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Abstract

The stability of polling models is examined using associated fluid limit models. Examples are presented which generalize
existing results in the literature or provide new stability conditions while in both cases providing simple and intuitive
proofs of stability. The analysis is performed for both general single server models and specific multiple server models.
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1. INTRODUCTION

In this paper, we consider a polling model that can be described as a system of several queues, attended
by multiple servers. These systems see numerous applications in the areas of distributed computer systems,
communications networks, and manufacturing systems. For some specific applications, see Morris and Wang
[17] and Gamse and Newell [11]. A good general reference in this area is Levy and Sidi [14].

The system is completely determined by the service policies employed and statistical assumptions on server
routing, arrivals to the queues, service times, and the switchover times when a server moves from one queue
to another. The stability of the system in terms of these parameters is of fundamental importance and in
the case of single server models, this question has been studied by many authors. Among these are Altman,
Konstantopoulos and Liu [1], Altman and Spieksma [2], Borovkov and Schassberger [3], Fricker and Jaibi
[9, 10], Georgiadis and Szpankowski [12], and Georgiadis, Szpankowski and Tassiulas [13].

We will consider the problem of stability, but in contrast to the above references, we will use the recent
approach which involves the analysis of a fluid model as developed in the work of Dai [6] and Dai and Meyn [5].
These techniques have become very popular in the analysis of the stability of multiclass queueing networks,
particularly those with a re-entrant structure. The number of references in this area is too numerous to
mention here, some are given in [5]. In the area of polling models, it appears that the only work that applies
these techniques is in [5] itself and one part of this paper (the examination of the single server model) is in
fact a generalization of work performed there.

The advantages of using a fluid model are threefold. First, it allows us to generalize the results in the
literature given at the end of the second paragraph. In particular, the assumption that the arrival stream is
Poisson (assumed throughout those references) may be relaxed to general renewal processes, yielding similar
stability conditions. Second, new stability conditions may be proved for certain multiple server systems,
related to those studied by van der Mei and Borst [19]. Here we prove that versions of their conjectures
indeed hold. Third, the simplicity of the stability proofs themselves is appealing. It suggests that these
techniques may have wide application, including to other polling models not covered in this work.

The layout of the paper is as follows: In Section 1.1, the model is described in detail. The fluid model is
introduced in Section 2 and the stability of various polling models is discussed. In Section 3, the stability
proofs themselves are provided. Finally Section 4 contains some concluding remarks.
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1.1 Model description

The model considered is a generalization of the single server cyclic polling model considered in Fricker and
Jaibi [9], which in turn covers many of the references given in the Introduction. The polling system is
composed of K infinite buffer capacity queues and M servers.

Arrivals occur at queue k with i.i.d. interarrival times {&x(n),n > 1} (it is a simple modification to
incorporate batch arrivals). The service times at queue k are also i.i.d. and are denoted by {ne(n),n > 1}.
Let A\ = 1/E[&(1)] and pr = 1/E[nk(1)] be the arrival and service rates, respectively. We assume A, > 0,
k=1,...,K. Of course, for each k, pr := Ar/pr < 1 is necessary for stability.

There is a set of S possible service policies (at most dependent on the number of customers present at
the queue to be serviced), enumerated by 1,...,S. With z the number of customers at the queue at the
beginning of a service period and N,(z) defined as the number of customers served with policy s during a
service period, we assume that

(S1) lim,_ o E[N,(z)] — N, >0
(S2) E[N,(z)] < N,, V=

Characterizing which policies satisfy these assumptions is a task we will not undertake here, but it is clear
that typical policies such as exhaustive, gated and k-limited policies satisfy the above criteria, as well as the
monotone policies of [9)].

Remark. It appears that (S1) and (S2) may be relaxed. In particular, it may be possible to examine
stability if multiple limits exist in (S1), by looking at worst case scenarios. However, it is possible that sharp
stability regions could no longer be deduced by the methods introduced here. The assumption (S2) may also
be relaxed substantially, in fact it is conjectured that it may be removed completely and stability may hold
under (S1) only. Also note that while at first glance restrictive, natural policies satisfy (S2).

The routing of server m and the corresponding service policy implemented are given as follows: At the
end of a visit to queue j using service policy s, the server moves to queue j' and uses service policy s’ with
probability r7: ., ;. At the nth occurrence, this is accompanied by a switchover time of length 675 ./ (n).
There is also a possible limit on the number of servers at j', given by mj . If the number of servers at queue
j' is less than mjr, then the server in question begins service with policy s’. Otherwise, the system acts as
follows: If there are k > mj: servers at queue j' at a particular instant, then k—m: servers depart, with these
being chosen from those present with equal probability (this can be easily generalized to any set of positive
probabilities). If a server leaves while in the process of serving a customer, an arriving server continues the
service already begun, i.e. there is a hand-off of the customer. Note that this assumption on server routing
may not be considered to be the natural one. A possible choice may be for a server arriving at a queue with
the maximum number of servers already present to be the one to choose a new queue. The reason for our
particular assumption and some consequences of the alternate choice above will be discussed in more detail
at the end of Section 3.2. The sequences {67; ;;,,(n)} are mutually i.i.d. with mean E[67; .. (1)] > 0. Let
{p}:} be the unique invariant distribution for the Markov chain with transition matrix (77; ;). Also, define

7' s’
b 1= Djoirsr PisT s, EL0]5 jror ()]

2. THE FLUID MODEL: CONSTRUCTION AND STABILITY CONDITIONS

In this section, a fluid model is constructed that may be used to analyze the stability of the polling system
introduced in the previous section. In Section 2.1, a Markov process is constructed which describes the
system behaviour. This is a necessary precursor for the remaining analysis. In Section 2.2, the fluid model is
constructed and the implications of its behaviour for the stability of the system are outlined in Theorem 2.1
and Theorem 2.2, from the work of Dai and Meyn [5] and Meyn [15] respectively. Finally in Section 2.3,
stability conditions are given for various models that will be examined in the remainder of the paper.
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2.1 Markov process description

Let Q(t) be the number of customers at queue k, including any customers in service which originated from
that queue. Also, let Ag(t) be the residual arrival time at queue k. For each server m, let H,,(t) be the
ordered pair consisting of the queue being serviced (or to be serviced next if the server is switching) and
the service policy in use (or to be used if the server is switching). Also, let B,,(t) be the residual service
time (set to zero if the server is switching), BY () be the residual switchover time (set to zero if the server
is currently serving a customer), and C,,(t) indicate the number of customers serviced during the current
visit to the queue given in H,,(t). Using these definitions it is straightforward to check that

XT(t) := (Qu(t), Ak(t), Hm(t), Bm(t), B (t),Crn(t) : k= 1,...,K;m =1,..., M), (2.1)

is a Markovian state for the polling model under consideration, evolving on the state space X = Zf X ]Rf X
({1,..., K} x{1,...,SHM x ]Rf X ]R_lj\_/f X Zi’[. The residual times Ag(t), B (t) and BY (t) are taken to be

right continuous and, as in [6], the process X may be shown to have the strong Markov property.

2.2 Stability of fluid models
For a given initial condition z € X, a fluid model for the system is developed as follows: Let Q%(t) be the
queue length at queue k at time ¢ and Tﬁl,k(t) be the cumulative service allocation process at queue k for

server m. Also, let Tyfl’(;c(t) be the cumulative time by time ¢t that server m spends in switching from queue
k. Now, suppose that the function (Q(-), Tpn(-), T2 (-) : m = 1,..., M) is a limit point of

1 1 1
(@7 (Izlt), = Tm(lzlt), =T (lelt) :m =1,..., M)
] || ||

when |z| — oo and where Q®(t), T'%(t) and T2°(t) are vectors whose kth components are, for 1 < k < K,
Qi(t), Tz (t) and Tfn’f;c(t) respectively. Then (Q(t), T (t), T2 (t) : m = 1,..., M) is a (delayed) fluid limit
of the system. The set of all possible fluid limits will be called the fluid model. In Section 3, conditions that
these fluid limits satisfy will be given in detail. Note that the term delayed is used above to indicate that the
initial condition may be taken to grow in the direction of the residual times. It is not difficult to see that
this creates a finite delay in the fluid model.

At this point, connections between the stability of the fluid model and that of the original system (i.e. of
the Markov process X) are given. The work in the rest of this subsection may be found in [5] and [15]. In
order to make the desired connections, the following three assumptions are made on the network:

(A1) &,y Mye-oomks 0wy i 3,5 €41,...,K}, s,8" €{1,...,8}, m=1,...,M are mutu-
ally independent and i.i.d. sequences.

(A2) For some integer p > 1,
E[¢Pt (1) < 00, E[fT'(1)]< oo for k=1,...,K and
E[67 7w ()P ] < oo for 4,5 €{l,...,K}, s,¢'€{1,...,8}, m=1,...,M.
(A3) For k =1,..., K, there exists some positive function ¢x(z) on IRy and some integer j; such that

P(&k(l)>z) >0 forall z>0, (2.2)

P(&k(1) + -+ & (jr) € dz) > qi(z)dz  and /000 i (z)dz > 0.
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Remark. The independence assumptions in (A1) may be relaxed: see the remark after Proposition 2.1 of
Dai [6].
Remark. Asin [5], (A3) may be replaced by

(A3%) For the Markov process X, every compact subset of X is small.

The assumption (A3) (or (A3’)) is a technical one required to deduce ergodicity of the network. The
reader is referred to Lemma 3.4 of Meyn and Down [16] for this argument, and Sigman [18] for examples
where the condition (2.2) is not necessary.

The fluid model is said to be stable if there exists a fixed time ¢y such that Q(t) = 0,t > t¢ for any fluid
limit. In fact, Chen [4] shows that the set of fluid limits that need to be examined to conclude the stability
results given below is given by the set of undelayed fluid limits. So, the fluid model may be equivalently said
to be stable if Q(t) = 0,t > t, for any fluid limit with |@(0)| = 1. The following theorems relate stability of
the fluid model with that of the original system.

Theorem 2.1 (Theorem 4.1, [5]) Assume that the fluid model is stable, and that (A1) and (A2) hold. Then

(i) For some constant k,, and for each initial condition x € X

t
lim sup %/ E.[|Q(s)|Plds < kp,
0

t—oo

where p is the integer used in (A2).
If in addition (A3) holds, then for each initial condition:
(ii) The transient moments converge to their steady state values:

tlim E.[Qr(t)"] = Ex[Qr(0)"] < Ky, for r=1,...,p, k=1,...,K,

where 7 is the tnvariant probability for X.

(iii) The first moment converges at rate tP~':
Jlim 7 |E4[Q(8)] - Ex[Q(0)]] = 0.

(iv) The strong law of large numbers holds:

1 t
lim ;/QZ(s)ds:EW[QZ(O)], P,—as., for r=1,...,p, k=1,...,K.
0

t—o0
For instability of the network, the following result will be used:

Theorem 2.2 (Theorem 3.2 of [15]) Suppose that the fluid model is unstable in the sense that for some
€0,¢0 > 0,

Q(T)| > eoT —co, T 20,

for all initial conditions Q(0), with |Q(0)| = 1. Then, for any 1 > q > 0, there exists B < oo such that
whenever |z| > B,

P.{X — o0} >gq.
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2.8 Stability conditions for particular networks

For the rest of the paper, three particular cases of the polling models given in Section 1.1 will be examined.
It will be seen that the use of a fluid model for each of these systems provides for simple stability proofs.
For convenience, the results are summarized here.

The single server model. This case corresponds to M = 1. Theorem 2.3 is both a precursor to the
analysis of multiple server models and itself also generalizes many existing results (in form, it most closely
resembles Theorem 2 of [9]). For notational convenience, the dependence on m may be dropped wherever it
appears. The proof of Theorem 2.3 is delayed until Section 3.1.

Theorem 2.3 Consider the following value:

p—ipk-l- max ()\7]>6*
= : - _ i
1SIsK\ 3 i1 pjsNs

k=1
If
(i) p <1 then the network is stable, i.e. Theorem 2.1 holds.

(ii) p > 1 then the network is unstable, i.e. Theorem 2.2 holds.

The multiple server system with unlimited service. In this case, with M > 1 servers, the following
model is considered: At each queue k, only a maximum number of servers may be spresent at any particular
time, this given by my. It is assumed that for each m, if Esszl pjs > 0, then h pj";NS = 00, i.e. with
positive probability there is unlimited service. Stability conditions for this system have not been proved, as
far as we know, only conjectures have been provided for a related model, see van der Mei and Borst [19].
The following result holds for this system, with the proof being given in Section 3.2. A server m is said to
be capable of visiting a queue k if zsszl Py > 0.

Theorem 2.4 If the given multiple server system satisfies the following:

(i) pi<my, t=1,...,K

(ii) For each set I C {1,...,K}, the queues i € I are capable of being visited by more than ), ; p; servers,

then the network is stable, i.e. Theorem 2.1 holds.
If either

(iii) p; > m;, for somei € {1,...,K} or

(iv) For some set I C {1,...,K}, the queues i € I are capable of being visited by at most strictly less than
Y ic1 Pi servers,

then the network is unstable, i.e. Theorem 2.2 holds.

The multiple server system with limited service. Consider the model of Theorem 2.4, with the
following modifications: First, let my = M, for k = 1,..., K and relax the condition that unlimited service
occurs, i.e. allow for the possibility that Zle p;-’:Ns < oo for 3 =1,...,K. We will further simplify
the model by assuming that all servers are identical, by which we mean that the quantities that are m-
dependent (routing and switching times) are statistically the same for each server, while maintaining the
mutual independence assumptions. Thus, for notational convenience, we may drop the dependence on m
throughout. Once again, stability conditions for a simpler version of this system are conjectured in [19]. The
following theorem gives general conditions. The proof is postponed to Section 3.3.
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Theorem 2.5 Consider the value

K
MA; .

k=1 s=1DPjs

If
(i) p < M then the network is stable, i.e. Theorem 2.1 holds.

(ii) p > M then the network is unstable, i.e. Theorem 2.2 holds.

Remark. Note that the case when m; < M for at least one k is not covered in Theorem 2.5. It is not
even clear that stability in this case is determined by first order statistics. The interaction between servers
appears to be quite complicated and seemingly defies a simple analysis.

3. STABILITY PROOFS
It is easy to check (see [6]) that the fluid model satisfies (but is not necessarily determined by) the following
set of equations:

M
Qr(t) = Qr(0)+ Xt — > uTmi(t) fork=1,...,K, (3.1)
m=1
Qr(t) > 0 fork=1,...,K,
L e (+) is nondecreasing for k = 1,...,K, m=1,...,M,
K
S T &)+ Tmu(t) = t for m=1,... M. (3.2)

This set of equations will be the basis for the proofs that follow. In Section 3.1, the proof of Theorem 2.3 is
given, Section 3.2 contains the proof of Theorem 2.4 and Section 3.3 has the proof of Theorem 2.5.

3.1 The single server model
In this section, the proof of Theorem 2.3 is provided. Note that the work in this section can be seen as a
generalization of the work in Section 4.3 of [5].

Let G be the set of queues for which Ele pjsNs = co. If G = {1,...,K}, then Theorem 2.3 trivially
holds. Note that in determining p, the term in the maximum expression will be zero for queues in G. In the
following lemma it will be seen that either the network is unstable (Theorem 2.3 (ii) holds) or after some
finite time, the queues in G for the fluid model will become empty and remain so.

Lemma 3.1 If Y, . pr < 1 then for some finite T and for all t > T, 3, .o Qk(t) = 0. Otherwise, if
Y keq Pr > 1, then p > 1 and Theorem 2.3 (ii) holds.

PRrOOF Consider the work for the fluid model restricted to the queues in G, i.e.
Ji(t)
Wa(t) =Y *52.
ke Mk

Clearly, if 3, cqopr <land ), Qi (t) > 0 then
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We(t) = -1+ Zpk <0,
keG

which implies that at T = (3 ,cq @r(0))/(1 — Y req pr), Wa(T) = 0. The first part of the lemma then
follows from the positivity of Qp(t).
If > ,cq pr > 1, the second part of the lemma follows from the fact that Wg(t) > 0. ]

So, now assume ), .~ p < 1, as otherwise from Lemma 3.1, Theorem 2.3 (ii) holds. For the remainder of
the proof, it suffices to look at the fluid model with initial condition }7, .z Qx(0) =1 and )7, .o Qx(0) =0,
as if this is not the case, from Lemma 3.1 we can look at the system beginning at time 7', when the queues in
G have emptied. Also, Lemma 3.1 and (3.1) imply directly that, for the initial condition under consideration,

Ty(t)=pg, forallt>0,keQG. (3.3)
The following is a straightforward generalization of Proposition 4.2 (v) and (vi) of [5].
Lemma 3.2 For the single server model under consideration, let E[N,(z)] = N,,Vz. Then

(i) For allk, j € G¢

where 6k = Zs,j’s’ pksTks,j’s’E[éks,jlsl(l)]'
(ii) For all k € G°,

. _ -0
weTk(8) = (O pis No) T (1),
s=1
whenever Qk(t) > 0.
|
Now, examining the work in the system for the fluid model, W(t) = le Q;it), following the same

procedure as in Section 4.3 of [5], we find that W (t) < 0 for any Q(t) # 0 iff p < 1 and W (t) > 0 for any Q(t)
if p > 1. This immediately implies the results of Theorem 2.3. We now outline the proof. The intermediate
details are left to the reader, however for the most part these are simple algebraic manipulations.

Using (3.1),

W) = e — D Tult). (39)

Given (S1) and (S2), it may be seen that the stability of the system under consideration is equivalent to one
in which for the queues in G¢, E[N,(z)] = N,,Vz. So, from Lemma 3.2 (i), (3.2) and (3.3) we have

ij_“k(t) =1-6§*0(t), (3.5)

k=1
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where v(t) is the common value of TP (t)/6k. Now, let H be the set of queues for which Qr(t) > 0 (note that
H C G°). Using the positivity of Q(t) and Lemma 3.2 (ii) we may write

s .
6*+ZM]@&) = 1-Y

kEH Pk keHe

Substituting this expression for 0(t) in (3.5) and then for Ele T (t) in (3.4) yields

pksN5:|

* K ss=1
Lken [5 pr— (1= 20 /’J‘)Z n

5 4 ZkeH Zle Prs N

123

W(t) = (3.6)

Now, a simple rearrangement of terms yields the result, as the right side of (3.6) is negative if and only if
p < 1 and positive if p > 1.

3.2 The multiple server system with unlimited service
The proof of Theorem 2.4 is straightforward, which shows the power of the fluid model to provide simple,
intuitive proofs.

We once again examine the work in the system for the fluid model, which as a reminder is given by

K -
Wiy =3 L,
k=1

Pk

From (3.1),

. K M
W(t)=> (o — _Tuk(t). (3.7)

k=1 =

=

Let G be the set of queues for which Qx(t) > 0 or Wi (t) := @k(t)/pk > 0 when it exists. In this case (3.7)
and the positivity of Qy () imply

Wty =3 (e =Y Tun(t):

keG

Now, the server routing scheme, (i) and (ii) imply that W(t) < 0 for any choice of G. Thus, by ranging
over all possible initial conditions, we have the first part of Theorem 2.4. If (iii) holds, the second part of
Theorem 2.4 follows upon defining W;(t) as the work in the fluid model at queue ¢ (where 7 satisfies (iii))
and noting that Wi(t) > 0,Vt. If (iv) holds, the second part of Theorem 2.4 follows in a similar manner, by
taking Wy(t) := 3.,., Wi(t) and noting that W;(t) > 0, Vt.

Remark. With the assumptions on server routing, the proof above is extremely simple. However, if the
server routing is changed such that any server arriving to a queue with the maximum number of servers
already in attendance is forced to move away, then there is a difficulty which arises in the analysis. Consider
the following example: Let K =2 and A\; =2, p; =3, j = 1,2. Also, let M = 2 with server 1 capable of
serving both queues, but server 2 capable of serving only queue 2. We also let m; =1, j =1,2. It is easy to
see that if Q1(0) = 0, Q2(0) = 1 and server 1 is at queue 2 using an exhaustive policy, then W (0) = 1/3 > 0.
This situation is avoided with the routing considered in this paper, as in the fluid model for this situation,
at time 0 server 2 is at queue 2 and server 1 at queue 1. Then, W (0) = —1/3.

i€l
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Upon looking at the first case, one may argue that after some finite time, queue 2 empties for the fluid
model and from that point W(t) < 0 until the fluid model empties. This argument may be extended to
the general two queue case, however it is difficult to see how this could extend to a system with more than
two queues, as the possibility of idle servers arises in a very complex way. One has to confront the problem
that at every switching time (rather than just at time 0), the above problem may occur. Nevertheless, it is
conjectured that the same stability conditions hold in this more involved case.

Of course, even with the assumptions that we have employed here, a stability proof without resorting to
a fluid model analysis appears to be difficult.

3.8 The multiple server system with limited service

In this section, Theorem 2.5 will be proved. This is not difficult, in fact, once one realizes that the restriction
mr =M, k=1,..., K implies that the servers operate independently. Thus the results of Section 3.1 may
be employed for each server in turn.

To see this, create M copies of the polling model, but with the arrival streams thinned by a factor of 1/M
and with the mth copy being served only by server m. Otherwise, the properties of the model are the same.
Denote the work in the system for the fluid model for each of these systems by Wy, (¢). If we sum W, (t)
over m, the result is identical to the work in the system for the fluid model for the original multiple server
system. We have already examined the single server system in Section 3.1, so can apply the results there to
each of the M copies.

The expression (3.6) is valid for each W, (t), i.e.

s _
* K s=1P s N,
Sher, [64 - (- £E, g B2
_ L (3.8)
5* +Zk€Hm Zs=1pkst

HE

Won ()

where H, in (3.8) is the analogue of H in (3.6) for the particular copy of the polling model. Now, summing
W, (t) yields

s _
K Zs= Pks N,
. M| Yken,, [6*% — (=21 57) ;k ]
W=y S
m—1 5* Es=1 PlsNs
- + EkGHm Pk

which, as in the single server case is negative if and only if p < M and positive when p > M.

4. CONCLUDING REMARKS

We have examined the stability of certain polling models using an approach involving associated fluid models
that provides for simple intuitive proofs while extending the existing work in the area. It would be of interest
to see whether these techniques may be extended to other models, in particular the multiple server system
with limited service where there is a restriction on the number of servers that can be at any one queue.

Generalizing the conditions on server routing to allow state dependence is also of interest. Work in this
area has been done by Foss and Last [7, 8]. It appears that the results there may be generalized slightly,
as while they do not use a fluid model approach, their analysis is of a similar flavour and seems to yield
conditions under which fluid limits would exist.

It also would be of interest to see whether these techniques provide any insight into approximations for
performance analysis, however, this is at first glance not an easy task.

Acknowledgements. This work was supported by an ERCIM Postdoctoral Fellowship. The author would
like to thank Onno Boxma for helpful suggestions upon reviewing an earlier draft.
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