specifically, take

M = (cos(u) sin(v), sin(u) sin(v), cos(v)) ∈ S0, (u, v) ∈
]
0;
π

2

[
×
]
0;
π

2

[
and then define

E1(M) :=
Xh

‖Xh‖ , Xh :=


1− cos2(u) sin2(v)

− sin(u) cos(u) sin2(v)

− cos(u) sin(v) cos(v)

 ,

E2(M) := n(M) ∧E1(M).

Note here that the vector Xh corresponds to the orthogonal projection of the vector536

(1, 0, 0) onto the tangent plane TMS0.537
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Finally, the unit vector defining the fiber orientation is given by (see Figure 4 for some

examples).

a0(θ) := cos(θ)E1(M) + sin(θ)E2(M)

Model of strain energy function538

For a homogeneous transversely isotropic non-linear material, let consider a free energy

function that depends only on two invariants (I1, I4)

Ψ = Ψ (I1(C), I4(C,a0))

where I1 = tr(C), while539

I4 = a0Ca0, (26)540

is the invariant related to anisotropy. Since we assume incompressibility of the isotropic

matrix material, i.e., I3 = 1, the free energy is enhanced by an indeterminate Lagrange

multiplier p which is identified as a reaction pressure

Ψ = Ψ [I1(C), I4(C,a0)] + p(I3 − 1).

The specific model used here is developed for membranous or thin shell-like sheets541

considering a plane stress state throughout the sheet [27]. Following the method proposed542

in [37,38] , the strain energy function is defined as543

Ψ(I1, I4) := c0(exp(Q)− 1), Q := c1(I1 − 3)2 + c2(I4 − 1)2 (27)544

where ci, i = 0, 1, 2 are material parameters defined as: c0 = 86.1, c1 = 0.0059 and545

c2 = 0.031 (dimensionless).546
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Remark 7.3. This model introduces an inherent constitutive coupling between the isotropic547

and anisotropic material response. In order to avoid non-physical behavior of soft tissues,548

the related strain-energy function must be polyconvex [39]. It can be shown that poly-549

convexity of a (continuous) strain-energy function implies that the corresponding acoustic550

tensor is elliptic for all deformations, which means from the physical point of view that551

only real wave speeds occur; then the material is said to be stable. In (27), the anisotropic552

term c2(I4− 1)2 is activated only when I4 ≥ 1 (the actual fiber stretches are greater than553

unity).554

Moreover, as discussed in [40], the constitutive description based on (27) is limited555

to deformations in which the in-plane strains are positive or tensile, and is not able556

to incorporate the behavior of the structure in compression. Due to the membrane-like557

geometry, it is unlikely to support compressive strains without buckling. This limitation558

extends to the issue of bending stiffness, which is neglected in this model.559

Snapshot matrices and error norms560

In what follows, the training points corresponding to the fiber orientation angle θ561

will be denoted with parameter λ for convenience with the previous sections. FEM sim-562

ulations are performed in Abaqus/Standard for the arbitrary chosen points λi ∈ Λs =563

{0, 45, 50, 60, 85, 90}. It is easy to see that the spherical balloon changes from a pumpkin564

(Figure 5(a)) to rugby shaped (Figure 5(d)) for λ = 0 and λ = 90, respectively. Ob-565

serve also in Figure 4 that the fiber orientation on the sphere is far from being trivial for566

θ ∈]0; 90[.567

The target point for interpolation is set to λ̃ = 75. Thus, it is natural to constraint the568

training set to Λt = {50, 60, 85, 90} (see Figure 5 for some FEM results). We note that569
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the target point λ̃ = 75 represents a worst case scenario for assessing the interpolation570

accuracy since it is spaced nearly at the maximum distance between the adjacent training571

points λ = 60 and λ = 85. Additionally, another reason for this choice is the remarkable572

shape transition of the spherical balloon inflation in this range of fibration angles as can573

been seen from Figure 5(b) and Figure 5(c), respectively. Hence, this selection gives an574

upper bound of the interpolation accuracy over the considered parametric range.575

For each simulation, a sequence of uniform time snapshots is extracted from the model576

database. From the discretization of the space-time fields (displacement/rotation), the577

snapshot matrices S(λi) of size (n = 1728) × (Nt = 1000) are formed. The eigenvalue578

spectrum of the matrices S(λi) corresponding to training points λi ∈ Λt is shown in a579

log-log scale in Figure 6. The condition number of the matrices is of the order of 1.0e+10.580

Notice that the distance between the first and the second eigenvalue is of two orders of581

magnitude.582

To quantify the interpolation accuracy, the relative L2-error norm (in time) for a583

given target point λ̃ is evaluated with respect to the high-fidelity FEM solution. Using584

the interpolated and the high-fidelity FEM snapshot matrices S̃ and SFEM, respectively,585

the following error measure is defined at each time snapshot586

eL2
(S̃) =

‖ũi − uFEM
i ‖L2

‖uFEM
i )‖L2

, i = 1, . . . , Nt (28)587

In addition, the relative Frobenius error norm represents a global error measure which588

considers the error in the full time interval of the time steps589

eF (S̃) = ‖S̃− SFEM‖F /‖SFEM‖F (29)590
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Using the linear constraint equations defined in (25), p reference points (for each POD591

mode) are created to assign the spatial POD basis representing the interpolated subspace592

m̃ ∈ G(p, n) and the unknown temporal variables. Thus, the total number of equations of593

the ROM-FEM model is 6 × p while the total number of equations of the corresponding594

high-fidelity FEM model is 288× 6 = 1728.595

Stability conditions (C1) and (C2)596

First we need to know if the interpolation is (C1) and (C2) stable.597

Stability (C1). All points m1, . . . ,mN ∈ G(p, n) lie in Um0
, given by (13). We need598

to check that for all i = 1, . . . , N , the matrix YT
0 Yi is non singular. (C1) condition is599

satisfied for all i = 1, . . . , N and p = 1, 2, 5, 10, 20 POD modes considered.600

601

Stability (C2). We need to know if all velocity vectors ṽ(λ) belong to the subset Vm0
602

given by (17), for the parametric range λ ∈ [λ1, λN ]. Thus, we have to check that the first603

(maximum) singular value θ1 of a horizontal lift Z̃(λ) of the velocity vector ṽ(λ) is such604

that θ1 < π/2, for all λ ∈ [λ1, λN ]. We proceed by uniformly sampling 401 points over the605

parametric range [50; 90]. Figure 7 shows the maximum eigenvalue θ1 of the horizontal lift606

Z̃(λ) for all samples using m0(λ = 85) as a reference point on the Grassmann manifold.607

These curves provide all important information for the (C2) stability of interpolation608

by detecting the exact intervals of the loss of injectivity of the exponential mapping for609

various POD modes p = 1, 2, 5, 10, 20. Observe the loss of injectivity in a specific interval610

of the parameter range for modes p = 10, 20. A remarkable result is the loss of injectivity611

inside the parameter range and not at the boundaries where the exponential map becomes612

again injective. Note also that by increasing the dimension p, the curves shift more rapidly613
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closer to π/2. Moreover, Figure 7 reveals that interpolation is (C2) stable for the target614

point λ̃ = 75 for all POD modes p.615

Interpolation accuracy and stability condition (C3)616

Figure 8 and Figure 9 show the relative L2-error norm eL2(S̃) and the Frobenius617

error norm eF (S̃) for the target point λ̃ of the ROM-FEM solution constructed from the618

interpolated p dimensional spatial modes. Additionally, Table 1 shows the Grassmannian619

dimension for the different number of POD modes.620

Table 1: Dimension of the Grassmann manifold G(p, n)

Number of modes p = 1 p = 2 p = 5 p = 10 p = 20

Dimension: p(n− p) 1727 3452 8615 17180 34160

Stability (C3). We need to check if the interpolated subspaces Ṽ and Ṽ ′ respectively621

associated to matrices Ỹ and Ỹ′ corresponding to modes p and p′ > p interpolation, are622

such that Ṽ ⊂ Ṽ ′. Before examining if the interpolation is (C3) stable, first notice from623

Figure 8 and Figure 9 which display the relative error norms (28) and (29), respectively,624

that the error is minimum for p = 2 POD modes and increases by introducing additional625

modes which at first glance contradicts the expected improvement of the solution by626

increasing the number of modes. In this case, the non-monotonic error behavior and the627

random oscillations follows from the non-inclusion defect between subspaces V and V ′628

obtained by using different number of POD modes. To prove that fact, we compute the629

geometric distance δ(V,V ′) using the principal angles defined in (1). We assume a set of630

POD modes p ∈ Pm = {1, 2, 5, 10, 20} and a threshold value TV = 100. Figure 10 lists631
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the distances of the obtained POD basis of various dimensions p ∈ Pm in a symmetric632

table form. Observe that i) δ(Ỹ, Ỹ′) 6= 0 for all p 6= p′ and ii) δ(Ỹ, Ỹ′) increase rapidly for633

p > 2. Thus, this table explains why the relative error norms (Figure 8 and Figure 9) have634

a minimum at p = 2 modes. Since the relative error ε given by (2) is ε = 554.03 > TV , we635

can conclude that the interpolation is not (C3) stable. The results make clear and prove636

the non-inclusion defect of different subspaces which in turn give rise to the oscillatory637

behavior of the error norms as described above.638

Moreover, the interpolation accuracy is assessed using the relative displacement error639

eu = ‖ũ(t) − uFEM (t)‖L2
/‖uFEM (t)‖L2

at the nodal points computed for p =1,2,5 and640

10 POD modes. Figure 11 and Figure 12 present the local error at the increment state641

t = 0.002 and at the final increment state t = 1 displayed at the position vector xFEM (t)642

of the high-fidelity FEM model, respectively. In general, different patterns of the spatial643

error distribution can be observed with respect to the number of POD modes. In the644

majority of cases, the maximum error is located at the boundary points of the octant S0645

of the initially spherical balloon where plane symmetries are imposed and at points of646

maximum displacement. Again, observe that the error is not decreasing by using more647

POD modes as Figure 12 shows.648

Finally, Figure 13 shows the time-displacement histories for the radial points A, B649

and C on the initially spherical balloon for the ROM-FEM model compared against its650

high-fidelity counterpart solution using POD mode p = 1. It can be observed that the651

interpolated ROM-FEM solution delivers good accuracy and is accurate enough to predict652

the anisotropic balloon inflation at the target parameter.653
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7.3 Structure with multiple components654

For the second example, the stability of pMOR is investigated for a hyperelastic structure655

considering the material stiffness as a parameter. The model consists of two basic compo-656

nents: a plane shell section which is connected with six truss elements (non-symmetrically)657

(see Figure 14). The plane section has dimensions 20× 20 (mm), a constant thickness of658

0.5 mm and is meshed with rectangular shells (S4). The hyperelastic model defined in (27)659

(UMAT) is assigned to the plane section in which the fiber orientations are aligned with the660

x-axis. The following parameters are used: c0 = 0.0520 (kPa), c1 = 4.63 and c2 = 22.6. The661

truss elements are of type T3D2 with a cross-section area of 1 mm2. For these elements,662

an isotropic incompressible hyperelastic material model is implemented into Abaqus/-663

Standard subroutine UHYPER [36]. The material model is derived from the following664

strain-energy function665

U = α1(exp[α2(I1 − 3)]− 1) (30)666

where α1 and α2 are material parameters defined as: α1 = 0.0565 kPa and α2 is667

used for the parametric analysis. At the boundary of the plane section (x = 0) and at668

the foundations of the truss elements all degrees of freedom are set to zero. A constant669

hydrostatic pressure of 120 mmHg is applied at the bottom side of the plane section.670

Snapshot matrices for pMOR671

The FEM simulations are performed using Abaqus/Standard (Implicit). For the expo-672

nential parameter α2, the following set of training points are chosen where for convenience673

with the previous sections we changed the notation to λ ∈ {5, 10, 15, 20, 25, 30}. Figure 15674
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shows the second Piola-Kirchhoff stress-stretch curves for the corresponding parameter675

values which reveals a wide spectrum of stress values. For each parametric simulation, a676

sequence of snapshots uniformly distributed over time using an increment of ∆t = 0.001677

is extracted for all nodes of the plane structure from the model database. The space-time678

snapshot matrices S(λi) ∈ Rn×Nt of size (n = 726)× (Nt = 1000) are associated to nodal679

displacement and rotational fields. The following training points λi ∈ Λt = {15, 20, 25, 30}680

are arbitrary chosen for estimating the target point λ̃ = 17.5. After construction of the set681

of low-dimensional POD basis for the training points λi, a POD basis for the target point682

λ̃ is interpolated on a Grassmann manifold using Lagrange interpolation. Then, the inter-683

polated POD spatial basis is introduced in Abaqus using the linear constraint equations684

(Section 7.1) to construct a ROM for FEM analysis associated to the target parameter685

point. For each ROM FEM model of p POD modes, the same number of reference points686

are created to assign the interpolated spatial POD modes and the unknown ‘temporal’687

variables that need to be determined.688

The eigenvalue spectrum of snapshot matrices Si corresponding to training points689

λi ∈ Λt is shown in a log-log scale in Figure 16. It is evident that the distance between the690

first three eigenvalues is of one order of magnitude each. In our experiments we perform691

interpolation using p = 1, 2, 5, 10, 20 POD modes since they capture the most important692

characteristics of the system.693

Stability conditions (C1) and (C2)694

First we need to know if the interpolation is well-defined by evaluating the (C1) and695

(C2) stability conditions.696
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Stability (C1). This condition requires that all points m1, . . . ,mN ∈ G(p, n) lie in697

Um0
given by (13). Thus, we need to check if the matrix YT

0 Yi is non-singular for all698

i = 1, . . . , N . Since this condition is satisfied for all i = 1, . . . , N and p = 1, 2, 5, 10, 20699

POD modes considered in this example, the interpolation is (C1) stable.700

Stability (C2). We need to know if all velocity vectors ṽ(λ) belong to the subset701

Vm0
given by (17), for the parametric range λ ∈ [λ1, λN ]. Thus we have to check that the702

first (largest) singular value θ1 of an horizontal lift Z̃(λ) of the velocity vector ṽ(λ) is such703

that θ1 < π/2, for all λ ∈ [λ1, λN ]. We proceed by uniformly sampling 151 points over the704

parametric range [15; 30]. Figure 17 shows the largest eigenvalue θ1 of the horizontal lift705

Z̃(λ) for all samples using m0(λ = 15) as a reference point on the Grassmann manifold.706

From these curves we are able to assess the (C2) stability of interpolation by detecting the707

exact intervals of the loss of injectivity of the exponential map over the parametric range708

for different number of POD modes p. It is clear that for p ≤ 10 the interpolation is stable709

over the entire parametric range. Observe the loss of injectivity in a specific interval of710

parameter λ for p = 20 modes. Again, as in the previous example, note that by increasing711

the dimension p, the curves progressively tend to shift closer to π/2. Moreover, Figure 17712

reveals that interpolation is (C2) stable for the target point λ̃ = 17.5 for all POD modes713

p.714

Interpolation accuracy and stability condition (C3)715

The accuracy of interpolation is assessed by comparing the relative L2-error norm716

eL2(S̃) and the relative Frobenius error norm eF (S̃) defined by the ROM FEM model and717

its high-fidelity solution against the number of POD modes p, as shown in Figure 18 and718
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Figure 19, respectively. Additionally, Table 2 illustrates the Grassmannian dimension for719

the corresponding number of POD modes p.720

Stability (C3). We need to check if the interpolated subspaces Ṽ and Ṽ ′ respectively721

associated to matrices Ỹ and Ỹ′ correspond to mode p and p′ > p interpolation, are722

such that Ṽ ⊂ Ṽ ′. Before performing this stability test, observe the monotonic decrease of723

the relative error norms (28) and (29) by increasing mode p, as depicted in Figure 18 and724

Figure 19, respectively. We are now ready to see how the geometric distance δ(V,V ′) using725

the principal angles defined in (1) relates to the error norm behavior. Again, we assume726

a set of POD modes p ∈ Pm = {1, 2, 5, 10, 20} and a threshold value TV = 100. To this727

end, we compute the distances δ(Ỹ, Ỹ′) of the interpolated POD basis on Grassmann728

manifolds G(p, n) of various dimensions p ∈ Pm, plotted in a symmetric table form, as729

Figure 20 shows. Again, the results prove the non-connectivity of different subspaces of730

various dimensions p. What is remarkable to observe in this case, is that the geometric731

distance δ(Ỹ, Ỹ′) ≈ 0 for all p 6= p′. Moreover, the indicator ε given by (2) is here732

ε = 73.60 < TV , which is sufficiently small to assure a (C3) stable interpolation.733

Finally, Figure 21 shows a comparison of the predicted time histories of selected nodal734

total displacements for the ROM FEM model using p = 20 POD modes against the735

high-fidelity FEM solution. It is evident that all nodal time-histories are nearly identical.736

Table 2: Dimension of the Grassmann manifold G(p, n)

Number of modes p = 1 p = 2 p = 5 p = 10 p = 20

Dimension: p(n− p) 725 1448 3605 7160 14120
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8 Conclusions737

Effective mathematical definitions for necessary stability conditions of POD basis inter-738

polation on Grassmann manifolds for pMOR are given. Special attention has been paid739

on the definition of local maps on Grassmann manifolds considering the logarithm and740

exponential maps. In this context, the notion of cut–locus is introduced since it optimally741

captures the loss of injectivity of the exponential map. The formulae for the Grassmannian742

cut–locus to establish a stable interpolation is mathematically proved. Another intrinsic743

condition is defined by computing the geometric distance of the interpolated POD basis of744

different POD mode. This condition explained oscillations of the error norm with increas-745

ing mode, and on the contrary, solutions with monotonic behavior. The pMOR benchmark746

examples in hyperelasticity revealed important aspects of interpolation stability.747
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Fig. 3: Geometry of an octant S0 of a spherical balloon made of transversely isotropic

hyperelastic material. Three radial points A, B and C are defined on axis 1,2 and 3,

respectively; plane symmetry boundary conditions are used.



52 Orestis Friderikos et al.

(a) Fibers orientation with θ = 0 degree (b) Fibers orientation with θ = 45 degree

(c) Fibers orientation with θ = 60 degree (d) Fibers orientation with θ = 90 degree

Fig. 4: Different fibers on the sphere.
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(a) For θ = 0◦ (b) For θ = 60◦

(c) For θ = 75◦ (d) For θ = 90◦

Fig. 5: Inflation modes of the benchmark anisotropic spherical balloon after reconstruction

of the complete balloon using the plane symmetries conditions at the boundaries of the

octant S0.
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Fig. 6: The eigenvalue spectrum of snapshot matrices Si corresponding to training points

λi = 50, 60, 85, 90.
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Fig. 7: Stability (C2); Computation of the maximum eigenvalue θ1 of the horizontal lift

Z̃(λ) over the parametric range λ ∈ [50; 90]. Observe the loss of injectivity in a specific

interval in the parametric range for POD modes p = 10, 20. Reference point on Grassmann

manifold m0(λ = 85).
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Fig. 8: Relative L2-error norm eL2(S̃) against the number of POD vectors for the POD

ROM-FEM; target point: m̃(λ = 75).
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Fig. 9: Relative Frobenius error norm against the number of POD vectors for the POD

ROM-FEM; target point: m̃(λ = 75).
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Fig. 10: Stability (C3); Geometric distance δ(Y,Y′) between interpolated subspaces of

different dimensions.
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Fig. 11: Relative displacement error eu = ‖ũ(t)−uFEM (t)‖L2/‖uFEM (t)‖L2 at the nodal

points at state t = 0.002 for POD modes p = {1, 2, 5, 10} displayed at the position vector

xFEM (t) of the high-fidelity FEM model; target point: m̃(λ = 75).
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Fig. 12: Relative displacement error eu = ‖ũ(t)−uFEM (t)‖L2
/‖uFEM (t)‖L2

at the nodal

points at state t = 1 for POD modes p = {1, 2, 5, 10} displayed at the position vector

xFEM (t) of the high-fidelity FEM model; target point: m̃(λ = 75).
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Fig. 13: POD ROM-FEM model using Lagrange interpolation; comparison of the dis-

placement of radial points A,B and C against the high-fidelity FEM solution; training

points: m0(λ = 85) (reference point); m1(λ = 50); m2(λ = 60); m3(λ = 90); target point:

m̃(λ = 75); POD modes p = 1.
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Fig. 14: Geometry, boundary conditions and total displacement of the structural multi-

component model subjected to hydrostatic pressure, comprised of an anisotropic hyper-

elastic plane shell section which is non-symmetrically supported by a set of hyperelastic

truss elements.
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Fig. 15: Second Piola-Kirchhoff stress vs stretch for the examined parameter range.
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Fig. 16: The eigenvalue spectrum of snapshot matrices Si corresponding to training points

λi ∈ Λt = {15, 20, 25, 30}.
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Fig. 17: Stability (C2); Computation of the maximum eigenvalue θ1 of the horizontal

lift Z̃(λ) over the parametric range [15; 30]. Observe the loss of injectivity in a specific

interval of parameters for POD modes p = 20. Reference point on Grassmann manifold

m0(λ = 15).
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Fig. 18: POD ROM-FEM; relative L2-error norm eL2(S̃) against the number of POD

vectors; target point: m̃(λ = 17.5).
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Fig. 19: Relative Frobenius error norm against the number of POD vectors for the POD

ROM-FEM; target point: m̃(λ = 17.5).
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different dimensions p.
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Fig. 21: POD ROM-FEM; comparison of selected nodal time-displacement histories

against the high-fidelity FEM solution; training points: m0(λ = 15); m1(λ = 20);

m2(λ = 25); m3(λ = 30); target point: m̃(λ = 17.5); POD modes = 20.
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20. Siamak Niroomandi, Iciar Alfaro, Eĺıas Cueto, and Francisco Chinesta. Accounting for large797

deformations in real-time simulations of soft tissues based on reduced-order models. Computer798

Methods and Programs in Biomedicine, 105(1):1–12, 2012.799



68 Orestis Friderikos et al.

21. Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with800

orthogonality constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303–801

353, 1998.802

22. P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Riemannian geometry of grass-803

mann manifolds with a view on algorithmic computation. Acta Applicandae Mathematica,804

80(2):199–220, 2004.805

23. Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. Riemannian geometry, volume 2.806

Springer, 1990.807

24. Yung-Chow Wong. Differential geometry of grassmann manifolds. Proceedings of the National808

Academy of Sciences of the United States of America, 57(3):589, 1967.809

25. S. E. Kozlov. Geometry of real grassmann manifolds. part III. Journal of Mathematical810

Sciences, 100(3):2254–2268, jun 2000.811

26. Ke Ye and Lek-Heng Lim. Schubert varieties and distances between subspaces of different812

dimensions. SIAM Journal on Matrix Analysis and Applications, 37(3):1176–1197, jan 2016.813

27. Victorien Prot, Bjorn Skallerud, and GA Holzapfel. Transversely isotropic membrane shells814

with application to mitral valve mechanics. constitutive modelling and finite element im-815

plementation. International journal for numerical methods in engineering, 71(8):987–1008,816

2007.817

28. J Bonet and AJ Burton. A simple orthotropic, transversely isotropic hyperelastic constitu-818

tive equation for large strain computations. Computer methods in applied mechanics and819

engineering, 162(1-4):151–164, 1998.820

29. Edgard S Almeida and Robert L Spilker. Finite element formulations for hyperelastic trans-821

versely isotropic biphasic soft tissues. Computer Methods in Applied Mechanics and Engi-822

neering, 151(3-4):513–538, 1998.823



Stability of POD Basis Interpolation on Grassmann Manifolds for pMOR 69

30. Mikhail Itskov. A generalized orthotropic hyperelastic material model with application to in-824

compressible shells. International Journal for Numerical Methods in Engineering, 50(8):1777–825

1799, 2001.826

31. William M Boothby. An introduction to differentiable manifolds and Riemannian geometry,827

volume 120. Academic press, 1986.828

32. Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.829

Psychometrika, 1(3):211–218, 1936.830

33. Gene H Golub, Alan Hoffman, and Gilbert W Stewart. A generalization of the eckart-young-831

mirsky matrix approximation theorem. Linear Algebra and its applications, 88:317–327, 1987.832

34. Gilbert W Stewart. Introduction to matrix computations. Elsevier, 1973.833

35. Gerhard A Holzapfel. Nonlinear solid mechanics: a continuum approach for engineering834

science. Meccanica, 37(4-5):489–490, 2002.835

36. Abaqus. Providence, RI, 2014. Standard User’s Manual, Version 6.14.836

37. JD Humphrey, RK Strumpf, and FCP Yin. Determination of a constitutive relation837

for passive myocardium: Ii.parameter estimation. Journal of Biomechanical Engineering,838

112(3):340–346, 1990.839

38. Anthony James Merrill Spencer. Deformations of fibre-reinforced materials. Clarendon Press,840

Oxford, UK ; New York, 1972.841

39. John M Ball. Convexity conditions and existence theorems in nonlinear elasticity. Archive842

for rational mechanics and Analysis, 63(4):337–403, 1976.843

40. K May-Newman and FCP Yin. A constitutive law for mitral valve tissue. Journal of biome-844

chanical engineering, 120(1):38–47, 1998.845

41. M Oulghelou and C Allery. Non intrusive method for parametric model order reduction using846

a bi-calibrated interpolation on the grassmann manifold. arXiv preprint arXiv:1901.03177,847

2018.848



70 Orestis Friderikos et al.

42. S. E. Kozlov. Geometry of the real grassmannian manifolds. parts i, ii. Zapiski Nauchnykh849

Seminarov POMI, 246:84–107, 1997.850

43. John M Lee. Smooth manifolds. In Introduction to Smooth Manifolds, pages 1–31. Springer,851

2013.852

44. Uwe Helmke and John B Moore. Optimization and dynamical systems. Springer Science &853

Business Media, 2012.854

45. Shoshichi Kobayashi and Katsumi Nomizu. Foundations of differential geometry. Vol. I.855

Wiley Classics Library. John Wiley & Sons Inc., New York, 1996. Reprint of the 1963856

original, A Wiley-Interscience Publication.857
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