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ABSTRACT

Using methods applicable to all classical radiative field theories, a necessary and sufficient
condition is derived for the onset of instability along a sequence of stationary equilibria in
general relativity. A related result is that instability in any mode can set in oniy when its frequency
vanishes. Astrophysical implications are briefly discussed.

Subject headings: hydrodynamics — instabilities — relativity

I. INTRODUCTION

In this paper we discuss the stability of stationary corfigurations in general relativity, deriving an exact criterion
for the first appearance of an unstable linear perturbation along a sequence of equilibria that do not contain event
horizons. Our main concern is with perfect fluids; but the criterion applies to a wide range of sources of the metric
whose equations can be derived from a Lagrangian, and we append an extension of the formalism to electro-
magnetism and elastic solids. The criterion for fluids sharply constrains the amount of rotation permitted in
compact stars and probably eliminates very high-mass white dwarfs as models for binary X-ray sources.

The criterion’s principal virtue is to elucidate in a simple way the role that gravitational radiation plays, con-
firming a previous conjecturc (Chandrasekhar and Friedman 1973) that instabilities set in only through zero-
frequency modes, and justifying a previous criterion (Schutz 1972) that at the time was not believed exact in locating
points of marginal stability. It is gauge-independent (apart from asymptotic regularity conditions at infinity) and
involves no special choice of hypersurface. A drawback is its assumption that the normal modes vary continuously
along the sequence of equilibrium models.

In 1967, Lynden-Bell and Ostriker completed an extension to differentially rotating Newtonian configurations
of a variational method, using Lagrangian perturbations, that had been developed in earlier work by Chandrasekhar
(1964), Clement (1964, 1965), and Lebovitz (1961). Subsequently, Chandrasekhar and Friedman (19724, b) derived
analogous variational expressions for perturbations of uniformly rotating stars in general relativity, which have
recently been extended to the case of differential rotation by Will (1973). At the same time Taub (1969) developed
a covariant second variational formalism for treating fluid perturbations, which one of us (Schutz 1972) modified
and used to derive an energy condition that was sufficient for stability and which is here proved to be necessary
as well. To a certain extent this paper simply applies Taub’s formalism to the case of harmonic time dependence,
and thereby translates the Lynden-Bell and Ostriker paper into general relativity. Because of the increasing generality
of the historical development, nearly all previous expressions for the characteristic frequencies of oscillation that
appear in the papers mentioned above are special cases of equation (3.21) below.

We find that gravitational radiation has the same effect in the exact theory and for arbitrary equation of state
and rotation law that Chandrasekhar (1970) found in his radiation-reaction analysis of the uniformly rotating,
uniform-density Maclaurin spheroid; there, for sufficiently rapid rotation, instability to the stationary Dedekind
ellipsoid sets in through a nonaxisymmetric deformation. Prior to that point, radiation damps the oscillation; but
beyond it (for greater values of the angular velocity), the radiation reaction term effectively drives the instability,
by allowing a transition to the lower energy nonaxisymmetric state that conservation of angular momentum would
forbid in the absence of dissipation.

From this result and work by Ipser and Detweiler (1973) and Ipser (1975) showing that dynamical instability
of nonrotating stars is always associated with radial pulsations, it appears that (dynamical) instabilities in general
relativity occur in only two ways: through axisymmetric pulsation when the star’s adiabatic index is too small or
its density too large; and through nonaxisymmetric perturbations when the rotation is too rapid. In both cases
the marginally stable mode is quasi-stationary; and in each instance, relativistic effects cause the instability to set
in sooner than in Newtonian theory, with sharp differences possible even in stars whose equilibrium structure is
nearly Newtonian.

Our methods are actually applicable not only to general relativity but to any field theory with radiation. There-
fore in § 11 we derive some basic results for Lagrangian theories and their second variations. From this, in the case
of harmonic time dependence, a standard equation for the characteristic frequencies emerges, from which follow
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some restrictions on unstable modes. In § ITI, a Lagrangian perturbation formalism due to Taub (1969) and to
Carter (1973a) is presented and used to derive the corresponding frequency equation in general relativity appro-
priate to perturbations of stationary (but not necessarily axisymmetric) space-times containing perfect fluid. In
§ I'V, we obtain our main results, viz., (1) a proof that any mode of oscillation can become unstable along a smooth
sequence of equilibrium configurations only when its eigenfrequency vanishes, and (2)- a minimum principle for
the onset of instability involving a functional whose value is independent of gauge (apart from asymptotic regu-
larity conditions) and of the null or spacelike hypersurface-on which it is evaluated. Finally, in § V, we speculate
briefly on possible astrophysical implications of the work. The Newtonian limit of the criterion and the modifica-
tions necessary to extend it to electromagnetic fields and elastic solids are presented in appendixes.

Our notational conventions in the sections on relativity are: signature + 2, Latin indices from 0 to 3, Greek from

Ito3.
II. STABILITY AND THE SECOND VARIATION FOR LAGRANGIAN SYSTEMS

Because our theorems rest largely on features common to a wide class of relativistic systems, it is useful to begin
by establishing some basic results in a general Lagrangian theory (restricted in this section to flat space for sim-
plicity). Whenever the equations governing a system are derivable as the Euler-Lagrange equations of some
Lagrangian, the linearized equations for the first-order difference between two nearby solutions are also derivable
from a Lagrangian (the ““second variation ™) whose form is easily written down. Closely related is the fact, proved
below, that the linearized equations are a symmetric differential system on functions that vanish sufficiently fast
at the boundary of a (possibly infinite) region. This leads to a weak stability property common to all Lagrangian
systems.

Thus suppose that y, (4 = 1, ..., N) are N fields on a region Q of flat space and that £(x*, y,, Y4, ...) Is @
Lagrangian density, real in the sense that 2(x', y,* y,*,, ...) = €¥(x', y,, ...), with corresponding action
I = [,€. Requiring 8] = 0 for perturbations vanishing sufficiently rapidly at the boundary ¢ leads to the field

equations
B o @2.1)

: WY aig -

Let y,and y, + 8y, be two nearby solutions to these equations. We define the corresponding Eulerian perturbation
in a quantity Q(x!! )’4, }.A.h o ) by

o e
= F4 e s
W= Py, = gy, T4

0 e
B 22)
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50 = mz,-y% + 8yas

Then the perturbed field 8y, satisfies to first order the linearized field equations

o¢ oL
- ¢ (. S iy
0=8F1=23§ o é s + ] (2.3)

a) A Symmetry of and Lagrangian for the Perturbed Field Fquations

The system of linear equations (2.3) is symmetric up to a divergence in the following sense:
PropPOSITION 1. For any two independent fields 8y, and 8y,

Sy OF A = 8y,6F* + R . (2.4)
To see this, observe that ’
= d d
3,8]=06,8]=1|8+—|=18,—1=0,
581 = .2l = [8, 5] = [5.52]
on sufficiently smooth functions. Therefore, we have
@ é
8F* = — 82 — ¢ 0L + ---,
Oy4 : O a,i
from which follows the result
(2.5)

8§y SFA = 88¢ — 8,0',
where

= é d & 2}
W8y, 8y) = & A—Sﬂ—a( 39)+---]+5 [
Q'(dy, 8y) Va [C}',a_t ] e Va,j EI

But 882 is symmetric, and Proposition 1 follows, with R* = Q'(8y, 8y) — Q'(8y, 8y).
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If for notational clarity we define the linear operator L4(8y) = 8F4, then the symmetry property (2.4) can be
stated in the form

EA(z) = 2,LA(2) + ORYz, 3), 2.6)

where R! is bilinear in the arbitrary fields, z, and Z,. An associated action for the linearized equations (2.3) is given

by
PROPOSITION 2. £, = z,L4(z) is a Lagrangian density for the perturbed field equations. That is, by demanding that

8 f 2,=0,
a
for all variations 8z, that vanish on the boundary 842, we obtain

5 f 2,L4z) = 0 < f [82,LAz) + 2,LA(82)] = 0
a ]

<> ZJ. 8z,lMz) =0,
0
< LA(z) = 0 in the region Q.*

b) Harmonic Time Dependence

Let us now assume that the unperturbed fields are a time-independent solution of the field equations F# = z.
We want to investigate the stability of that equilibrium, to discover whether the solution 8y, to the lineari
equations satisfying physical boundary conditions and corresponding to otherwise arbitrary initial data will remain
bounded in time. Because £ has no explicit time dependence, the linear operators associated with a stationary
equilibrium will also be time-independent and will therefore admit product solutions of the form y, = y(x¥)e'"*
(x* is a point in the ¢ = const. 3-space). Our object now will be to obtain a formula for ¢ and from it to derive

conditions on stability.
In the case of harmonic time dependence, the operator L4 takes the form

L.d(zela!) - e(uto,nLnA(z) 3 (27)
where the operators, L, are alternately real and imaginary (L, is real) and there is an implied sum over n. Then by
virtue of the symmetry relation, equation (2.6), arbitrary fields z(z%), (x%), and frequencies o satisfy
(2.8)

e-lalZALA(zewt) s e”‘"z,tL‘(e""‘E) + 31R'(2', 2) z

Because R! is bilinear and L4 is independent of time, R! is also independent of time and &,R' = 8,R®. Equation (2.8)
can then be rewritten as
a"[Z4L,4(2) — (= 1"z, L A(2) = "8, R,%(z, 2), 2.9

where R!, is defined by analogy with equation (2.7) for L,*. But equation (2.9) holds for all o, and we infer
LeEmMA 1,
Z,L42) = (—1)"2, L A2) + 0.R(2,2) . (2.10'

Thus, up to a divergence, the operators L,* are each Hermitian (real andsymmetricor imaginary and antisymmetric).
This lemma is the key to the stability of normal modes of Lagrangian systems. It has been proven for n < 2 by
Kulsrud (1968).

¢) A Formula for o

When z¢' satisfies the perturbed equations
LA(ze) = 0, @.11)
we can obtain a useful equation for the characteristic frequency o from the integral relation
[ zterizem = 0. @.12)
a

! The Lagrangian £, is that often constructed by Chandrasekhar with many coauthors (see references); the related Lagrangian
5§52 is the second variation of £ that has been used by Taub (1969) and Schutz (1972); cf. Whittaker (1937).
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From Lemma 1 and equation (2.5) we see that this can be written in the form
"4, +85=0, (2.13)

where A, are the real (by. Lemma 1) coefficients of o™ in §8€, and where
§=- J' -0,
a0

(with 7, the unit normal to éQ) is in general complex. An immediate consequence of equation (2.13) is
LemMA 2. The characteristic frequency of any normal mode can be purely real only if the surface integral S

is real.
This restriction on the existence of marginally stable modes is as far as we can go without being more specific

about the nature of the system whose stability we are investigating. For bounded systems, where the surface integral
can be taken outside the system and made to vanish identically, Lemma 2 will not be useful. But for systems coupled
to radiation of any sort, the radiation field extends to infinity and Lemma 2 becomes important. For such systems
the surface integral commonly represents the energy flux across the boundary: R will vanish for periodic boundary
conditions on 2Q (standing waves) and will take the asymptotic form —ioD for outgoing (D > 0) and incoming
(D < 0) radiation. Then the characteristic frequency of a mode with outgoing radiation can be purely real only if it
vanishes. An exception to this rule is a rotating black hole where the boundary ¢Q consists of two disjoint pieces,
the horizon and the surface at infinity; the two contributions can, in principle, cancel for “superradiant” modes
in which radiation as seen by locally nonrotating observers is entering the horizon but energy as defined by

asymptotic observers is leaving the black hole.
In most cases of physical interest, and in particular for the relativistic perfect fluid, only first and second time

derivatives occur and equation (2.13) becomes
?4A—-~aB~C+ 8S=0, (2.14)
where A, B, and C are the real integrals A,, — A4,, and — A4, in that equation. Moreover, 4 will generally be positive

definite, corresponding to a positive kinetic energy of the perturbation, and in the cases we will treat here S will
be of the form —ioD, corresponding to outgoing radiation. The frequency equation is then

0?4 — o(B+iD)— C=0 (2.15)

with 4 and D positive definite. Under these more stringent assumptions, the existence of “unstable” roots to

equation (2.15) depends on the sign of C. That is,
LeMMA 3. The equation 0?4 — o(B + iD) — C = Owith 4 > 0 and D positive definite has a root o _ with Ime_ <

Oifand only if C < 0.
To prove this, observe that the roots of equations (2.15) are (for 4 > 0)

o, = (ZA)"YB + iD + [B* + yAC — D? + 2iBD]"%},

with imaginary parts
@, =24Imo, = D + 27U —(B% — D? + 44C) + [(B? — D? + 44AC)? + 4B2D*}M/3}12 |

Then D > 0 implies «, > 0. But
2u,a_ = B? 4+ D? + 4AC — [(B* — D? + 44C)? + 4B*D?] = x* — (x* — 164CD*»Y2,

where x = B? + D? + 4A4C. Therefore 2e,0_ <0<« C <0, and a_ < 0« C < 0, as stated. The proof for

A = 0 is trivial.
Since only one of the roots of equation (2.15) need be the characteristic frequency of a mode, Lemma 3 does not
imply instability for C < 0. To prove that the unstable root is an eigenfrequency requires a more careful examina-

tion, which we provide for the relativistic fluid in § I'V.

III. PERTURBATIONS OF PERFECT FLUIDS IN GENERAL RELATIVITY
a) Lagrangian Perturbation Formalism

It is conventional in dealing with perturbations of a fluid to define a Lagrangian displacement £, a vector con-
necting fluid elements in the unperturbed configuration to the corresponding elements in the perturbed fluid. More
precisely, £° is the generator of difftomorphisms that take world lines of the unperturbed fluid into the perturbed
world lines. The change in any quantity Q defined on the fluid can be described in two ways: the Eulerian variation
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80 is the change in Q at a fixed point of the manifold, whereas the Lagrangian variation AQ is the variation of the
field with respect to a frame that is itself dragged along (with the fluid) by the displacement £°. Formally,?

A=35+%,. 3.1

Changes in fluid attributes such as baryon density n, energy density e, pressure p, four velocity u®, or the energy-
momentum tensor T are conveniently described by A; on the other hand, changes in the field variables—in this
case, changes in the metric—do not vanish outside the fluid and are generally described by the Eulerian variation,

hay = 8g4.
“In genc:eral relativity the Lagrangian variation has an additional advantage: it is invariant under a change of
gauge. That is, one has the freedom, in matching points of the perturbed and unperturbed spacetimes, to make an

infinitesimal displacement 7° at each point. Such a transformation changes the Eulerian variation of a quantity
Q from 80 to §Q + £,0. But the displacement vector £° connecting the perturbed and unperturbed world lines
correspondingly changes from £2 to £ — 2, so that the Lagrangian change in Q is just

80 + £,0 + £_,0 = 8Q + £0,

as before. Alternatively, one can define AQ as the Eulerian change in Q relative to the **comoving” gauge in which

the Lagrangian displacement ¢° identically vanishes. A further freedom in the choice of Lagrangian displacement

should be pointed out, namely, that £* + Sfu® (where fis any scalar field) leads to the same perturbed world lines

as £° The Eulerian perturbations as well as the frequency formula we obtain will be invariant under the replace-

ment £% — £2 + fu° and one is free arbitrarily to restrict the timelike part of £°: for example, by requiring £u, = 0,
Consider a perfect fluid, characterized by an energy momentum tensor

T® = (e + puu® + pg*®. (3..

The unperturbed configuration is assumed to be a stationary but not necessarily axisymmetric® solution to the
gravitational field equations with perfect fluid source, supplemented by an equation of state, say € = ¢(p, n). A
Lagrangian displacement £ determines the fluid perturbations as follows. If ¢ is a vector field tangent to the
unperturbed world lines, the Eulerian change in 9 is by definition the result of its being dragged along by &2,

81% = —£,1°, 3.3)
Thus
At =0, 3.4
The fluid four-velocity is
Ut = 15— gpct"tc)~ 112 (3.5
from which follows
Au® = uubucAg,, , (3.6)

where
Agye = hye + 2V ¢, .

We are interested in a criterion for dynamical stability, and are therefore concerned with perturbations that
proceed on a hydrodynamic time scale, too fast for heat transfer across a fluid element to be important. Thus we
assume that

A
2 Ae (3.7)

7 Terp
where y is the adiabatic index. Finally, the perturbed equation .

AV, T°%) = 0 (3.8)
admits the immediate first integral

A A
— = —1g"Ag = (.9)

where g®® = g% 4 y%® is the projection operator orthogonal to the fluid velocity 4°, and where Anfn is the frac-
tional change of baryon number, or of any conserved scalar. By introducing the baryon density n, one obtains a

2 This definition conforms to that used by Taub (1969) and by Carter (1973a), but a%rees with that of Chandrasekhar ef al. and
of Lynden-Bell and Ostriker (1967) only for scalars, The latter authors use A = & + £V,

® Whether stationary nonaxisymmetric perfect fluid configurations (analogous to the Newtonian Dedekind ellipsoids) exist in
general relativity is not known. There are such solutions within the lowest order post-Newtonian approximation (Chandrasekhar
and Elbert 1974), and an implication of our work is that there are nonaxisymmetric linear perturbations to marginally stable con-
figurations; presumably to these solutions correspond solutions in the exact theory. That is, one expects such a marginally stable
Star to represent a point of bifurcation from which a sequence of stationary nonaxisymmetric equilibria branches off.
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useful shorthand for the right-hand side of equation (3.9), which is just the Lagrangian change in the spatial volume
orthogonal to the fluid world lines; and n also serves as a second parameter in the equation of state. One could

equally well have introduced the conserved entropy per baryon.

b) The Symmetry Property
The general results of § Il followed from the symmetric character of the perturbation equations, which we
proved by assuming that they were derivable as the Euler-Lagrange equations of some Lagrangian. Because the
Einstein tensor is derivable from the Lagrangian R, we have the following result.
LEMMA 4. For arbitrary 4., = 8gas, Aus = Ogus

hau8[GO(—g)""] = hapB[Gan(— )" + (—8)*2V,5°, (3.10)
where 5° is bilinear in h,, and A, In fact, using the well-known relation (see, e.g., Geroch 1972 for a concise
derivation)

8Ras = V'Vl — $V.%k — 4VeV,r,, , @.11)

we find (details are given in Appendix III)
(=) 28[G(—g)"%] = Je<e5e!, ¥ Vophyy + G¥%heq (3.12)

where
Gavea = YRuceare + HRac€ap + RoccBara — Rav€ea — Reugob]

—3R(guc8ba + Baaloc — Lav€ed) »
= Gavyedy = Geaab -

Lemma 4 can be written in the form
(_g)-liﬂﬁubalGab(__'g)UQ] == _%Eacwewﬂrvcgﬂbvdke,‘ + G““Enbhcd + VC(%eafeﬂeranvdhe!) . (3_13)
Lagrangians exist for perfect fluids (e.g., Taub 1954; Schutz 1970), but we shall prove the symmetry property
directly. The formulae of § IIla determine the Lagrangian change in the energy-momentum tensor 7%, namely,
(—8)"YPA[T™(—g) %] = W**Ag,,, (3.14)

where the tensor
Weed = Ye + pututucu® + dp(gPget — ghight — gidghty — Jypgabged (3.15)
has the symmetries Webed = pylabied = Jpedab, Ap equivalent expression appears in Carter and Quintana (1972)

although there the symmetries are not apparent. From equation (3.14) follows
LemMA 5. For arbitrarily chosen tensor fields £°, €9, A,,, and h,,,

BgaAlT*(—g)"?] = Mg A[T*(—g)*"] . (3.16)
Zgab = a-gnb + £{gﬂb = ‘Eab £ 5 2vta§-b) *

Lemma% 4 and 5 together imply the symmetry property of the perturbation equations. That is,
Lemma 6.

Here

167E,0(V,T) + h,,8(G® — 87T) = 167¢,A(V,T) + h,,8(G*® — 8nT®) + V R, (3.17)
where the vector R® is bilinear in the barred and unbarred quantities and reduces to S® of Lemma 3 (eq. [3.10])
outside the star. The symmetry relation can be written explicitly in the form
167Z,A(V,T™) + Fopd(G® — 87T = —16aU%V,EV £y — 16aV 5 fiy,V £y + hoyVoly)
w5 %‘M"Ebdfnvcﬁaovahef + 8aVeT" “(};cbfc +: kdhgc)
+ 167T%R paE°E% + (G°% — 8n WD)k, h.y
+ V [167UHEV £, + 167V, £,
+ esceseds b Voh 1, (3.18)

where
Uabcﬁ = (e + p}ua“cqw 4 p(gabgcd i gadgbc] S ypq“”q“’ sy Ucdab

and
Jrabed — é(! 4 p}(uoucqw + u"‘u"q“‘ iz uauqu) 2 3 l‘ypqanm'

A derivation of the formulae in this section is provided in Appendix III.
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¢) A Formula for the Frequency

We want to consider perturbations with harmonic time dependence, which can be introduced as follows. We
select as a family of spacelike or null hypersurfaces in the background spacetime the images of some such arbitrarily
chosen surface S under group of transformations generated by the (asymptotically) timelike Killing vector £%. The
perturbed field equations are a set of linear differential equations in £ and A,; with coefficients independent of the
Killing time, which therefore admit solutions of the form

£ = 5“{x")e‘“ ] hoy = hab(xc)em »

where x” is a point in the spatial manifold of Killing trajectories. From now on we shall use *£2” and ‘hg,” to denote
functions of x“ only, that is, tensors for which £4° = 0, £,4,, = 0. In previous formulae we then make the

replacements
Vugb =2 vc(‘foe“‘) = e‘ﬂ(vufb G 2 iafbvat) = eﬁ”(vagb 2 d fo’l‘lafu)
Voo — e -'ﬂ(va};bc — ionghy)

where n, = V. is a vector normal to S.
In this way, equation (3.18) can be rewritten in the form of equation (2.14),

o’ — ioB — € + V, 9 =0 (3.19)
with
o = 167U nn,ls + 1 nhoghe; ,
B = lﬁﬂynwdna(gbvcfd = fbvcf_d) 3+ I&Vabc"”c(babgd T Hahfd)
+ '}ea“cendrgna(}?cdvbker - cdvb'ﬁe!) 3
€ = — 167UV 5,V £, — 167VUh, V. by + hoyV.Ey)
"'1‘ eaug‘bdrcvcﬁubvdhd e S”VGTub(Eangc i kab?c)

+ 1607 Ropeaf®® + (G — r W Dfigyh.q ,

and
R = —16nUE(V, + ion)t, — 16nV 9 F, — 1209 i (Y, + ion)h,; .

As implied by the discussion in § 11, .7, iZ, and ¥ are respectively symmetric, antisymmetric, and symmetric in the
barred and unbarred quantities, and are therefore all Hermitian.

We now wish to integrate equation (3.19) over the hypersurface § and in particular to allow for the case where
S is null. Let £ be the volume element on M (in local coordinates = (—g)"2dt A dx* A dx® A dx®). Thena
volume Z on § is the restriction to § of the three form £2({), with  the Killing vector. In local coordinates (¢, x%),
with x® constant along the Killing trajectories, we have df({) = 8¢ = | and dx*({) = 0. Then Z = (—g)"2dx! A
dx® A dx®. This is related to the surface element d%, = n,Z that appears in Gauss’s law by & = [°dX,, but it is
not the intrinsic volume determined by the metric in §; this latter three-form is (n,n%)*"2Z and vanishes for null
hypersurfaces. If 4° is any time-independent vector in M, we have (V,4%)Z = d[E(A)], where the forms are on

S. Thus
j VA = [ £(4). (3.20,
5 g8

Now let £¢ = £&* k., = h,,*, and assume that £ and ,, satisfy the perturbed field equations for o. Then the

integral over S of equation (3.19) is the frequency equation
4 —aeB—-C+ R=0, (3.21)

where
A=f.m'2:, B=I:'QE, and C=f‘€2
5 8 5

are all real, and
R= f (@)
o8

is complex.
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IV. TWO STABILITY THEOREMS

We will now specialize the gauge and choose a hypersurface in such a way that 4 becomes manifestly positive
and R assumes the form ie D, with D positive for outgoing radiation. Spacelike hypersurfaces have the problem
that outgoing modes behave asymptotically like /1., ~ r¥e'”“~" and so stable modes (Im ¢ > 0) grow exponentially
as r — oo. This is important because (i¢) ~*R becomes real only asymptotically. To keep the coefficients 4, B, C,
and R finite, we therefore choose a null hypersurface; and, for convenience in describing the symptotic behavior,
we assume that it is the hypersurface swept out by a flash of light emitted at the star’s center of mass. The resulting
family of (Killing related) null hypersurfaces will be distinguished by an index u« in such a way that {°V un =
duu = 1.

The gauge will be specified by setting h,,n* = 0. Then the last term in the integrand .=/ vanishes:

%Eacwéquﬂcﬂ'nb*nuber = é"dﬂa(h*k == k*bckoc) =0 1 (4”

and the remaining term is
Unanéy*Es = (e + p)un)’q" 6% — ypqq nancéy*éq s 4.2)

which is positive-definite when the causality condition (speed of sound) = (e + p) " 'yp < | is satisfied. Hence

&/ > 0,and .o/ = 0 only when h,,£* = 0 everywhere.
We evaluate R by examining the asymptotic field equations under the assumption of outgoing radiation and no
horizon. With r as the radial affine parameter and with @ and ¢ coordinates labeling the geodesics in such a way

that the background metric tends asymptotically to
ds? = —du? + 2dudv + r*(d6* + sin? 8dp) ,

we find (see, e.g. Newman and Unti 1962)
= 0(r Y, = 0(r 9, e =0(r 7,

and these will not contribute to the surface integral. The contributions to R arise from the angular components
which involve only the asymptotic shear (of the radial null geodesics):

W = 2r % Res, + iResy) + O(r %) = —h°°sin® 4
and
W = 2r-%(Ims, + iImsy), (4.3)

where s,r "2 and s,r~? are the asymptotic shears of the null geodesics in the physical solutions Re 4°® and Im A%®,
Then
R= { Z(A) = f.%'rz sin? 8dfdp = —4:'0.[ (Is,]? + ]52]?) sin? 8dbde . (4.4)

Jes
Thus R = —ioD, where D = 0. Because |s,|? and [s,|? are the Bondi news functions of Re /1., and Im A,,, they can
vanish only when a mode is nonradiative.

The frequency equation is therefore of the form discussed in § 11, and an immediate consequence is that the
characteristic frequency of a radiative mode can be purely real only if it vanishes. Nonradiating modes can occur
for radial pulsations of spherical stars and [to O(£2?)] for quasi-radial pulsations of slowly rotating stars, but in
these cases the term linear in o in the frequency equation vanishes and the following theorem remains valid.

THEOREM | (Weak Stability Theorem). If the normal modes and their characteristic frequencies of oscillation vary
smoothly along a sequence of equilibrium configurations, then instability to any mode can set in only at a point

along the sequence where its frequency vanishes,
Proof. By Lemma 3, unstable modes occur only when C < 0 and in that case correspond to the root

o. = (24)"YB + iD — [B* — 44C — D? + 2iBD]"?},

Along the stable part of the sequence, Im o_ must be positive, which implies that C will also be positive. Smooth-
ness of the eigenfunctions then ensures that the mode becomes unstable through C = 0, whence o_ = 0 as well.

This theorem considerably simplifies the problem of deciding which stars are stable in general relativity. One
need never consider complex frequencies or radiative modes, and it is therefore not necessary in stability calcula-
tions to use finite regions of integration or null hypersurfaces in order to avoid divergent expressions. In particular,
the following result holds.

TueoreM 2 (Strong Stability Theorem). Suppose as before that the normal modes and their characteristic fre-
quencies vary smoothly along a sequence of equilibrium configurations indexed by some parameter e. Consider
the set of all time-independent trial functions A, and £ satisfying the initial value equations* 8GO = g5 0@

* We are using the convention that indices in parenthesis are components along an orthonormal tetrad. The particular tetrad
here is arbitrary.
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in any convenient gauge consistent with the asymptotic behavior /iy, = O(r~%). Then,

1) if the functional C associated with some equilibrium configuration is positive for all such trial functions, all
perturbations of the configuration are stable.

2) If the greatest lower bound for all normalized trial functions® of C'is positive along a sequence of equilibrium
configurations, until some point e,, and if it passes through zero at that point and becomes negative for the
subsequent configurations, then instability sets in at e,

3) The stability criterion of (1) and (2) is independent of the particular spacelike or null hypersurface chosen and
of the gauge to within the demand of regular asymptotic behavior.

We will first prove the last statement, that C is invariant under a (gauge) transformation of the form A, — hgy +
2V a7y, £2 — £% + 3% when the orthonormal components of A,, and n°® are time independent and asymptotically
O(r~*). When ¢ vanishes, equation (3.21) reduces to

C= f [A*08(G® — 8nT™) + 8t *A(V,T)E .
5

Under
hay = hoy + 2V omyy

C—>C+2 Re{ f [~ Vans*8(G* — 8aT) + 8%*8(%1‘“’)]2}
8

-2 Re{ f 1 [8V,GPIE + f z(q,,*acw)} -c,
5 a5

where only the unperturbed field equations, the Bianchi identities, and the fact that, at large r, 8G gy ~ r~2 fi
time-independent fields /,, have been used. Then (1) follows from the fact that the positive-definite character of
for all trial functions satisfying the initial value equations guarantees stability of the star against all perturbations
(the energy criterion of Schutz 1972). But on any hypersurface one can always choose a gauge in which the initial
value equations do not formally involve time derivatives and which is asymptotically regular. In that gauge
the initial value equations are identical for time-dependent and time-independent trial functions. As a result, the
positive-definiteness of C for time-independent trial functions is also sufficient for the stability of the star. The
restriction to trial functions that satisfy the initial value equations is necessary, because there will always be some
that violate the equations and make C negative (cf. Schutz 1972).

We now prove part (2). The least value of C for normalized time-independent trial functions is positive for e <
o and negative-definite beyond e,. Consider the Hermitian operator € defined implicitly on the space of time-

independent trial functions by

CE 8= f Braex

the zero frequency limit of the field equations is € = 0. Prior to e, all characteristic values of the operator are
positive, but at any point e, + e beyond e, at least one has become negative. Therefore, at some point between
€o and e, + 3e, the corresponding eigenfunction is a zero frequency mode of the system.

It is not obvious that this real mode becomes unstable, however, because beyond e, the time-independent
eigenfunctions of € are not necessarily related to the time-dependent eigenfunctions of the physical system. To see
that it is nevertheless true, observe that if C = Jsm*€n is evaluated on a null hypersurface, its value for any mode
varies smoothly along the sequence; at a nearby point, e, + 8e, C will be negative for the trial function neq + Be)
which differs by O(8e) from the real eigenfunction n(e, + 8¢). We have .

Ceorselnleo + 8e)] = Cenles + 3e)] + (C., 1 0e — e)lnea)] + O[(8e)’] = C,, . selneo + 8¢)] + O[(3¢)%] < 0,

where we have used the fact that C,, is an extremum for 5(e,) to show that Ceylnleo + 3e)] was O[(8e)?]. In other
words, the value of C for the true eigenfunction will be negative just beyond e,, which implies that the mode becomes
unstable there. We have shown that the sequence becomes unstable before e, + Se for arbitrarily small Se; hence,
instability sets in at e,.

The gauge independence of the criterion follows from that of (¢) discussed above. The independence of hyper-
surface is just the statement that when evaluated on the set of time-independent trial functions, the integrand in
C is a scalar on the spatial manifold of Killing trajectories; the volume element is similarly interpretable as a

® The normalization can be arbitrary as long as it is positive-definite. This excludes the ** natural™ normalization A = 1 since A
is only positive-semidefinite on a null hypersurface; but 4 can be used if one uses a spacelike hypersurface that is only asymptotically
null, on which a gauge can always be chosen in which A is positive-definite.

® This can be seen by writing §G°* = A[L1%%(E) + L3°(h)] + L.°%(¢) + L,%(h). The gauge conditions are GIL,%¢ + Ly%%(h)] =
0 and the initial value equations become La°%(§) + L°%(h) = 0. Asymptotically, the gauge conditions take the form 8,[hs.s —
h5" a] = 0 while the initial value equations become ,, = 0
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volume on the manifold of trajectories because its definition involved only the Killing vector, not the normal to a
particular hypersurface.

In order to use Theorem 2, one must know that C is positive-definite somewhere along the sequence. In Appendix
I we prove that C is posntwe-deﬁmte for Newtonian stars provided they satisfy the Newtonian secular stability
criterion (Lynden-Bell and Ostriker 1967), which is simply that the Newtonian part of C be positive. The proof
effectively shows that the gravitational wave parts of C do not affect the stability of secularly stable Newtonian
stars. This result is not restricted to perfect fluids: any Newtonian configuration is stable against gravitational
radiation if and only if the Newtonian part of C is positive-definite.” Thus since secular and dynamical stability
are identical for nonrotating stars, one can take each sequence in Theorem 2 to originate at a stable nonrotating
Newtonian star.

We should note that Theorems 1 and 2 apply immediately to any system in general relativity provided that (i)
the coefficient 4 can be made positive-definite on a null hypersurface, and (ii) either the system is bounded, so
that the surface integral involves only gravitational radiation, or any extra radiation terms preserve the sign of the
surface integral. That elastic solids and electromagnetism satisfy these conditions is shown in Appendix II. Con-
tinuity of the eigenfrequencies may be difficult to prove in general, but is not likely to fail under reasonable
conditions; it has been proved for Kerr by Hartle and Wilkins (1974).

Finally, it should be pointed out that for radiative modes, instability defined by the existence of modes with
Im o < 0 has a clear physical meaning, again independent of gauge. The outgoing energy, defined by means of the
Bondi news function (which, as we observed, appears as the surface term of the null hypersurface frequency
equation), grows without limit for unstable modes, with growth rate Im o, and dies off for stable modes. It is
independent of gauge transformations that conform asymptotically to the BMS group (Sachs 1962), because under
such a transformation the change in the news is of higher order in the perturbation; and so Im ¢ represents an
unambiguous growth rate of the system’s radiated energy. The characteristic frequencies are similarly definable
as the set of pure frequencies admissible as the time dependence of the news function.

In proving the strong stability theorem, we assumed that the eigenfunctions of the Hermitian operator € were
complete for the set of time-independent trial functions. We did not, however, make any assumptions about
completeness of the outgoing normal modes of the system, only requiring that they vary smoothly along the
sequence. In classical problems of fluid mechanics with shear (see, e.g., Chandrasekhar 1961), these latter modes
are not strictly complete because the perturbation equations can have singular points when the pattern speed o/m
is equal to the angular velocity C (with m the axial eigenvalue). In such cases a complete set must include functions
whose first derivatives are discontinuous at the singular point. In general relativity the outgoing normal modes
may be complete in any event, because when the frequencies are complex, such singular points do not arise.

V. DISCUSSION AND CONCLUSION

The theorems here show that (at least for configurations satisfying our assumptions of smoothness and com-
pleteness) the generic instability of rapidly rotating stars is analogous to the *“ Dedekind’ mode in the classical
theory. It sets in when a star can be adiabatically deformed to a nearby nonaxisymmetric configuration that is
stationary with respect to an observer at infinity. In the Newtonian limit (see Appendix) the frequency equation
reduces to the expression of Lynden-Bell and Ostriker (1967) or, in the time-independent case, to the related ex-
pression of Chandrasekhar and Lebovitz (1973) (depending on whether the initial value equations have been
formally solved). The condition C = 0 then becomes the Newtonian criterion for secular stability which Ostriker
and co-workers have found to be approximated for a wide range of differentially rotating stars by ¢t = T{|W| <
0.14, where T and W are the rotational kinetic energy and the potential energy, respectively. (A star is secularly
unstable when nearby lower energy configurations exist but are accessible only in the presence of some dissipative
mechanism, such as radiation or viscosity, which operate on longer than hydrodynamic time scales.)

Because we assumed only that the equilibrium configuration was stationary, the theorems are valid for non-
axisymmetric perfect fluid equilibria, should they exist in the exact framework of general relativity as they do in
the classical theory. These could be stable for larger values of 1, although in the known cases of uniform-density
classical stars, the nonaxisymmetric sequences are unstable by ¢ ~ 0.20. (This can be calculated from results in
Chandrasekhar 1969.) The existence of zero-frequency nonaxisymmetric modes already means that there are
stationary nonaxisymmetric solutions to the equations linearized about an axisymmetric star.

One consequence of the generic instability is to forbid configurations with the extreme differential rotation that
would be required substantially to raise the mass limits on neutron stars or white dwarfs. The growth rate for
nearly Newtonian stars can be estimated from Chandrasekhar’s (1970) expression for the instability in Maclaurin
spheroids; in terms of the period T of the star and the critical value t, of the parameter 7 at which instability sets in,
one can show that the growth time 7 is given by

¥ o RN e
7~ 10° (c - 1)°°

7 Although formally a secularly unstable but dynamically stable Newtonian configuration is unstable against gravitation radia-
tion, the time scale for the growth of this instability may be much longer than the age of the Universe. Time scales are discussed

in the final section.
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Typical times for neutron stars range from milliseconds to months (cf. Friedman and Schutz 1975). Times for
white dwarfs are substantially longer, but probably still short enough to rule out exotic dwarf or neutron star
models of the high-mass compact component of Cygnus X-1 (Brecher and Morrison 1973). In fact, massive neutron
stars with high differential rotation would more probably represent an avenue to black hole formation than a way
of avoiding collapse. That is, neutron stars which form with rotational energies limited only by the requirement of
Newtonian dynamical stability ¢ £ 0.27 would normally radiate their angular momentum gravitationally until the
point of secular stability was attained. If, however, their masses were close to the limit allowed by the initial
rotation, then the spin-down would lead first to a pulsational instability. And in such a case, it seems unlikely that
enough energy would be available to prevent collapse.®

The numerical work needed to locate in general relativity a rotational boundary analogous to the Newtonian
t ~ 0.14 is still to be done. We are, however, able to show that for any star with an ergo-region the stability
functional C can always be made negative (Friedman 1975). Thus instability to a nonaxisymmetric mode always
sets in along a sequence of rotating stars before the appearance of an ergo-region.® For highly relativistic stars
(Wilson 1972; Bardeen and Wagoner 1971; Ipser and Butterworth 1975), ergo-regions are known to occur prior
to breakup velocity, and they thereby set an upper limit on rotation.

We want to thank James Bardeen, James Hartle, James Ipser, and S. Chandrasekhar for helpful discussions.
APPENDIX I
STABILITY OF NEWTONIAN STARS AGAINST GRAVITATIONAL RADIATION

In the case of a nearly Newtonian star, we will show that the functional C governing stability in general relativit
is positive-definite for all trial functions if and only if the star is secularly stable in the Newtonian theory. In p#
ticular, the stability criterion of Theorem 2 is identically the Newtonian condition for secular stability (Lynden-
Bell and Ostriker 1967; Chandrasekhar and Lebovitz 1973) when the perturbations are also Newtonian. This
generalizes to arbitrary Newtonian stars the analogous result obtained by Chandrasekhar (1970) for the uniform-

density, uniformly rotating Maclaurin spheroids.
We want to prove that

s L ¢z (A1)

is positive-definite for all perturbations of a secularly stable Newtonian star that obey the time-independent initial
value equations. The proof shows essentially that the integrand % can be written as a sum of two groups of terms;
the first group is just the analogous Newtonian variational expression, while the second represents a contribution
of the same order arising from gravitational waves on a flat background. The integral of the first terms will be
positive-definite exactly when the Newtonian star is secularly stable, whereas the second group will always be
positive, reflecting the stability of flat space.

i) We first observe that when the initial value equations

8G% = §ndT0%

are satisfied, the functional C is independent of the conjugate variables /,,, because the variation of C with respect
to arbitrary variations in /i, then vanishes:

. &C
Shg,

in the time-independent case we are considering. Here 8C/8h," is a variational derivative, because the surface
integral vanished for permissible trial functions. We will use our freedom in choosing £° (see § 11la) to set £° = 0;

thus only % and #,, will appear in C.
We will subsequently make further use of the initial value equation
8Gyo — 8m8T5p = — 37,V V, by — 1671009V £y
+ (G°04 — Bu W00 — 16mg® Ty + 8méV T
=0. (A2)

8 A similar collapse resulting from the spin-down of carbon-burning stars was recently suggested by Wheeler and Rosenwald

(1973).
® A proviso should be made—namely, that instability is implied only under the assumption that any time-dependent nonaxisym-
metric perturbation of an axisymmetric background will be radiative. It seems apparent that any such perturbation will alter the

multipole moments.

= 8G% — B#x6T% = (0
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ii) The elimination of post-Newtonian terms. The functional C now has the form

C= f {= 167UV £5*V & — 16mV " (hap* Vb5 + hagV,E5*) — 3% Vhog* Vo
5
+ 8V, T (hep*€, + hepf?™) + 167T%Rypsb™ €0 + (G¥70 — S W )V, 5*hyp)

=I{gl+gg+g3+§4+%’5+gﬁ}.
8
(A3)
In the unperturbed star, velocities are small: v « 1. In terms of v we have p/p = O(v?) and the gravitational
potential » = O(2?) . In the limit of a Newtonian background, the dominant terms in C are O(v*). We find C,, C,,

and Cg are O(+°) and can be neglected in comparison to C;, Cs, and Cs in which only the leading terms are
retained. In equation (A2), the third term is negligible.

iti) The separation of waves from the ordinary Newtonian perturbation. The metric to Newtonian order is
ds® = —(1 + 20)dt? + (1 — )(dx? + dy® + dz%),
s0 a strictly Newtonian perturbation would have
hoy = —28vg,,, V26v = 4mép .
We therefore separate this part explicitly by defining
hop = Kup — 284587, V28y = 4ndp .
Then C can be written as the sum of three pieces:

C=Cw+C;+ Cy;
e R e P
C = J; 2V, (K*o* — g* K" *)V 8v + (complex conjugate) ,
Cu = [ ~41U812 — 16mplu-VEP + 16mp|V-E2 + 16mpte* ¥, Tpw — L6np(|V-£17 = Va* V). (A%)

The functional Cy, is all one has for perturbations of flat space, and is positive-definite when the flat-space initial
value equations are satisfied (as we show below). The term C; will be shown to vanish. The functional Cy is equal,
after integrations by parts, and use of the definition of v, to the standard Newtonian functional found, for example,
in Clement (1964), Lynden-Bell and Ostriker (1967), and Chandrasekhar and Lebovitz (1973):

1o O = [ 4000700 + 865%) + 9ol V417 + (V£ + £V-£)Tup + PGV + VT0p) — plo-VEJ.
s (A5)
iv) The positive-definiteness of C. We must use equation (A2), which has the form
—4(Vhe, — V,V,h*%) + 87V -E + 82E.Vp =0, (A6)
Substituting K, into this and using the equations

8p = =V .(pE), V28y = 4mdp ,
gives
VEVA(Kap — 8asK) = 0. (A7)
This is the form the initial value equation takes in flat space, and it implies that C, is a divergence. Therefore, the
stability problem separates completely into the stability of flat space plus the Newtonian stability of the Newtonian

star.
The stability of flat space follows from the positive-definiteness of Cy : after two integrations by parts we have

S J' —V,KYPVEKT, — 2V, K5V K + VKAV, K7 4+ VKoV, K% 4 Y, K*, VeKo .
5
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Multiplying equation (A7) by K*~,, integrating it by parts, and adding it and its complex conjugate to 2Cy gives

20y = [ VKo VK™ 4 V,KOVR, — 2V,K9, K. (A8)
i 5

This is manifestly positive-definite for the gauge V;K.? = 0, which we are free to choose. In fact, however, following
Araki (1959) one can use Fourier transforms to show that Cy, is positive in any gauge.

Since K,; and ¢, are completely independent, we have the following result: a Newtonian star is stable in general
relativity if Cy is positive-definite, i.e., if it satisfies the Newtonian secular stability criterion. From the derivation
it is clear that this result applies to al/ Newtonian solutions: all Newtonian equilibria secularly stable in Newtonian
theory are stable against gravitational radiation.

APPENDIX II
EXTENSIONS

The formalism and theorems developed in this paper can be simply extended to more general Lagrangian systems.
As examples, we outline the treatment of source-free electromagnetic fields and of elastic solids.
Electromagnetic fields are characterized by a stress energy tensor

Top = FoeFy® — 3gupFeaFe? .
When the perturbed field is written in terms of a perturbed vector potential,
8F,, = V, 84, — V,84,, (A9b
the symmetry property analogous to equation (3.16) is
28A4°8(VFop) — ho(—g)~128[T (—g)117]
= g°g"5F,,0F 4 — Fipeah®ht® — 2F,5(h**8F,, + h**8F,.)

N + IFhSF,, + h8F,) + V,[84°(28F¢, + 2h%°Fy, + 20, Fo¢ + hF4)], (A10)
e Favea = 2FeaFoig + 38asFeeFs® + 38eaFueFs® — }(8uckoa + Lad8vc + av8ea) FerF*!
= Favkeay = Feaan - (A1)
The contributions to </, &, €, and %° of equation (3.19) are
Ay = 2nn® — g*nn)6A4,84, , (A12)
Bem = 4[8A°nV .84, — ARV 34,
— 2[naFoc(h**8A° — h5A%) — n F*(h,84° — hoySA®)] + Fobn,(h8A4, — h84,), (Al13)
Com = — Fapeah®h® + 4V,54,,V984° — AR (V484 + hPV 84, + Fo(hV 84, + hV,54,), (Al4)
and Aem® = —SAY(28F°, + 2h%°Fy, + 2h, Fo¢ + hF®,) . (Al5)

Here the vector potential is §4,(x%)e', anid we define §4° = 2°%8 A4,.

When n° is timelike, &/gy, is positive-definite. When n¢ is null, s#py is positive or zero, and can be made ident:-
cally zero by the gauge choice n°84, = 0. Then if one is studying only the source-free Einstein-Maxwell equations,
«/ will vanish completely on the null hypersurface. The frequency equation becomes trivial, and Lemma 3 still
holds for the single root of the equation. The stability theorems then also hold true if R = 25 R%n, is still positive,
which we now prove.

We assume that the unperturbed electromagnetic field goes to zero at infinity at least as fast as r- , so that equa-
tion (A15) implies

Rpy = lim 2 | 8A**8F",r? sin 0d0dy (Al6)
on the hypersurface u = const. The gauge n*84, = 0 implies 84, = O(r~2) which would have been the conse-
quence of the equation §(V,F**) = 0 anyway, had we not chosen a gauge. The remaining components 84 in an
orthonormal basis are O(r ). Then #yy becomes

By = — lim 2lor? f (|849)2 + [54°|2) sin 0dde . (A7)
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This has the correct sign, so electromagnetic fields also obey Theorem 2. )
For the case of an elastic solid, Carter and Quintana (1972) and Carter (1973a) give an energy momentum tensor

T = eu®u® + p*°, (A18)
with
pob = p(ab) and pebub =0.
Then ’
(_g)-lrza[racﬁ(_,g)lizl = Wanchgw (Alg)
with

W abed %‘acubuc“d — %Eubcd + ,!_[pucubud + padub“c + pbcuaud + pbdua“c —_ pnb“cud = cduaub] g (AZO)
The elasticity tensor E°** is defined by

Eobed — _2-6.‘1‘2 s pab cd . Flabled) — [Fedab (AZI)
and 9 ’
Because the symmetries
Wabcd __ pj/tabXed) _ py/cdad (A22)

still hold, the equations in the body of the paper are correct as written, with W given by equation (A20), with

[Jabed — 7 JJ/abed + Tucgbd’
and with
pabed — pabed + *(Taegbd + Tbcgad e Tnbgmi)'

In particular the elastic solid contribution to the coefficient of o? is
Hpg = Unan.bp*Eq = Wne)*(eq™ + p*)Ea*bp — Q66 (A23)
with
an - (Enhcd o, qucpba)"bnd "
But the sound velocities in the direction of propagation g%, are (Carter 1973b) the eigenvalues v of
[v%q“ncng(eq™ + p*) — Q% (A24)

for ¢, a unit polarization vector. Then the weak energy condition, T,,/%l* > 0 for all null /2, implies (eg?® + p?)£* ¢,
>0. Requiring v* < 1 for all principal sound velocities gives

s 2 [(U°n,)* — q°nngl(eg™ + p»)éa*és (A25)

positive-definite when n® is nonspacelike.

APPENDIX III

We present here a derivation of the formulae in § 1115 leading to the symmetry relation (3.18). The following
operators defined on tensor fields Q will be useful:

80 = (—g) V28[Q(-9)"*], £ W = (-g) %[0(-8)"],

and
AQ = (—g) "2A[Q(—g)"*] = (B + £)Q. (A26)
Let us first establish equation (3.12), namely,
SGED = -&t“"e“f,v(,vd,k,, + Gcbcdhed . (A27)
We have

8G® = (—g) V25[R.u(g°g™ — 1&g N —8)"”]
= 8R.4(g°g™ — 18%8") + h(R™ — 1g™R) — (h*°g"* + g*h"" — }h*°g** — 38K )Ry . (A28)
By means of the relation (eq. [8.11])
8Rap = VeVl — 3V Vo — 3VeVoh,, (A29)
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the first term on the right-hand side of equation (A28) can be written as ‘
8R.4(g%g" — $g%8")
= He"g"g" — 18°°8°8* N (VeVehas + V.Vahes — VeVihey — V.,V heo)
= 3V Vaka (B 8" + 59870 + 7 — e = - )
+3Vi. Va(s¥8"s"™ + g%7g™ — g°°8"'g* — g*°g*%8"")

= Leee0bd! Y Vyh,, — 4R, + LR, . (A30)
Substituting this expresion in equation (A29) and grouping like terms, we obtain

8G* = 39V Vohoy — 3R heq + Hg™R + gR® — g“R* — g"RVhcq

+ 3R(EP + 8 ~ 88 e
= 329 Vi Ve + G*%heq, (A31)

where
Goed — JRMCAD o L(gabRed 4 gedRab _ gacRa® gPCRY%) + }R(g*gh + goighc — gobged)
= (GlabMed) . (Fedab - (A32)

as a result, the expression obtained from equation (A31) by contraction with an arbitrary tensor Ay is manifest
symmetric in /,, and A, to within a divergence:

hapdG® = — 30V Ry Vahey + G hophcg + V(30 JiayV aher) - (A33)
We next derive the analogous relations for the fluid perturbations. The equations of § I1Ia,
Au® = JutuPutAg,, (A34)
and
ég. = _A_‘. = —1g9b
S e 19%°Agy, , (A35)

permit the Lagrangian change in the energy momentum tensor,
T = (e + puu® + pg®™ = ew™u® + pg®®

to be expressed in terms of the variables £* and &, via the perturbed metric Ag,y = hg + 2V .65, In particular,
observing first that

Ag® = (—g*g™ + wuPu‘u)Ag.q, (A36)
we have
AT = Aeu®® + 2euAu® + Apg®™® + pAg®®
= [—4(e + P + e®rPufu® ~ ypgig® + p(—g*g® + untuu)]Ag., . (A3b :
Now
(—8) " Y2A(—g)'"* = 1g™Agas - :
Consequently,
AT® = AT® 4+ 3T®g"Ag,,
= [¥e + puvuu® + tp(g®g*™ — g°°g" — £g°%¢™) — 1pa”q°1Age
= Wabchgcd . (A3‘8)
where

Jabed . p/tabied) — pj/edab
An analog of the relation (A33), namely,
Bga AT = Weshg,Ag.s = AgnBT*, (A39)
then follows.
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Equation (A39) is equivalent to a relation of the form

AV, T — 1h,,8T* = {expression symmetric in the barred and unbarred quantities} + divergence .

In showing the equivalence we require the following lemma:

EalB, VoIT™ = ~T®[Vaf.Vot® — Racsad®€’] + 3T + VolT®Ehy; + T*E Vo, — $T°Eyc] -

To prove the lemma, we note first that the commutation relation
[£{s vb]"j‘a = Rﬁbcdncgd + ‘qcvcvbfﬂ L]
together with the fact that [£,, V,] is a derivation implies the identity

[, Vp] A% = Z [BT%c + Vo Vo™ + R¥yqef%]A% %-1%017"%
=1

where
H 8%, = 1g°U(Velyg + Viohea — Vi) .

ence

(A, Vo]T% = [I(Vch% + V% — Vo) + V. Vu — RO 81T + Vy(dh + V)T
But
(—8) 2[4, VoJ(—8)'2 = —Vy(3h + V.£),

whence
Th [A, Vblr o = Tbc&(vckab = V,,ft“c = V"flb,) ot chbea - Rabcdgd'] *

us

ga[A: Vb]T“ = Tulgcvavbfc T Rubdgtfd] + i(vchu + vb}fac == Vaﬁae)f“i" e

which is equivalent to the lemma when the equilibrium equation V, 7% = 0 is satisfied.
To obtain equation (A40), we write the relation (A39) in the form

WercdAg, Agey = (Ray + 285,V )AT® + 2V (E,AT™).
Then E VAT — JinyST® = — 3 WooiBig, Ageq + HinnfeT® + Vo(EAT™),
and the lemma implies that

EAV, T — 3k, 6T
= —T(VEV,€, — Rucoal %) + Hhan€eT® + hoykeT™) — 3W¢Ag,,0g04
+ Va[T(hye + Vobe) — 3T°Ehye + W y(hea + VL)l -

Making use of equation (A44) and of the relation

£T% = £V, T — V5T — V &T% 4 VT,

we obtain
EAV, T — 3k,5T
== Uabcdv“{:'hvcfd - V“"“’(E“Vc f,; + hcbvcgﬂ) = '}W”mﬁc bh“ 4 Teab -Rucadf_cfd
+3V T ey + €ha) + Vi(URPHV £y + VoOh4E,) ,

where

[Jabed . D Jj/ebed I'acgbd

= (e + Pty + p(g™'g™ — 8%¢") — 19 = U

and

pabed . Jrabed 4 %(T“g” s Tbcgad Fe T“"g“’)
= 3 + puu’q™ + wucq®® — utu’q™) — Jypg*ge.
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(Ad1)

(A42)

(A43)

(A44)
(A45)
(A46)

(A47)
(A48)

(A49)

(AS50)

(AS1)

(AS2)
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Finally, multiplying equation (A51) by 16« and adding it to equation (A33), we obtain the first relation df§ 115,

equation (3.18):
167E,AV,T% + /i,8(G® — 87T%)

et IGWU“““ngachg _ I&Vabcd(;;ﬂbvc Ea i hnbvcga) — %eucegsbd!gv c},‘ﬂvdhﬁ
+8”V:Tab(“;ab‘fc + hab‘a&) + IG”T“Racbdf_cfd + (Gabed — 8n W“”"“)E”hm
+V¢[1617Uab‘:d§_bvc§¢ + lGﬂ'VCdabhcdfb G %E“cegfbdfﬁcdvbhef]

= 167E,AV,T% + h,,8(G® — 8xT2),

where in the last line the equilibrium field equations have been used to regain the ordinary Lagrangian and Eulerian

operators.
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ERRATA

In the paper *“The Characteristic Size of Clusters of Galaxies: A Metric Rod Used for a Determination of g,"*
by Gustavo Bruzual A. and Hyron Spinrad (4p. J., 220, 1 [1978]), an inconsistent application of values of 50 and
100 km s=* Mpc~* for the Hubble constant was inadvertently made.

Equations (7) and (8) should read:

go = 023 + 0.51,

l. = (446 + 12)hso~ " kpc, M
and

g0 = 027 + 0.58,

I.=(293 + 25)hso~* kpc, 8)

respectively.

The values of /. in Table 2 (col. [10]) correspond to H, = 55 km s~* Mpc~* (h, = 1.1), and the legend to Figure
4 should read: ** Angular size plotted as a function of redshift for data given in columns (4), (7), and (8) of Table 1.
Curves given by egs. (2) for I, = 446h;,~* kpc, hs, = 1.1, and g, = 0, 0.50, and 1 are shown. The error bars
correspond to +a(log a). The available data suggest g,°?** = +0.25.”

We thank Dr. P. Henry for pointing out the factor of 2 inconsistency in equations (7) and (8) and the text.

The paper, *“On the Stability of Relativistic Systems™ by John L. Friedman and Bernard F. Schutz (4p. J., 200,
204 [1975]) contained several sign and arithmetic errors which do not affect the paper’s conclusions. The following
is what the authors believe to be a complete catalog of them.

1. In the last line on p. 205, change R'to —R".

2. The definition of G, following equation (3.12) should read

Gavea = ¥Roteary — HiRac&arp + FRoc8a0y@ — Rap8ea — ReaBas)
+ }R(8uc8ba + BuaBbe — Bav&ea) -

Note that Go¥, = 0.

3. Everywhere the product €*°*%¢*%/, appears on pages 209, 210, 211, 217, 218, and 220, its sign should be
changed. The e-terms in Appendix I remain unchanged.

4. In the definition of ¥ following equation (3.19), R,.., should be R,.;,.

5. In the equation at the bottom of p. 213, 10~7 should be replaced by 102,

6. In the last sentence on p. 217, the reference to equation (8.11) should be to (3.11).

7. In the second-to-last line of equation (A30), insert A,, immediately following V. V.

8. In the sentence following equation (A30) the reference to (A29) should be (A28); in the equation on the next
line insert 3/2 in front of g R* and g*R%.

9. In equation (A32), the definition of G***¢, insert 3/2 in front of g#¢R®® and g¥cR®s,

10. In the equation between (A41) and (A42) the sign of R, is wrong.

11. In equation (A47) change the first + to —.

12. In equation (A48) 8T should be 8T, _

13. In equation (A49) the final term should be W®<4¢, (h., + 2V £,).

14. In the final line of equation (A52), insert a left parenthesis immediately after (¢ + p).
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