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parameters.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso. the  input  must  retain this property  for  all time. If 

these  conditions, intuitively reasonable  for  adaptive  identification.  are 

fulfilled, then  the lower bound  in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.2) holds.  while the  upper  bound 

reflects boundedness of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAup( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.). 
A common  procedure  to  ensure  fulfillment of those requirements is to 

take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAup( . )  to  be a finite  sum of sinusoids or periodic signals. In this  way. 

up( . )  is periodic, or almost periodic, and if there  are  sufficient  different 

frequencies  within up( .), the persistently exciting condition holds for 

V ( - ) .  

A-111 Origin of (3.4) 

An alternative  approach  to the above (useful because, as it  turns out, 

integrators  are  saved) is developed in. e.g., [4] and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9]. The model. this 

time. partly in Laplace  transform  notation  and neglecting the  transform 

of exponentially  decaying  quantities. is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i= I 

- .  

Y , ( s ) = B ‘ ( s I - A ) - ’ B w , ( s ) ,  A + A ’ = - I .  

One  can shoa: that Y,,,(s)=  Yp(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif and only if I , ( t )=k , ,  12(t)=k2  for 

two constant n-vectors k1 ,k2  determined  by and  determining  the  plant 

transfer  function. The task  therefore is to  ensure  that I i ( f ) - d j  as ?-x~.  

One still adjusts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIl(?), I , ( [ )  using  the  errory,,,(t)-yp(f): 

- -  

although  the errorym(.)-yp(.) is not  formed in the  same way as before. 

By taking 

where . ~ 2 = A ~ ~ 2 + B [ ~ m ( r ) - k ; t . l ( f ) - k ; n , ( r ) ] .  (3.4) follows, other  than 

for an additive, exponentially  decaying  term. 

A-IV The Observability Condition (3.5) 

The  remarks concerning (3.2) apply of course, but there is additional 

intuition  regarding  the  need  for the integral  in (3.5). In forming the error 

y,,,( f)-yp(r) which is used for adjusting  the I;(.) in (A6). the c,(c) are 

integrated [see last  equation in (A5)] in the  second scheme. while no 

integration  occurs in the  first  scheme [see last equation  in (AI)]. The 

persistently exciting condition is required of the  integrated c , ( . ) .  
Proposition 1 states  that if a persistently exciting condition is absent. it 

cannot  be  regained by integration, while Proposition 2 states  that if it  is 

present,  and if V ( . ) E Y ,  then  it is retained  by  integration.  Requiring 

V ( . ) E ’ 7 -  is equivalent  to  not allowing V ( . ) .  as  time evolves, to  contain 

less and less low frequency  content.  Since the effect of integration is to 

cut  down high frequency  content,  taking V(.)E‘?’ therefore ensures  that 

the integral of V ( . )  does  not  die  away  as ~+cc .  

A -  V Origin of (3.9) 

The thinking is much  as  for  the origin of (3.4). save that instead of 

having Y,(s )=B ’ (s I -   A) - ’BW,(s )  where the  constraint A + A ’ =  - I  

forces B’ (s I -   A ) - ’B  to  be positive real one allows Ym(s)=  Z(s)W,(s) 
where Z(s)  is positive real (in a strict sense described  in  Theorem 4). 
Equation (3.9) is thus a generalization of (3.4). 
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On the Stability of Solutions to Minimal and 
Nonminimal Design Problems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Abwucr-A partial resolution to  the question of stability of solutions to 

the minimal  design problem is given in terms of transfer  matrix factoriza- 

tions employing the new notions of common system p o l e s  and common 

systems  zeros as well as the fixed poles of a l l  solutions and the  fixed poles 
of minimal  solutions. The results are employed to more directly and easily 

resolve questions involving the  attainment of stable solutions to  the model 

matching problem and  stable minimal-order state observers. 

1. INTRODC.CTlON 

The primary  purpose of this paper is to investigate various  questions 

involving minimal-order  dynamic  compensation.  In  particular. in Section 

I1  we present  some prelimiilary mathematical  notions involving minimal 

bases of rational  vector  spaces.  In Section I11 we formulate  the  minimal 

design problem and illustrate  how  it  can  he  rather easily and directly 

resolved via prime  polynomial  matrix  reductions  to  either row or column 

proper form. 

The  question of obtaining  stable  solutions  to  the  minimal design 

problem is then  considered in Section IV. Here we define the new and 

intuitively appealing  notions of the  common poles and  the  common 

zeros of dynamical systems. as \vel1 as the fixed poles of all  solutions  and 
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the fixed  poles of minimal  solutions.  These  definitions are then  employed 

to completely resolve the question of obtaining stable  solutions to the 

model  matching  problem, and  to partially resolve the question of obtain- 

ing stable solutions to the  minimal  design  problem. 

In  Section V, the question of obtaining minimal-order dynamic  ob- 

servers of any linear  function of the  state of a given system is shown to 

be analogous  to the  minimal  design  problem. The allied  question of 

observer  stability is then  considered in view of earlier  results. and  some 

concluding remarks are presented  in  Section VI. 

11. ?VhTHEMATICAL PRELlYINIUlIES 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT(s) denote the  field of rational functions and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS[s] the  ring of 

polynomials in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs (the Laplace operator) all with real  coefficients.  Any  set 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm (column or row) vectors c,(s) with elements in S(s) or 4[s]  will  be 

called Iineartj: independent if and only if Z;l a;(s)c,(s)=O implies  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a,(s)=O for a l l j E m  (where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm denotes  the set 1,2:. . .m). It  should be 

noted  that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai($) can belong to 9(s) or S[s] regardless of the ~$5). 

The rank of a n y p x m  matrix M ( s )  tvith elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmrl(s) in %(s) or LF[s] 
will be  defined as  the  number of linearly  independent  (column or row) 

vectors which comprise "3). 

We now recall  certain of the notation  and results given in [l]  and 121. 

In  particular. let A4 (s) represent any  p X m matrix  with  elements  in %[SI, 
i.e., apolynomial matrix.  Let T,[M(s)]  (T,[M(s)]) represent the ( p x  m) 
real  matrix  consisting of the  coefficients of the  highest  degree  poly- 

nomial or polynomials in each  column  (row) of M(s) .  M ( s )  will be 

called column  (row) proper [I] if and only if the rank,  denoted by p ,  of 

T,[M(s)] (T,[M(s)]) equals  min {p.m).  It  has  been  shown 111 that  any 

full  rank  polynomial  matrix can be reduced to column  (row)  proper form 

via  elementary  column (row) operations. i.e., if p ( M ( s ) )  =min { p , m ) ,  
there exists a unimodulur marrix max nX 1, U,(s),l U,(s) ( C,(s)), such 

that 

: % f ( s j L ; R ( s ) = , % f R ( s )  ( C ~ , ( ~ ) M ( ~ ) = M ~ ( ~ ) )  (2.1) 

with MR(s)  (M,(s)) column  (row)  proper. An algorithm  for  performing 

this  reduction is given in [I]. and  a computer  program is also  available 

for performing  this  reduction as well as other  useful  polynomial and 

rational matrix  operations [3]. 

If p ( M ( s ) }  = p  < m (the  columns of) M(s) will be called  relaticely left 

prime  (rlp) [ I ] ,  [2] if and only if any greatest common lefz divisor (gcld) [I], 
[2] GL(s) of (the  columns of) M ( s )  is unimodular.  Similarly, if p ( M ( s ) }  
= m < p ,  (the rows of) M(s)  will be called  relatitvly right prime (rrp) if 
and only if any greatest common right dicisor  (gcrd) of (the rows of) M (5) 

is unimodular. I t  is  well known [l], [2] that  any gcld  (gcrd) of a rank 

p ( m )  polynomial  matrix M ( s )  can be obtained via elementary  column 

(row) operations, i.e., if p ( M ( s ) }  =p(m) .  there  exists a U,(s) (UL(s))  
such that 

where G,(s) (C,(s)) is a gcld (gcrd) of M(s) .  Algorithms  for  performing 

this  reduction can be found in [ I ]  and 121. and  one is included in the 

computer program  noted  earlier [3]. 

Let  M ( s )  be any  p X m rational  matrix of rank p( < m). If the rows of 

M(s)  are thought of as representing a basis of a cecfor space V ocer .F(s). 
the  dual space V -  ocer F(s) consists of all  m-dimensional  rational 

column  vectors k ( s )  such that  M(s)k(s)=O. Since V has  dimension p .  
V' will have  dimension m-p.  and  a basis K ( s )  of V -  will consist of 

any set of ( m  - p )  linearly independent  column vectors in ker M(s) .  the 

kernel of M ( s ) ,  i.e., (the columns  of)  any m x(m  -p)  rational  matrix 

K ( s )  will be called a basis of V' if p (  K ( s ) )  = m  -p  and 

M ( s ) K ( s ) = O .  (2.3) 

A prime basis of the vector  space V (  V L, over :F(s) is now defined as 

nomial matrix [ I ] ,  [>I. 
'A unimodular mamx 1s a nonsingular pol>nornlal matnx whose ,s a poly. 

(the rows (co~umns) of) any p X m (m  X (m - p ) )  polynomial  matrix G(s)  
( K ( s ) )  whose  columns  (rows) are rlp (rrp). A minimal basis2 of V( V L, is 

defined as  any row proper (column  proper)  prime  basis.  Finally, if the 

rows of any minimal  basis M(s)  of V are  permuted so that a,[M(s)], the 

degree of each  ith row of M(s) is less than or equal to the degree of 

subsequent rows, then  (the  rows of) M ( s )  will be called a degree ordered 

minimal  basis of Vas well. The notion of a degre_e ordered minimal  basis 

of V is defined  in an analogous  fashion, i.e., K ( s )  - is a degree ordered 

minimal  basis of V I  if and only if the rows of K ( s )  are rrp, K ( s )  is 

column  proper, and a,-[K(s)] G a,,+,[K(s)] for j ~ m - p -  1. F g  con- 

Snience, we have and will  continue  to refer to  a matrix,  such as M(s) or 

K(s), as  a basis of a vector  space although, strictly  speaking, we realize 

that the rows or columns of the matrix  actually  comprise the basis. 

Appropriate algorithms for the construction of minimal  bases of various 

rational vector  spaces are given in [4]. 

- - 

- 

- 

111. THE M I s t m L  DESIGN  PROBLEM 

The primary  purpose of this  relatively short section is simply to 

introduce  the minimal  design  problem and to present a solution to it 

based on the  earlier work of a  number of investigators. The results 

presented in this  section will then  serve to motivate  much of what 

follows. 

The minimal design problem (MDP)  can be stated  as follows.  Given a 

p X m rational transfer matrix T,(s)  of rank p (  < m)' and  a p X q rational 

transfer  matrix T2(s) find i ( m  X 9)  proper rational  transfer  matrix T ( s )  
of minimal dynamic  order4 (if such a transfer  matrix  exists)  such that 

71 ( s ) I ( s ) =  T2 (s). (3.1) 

I t  might be noted that if the  minimality of T(s )  is irrelevant.  then (3.1) 

represents  the  well-known "exact model  matching problem." which has 

been the subject of numerous  investigations. To resolve the  MDP. in 

light of the notation  employed in Section 11:  wse require one  additional 

definition.  In  particular,  suppose that K ( s )  is a 4 X r polynomial  matrix 

with q > r .  I t  is clear  that K ( s )  can be partitioned as [ - K:!il,]. - - - where 

K,(s) denotes  the  first r rows of K ( s )  and K,-,(s) denotes the final q- r 

rows. T,[K(s)] will  now be written as [ - Kr:.,], - - noting that Kr, (or 

Kq-r ,7)  does not  necessarily  equal T,[K,(s)] (or r,[K,-,(s)]). With this 

notation in mind, we can now resolve the  MDP. 

Theorem 3.2; Let K ( s ) =  - - - be any (m+ q ) x ( m +   q - p )  de- 1 ;::; 1 
L T  1 

gree ordered, minimal  basis for ker [ T I  (x) - T 2 ( s )  1. The  MDP  has 

a solution T ( s )  if and only if 

p [ K , , l = q .  (3.3) 

Furthermore, if (3.3) holds,  the  minimal  dynamic order of an appropriate 

T ( s )  is equal  to the  sum of the  column  degrees of the  first (ordered from 

left to ri-eht) q columns of K ( 5 )  for which the  corresponding  (numbered) 

columns of K, are linearly  independent.  These q columns of K(r). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[-:{I;], represent a proper.  minimal-order  solution T ( s ) =  R ( s ) P ( s ) - '  

to (3. I). 
Proof: Since  Theorem 3.2 is not original,  except  for  the particular 

way it is stated using the (new) notion of a degree ordered, minimal 

basis, a  formal proof will not be given here and  the interested reader is 

referred to [4]. It  should be  noted  that  Wang  and Davison [6], [7] were 

zTh~s definition corresponds to that given by Forney 141. 

31f p > m, the MDP either has no solution or a unique solution (which can easily be 

41f R ( s ) P - l ( s )  is a rrp factorization of T ( s ) .  a [ ! P ( s ) l ]  IS the dynamic order of (a 
found). 

minimal state-space realization of) T(r) [ I ] .  

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:03 from IEEE Xplore.  Restrictions apply. 

W. A. Wolovich, P. J. Antsaklis and H. Elliott, "On the Stability of Solutions to Minimal and 

Nonminimal Design Problems,” I E EE T r a ns. A utomatic C ontro l , Vol. AC-22, No.1, pp. 88-94, Feb. 1977.



90 IEEE WSACTIONS ON AUTOMATIC CO~TROL, FEBRUARY 1977 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
first to investigate the  MDP.  Fomey [4]  later  employed  the  notion of 

minimal  bases of rational  vector  space  in  order  to resolve the MDP. 

More recently, Sain [SI has  presented a more  direct  procedure  for 

obtaining  minimal bases which  facilitates  certain of the  computational 

steps  outlined  by  Forney, while Morse [9] has  established  the  equiva- 

lence  between  the MDP  and  the problem of finding an (A.B)-invariant 

subspace of least dimension. which contains a given subspace. 

Although we  will not  formally  establish  Theorem 3.2 here, we  will 

illustrate  its  employment by example. In  particular, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S s2+2s+2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= s2 + 3s + 2 
0 -  

s2+3s+2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 2 ( s ) = I z .  
2 s + l  

s + l   s + 2  
- 0 

i.e., if we  wish to  find a proper "right inverse" of TI($). then  we  can  first 

determine a minimal  basis of ker [ TI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s) - T 2 ( s )  1. By employing 

appropriate  algorithms  in  either [4] or [SI. in  conjunction with our 

computer  program [3], we readily determine  that 

r 1  o 0 1  

is a degree  ordered  minimal basis of ker [ PI (s) I - T2 (s) 1. We now 

note  that 

however. a sufficient condition  (Theorem 4.13) for the instability of the 

MDP is also  presented.  It might be  noted  that the question of obtaining 

both a stable  and a minimal  dynamic  order  solution  to (3.1)  is similar to 

the difficult question of stabilizing a linear system via constant  gain 

output  feedback. 

Before  we consider  the  stability  question.  some  preliminary  observa- 

tions  and  definitions  are  required. In  particular. if TI($) and T2(s)  are 

factored  as the rlp products Plp (s ) - 'Q , (s )  and PGL(s)Q2(s) .  respec- 

tively. the zeros of the  determinant .l,(s) of any  gcrd G,,(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof P I Q ( s )  
and P2Q(s) will be  called  the common poles of T, (s )  and Tz(s). It now 

follows that 

(4.1) 

for  some  rlp  pair {P l ( s ) .P2 (s ) ) .  The  zeros of the  determinant l e ( ~ )  of 

any gcld, GLQ(s), of P2(s)Ql(s)  and 6,(s)Q2(s) will be  called  the contmon 
zeros of T,(s)  and T2(s). Finally, if we let AT(s)  represent  the  determi- 

nant of any gcld. G,(s). of (the  columns of) GL$(s)P2(s)Q,(s). the  zeros 

of AT(s)=(GL(s)I  will be  defined  as rheJxedpo1es o.f T(s). The motiva- 

tion for this definition will become apparent  once we state  and  construc- 

tively establish the following theorem. 

Theorem 4.2: If T(s)=  R ( s ) P - ' ( s ) .  with R ( s )  and P ( s )  rrp repre- 

sents  any solution to (3.1). then  the  zeros of (P(s) l  equal those of 

AT(s) .AD(s) .  Furthermore, if (3.3) holds. a proper  solution  can  be  found 

which arbitrarily assigns the zeros of AD(s) .  
Proof? For notational convenience. let 

- -  

Suppose T ( s ) =  R ( s ) P  -I(s) is a solution to (3.1) with R (s) and P ( s )  
r r p .  Clearly. 

which establishes the existence of a proper right inverse. Since  columns 1 [ 
and 2 of K ( s )  are  the first two (= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq) for which the  corresponding 

columns of KO are linearly independent,  the minimal dynamic  order of a 

proper right inverse is 1 = a,,[K(s)]+ a,,[K(sj], and = [ P , , l ( s ) Q , ( s ) :  -P,-, '(S)Q2(J)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[::::I - - -  = o  (4.3) 

then 

and, as we  will show  in  the next section, all  first-order inverses of T,(s) 
will have a single unstable pole at s = 1. an observation which now serves 
to  motivate the next section. 

L \ ' d  

IV. -THE STABILITY QUESTION 

The purpose of this section will be to investigate the  ability and/or consequently, [ M,($) 
inability  to  achieve  stable  solutions  to  the  MDP.  It  should  be  noted  that 

and sufficient condition  for  achieving  stable  solutions  to  the "model =IP(s)l such that the roIys of [ p ( $ )  ; 
following problem." i.2.. in  view of the  formulation  employed here (s) ] 
Morse [ I O ]  has partially resolved this question  by  presenting a necessary that there 

are a basis for 
r . .  7 

Morse's model following problem  can be shown  to  be  analogous  to  the 

question of obtaining  proper  solutions  to (3.1) when T, (s )  and T2(sj are 
. This implies the  existence of a unimodular  matrix U ( s )  

srricfb proper  transfer matrices. BY employing  transfer  matrix  factoriza- L '" ' J 

tions,  rather  that  the  state-space  approach  employed  in [IO]. we  will 

obtain  more general and hopefully more  illuminating  answers  to the 

MDP stability question. As in [IO]. our initial result (Theorem  4.2)  only 

partially resolves the MDP stability question, since minimalit) of the 

dynamic  order of stable  solutions  cannot always be assured.  Unlike [ 101. 51" this ker denotes those row beCtOrs c(s) for which c(z )x (s )=o .  

such  that L'(s) [ p (s) I Q (s) ] = 
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and 

or 

For some polynomial AD(s)= I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU-'(s)I.  - - - - which  establishes the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAId:(: I 
first part of Theorem 4.2. 

TO show  that  the zeros of Ao(s). can be  arbitrarily  assigned  when (3.3) 

holds, we first  assume,  without loss of generality.  that M ( s )  is row 

proper, since G,-d(s) can  always be chosen to insure  this [l]. I f  (3.3) 
holds,  a proper  solution T(s )=  R(s)P(s)- l  to (3.1)  can  be  found with 

P ( s )  column  proper and a ,  [ R ( s ) ] <  a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ P ( s ) ]  f o r j E q .  i.e., a, [R(J)] 

< ac[P(s)]. For any such solution. [ - t::;] - - Eker M ( s )  which in turn 

implies  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM,(s) is row proper  since 

a,[Il . i , (s)Iza,[~,(s)l ,  f o r i E p .  (4.6) 

To explicitly verify (4.6).  we note  that if ark [M,(s)]< ark [Mq(s)] for 

some k E p ,  then a,[M,(s)R(s)]< a,[:M,,(s)P(s)] since P ( s )  is column 

proper and ac[P(s)]a a,[R(s)].  Therefore, the kth row of M,(s)R(s)- 

Mq(s)P(s)+O, contrary to the  fact that [ - - - E ker M ( s ) .  

We  next  assume.  for  convenience,6 that the  first p columns of 

T,[M,(s)] are linearly independent (since M,(s) is row  proper 

T,[M,(s)]  will  have  rank p )  and  par t i t ion M,(s)  as  

[ :M,(s) I M,,,,-,(s)-]. noting that M,&,'(s)Mm,m-p(s) will be proper 

transfer  matrix.  Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( s ) M ( s ) - '  represent any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArrp factorization of 

MG1(s):Mm,,-,(s) writh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAG (5)-column  prpper and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY maxjai[M,,(s)]. 

The eliminant matrix [ I ]  of X ( s )  and M ( s )  can now be  employed to 

obtain  a  pair {a,-,(s),ap(s)) of polynomial  matrices of dimensions 

( m - p ) X ( m  - p )  and ( m - p ) X p .  respectively,  such  that u,-,(s) is row 

proper with a,[a,-,(s)]=~- 1 for i E m - p ,  a;!,(s)a,(s) a proper  rlp 

transfer  matrix  factorization. and 

a , - , ( s )G  (SI + a,(s)S (s) = D (s) (4.7) 

a  column  propcr  polynomial  matrix  with  arbitrary  determinant A,(s) of 

degreed=a[~M(s)l]+(m-p)(v-I) . i .e. ,  a,[D(s)]=a,[:M(s)]+v-I for 

; E m - p .  

I -u,(s) 
We now let LiR(s)= 1 6 (s) - - - - 1 be any unimodular  matrix 

such  that the first p columns of .U,(s) W are rou. proper. An n ( s )  can then he found 
61f M-(r) 1s not row proper. a  column permutation matrix W can be found 

SO that (4.11) holds with M , ( s )  replaced by M,(s) W, which implies that 

IS an  appropnate solution to (3.1). 

with  the determinant of - - - - - - - - - equal  to &(s)A,(s), 
.wmP (s) ; M ~ . ~ - ,  (s) 

-u,(s) U,-,(S) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
I.e., 

for some  nonzero  real  scalar /3. 
We  finally  note that 

=ker [ TI (s) I - T, (s )  ] 
and, therefore,  that 

is a proper  (since a,-,(s) is row proper and ar[am-,(x)] > a,[a,(s)][l]) 

solution to the MDP with poles  equal to the  zero of AT(s) and AD(s).  
Theorem 4.2 is therefore  established. 

While the various  steps  taken to constructively  establish  Theorem 4.2 

may  appear  somewhat formidable,  it  should  be  noted that  the proof is 

based on the key observation that  when a proper T ( s )  does  exist, one 

can  append  to 

( m  - p )  additional rows, [ a ( s )  I 0 1, such  that I[ ::?]I 
to (3.1). 

It is of interest to note  that neither  the  common zeros nor the common 

poles of T1(s) and T,(s) affect T ( s )  since  they can be  "cancelled" on 

both sides of (3.1).  We further  note  that the fixed poles of T(s) [those 

poles which characterize  all  solutions of (3. l)] do correspond to a / /  .f the 
zeros of T1(s) which are not  common to T,(s), as well as the zeros of 1 P,(s)l, 
which  represent the  poles of T2(s) which are not  common to T,(s) .  In order 

to achieve stable solutions to the MDP, it is therefore  necesssary  that  the 

uncommon  [to  T,(s)] poles of T2(s) be  chosen  stable and that Tz(s) have 

in common with T,(s)  any  and all  unstable  zeros of T,(s). This observa- 

tion, which is rather  obvious in the scalar case, therefore  has an  analo- 

gous interpretation in the  more  general  multivariable  case. 

It is finally of interest to  note  that  a sufficient condition for the 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:03 from IEEE Xplore.  Restrictions apply. 

W. A. Wolovich, P. J. Antsaklis and H. Elliott, "On the Stability of Solutions to Minimal and 

Nonminimal Design Problems,” I E EE T r a ns. A utomatic C ontro l , Vol. AC-22, No.1, pp. 88-94, Feb. 1977.



92 IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON AUTOMATIC COhTROL, FEBRUARY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1977 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
instability of all  solutions to the  MDP can now be presented  in view of 

our  earlier  definitions  and results. In particular,  let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd denote  the degree 

rem 3.2, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT(s)= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARL(s)P(s)-' represints  a Groper minimal order 

s_olution to (3.1) with P ( s )  column  proper and degree ordered with 

d=maxa,, [P(s)] .  Let G&) represent any gcld of those j t h  columns 

K,(s) of KJs)  of degree no greater than d f o r   w h c h  &#O, i.e., all of 

the  columns of K,(s) which can be  used to  construct  a P ( s )  such that 

a[ lP(s ) l ]  is minimal and R(s)P(s)- '  is a proper  solution of (3.1). Since 
all of  the zeros of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC4(s)l L A,(s) will represent some of the poles of 

any minimal order solution of (3.1). they will be  called the fixed poles of 
the MDP? In view of this  observation, we clearly have  Theorem 4.13. 

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.13: All (minimal)  solutions of the MDP  are unstable when 

A,(s) is not a Hurwitz  polynomial. 

I t  might  finally be noted that  a Hurwitz A,(s) does not  necessarily 

insure a stable  solution to  the MDP. 

To illustrate  the  results of this  section, let us recall the example 

employed in the previous  section, i.e., 

S +  

and 

In this example, d=l and  K,(s)= [ s! I ] = ~ ~ ( s ) .  In light of 

Theorem 4.13, ATq(s)=s- 1, with s =  I the fixed pole of this MDP,  and 

any minimal  (first-)-order  solution to  the  MDP will be unstable. We 
recall  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis observation  was  first  made,  but not formally  established. 

at  the  end of the previous  section. 

In  light of the  Theorem 4.2, we can now resolve the question of 

whether or  not any stable right  inverse exists, regardless of dynamical 

order.  In  particular,  since 

and 

It therefore  follows that Y =  2 and,  consequently, that  an a(s) of the  form 

[ a , l s + a , ~ a 2 1 s + a 2 ~ a 3 1 s + a ~  with 2a21#a l l  will insure a nonsingu- 

lar, row proper [ - - - - with a fourth degree, arbitrarily assignable 

determinant AD (s). In  particular, if AD(5)  = (s + 2 - j)(s + 2 + J ~ S  + 3)(s + 
4), then a(s)= [s+ 18,s+ 12,s-7] will insure  the  desired determinant 

and 

I (s2-8s+7)(s2+3s+2) (s3+14s2+26s+24)(s+2) 

(-2sZ+ 13s+7)(s2+3s+2) -($+ 19s2+45s+36)(s+2) 

(s2+8s+30) (s2+3~+2)  -(s2+12s)(s+2) I 
s4+ 11s3+40s2+83s+60 

will represent a  stable right  inverse of Tl(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith (arbitrarily assignable) 

poles at s =  -22 j .   -3 ,  and -4. 

V. M~NIMAL-ORDER OBSERVERS 

The results  which  have  been  presented  thus far wiU next be employed 

to investigate the question of obtaining observers of minimal order 

whose  output exponentially approaches some desired linear function of 

the state of the  given  system. This section is motivated by some  earlier 

work of Wang  and Davison [6] and  some results  which have only 

recently appeared [12], 1131. Before  presenting the  main  result of this 

section some preliminary observations  are required. In particular, as 
noted earlier, if T(s )  represents the p x m  proper  transfer matrix of a 

given dynamical system,  it can  be  factored as the  product R(s)P(s)- '  
with R ( s )  and P ( s )  rrp, P(s)  column proper,  and a,[R(s)] 
< aCi[ P(s) ]  di for i Em. We now note in light of [ 11 that  any such 

factorization of T(s)  implies a  corresponding minimal (both controllable 

and observable) differenriul operator realitation of T(s)  of the form 

P ( D ) z ( t ) = u ( f ) ; y ( t ) = R ( D ) z ( t )  (5.1) 

with D = d / d r ,  r j t )  thepartialstare, u( t )  the input, andy(t)  the output of 

the system. As noted in [I], an  appropriate (entire) state, x ( r )  of (5.1) is 

given by S ( D ) z ( t ) ,  with 

represent rlp factorizations of T,(s) and T2(s), respectively,  it  is  clear 

that Tl(s) and T2(s) have no poles or zeros in common (actually 

T2(s) = I2 has  no poles or zeros). Therefore  any G,,(s) will be  unimodu- 

lar  and Pl (s )  can be equated  to P,,(s). Since GG(s )P , (s )  is unimodu- 

lar,  the  zeros of A,(s) will correspond to  the zeros of the  determinant of 

any gcld G,(s) of Q,(s)  which represent the zeros of T,(s) [ I  I]. However. 

it  should be noted that since the  columns of Ql(s) are rlp, any GL(s) of 
Ql(s) will be unimodular, i.e., T,(s)  has  no zeros and, consequently, 

there are  no fixed  poles of T(s).  In view of Theorem 4.2 therefore,  it 

should  be  possible to find a right  inverse of T,(s) with arbitrarily 

assignable  poles. To show  that this is indeed the case, we first determine i.e., 

S ( D ) =  

... 0 
0 ... 

... 0 
0 
0 
0 

... 

... 

1 
D 

. .. D 4 - l  

that 
x ( t ) = S ( D ) z ( t )  ( 5 2 )  

is an  appropriate  state of a minimal  state-space  realization of T(s). It 

therefore  follows  that any q-dimensional  linear function of the  state of 

F ( D ) z ( t ) ,  where 

M ( s ) = [  M,,,(s) I -Mq(s) I = [  Ql(s> -Plp(s) ] 
s 0 s2+2s+2 I -s2-3s-2 

O I  = [ , , + I  s -1  0 1  0 - -2 . the given system Fx( t )  can  be expressed in differential operator form as 

'The fined poles of the MDP w i l l ,  of course, include any and all fixed poles of T(s) .  Fx( t )= F S ( D ) z ( t )  2 F ( D ) z ( t )  (5.3) 
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with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF ( D )  a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq X m  polynomial  matrix which satisfies  the  condition, 

Let US now consider  the  dynamical  system  defined by the differential 
~ , [ F ( D ) I <   a , m m .  

operator representation 

Q ( D ) . ’ ( r ) = K ( D ) u ( t ) + H ( D ) y ( r )  (5.4) 

which is “driven by” u ( r )  and y( r )  of the given system. This system or 

equivalently, ( Q ( D ) , K ( D ) , H ( D ) ) ,  will be  called an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAobsemer of 

F ( D ) z ( t )  of the differential operator system (5.1) if and only if 

1) IQ(D)l  is a  Hunvitz polynomial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2) Q ( s ) - ~  [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( s )  { ~ ( 3 )  ] is a proper  transfer  matrix* 

3) K ( D ) P ( D ) + H ( D ) R ( D ) = Q ( D ) F ( D ) .  (5.5) 

As shown in [I], these  three conditions  are  both necessary and 

sufficient to insure that w(t) will exponentially approach F ( D ) z ( r )  with 

increasing  time  regardless of any  initial  condition  differences? It is also 

shown in [I]  that  an observer of F ( D ) z ( r )  of (5.1) can always be found 

with arbitrarily assignable  poles (the zeros of IQ(s)l), although the 

minimality of the  dynamical order of such an observer cannot be 

assured.  With  these  preliminaries  in  mind. we now state  and establish the 

main result of this  section. 

Theorem 5.6: The differential operator system (5.4) is an obser- 

ver of F ( D ) z ( t )  of (5.1) if and only if [ H ( s )  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ ( s )  I K ( s )  ] 

and 

degree  ordered  minimal  basis of ker 

] a  proper, stable 

r,[ 3 (s) I Q (s) k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s) ] [ i, I Q, I k, 1, then the  dynamical 

order of any observer of F ( D ) z ( t )  can be no less than  the  sum of the 

degrees of the first q rows  (ordered  from top  to  bottom) of 

[ i (s) I Q (s) I i (s) ] for which the corresponding  rows of Q, are 

linearly  independent.  These  q rows, 

of [ (s) Q (s) I K (s) ] will   represent  an  observer,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Q,(D),k,(D),k,(D)) of F ( D ) z ( r )  provided IQ,(s)l is a Hunvitz 

polynomial. 

Proof: The first statement of this  theorem is a direct  consequence of 

the  definition of an observer of F ( D ) z ( r )  as well as the  observation that 

(5.5) holds if and only if [ H ( s )  Q ( s )  I K ( s )  ]Eker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I;;;] - F ( s )  . To 

establish the  dynamic  order  bound associated with the observer, we now 

[ i,(d ; Q J s )  ; ] 

R (s) 

R (s) 

note that a minimal,  degree ordered basis  for ker - F ( s )  is given by [:;;):] 
any  dual rlp  row proper  and  degree  ordered  factorization 

[ &(s) I Q (s) ]-‘k(s) of the proper transfer matrix 

P (s)-I, i.e., 

[ i ( s )  Q(.) ] - I i ( s ) =  - - - - P ( s ) - ’  [;:;I (5.7) 

a l l h e  Laplace  operators  and the differential  operator D can be interchanged  freely  due 
to the assumption  of  zero initial conditions. 

y ( r )  in (5.4). then in view of (5.5). Q ( D )   [ w ( r ) - F ( D )  z ( r ) ]=O,  which  implies the noted 
91n this paper we might note that if P ( D )  Z ( I )  is substituted  for u(r) and R ( D )  r(r) for 

observation. 

93 

with a,[ H ( s )  f Q (s) ] > a,[i(s)l,  and [ i ( s )  I e(.) ] both  row 

proper and degree ordered.  It now follows that [ i, Q, ] will be 

nonsingular and, therefore, that p(Q,]= q. In  light of  Theorem 3.2 
therefore,  the  minimal order  condition is established.  Finally, if 

[ i , ( s )  I Q, (s )  I k , ( s )  ] represents  the  first q rows of 

[ (s) I Q (s) f i (3) ] for which the  corresponding rows of Q, are 

linearly independent then Q,(s) is row proper and a,[Q,(s)] > 

ar[ i, (s) I k, (s) 1, which implies [ I ]  that Q;I(s) [ i, (s) k , ( ~ )  ] 

I I 

is a proper  transfer  matrix.  It  rhus  follows that if IQ,(s)l is a Hurwitz 

polynomial,  then Q, (D)w( t )=  K,(D)u(r)+ H,(D)y( t )  is an observer of 
F ( D ) z ( r )  of the given differential operator system (5.1). 

It  should  be  noted at this  point  that a Q (s) of minimal row degree can 

always be found which satisfies  all of the observer conditions except 1). 
In other  words. as in the  case of the MDP. there is no  guarantee  that  a 

minimal-order  solution to (5.5) will also  be stable, an observation analo- 

gous to that  made  in [12]. It  might  be noted that an  alternative  procedure 

is outlined in [ 121 for  determining  the  minimal  order of an observer, and 

that of that  paper corresponds  to the  degree of IQ,(s)l as defined 

here in Theorem 5.6. 

We  further remark  that a notion of “fixed poles of any minimal-order 

observer of F(D)z(r)”  can  be defined in a  manner  analogous  to  that 

use4  to define the fixed poles of the MDP in  Section IV. Inparticular, 

let d denote  the degree of the  qth row of e,(.) and Om= a [I Q,(s)J]. The 

zeros of the  determinant of any-gcrd, GR(sl ,  of those ith rows Q,(s) of 

Q (s) of degree no greater than d for which Q,,#O, i.e.. those ith rows of 

Q(s )  which can  be used to  construct  an “observer” of F ( D ) z ( t )  of 

lowest  possible order 0, will be  called rhefixedpoles of any 0,th-order 

“obserwr” of F{D)z(r). The  reader is cautioned  that there is no  guarantee 

that  an observer of order 0, actually  exists,  even when IGR(s)I is a 

Hurwitz  polynomial;  hence, the  quotation marks around  the term ob- 

server.  It is clear,  however, that if IG,(s)l is not  a Hurwitz  polynomial, 

then an observer of F ( D ) z ( r )  of order 0, does  not exist.  We  finally note 

that  an observer of F ( D ) z ( t )  can always  be constructed with  completely 

arbitrary poles [I]. However,  the  minimality of such  observers has 

generally  been  established  only in the rather restrictive  single-input 

and/or single-output  cases. 

I t  should be noted that the results given in this section can also  be 

employed if one begins with a controllable and observable  state-space 

representation of the form: . i . ( r )=Ax( r )+Bu( r ) ;  y ( r ) =  Cx(t), by first 

factoring the  system  transfer  matrix T(s )=  C ( s l - A ) - ’ B  as  the rela- 

tively right  prime product R (s )P  -I($) with P ( s )  column  proper. We wil l  

now  illustrate  this  point by employing an example used in [IZ]. 
In  particular,  suppose we are given a state-space  system with 

c=[o 0 0 0 1 1  
0 0 0 1 0  

and we  wish to construct  a minimal-order  observer of F.x(r), with F= - 1 
4 

[ -: -3 - - I  - 1  -2  -2  I:]. BY employing our computer program 

[3], we readily  determine that  an  appropriate factorization R (s )P -I(s) 
of C ( s l -  A ) - ’ B  is given by the pair 

and  that  the  corresponding F ( s )  [ I ]  is 

F (s) = - 1  
- 3s2-3s - 1 0 
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We  next  determine [3] that  Finally,  it  was  shown  that  the  question of designing minimal-order 

4 ~ + 7 . 8  2.7s-7.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 4s-8.3 -1 .9~+0.8  I -14.7 
2.7s + 0.6 I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.8s - 0.5 - l.9s+0.8 I 0.9 

- 3s I 4s+ 1 2s-1 I 0 
-5.2s - 1.8s2+4.8s-2 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-5.5~'+5.7~+0.5 O.6s2-0.2s+ 1.5 I 12.85 1 

represents a degree  ordered.  minimal  basis of ker 

= i  
4 2 . 7 '  4 - 1 . 9 '  0 0 
4 2.7 I -3 .8 - 1.9 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0 

- 5  - 3  I 4 2 ' 0  0 '  
0 - 1.8 I -5 .5  0.6 I 0 0 1 

Since 4 = 2  in-this example. and  the first two rows of Q, are linearly 

independent. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd =  1 while 0,=2. We next observe-that  the  i=-l. 2, and 3 
rows of Q ( 5 )  are of degree  no  greater  than d= 1 with Q y , t O  and. 

consequently.  can  be used to construct an  observer of f x ( r )  of minimal 

order 2 Qrovided one exists). Since G,(s)= I ,  is a gcrd of the  first  three 

rows of Q(s)  [3]. i t  follows that there are  no fixed poles associated with 

any minimal-  (second-)  order  observer of Fr(r). In fact.  for this rela- 

tively simple example. it can be shown  that  both poles of a minimal- 

order  observer  can  be  arbitrarily  assigned. 

In particular. if we premultiply [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi (s) I Q (s) K ts) ] by the (2 x 4) 

scalar  matrix a . with a and b arbitrary.  the resulting 
[ 0  1 b 0 1  

(2x6)  matrix. [ H ( s )  
- _ - -  

that IQ(s)l=(- 14.8+ I5.6b) s2+(21.1-7.9a-21.9b)s+(-6.2+0.3a+ 

7.56); i.e., by appropriately  choosing a and b, we can  obtain  any  pair of 

observer poles.1° To illustrate, if a= -0.2 and b=0.985. then lQ(s)l= 

0 . 5 4 ~ ~  + 1.08s + 1.08 and 

3.20-8.5, -2 .30+1 
[0.140+0.5,  0.1D-0.21' [ -'::; -t-']]i 

would represent a minimal-(second-) order observer of F-r(r) in differen- 

tial operator  form. . in  equivalent  state  space observer could now be 

easily obtained using the results given  in [ I ] .  

We finally observe  that if the original  dynamical  equations of a system 

are given in the  differential  operator  form (5.1). then  the results of this 

section  can  be  employed  to design a minimal-order  observer without 

employing  any  form of state  space  representation. 

VI. COSCLLDING REYARKS 

The question of obtaining  stable  solutions  to the model  matching 

question was resolved through  the  employment of prime  transfer matrix 

factorizations and  the new and  intuitivelj-  natural  notions  of the com- 

mon  zeros  and poles of dynamical systems as well as the fixed poles of 

various  minimal and nonminimal  solutions.  More speciflcally. i t  was 

shown  that  the fixed poles of any solution to the model matching 

problem must correspond  to  certain zeros of the given system w-hich are 

not  common  to the model system as well as  certain poles of the  model 

system which are  not  common  to the given system. This  observation 

extends. to the  multivariable case, a rather  obvious result which char- 

acterizes  the  scalar case. The  notion of the fixed poles of any minimal- 

order  solution  was  also  defined  for the first time and  employed  to  obtain 

a sufficient condition for the  instability of all solutions to the .MDP. 

'-1s observatlon is also  made In [I21 usmg an alternatlve procedure. 

state  function  observers is analogous to the  minimal design problem, and 

a bound  on  the  minimal  order of an observer w'as given in terms of 

differential  operator system representations.  The  question of stability of 

minimal-order  "obsenfers" was also investigated. and a new notion of 

the "fixed poles of a minimal-order observer" was introduced  and 

discussed. 
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Closed-Loop Structural Stability for 
Linear-Quadratic  Optimal Systems 

POH KAM  WONG ASD MICHAEL  ATHANS. FELLOW. IEEE 

Abstract-This paper contains  an  explicit  parametrization of a subclass 
of linear  constant  gain  feedback  maps  that will not destabilize an originally 
open-loop  stable system. These results can  then be used to obtain  several 
new  structural  stability  results for multiinput  linear-quadratic  feedback 
optimal  designs. 

I. ISTRODLCTlON A S D  h'fOTlV.ATlOS 

This  paper  presents  preliminary results which. in our  opinion. repre- 

sent a first necessary step in the  systematic  computer  aided design of 

reliable  control  systems  for  multivariable  control systems. A specific 

motivating  example  arises in the  context of future high performance 

aircraft.  It is  widely recognized that  advances in active  control  aircraft 

and  control  configured vehicles will require  the  automatic  control of 

several  actuators so as  to  be  able  to fly future  aircraft  characterized by 

reduced stability margins  and  additional flexure modes. 

As a starting  point  for  our  motivation we must postulate  that the 

design of future stability augmentation systems will have  to  be a multi- 

variable design problem. As such. traditional single input-single  output 

system design tools based on classical control theory cannot  be effec- 

tively used. especially in a computer  aided design context. Since modem 
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