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This paper addresses the problem of reconstruction of a monochromatic light field from data points, irregularly distributed within
a volume of interest. Such setting is relevant for a wide range of three-dimensional display and beam shaping applications,
which deal with physically inconsistent data. Two finite-dimensional models of monochromatic light fields are used to state
the reconstruction problem as regularized matrix inversion. The Tikhonov method, implemented by the iterative algorithm of
conjugate gradients, is used for regularization. Estimates of the model dimensionality are related to the number of degrees of
freedom of the light field as to show how to control the data redundancy. Experiments demonstrate that various data point
distributions lead to ill-poseness and that regularized inversion is able to compensate for the data point inconsistencies with good
numerical performance.

1. Introduction

Many optical applications require a generation and control of
light fields. Digital processing by computers is an attractive
way of implementing such operations as it overcomes pos-
sible physical limitations of analog devices. However, signal
processing has to be suitably coupled with the otherwise
naturally continuous optical signals. This coupling requires
effective discrete representation of the continuous functions,
associated with the light fields. From one point of view,
the discrete representation of a light field should preserve
the degrees of freedom of the continuous model which
describes the physical properties of the field. From another
point of view, the discrete representation should admit the
requirements on the light field which are imposed by the
application. Three-dimensional (3D) imaging deals with the
reconstruction of captured optical signals by digital means as
CCD arrays and recreation of synthetic or computer gener-
ated, 3D data by holographic means [1]. Light beam shaping
requires the reconstruction or synthesis of light beams which
maintain certain properties along their propagation [2].

This paper addresses the problem of monochromatic
light field reconstruction from ensemble of data samples

with free positions, distributed within a volumetric region of
interest. Setting the light field specification at a nonuniform
irregular grid of points is rather general and can be utilized
in a wide range of applications. For example, computer
generated holography [3] reconstructs a light field to approx-
imate a synthetic or a captured object, given its 3D abstract
model—a point cloud, mesh, NURBS, and so forth [4]. The
data provided by such 3D models can be hosted conveniently
by an irregular grid. Limited aperture and resolution in
digital holography are remedied by multiple CCD recordings
in a single or different planes [5, 6]. These are prone
to distortions originating from not precisely known CCD
measurement locations which can be handled by an irregular
grid of points. Reconstruction of a light field in terms of
light field generators is required to drive properly a light
modulation system for an eventual light field synthesis. For
example, a color holographic 3D display system drives three
spatial light modulators—one for each red, green and blue
color channel [7].

Another advantage of specifying the application con-
straints as an ensemble of irregularly distributed samples
is the control on the input data redundancy. According to
the Rayleigh-Sommerfeld diffraction integral, the light field
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on a certain plane is sufficient to compute the wave field
at any point within the volume of interest [8]. Therefore,
a regular grid of samples at a certain transversal plane
should be sufficient to reconstruct the whole field. Gori [9]
and Onural [10] have derived conditions for the sampling
rate when the support of the field at any Fresnel plane
is limited, considering the cases when the diffraction field
originates from strictly band limited or strictly space limited
function. In the general case of a function which is essentially
limited both in space and frequency domain, the amount
of needed samples should not be higher than the degrees
of freedom N of the field, measured by the finite space-
bandwidth product. In this case the conditions from [9, 10]
require redundant amount of samples, as the spatial spread
of the field extends upon propagation along the longitudinal
direction z, while the frequency support remains the same.
An adhoc approach as in [11] and a strict derivation as in
[12, 13] use information about local bandwidth to reach
the number of degrees of freedom by the amount of needed
samples at any transversal plane along z. Early works [3, 14]
use some of these results to specify the object on a plane,
loosing the volumetric opportunity. Some recent works
commonly specify the volume of interest on an ensemble
of equally spaced planes, at a regular grid of points at each
plane, often oversampled [2, 15–19]. However, such a 3D
grid is still redundant with respect to the number of degrees
of freedom of the diffraction field. Moreover, a fixed 3D
grid might not fit well to an application-driven data point
distribution. In this sense, an irregular grid of points not only
fits any potential application but also opens up opportunities
for volumetric specifications and data redundancy control.

In any application, the specifications for the light field are
not guaranteed to be physically consistent with a light wave.
Digital recording of holograms include CCD noise, misalign-
ment, finite aperture and resolution. Light beam shaping and
computer generated holography specify complex structures
with properties, unlikely to be exhibited by a light wave.
The mainstream of articles on light field synthesis treats
the data specification inconsistencies by various iterative
projection methods, derived on the base of the Gerchberg-
Saxton algorithm [20]. Volumetric specifications usually
define one constraint set per plane, assign weights and
tolerances to the sets and use parallel or serial projections
to reach an optimized solution [2, 6, 18, 19, 21, 22]. Other
methods define the constraint sets on Ewald’s surface [17]
or fractional Fourier domain [23]. Alternative approaches to
treat the data inconsistency are based on genetic algorithms
with application to beam shaping [24, 25]. In our work we
employ two finite-dimensional models for diffraction which
represent a light field by a linear combination of generating
functions [26, 27]. In these models, the inconsistencies of
the specified data points can be represented by an additive
Gaussian term. While being simple, such a representation is
quite general and encompasses a wide range of distortions.

The light field reconstruction problem can be cast as an
inverse problem [28] to find the coefficients of the finite-
dimensional models from the specified data points [26, 27,
29]. The focus of this paper is on the characteristics of the
input data specification which influence the stability of the

finite-dimensional models for light field reconstruction. The
spectrum of each model is analyzed in various scenarios
depending on the size of the volume of interest, clustering
of the data points and amount of input data, as these are
important for practical applications. As far as the mathe-
matical approach is concerned, the Tikhonov regularization
[28] is used with both models to provide an approximate
solution which fits the specified data points. The singular
value decomposition- (SVD-) based implementation of
Tikhonov regularization is used to illustrate and analyze the
limits of the reconstruction. The regularization parameters
are determined by Morozov’s discrepancy principle. The
matrix-free Tikhonov regularization is suggested as practical
approach for reconstruction. It iteratively finds a regularized
solution based on the method of conjugate gradients (CGs)
[30]. The convergence rate and final reconstruction error for
various scenarios are presented to assess this approach.

The paper is organized as follows. Section 2 introduces
the basics of diffraction and notations related to the con-
sidered light fields. Section 3 presents the finite-dimensional
models used to represent the field, and discusses their
properties with focus on dimensionality issues. Section 4
states the observation model in a matrix form, based
on the irregularly distributed inconsistent data samples.
Regularized solutions used for approximating the input
data are presented in Section 5. Section 6 illustrates the
performance of the suggested reconstruction methods in a
number of guided experiments.

2. Basics of Diffraction

Consider a light field u(x, y, z), generated by a monochro-
matic light wave, which propagates in a linear, isotropic
and homogeneous media. Under such conditions, the spatial
distribution of the complex amplitude u satisfies the homo-
geneous Helmholtz wave equation [8]:

∇2u + k2u = 0, (1)

where k = 2π/λ is the wave number of the monochromatic
light. Such waves, emerging from an optical system, satisfy
the Sommerfeld radiation condition and are accurately
described by the Rayleigh-Sommerfeld diffraction integral
[8]. It relates the light field u(x, y, z) at any point (x, y, z)
to that on a “reference” plane at z = 0 in a linear and
shift-invariant relationship. However, the practical use of
this relationship for computations is limited as it requires
very high sampling rate [31]. Therefore, frequency domain
alternatives of the Rayleigh-Sommerfeld diffraction integral
are preferred [2, 22, 31].

For the sake of simplicity, the discussion is restricted
to one transverse dimension (x) only, resulting in a two-
dimensional (2D) scalar function u(x, z) describing the
light field. Note that the interesting dimension for the
scope the paper is the longitudinal one (z) as it keeps the
volumetric properties of the light field. Generalizations to the
three dimensional case are straightforward and mentioned
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whenever necessary. The function u(x, z) can be represented
by its 2D Fourier transform A(kx, kz):

u(x, z) =
∫∞
−∞

∫∞
−∞

A(kx, kz)e
j(kxx+kzz)dkxdkz, (2)

where kx and kz are the spatial frequencies along x and
z directions, respectively. Applying the Fourier transform
on (1) and using the derivative property of the Fourier
transform, one ends up with the relation A(kx, kz)(k2 − k2

x −
k2
z ) = 0. Hence, A(kx, kz) can be nonzero only on the circle

with radius k = 2π/λ:

k2
x + k2

z = k2 =
(

2π

λ

)2

. (3)

3. Finite-Dimensional Models of Diffraction

3.1. Bessel-Fourier (B-F) Generators. As the spatial frequen-
cies kx and kz are limited only to a circle, the Fourier
transform A(kx, kz) is in fact one-dimensional function:

A(kx, kz) = A(k sin θ, k cos θ) ≡ C(θ), (4)

where the frequencies are expressed in polar form as kx =
k sin θ, kz = k cos θ with k = 2π/λ and θ ∈ [0, 2π). Upon a
change of the spatial coordinates x and z in polar form as x =
r sinφ and z = r cosφ, the Fourier transform in (2) becomes

u
(
r,φ
)
= 2π

λ

∫ 2π

0
C(θ)e j(2π/λ)r cos(θ−φ)dθ. (5)

The function C(θ) is 2π-periodic. Consequently, it can
be described by the complex Fourier series as C(θ) =∑

m cme jmθ . Inserting this into (5) and changing the order of
summation and integration, the field can be expressed as

u
(
r,φ
)
= 4π2

λ

⌊(M−1)/2⌋∑

m=−⌊M/2⌋
cme

jm(φ+π/2)Jm

(
2π

λ
r
)

, (6)

where Jm(t) is the mth order Bessel function of the first
kind [32] which solves the remaining integral under the
summation. Equation (6) assumes that the Fourier series
representation of C(θ) has been truncated to M nonzero
coefficients cm /= 0,m = −⌊M/2⌋, . . . , ⌊(M−1)/2⌋ to arrive at
finite representation. Detailed derivation of the model can be
found in [26]. This model describes the field continuously at
any spatial point as a superposition of a discrete set of basis
functions ψm(r,φ) = e jm(φ+(π/2))Jm(kr), which are mutually
orthogonal and separable. Hence, the discrete set of scaling
coefficients cm describes completely the continuous field. Yet,
no explicit discretization was done during the derivation.

The model of (6) can be generalized to three dimensions
[33]. In 3D, the Fourier transform A(kx, ky , kz) is supported
on a sphere with the same radius k = 2π/λ and therefore
it is two-dimensional. Such a function can be expressed
as a superposition of spherical harmonics, instead of the
cylindrical harmonics e jm(φ+π/2). In radial direction the Bessel
functions Jm(kr) are substituted by the spherical Bessel
functions of the first kind.

3.2. Fourier Generators. Another frequency domain rep-
resentation of the diffraction field u(x, z) is based on a

decomposition in plane waves e j(z
√

k2−k2
x+xkx):

u(x, z) =
∫ 2π/λ

−2π/λ
a(kx)e j

√
k2−k2

xze jkxxdkx, (7)

where a(kx) is the 1D Fourier transform of the field u(x, 0)
restricted only to the initial line at z = 0. The derivation of
this integral is based on solving the Helmholtz equation for
the 1D Fourier transform az(kx) of the field u(x, z) restricted
to a line at a distance z, given a(kx) as initial condition.

The plane waves e j(z
√

k2−k2
x+xkx) propagate only in positive

direction z ≥ 0 as the frequencies kz =
√
k2 − k2

x assume

only positive sign. This corresponds to taking only half of the
circle k2

z + k2
x = k2 for kz ≥ 0.

As kx is limited within [−2π/λ, 2π/λ], the function
u(x, 0) is band limited. It can be further assumed to be
essentially space limited or, more precisely, to have a finite
space-bandwidth product. Such a function can be periodized
with period equal to the transversal extent T of a spatial
region of interest. This is equivalent to discretization of
a(kx). A periodic and band limited function is equivalently
represented by a finite number (M) of discrete spectral
components at values of the frequency kx = 2πm/T ,m =
−⌊M/2⌋, . . . , ⌊(M−1)/2⌋. Using these values of kx in (7) leads
to a finite-dimensional model of diffraction:

u(x, z) =
⌊(M−1)/2⌋∑

m=−⌊M/2⌋
ame

j(2π/T)z
√

(T2/λ2)−m2
e j(2π/T)mx, (8)

where am = a(2πm/T) are the coefficients of the Fourier
series expansion of u(x, 0). This discrete, Fourier generators-
based, model describes the field continuously at any spatial
point as a superposition of the basis functions ϕm(x, z) =
e j(2π/T)z

√
(T2/λ2)−m2

e j(2π/T)mx.
The generalization of the model in (8) is straightforward.

Another transversal dimension y brings an extra term in

the plane waves e j(z
√

k2−k2
x+xkx+yky) [8]. Now the 2D function

u(x, y, 0) must be assumed space limited also along y, as
discretization of ky corresponds to periodization along y.

3.3. Dimensionality of the Models and Field Characteristics.
The derived models involve a finite number of M basis
functions in a linear combination to build up a light
field. The amount of the nonzero weighting coefficients
determine the dimensionality of any forward or inverse
problem related with computation or reconstruction of a
light field. Therefore, it is important to relate this amount
to the physical properties of the approximating field. The
specified region of interest and target detail level can be
naturally related to the spatial and frequency content of the
field, that is, to the number of degrees of freedom of the field.
As the field can be completely described by the function on
the initial line u(x, 0), its number of degrees of freedom is
equal to the degrees of freedom of u(x, 0). The number of
degrees of freedom N is a set of N numbers which describe it
completely. In terms of the Wigner distribution, this is the
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area in the time-frequency plane under which the Wigner
distribution of the function is essentially nonzero [34]. This
can be measured by the space-bandwidth product between
the spatial ∆x and frequency ∆kx extent:

N = ∆x∆kx
2π

, (9)

where the factor 2π renormalizes the angular frequency
kx to an ordinary one. The number N can be related
to the number of independent Gabor atoms with unit
space-bandwidth product in the Gabor representation of
u(x, 0). Alternatively, if u(x, 0) is sampled uniformly along
x according to the Nyquist rate 2π/∆kx, then N becomes
the number of essentially nonzero samples from which
the continuous function u(x, 0) can be reconstructed. In
practice, N can often be estimated from the application at
hand. For example, it can be related to the physical properties
of a sensing device. For synthetic data and other applications,
reasonable assumptions about the desired detail level of the
target can be used.

3.3.1. Fourier Generators. The amount of required coef-
ficients MF for this model is directly related with the
bandwidth of u(x, 0):

2πMF

T
= ∆kx =

2πN

∆x
,

hence MF =
⌊
N

T

2π∆x

⌋
.

(10)

Equation (10) suggests that MF is directly proportional to
N . This result is expected as the Fourier generators discretize
the frequency band of u(x, 0). The proportionality coefficient
T/∆x defines the excess which needs to be taken. The period
T must be larger than ∆x so that the periodic replicas of
u(x, 0) do not overlap. However, choosing T close to ∆x
does not guarantee that an overlap will not occur on a
line at further distance z. Discrete frequency axis kx defines
discrete Fourier spectrum of u(x, z) at any line z, keeping
u(x, z) periodic with the same period T . On the other hand,
spatially limited pattern u(x, 0) tends to spread its transversal
support when propagated along z. Therefore, given maximal
distance zmax according to the specified region of interest, one
must ensure that T > ∆zmaxx, where ∆zmaxx is the support
of u(x, zmax). The relative increase of this spatial support
∆zmaxx/∆x is smaller (closer to 1) for larger ∆x at fixed
distance zmax.

3.3.2. Bessel-Fourier Generators. The coefficients cm in the
Bessel-Fourier model are the Fourier series coefficients
of C(θ). Their amount MB can be determined from the
frequency support of C(θ). Direct comparison of (2) and (7)
yields

A(kx, kz) = a(kx)δ
(
kz −

√
k2 − k2

x

)
,

C(θ) = A(k sin θ, k cos θ) = a(k sin θ)δ(0).

(11)

Hence, the frequency support of a(k sin θ) coincides with the
frequency support of C(θ) and can be used to estimate the
number MB.

The duality property of the Fourier transform
FT{a(kx)} = u(−2πx, 0) can be used to obtain the frequency
support of a(kx) as ∆x/2π. However, the frequency support
of a(k sin θ) with respect to θ is not the same, even though
it is related to ∆x/2π. The highest frequency in the Fourier
transform of a(kx) is ∆x/4π—the same as the frequency
of the harmonic cos((∆x/2)kx). Therefore, the frequency
support of cos((∆x/2)k sin θ) = cos((π∆x/λ) sin θ) can
be used to estimate the frequency support of a(k sin θ).
In communication theory, such a harmonic function is
recognized as a special case of frequency modulated signal
cos(2π fcθ + (∆ f / fm) sin(2π fmθ)). Its frequency support
is approximated as 2( fm + ∆ f ) according to the Carson’s
rule [35]. The frequency support of cos((π∆x/λ) sin θ)
and a(k sin θ) and C(θ),respectively, is estimated as
2((1/2π) + (∆x/2λ)) ≈ ∆x/λ. Hence, the dimensionality of
the Bessel-Fourier model required to describe a field with
transversal support ∆x on the reference line is:

MB =
⌊
∆x

λ

⌋
=
⌊
N

2π

∆kxλ

⌋
. (12)

This result suggests that the Bessel-Fourier model requires
small amount of generators when the spatial support of the
field is comparable to the wavelength. From another point
of view, if N is assumed to be fixed, then the excess in MB

compared to N is determined by the ratio between 2π/∆kx
and λ. In fact, 2π/∆kx is the size of the finest detail structure
in u(x, 0).

4. Irregularly Sampled Diffraction Fields

An irregular grid is specified as the set of s sampling points
{(xi, zi)}si=1, or, in polar coordinates {(ri,φi)}si=1, with the
correspondence xi = ri sinφi and zi = ri cosφi. The sampled
field is specified as the sample values u(xi, zi), i = 1, . . . , s. The
light field reconstruction problem is to find the unknown
field-generating coefficients cm or am, given the irregularly
distributed samples u(xi, zi), i = 1, . . . , s. Equations (6) and
(8) can be written for each point in the irregular sampling
set to obtain

u
(
ri,φi

)
= 4π2

λ

⌊(M−1)/2⌋∑

m=−⌊M/2⌋
cme

jm(φi+(π/2))Jm

(
2π

λ
ri

)
,

u(xi, zi) =
⌊(M−1)/2⌋∑

m=−⌊M/2⌋
ame

j(2π/T)
√

(T2/λ2)−m2 zie j(2π/T)mxi ,

(13)

for i = 1, . . . , s. Each of these sets of equations forms a linear
system for the M unknown coefficients cm or am and can be
expressed in a matrix form:

u = Ah, (14)

where h = a = [a−⌊M/2⌋, a−⌊M/2⌋+1, . . . , a⌊(M−1)/2⌋]
T or

h = c = [c−⌊M/2⌋, c−⌊M/2⌋+1, . . . , c⌊(M−1)/2⌋]
T is the unknown
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vector of the field generating coefficients and the vector of

given samples is u = [u(x1, z1),u(x2, z2), . . . ,u(xs, zs)]T . A
is the reconstruction matrix which has two different forms
depending on the discrete model. For the Bessel-Fourier
model A is

A = J =
{
Jp,q

}

=
{
e j(q−⌊M/2⌋−1)(φp+(π/2))Jq−⌊M/2⌋−1

(
krp
)}

,

p = 1, . . . , s, q = 1, . . . ,M

(15)

and for the Fourier model A is

A = R =
{
Rp,q

}

=
{
e j(2π/T)

√
(T2/λ2)−(q−⌊M/2⌋−1)2 zpe j(2π/T)(q−⌊M/2⌋−1)xp

}
,

p = 1, . . . , s, q = 1, . . . ,M.
(16)

The straightforward approach to solve for the coefficient
vector h is to invert the matrix A. Note that the structure of
this matrix is determined only by the positions of the known
samples. Some field specifications might use more samples
to describe the fine details of a scene and less for the uniform
regions. Such clustering of the samples causes large condition
number of the matrix A and inversion becomes numerically
unstable. In addition, there might be noise and/or the scene
samples can be inconsistent with the physical models of (6)
and (8). As the inconsistencies might be of various origin and
difficult to predict in the common case, it is reasonable to
assume that their nature is also random as any eventual noise
appeared upon the scene capture. These two factors can be
accounted in a common random term ε:

y = Ah + ε, (17)

where now y = [y1, . . . , ys]
T is the vector of given data

samples, h is the unknown coefficient vector, A = J or A =
R depending on the model chosen for reconstruction, and

ε = [ε1, . . . , εs]
T is a random vector drawn from zero-mean

normal distribution εi ∼ N (0, σ2). Upon direct inversion,
the high condition number of A causes strong amplification
of the random term and it dominates over the reconstructed
coefficients h.

5. Regularized Reconstruction

A linear system can be solved by taking the pseudoinverse
with the help of SVD [36]. SVD decomposes an s×M matrix
as A = UDVT with U and V containing the left and right
singular vectors of A, respectively. D = diag{d1, . . . ,dn},n =
min(s,M), is an s×M diagonal matrix with the value ordered
singular values of A. The Moore-Penrose pseudoinverse A+

can be used to find a solution ĥ, provided the desired

data vector y as ĥ = A+y = VD+UTy, where D+ =
diag{d−1

1 ,d−1
2 , . . . ,d−1

n } [36].

If the SVD pseudoinverse is applied to the left side of
the noisy observation vector y = Ah + ε, the noise norm
in the resultant reconstruction will be boosted by a factor of
d−1
n . In the case when the condition number of A is large,

d−1
n is large as well, and the noise will be dominant in the

reconstruction. A common remedy is to apply Tikhonov
regularization, that is, to introduce a penalty term δ into the
inversion matrix D+

δ = diag{d1/(d
2
1 +δ), . . . ,dn/(d2

n+δ)} [28].
This is equivalent to solving the minimization problem

ĥ = arg min
g∈RM

{∥∥Ag− y
∥∥2

+ δ
∥∥g
∥∥2
}

, (18)

that is, to minimizing the norms of both residual and
solution. Tikhonov regularization balances between the con-
tradictory requirements for small residual and small norm of
the solution by the penalty term δ [28]. The minimum norm
requirement ensures smoothness of the solution an thus
robustness to noise, while minimizing the residual ensures
that the solution is close to the target. Optimal value of δ can
be determined automatically by the Morozov’s discrepancy
principle [28].

The SVD form of the Tikhonov regularized solution
is very convenient for analysis purposes. However, finding
the SVD of a matrix is of cubic complexity [36]. A more
computationally attractive approach is based on iterative

matrix solvers [28]. The minimizer ĥ of the Tikhonov
functional in (18) is equivalent to the solution of the linear
system [28]:

(
ATA + δI

)
ĥ = ATy (19)

The matrix H = ATA + δI is symmetric and positive definite.
Therefore, it can be inverted with an iterative method, which
builds the solution step by step, updating the solution vector
each time until a desired accuracy is achieved [30]. In
many cases the iterations converge fast enough to ensure
lower complexity than the SVD-based Tikhonov solution.
The conjugate gradient method is one of the most rapidly
convergent and numerically stable algorithms [30]. It iterates
as follows:

(1) initialize b = ATy, ĥ arbitrary, r0 = b−Hĥ and d0 =
r0.

(2) For i = 1 to imax

(a) wi = Hdi

(b) βi = ‖ri‖/(dT
i wi)

(c) ĥ = ĥ + βidi

(d) ri+1 = ri − βiwi

(e) γi = ‖ri+1‖2/‖ri‖2

(f) di+1 = ri+1 + γidi

(3) End.

CG method updates the solution at each iteration with a
small portion βi along the search direction di (step (2c)).
The search directions are conjugate to each other, which
guarantees convergence in at most M iterations. Practically,
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the algorithm converges to a predefined accuracy in much
less iterations imax ≪ M. The most computationally
expensive operation at each iteration is the matrix-vector
product at step (2a) which requires M2 operations. The
total complexity of the algorithm is O(imaxM2)—lower than
O(M3) required by the SVD-based Tikhonov solution.

6. Experiments and Results

The light field reconstruction approaches presented in this
paper are evaluated by controlled experiments on simulated
data. The experiments are described in two subsections. The
first subsection describes the details of input data simulation
and the criterion for reconstruction performance evaluation,
common to all experiments. The second subsection presents
experimental results and discusses the benefits of the regular-
ized reconstruction in various scenarios.

6.1. Data Simulation and Performance Evaluation. All experi-
ments are carried out on synthetic data. The data is simulated
using the observation model of (17), where the matrix A is
computed according to (15) for the B-F model or according
to (16) for the Fourier model. The matrices relate M
generating coefficients with s data samples, pseudorandomly
distributed within a volume of interest.

The dimensionality M of the reconstruction matrix
must be the same for both models so that the reconstruc-
tion results are comparable. However, this dimensionality
depends on different factors for the different models (cf.
Section 3.3). For both models, M = 256 nonzero coefficients
are able to produce a Gaussian beam inside a square region
of interest with size T× zmax = 0.1 mm×0.1 mm. The size of
the region of interest is selected so that the adjacent replicas
of the field produced by the Fourier generators do not
overlap at distance zmax comparable to T . Figure 1 depicts the
magnitude of the fields produced by the B-F generators and
the Fourier generators by showing the values on a uniform
256× 256 grid which spans the whole region of interest.

The samples of the field used for its reconstruction are
simulated by (17) on s randomly selected positions within
the volume of interest. The amount of points s is chosen to
be greater than the amount of nonzero coefficients M. The
underdetermined case s < M is not considered interesting
as the minimal norm solution might diverge substantially
from the true underlying coefficient vector [27, 37]. In some
experiments, part of the specified data points are selected
to form clusters with size much smaller than the region of
interest. The samples are randomly distributed according to
uniform distribution both inside and outside of the clusters.
The size and position of the clusters and the amount of
points inside and outside the clusters define different sample
density in different subdomains of the region of interest.
Varying these parameters helps to investigate the effect of
variable sample density within the light field support. The
influence of these parameters on the ill-posedness of the
reconstruction problem is examined during the first group
of experiments. Based on the results, representative scenarios
are selected to test the reconstruction approaches.

(a) (b)

Figure 1: A diffraction field representing a Gaussian beam com-
puted by the B-F generators (a) and by the Fourier generators (b)
on an uniform 256× 256 grid covering a region of interest with size
0.1 mm× 0.1 mm.

In a fair experiment, the reconstruction performance
must be compared with the inconsistency of the input data.
Hence, the inconsistency level σ and the reconstruction error
e must be measured according to the same quantity. Often
one model is used to simulate the samples and another to
reconstruct the light field, so that an inverse crime does not
take place when experimenting on simulated data [28]. The
models are characterized by sets of generating coefficients
which cannot be compared directly. Instead, the sets of
coefficients are used to compute the reconstructed light field
within the whole region of interest on a uniform, rectangular

grid Γ = {lξ,nζ}Ml,n=0, with ξ = T/M and ζ = zmax/M being
the sampling steps. The error is measured on this uniform
grid:

e = ‖F0 − F‖
‖F0‖

. (20)

Here, F0 = u0(Γ) and F = u(Γ) are vectors formed by the
field values computed on the grid Γ out of the simulation and
reconstruction models, respectively. An inconsistency level σ ,
comparable to this error, can be selected as a percentage of
the energy of the field F0.

6.2. Experiments. The light field reconstruction problem
becomes ill-posed and requires regularization when the
spectrum of the reconstruction matrix (R or J) is widely
spread and contains many small values. The structure of
the matrices depends only on the specified data point
distribution. A first group of experiments investigates the
spectra of these matrices for different data point distribution
scenarios. A second group of experiments illustrates the need
and benefit of regularization even for some cases of well-
distributed and physically consistent data points. Finally, the
last group of experiments shows the benefits and limitations
of the regularization for data distributions which make the
reconstruction problem ill-posed. This group includes also
an experiment which demonstrates a potential practical
application of the considered reconstruction approach.

6.2.1. Matrix Singular Values. This group of experiments
examines the spectra of R and J for various volume of interest
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Figure 2: Singular values of J (solid lines) and R (dashed lines) for
different sizes of the region of interest in [m] (number next to each
line) and s = 384 given data points which do not form a cluster.

10−15

10−10

10−5

100

Si
n

gu
la

r
va

lu
e

0 50 100 150 200 250

Singular value number

0.01%

0.25%

1%
4%

Figure 3: Singular values of J (solid lines) and R (dashed lines) for
different sizes of the cluster as percent of the region of interest.

sizes and specified data point densities. Spatial variations of
the density are simulated by forming data point clusters of
various size, shape and position.

The plots in Figure 2 represent the singular values of J
and R for varying size of the region of interest. It has square
shape and the amount of irregularly distributed points is
selected as s = 1.5M = 384 so that the matrices are
overdetermined. No clusters are formed in this experiment.
The vertical axis in Figure 2 represents the singular value di,
while the abscissa represents its index i = 1, 2, . . . ,n after
the singular values have been sorted in a descending order,
that is, d1 ≥ d2 ≥ · · · ≥ dn. Both J and R show their
most compact spectra when the dimensionality M = 256
fits the size of the region of interest. Driving away from this
matching size, the spectrum of both J and R spreads more.
The matrix R has well-concentrated singular values, while J
is still ill-conditioned for the matching size. Hence, in the
absence of clusters, R can still be used for reconstruction

without regularization, as the next group of experiments
will demonstrate. Irregularly distributed samples in a square
region of interest do not have wide angular diversity and the
Bessel-Fourier generators do not bring enough information
to recover the coefficients from the samples. This causes
wide-spread singular values of J. It is possible to demonstrate
that the spectra of J become more compact if the volume of
interest has wider size along x than along z.

Next experiments investigate how the presence of clusters
influence the spectra of J and R. The basic experiment
varies the size of a single square cluster, positioned in the
center of a square region of interest of size T × zmax =
0.1 mm × 0.1 mm. The experiments use s = 384 points,
half of which are distributed inside the cluster and the other
half outside. The singular value plots in Figure 3 show
that the matrix R becomes ill-conditioned similarly to J. A
smaller cluster spreads the singular values more for both
matrices. However, the spectra of J are less sensitive to the
changes of the size of the cluster, while the spectra of R
vary considerably. This is another illustration of the fact that
the Bessel-Fourier generators produce a well-conditioned
reconstruction matrix when the angular diversity of the
samples is higher. On the other hand, this also shows that the
Fourier model depends more on the transversal and longi-
tudinal diversity of the sample positions, as the cluster size
controls the sample density distribution. Some additional
experiments vary the position of a fixed-size cluster within
the region of interest and the amount of clusters. The amount
of clusters does not influence significantly the spectra of
both matrices, provided that the sample density within the
clusters is kept constant. However, large amount of clusters
spread the general distribution of samples, which improves
the spectra of R. The spectra of J improve significantly when
the cluster position goes closer to the origin, thus providing
samples with higher angular diversity. The spectra of R
remain invariant to the position of the cluster within the
region of interest.

The last experiments of this group investigates how the
amount of given points s influences the singular values of J
and R. The simulated region of interest has size T × zmax =
0.1 mm × 0.1 mm and contains a single cluster of 100 times
smaller size, located in the middle. One of the experiments
varies the amount of points outside the cluster from 64 to
1024, while the amount of points within the cluster is kept
fixed to 192. The other experiment varies the amount of
points inside the cluster from 64 to 1024, while the amount
of the samples outside the cluster is kept fixed to 192. The
minimum total amount of points s is at least 256 in both
experiments, so that the matrices are not underdetermined.
The singular value plots of J and R show significant influence
when the points outside the cluster are varied (Figure 4),
while they remain almost invariant to the amount of points
within the cluster. More points outside the cluster carry
more information for both models and the singular values
of the reconstruction matrices become more compact. The
Bessel-Fourier generators benefit from new points outside
the cluster as they carry new angles, unlike new points within
the cluster. The Fourier generators benefit from more points
outside the cluster as this increases the overall point density,
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Figure 4: Singular values of J (solid lines) and R (dashed lines)
for different amounts (shown next to each line) of given samples
outside a cluster of size 100 times smaller than the region of interest.

Table 1: Nonregularized reconstruction errors for different noise
levels.

σ , [%] e, Fourier model e, B-F model

0 3.19.10−13 1.88.10−5

1 0.015 4.56.107

2 0.027 9.12.107

5 0.068 2.28.108

10 0.13 4.56.108

while more points within the cluster keep the overall density
the same. However, this benefit vanishes after the overall
density goes above a certain level, which is theoretically
sufficient to reconstruct any field for the chosen volume of
interest and dimensionality M.

6.2.2. Regularization for Unclustered Input Data Points.
This group of experiments aims at demonstrating that an
ill-conditioned reconstruction matrix needs regularization
for reconstruction even for well-distributed and physically
consistent input data. The benefits and limitations of the
Tikhonov regularization method are illustrated for different
levels of inconsistency of the input data. The data was
simulated inside a square region of interest of size T×zmax =
0.1 mm × 0.1 mm with the B-F model. The model uses
M = 256 nonzero coefficients. The amount of simulated
points is s = 384 so that the matrices R and J are
overdetermined. The points do not form a cluster so that
R has compact spectrum and J does not (Figure 2). At
first, nonregularized reconstructions were done for different
levels of inconsistency with errors shown in Table 1. The
reconstruction based on the Fourier model shows practically
zero error for physically consistent data (σ = 0%), while
the reconstruction with B-F generators shows some very
small, yet not zero error. For inconsistent data, the Fourier
generators are able to reconstruct a field with an error
comparable to the inconsistency level. At the same time the
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Figure 5: Convergence of the CG algorithm for reconstruction
from nonclustered and physically consistent field samples, simu-
lated by the B-F generators. The CG algorithm was applied to the
nonregularized matrices J and R.

B-F generators model is unable to reconstruct the field even
for very small inconsistency (σ = 1%). This is due to the
random term amplification by the reciprocal of the small
singular values of J, as discussed in Section 5. In practice,
the reconstruction from consistent data is done by applying
an iterative technique based on the CG method on the
reconstruction matrices R and J. The convergence of CG
depends on the condition number d1/dn of the matrix [30].
Hence, CG converges fast for R whose condition number
is small and very slow for J which has high condition
number (Figure 5). A regularization strategy is needed
when the reconstruction matrix is ill-conditioned. Tikhonov
regularization changes the singular values of a matrix by
the parameter δ (cf. Section 5). Any change in the spectra
of the reconstruction matrix impairs the accuracy of an
eventual reconstruction. However, the small singular values
are increased and the inconsistency random term ε is not
amplified much. An optimal value of δ corresponding to a
minimal error is found by Morozov’s principle. Such value
of δ optimizes the condition number of JTJ + δI so that
the CG-based Tikhonov regularization converges faster with
a minimal final error (Figure 6). The final error is very
close to the inconsistency level σ . Thus, the regularization
of J helps to acheive very similar convergence and error as
reconstructing with the well-conditioned R.

6.2.3. Benefits and Limitations of Regularization for Clustered
Data Points. The last group of experiments aim at illustrat-
ing the benefits and the limitations of the regularized field
reconstruction when the specified data point distribution
contains clusters. In such scenarios, both matrices R and J
have widely spread spectra. In this context, it is interesting
to investigate how the factors affecting the spectra of R and
J influence the regularized reconstruction performance. The
factors which have the greatest influence on the spectrum are
the size of the cluster and the amount of points outside the



Advances in Optical Technologies 9

10−1

100

e

50 100 150 200 250

Iteration number

Bessel functions-based model

Fourier series-based model

Figure 6: Convergence of the CG algorithm for reconstruction
from nonclustered field samples, generated by the B-F model. The
inconsistency level is 5%. The CG algorithm was applied to the
regularized J and unregularized R.

cluster. The performance is assessed by the reconstruction
error and the convergence rate of the CG-based Tikhonov
regularization.

The first experiment of this group investigates the
performance of the Tikhoniov regularized reconstruction for
different levels of inconsistency σ of the input data. The B-F
generators are used to simulate the data points inside a square
region of interest of size T × zmax = 0.1 mm × 0.1 mm. The
total amount of points is s = 384 and half of them form a
cluster of 100 times smaller size than the region of interest.
The cluster is located in the center of the region of interest.
The field was reconstructed from the known samples by
the SVD-based Tikhonov regularization on the matrix R for
different values of the regularization parameter δ. The plots
of the reconstruction error e versus δ are shown in Figure 7.
The plots show that the Tikhonov regularization is able to
compensate completely for the clusterization of inconsistent
input data. If the samples are physically consistent, only
an approximate solution can be achieved with sufficiently
low error rate. Figure 8 shows the convergence rate of the
CG-based Tikhonov regularized reconstruction when the
level of inconsistency of the input data is 5%. The value of
the regularization parameter δ was computed by Morozov’s
principle. The B-F model leads to slightly faster convergence
rate than the Fourier model, demonstrating the existence of
an inverse crime. Comparison with Figure 6 shows that both
models have similar performance compared to the case of
nonclustered data. In this case, the Tikhonov regularization
is able to compensate completely for the ill-posedness caused
by data clustering.

Next, it is interesting to test if decreasing the size of the
cluster further affects the performance of the regularized
reconstruction as it affects the spectra of the matrices R and J
(Figure 3). In this experiment, the data inconsistency level is
fixed to σ = 5% and the size of the cluster is varied. All other
parameters of the scenario are the same as in the previous
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Figure 7: Tikhonov regularization reconstruction error e versus the
regularization parameter δ for different noise levels σ . The samples
are simulated with the B-F generators and the field is reconstructed
by the Fourier generators. The samples form a square cluster 100
times smaller than the volume of interest.
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Figure 8: Convergence of the CG-based Tikhonov regularized
reconstruction from samples generated by the B-F model which
form a square cluster of size 100 less than the region of interest.
The inconsistency level of the samples is 5%.

experiment. Figure 9 shows the convergence of the CG-based
Tikhonov regularized reconstruction involving the Fourier
generators. The optimal regularization parameter δ for each
curve is obtained by Morozov’s discrepancy principle. The
optimal δ value is smaller for smaller cluster sizes, and hence
the condition number of the reconstruction matrix ATA + δI
increases and the convergence of the CG algorithm becomes
slower.

Another factor which influences the spectrum of the
reconstruction matrices J and R is the amount of given data
samples outside the cluster (Figure 4). It is interesting to
check the influence of this amount on the reconstruction
error and convergence of the CG-based reconstruction. The
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Figure 9: Convergence of the CG-based Tikhonov regularized
reconstruction for different sizes of the cluster (as percent of the
region of interest). The samples are simulated with the B-F model
and σ = 5% inconsistency and the reconstruction is done by the
Fourier generators.
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Figure 10: Convergence of the CG-based Tikhonov regularized
reconstruction with the Fourier generators for different amounts
of data points outside a cluster (number next to each line). The
samples are simulated with the B-F generators and σ = 5%
inconsistency.

B-F generators are used to simulate the data points inside
a square region of interest of size T × zmax = 0.1 mm ×
0.1 mm with level of inconsistency σ = 5%. 192 points
form a cluster in the middle of the region of interest with
size 400 times smaller than this region. The amount of
points outside the cluster is varied from 64 to 1024 so
that the total amount of points is always at least 256 and
J and R are not underdetermined. Figure 10 shows the
convergence plots of the CG-based reconstruction done with
the Fourier model. The lower reconstruction error clearly
indicates the benefit of having more data points outside the
cluster, showing lower minimal error rate. The optimal value

of the regularization parameter δ increases together with the
amount of points. This decreases the condition number of
the regularized reconstruction matrix ATA + δI and speeds
up the convergence rate.

The last experiment investigates a sample distribu-
tion scenario which occurs for high-resolution light field
reconstruction from multiple low-resolution and limited-
aperture CCD recordings. Such a scenario is investigated
to demonstrate the practical applicability of the proposed
reconstruction approach. In addition, this experiment recon-
structs a light field which originates from a realistic object as
a more sophisticated distribution. The reconstruction is done
again with one transverse dimension only for the sake of
comparability with the other experiments. The object at the
initial line is 256-sample vertical strip from the “Lena” image,
which is used as a standard test material in image processing.
The bandwidth of this object contains 256 nonzero frequency
components, which coincide with the coefficients am of the
Fourier generators model. The light emerging from such an
object is propagated within a region of size T × zmax =
0.2 mm × 0.2 mm which makes the effective bandwidth of
the image ∆kx = 256(2π/2.10−4) ≈ 8042.5 rad/mm. The
CCD sensors are considered to have twice lower frequency
resolution, that is, sampling step of 2(2π/∆kx) ≈ 0.0016 mm
and size 0.1 mm—twice smaller than the transversal extent
T . This setting results in 64 samples per CCD. Samples of
the light field are captured by 6 different CCD recordings
obtained at 6 different CCD positions on a transversal line,
such that the oversampling factor is 1.5. The positions of
the CCDs are selected such that the total amount of samples
is distributed denser around the origin and sparser towards
the side of the line, as shown in Figure 11. In this manner,
the sampling approximates a density distribution, optimal in
the sense of [11]. The higher sample density at the center
forms a cluster which spreads the singular values of the
reconstruction matrix R, as evident from Figure 11. Complex
values at the CCDs sample positions are simulated from the
coefficients am of the Fourier generators model. In practice,
complex values can be obtained by, for example, temporal
phase shifting for each CCD position. The CCD noise is sim-
ulated by adding an inconsistency with level σ = 5% to the
simulated CCD sample values. The regularized, CG-based
reconstruction shows rapid convergence to an error compa-
rable to the inconsistency level, as illustrated in Figure 12.

7. Conclusion

This paper has addressed the problem of monochromatic
light field reconstruction from irregularly distributed sam-
ples with physically inconsistent values. The proposed recon-
struction method is based on finite-dimensional modeling
of the problem and regularized inversion. Our approach
encompasses a wide range of applications in the area of
3D display and beam shaping. The dimensionality of both
models can be directly related to the number of degrees
of freedom of the field with a certain excess. The excess
depends on the ratio between the transversal extent and
volume of interest for the Fourier model and on the ratio
between the finest detail level and wavelength for the B-F
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Figure 11: Samples from CCD recordings at 6 different CCD
positions (shown in different colors and heights) on a transversal
line (top) spread the singular values of R (bottom).
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Figure 12: Convergence of the CG-based Tikhonov regularized
reconstruction of the “Lena” strip light field from samples which
imitate data multiple CCD recordings. The samples are simulated
with the Fourier generators and σ = 5% inconsistency.

model. Uniform sample density defines the reconstruction
problem as well posed when described by the Fourier model
and as ill-posed when described by the B-F model. For such
density, satisfactory reconstruction can be done with amount
of points close to the number of degrees of freedom of
the field. However, spatial variations of the density define
the reconstruction problem as ill-posed for both models.
Regularized reconstruction is able to compensate for the ill-
posedness when the sample density variations are not very
diverse within the region of interest. The reconstruction
error and convergence of the iterative solver are very similar
to the well-posed case. Large variations of the sample density

increase the reconstruction error above the level of incon-
sistency of the input sample data. In this sense, increasing
redundancy in the amount of samples away from the number
of degrees of freedom of the field brings clear benefit.
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