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Abstract. Modified gravity is one of the most promising candidates for explaining

the current accelerating expansion of the Universe, and even its unification with the

inflationary epoch. Nevertheless, the wide range of models capable to explain the

phenomena of dark energy, imposes that current research focuses on a more precise

study of the possible effects of modified gravity may have on both cosmological and

local levels. In this paper, we focus on the analysis of a type of modified gravity, the

so-called f(R,G) gravity and we perform a deep analysis on the stability of important

cosmological solutions. This not only can help to constrain the form of the gravitational

action, but also facilitate a better understanding of the behavior of the perturbations in

this class of higher order theories of gravity, which will lead to a more precise analysis

of the full spectrum of cosmological perturbations in future.
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1. Introduction

In the recent years, modified gravity theories have become one of the most popular candi-

dates for explaining the current accelerated expansion of the Universe. As it is very well

known, general relativity (GR) in its standard form can not explain such behavior of

the Universe expansion without either extra terms in the gravitational Lagrangian (for

reviews on modified theories of gravity, see Refs. [1, 2]) or exotic fluid components (see

Refs. [3]-[5]). Modified gravity theories have been widely studied, and it has been shown

that they are not only capable to mimic the dark energy epoch, but also the inflationary

era [6]. Therefore, by the only use of large scale observations (Ia type supernova, BAO,

or the cosmic microwave background) which depend uniquely on the evolution history

of the Universe, the nature and the origin of DE cannot be determined due to the fact

that identical evolutions for the cosmological background can be explained by a diverse

number of theories. This is the so called degeneracy problem. It is thus required, in

order to confirm or discard the validity of these theories, to obtaining solutions that

can also describe correctly, e.g., the growth factor of scalar perturbations (see Refs. [7]),

the stability of cosmological solutions against small perturbations and the existence of

GR-predicted astrophysical objects such as black holes [8].

In this sense the simplest, and in fact the most studied, modification of GR is the

one where the Hilbert-Einstein action is generalized to a general function of the Ricci

scalar R, the so-called f(R) gravities [9]-[10]. These theories are able to mimic the be-

havior of the cosmological constant (see for instance Ref. [11]), but also can reproduce

the entire cosmological history (see Ref. [6]). In addition, they seem to behave quite

well at local scales, where the GR limit must be recovered [12], and the existence of GR-

predicted astrophysical objects such as black holes can be achieved [13]. Nonetheless,

these candidates have their own shortcomings [10] and have to pass rigorous theoretical

and observational scrutiny before they can be accepted as viable theories [12]. An-

other possible modification of the standard gravitational Lagrangian includes a wider

number of curvature invariants (R, RµνR
µν , RµλνσR

µλνσ among others). Within these

modifications, the so-called Gauss-Bonnet gravity can be included. In these theories

the gravitational Lagrangian consists of a function f(R,G) where G holds for the usual

Gauss-Bonnet invariant. This modified gravity has been also widely studied and it is

known that can also reproduce any kind of cosmological solution (see Refs. [14]-[21]),

where special attention has been already paid to models able to mimic the ΛCDM

model, as well as other important cosmological solutions (see Refs. [15, 16]). Finally,

the cosmological perturbations have been explored within different standard scenarios

for this class of theories [17].

In this investigation, we are interested in studying the stability behavior of several

kind of cosmological solutions in the framework of Gauss-Bonnet gravities when sub-

jected to homogeneous perturbations. Our analysis will therefore exclude anisotropic,
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i.e. cosmological scalar, perturbations. Homogeneous and isotropic perturbations have

been historically considered as the mean to determine the stability of different modi-

fied gravity theories (see for instance Refs. [3, 22, 24]). The usual approach in these

references consisted in perturbing both the Hubble parameter and the matter density

in order to check the background stability in the time evolution. This way, one can

determine the stability of the modified Einstein equations when treated as differential

equations. With respect of the cosmological perturbations, the full anisotropic analysis

of cosmological perturbations in modified gravity theories is out of the scope of this

investigation whereas some significant advances have been made in the last years, in

particular for f(R) theories [7].

With regard to Gauss-Bonnet gravity theories, a particular subclass has been stud-

ied in Refs. [18, 19], where the Hilbert-Einstein action plus a function f(G) is considered.

However, the extension to a more general form for the f(R,G) gravitational theory is

a mandatory task that may help to understanding the viability and features of more

general Lagrangians. These theories may present ghost degrees of freedom in an empty

anisotropic universe, i.e. the Kasner-type background [20]. Nonetheless, these degrees

of freedom are absent on Friedmann-Lemaître-Robertson-Walker (FLRW) backgrounds

(see also [20]). This is precisely the type of cosmological background that will be con-

sidered in our investigation. Hence, in the present paper we analyze some important

cosmological solutions in f(R,G) gravity, both in a vacuum scenario and with the pres-

ence of standard perfect fluids. The stability of cosmological solutions has been studied

for f(R) gravity in Ref. [22], as well as for other curvature invariants in Ref. [3]. For

some particular cases of f(R,G), the perturbations on the solutions have been analyzed

in Ref. [23], whereas for Hořava-Lifshitz gravity, the analysis has been performed in

Ref. [24]. Here we extend the analysis to more general actions, where we shall find

the stability conditions for different cosmological evolutions in FLRW universes such

as inflationary epoch and late-time accelerated era as described by the ΛCDM model.

Therefore, these analyses can help understanding the viability of cosmological evolution

provided by this kind of modified gravity, and constraining the viable candidates for the

underlying gravitational action.

The paper is organized as follows: in Section II we present the general features of

the f(R,G) gravity theories by writing the corresponding modified Einstein equations.

In Section III we introduce the evolution equations of perturbations appearing in

these scenarios once that a FLRW background is assumed. Sections IV and V are

then devoted to the study of stability around the de Sitter and power-law solutions

respectively. In the last case, we pay special attention to configurations including

perfect fluids such as radiation and dust. Section VI is finally devoted to study the

stability of the f(R,G) model able to mimic the ΛCDM cosmological evolution without

any cosmological constant. We conclude the paper by giving our conclusions in Section

VII. An appendix is included at the end of the communication to provide explicitly the
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coefficients of perturbations equations introduced in Section III.

2. F (R,G) gravity

Let us start by writing the most general action for modified Gauss-Bonnet gravity, which

is given by,

S =

∫

d4x
√−g

[

1

2κ2
f(R,G) + Lm

]

. (1)

where κ2 = 8πGN , GN is the Newton constant and Lm represents the matter Lagrangian.

The symbol G holds for the Gauss-Bonnet invariant, which is expressed as,

G ≡ R2 − 4RµνR
µν +RµνλσR

µνλσ (2)

Then, by varying expression (1) with respect to the metric tensor gµν , the modified

Einstein field equations are obtained [14],

0 = κ2T µν +
1

2
gµνf(G)− 2fGRRµν + 4fGR

µ
ρR

νρ

−2fGR
µρστRν

ρστ − 4fGR
µρσνRρσ + 2(∇µ∇νfG)R− 2gµν(∇2fG)R− 4(∇ρ∇µfG)R

νρ

−4(∇ρ∇νfG)R
µρ + 4(∇2fG)R

µν + 4gµν(∇ρ∇σfG)R
ρσ

− 4(∇ρ∇σfG)R
µρνσ − fGR

µν +∇µ∇νfR − gµν∇2fR. (3)

where ∇ holds for the usual covariant derivative and subindices G and R in f hold for

derivatives of the gravitational Lagrangian f(R,G) with respect to those arguments. In

this investigation, we are interested in studying different cosmological solutions described

by a flat FLRW Universe, such that we assume along the paper the metric,

ds2 = −dt2 + a2(t)
i=3
∑

i=1

(

d xi
)2

(4)

Then, the Hubble parameter H takes its usual definition H ≡ ȧ/a, and G and R become

G = 24(ḢH2 +H4), R = 6(Ḣ + 2H2), (5)

where the dot holds for the derivative with respect to cosmic time t. By substituting

expressions (5) and the metric (4) into the field equations (3), the FLRW equation for

indices µ = ν = 0 yields

0 =
1

2
(GfG − f − 24H3ḟG) + 3(Ḣ +H2)fR − 3HḟR + κ2ρm. (6)

Let us assume from now on, that the matter fluid will be given under the form of

a perfect fluid with a constant equation of state pm = ωρm, with the matter energy

density ρm satisfying the standard continuity equation

ρ̇m + 3H(1 + w)ρm = 0. (7)



On the stability in f(R,G) gravity 5

3. Perturbations of flat FLRW solutions in F (R,G) gravity

Let us now study the homogeneous and isotropic perturbations around a particular

cosmological solution for the f(R,G) theory described by the action (1). Here we

establish the perturbed equations for a general case, but specific cases will be studied

in the upcoming sections, specially de Sitter and power law solutions, as well as the

behavior of ΛCDM solution in the context of these theories of gravity.

For this purpose, let us assume a general solution for the cosmological background

of FLRW metric, which is given by a Hubble parameter H = H0(t) that satisfies the

background equation (6) for a particular f(R,G) model. The evolution of the matter

energy density can be expressed in terms of this particular solution by solving the

continuity equation (7) yielding

ρm0(t) = ρ0 e
−3(1+wm)

∫
H0(t)dt . (8)

Since we are interested in studying the perturbations around the solutions H = H0(t)

and density given by (8), let us consider small deviations from the Hubble parameter

and the energy density evolution. Hence,

H(t) = H0(t) (1 + δ(t)) , ρm(t) = ρm0(t) (1 + δm(t)) . (9)

where δ(t) and δm(t) hold for the isotropic deviation of the background Hubble

parameter and the matter overdensity respectively. In order to study the behavior

of these perturbations in the linear regime, we expand the function f(R,G) in powers

of R0 and G0 evaluated at the solution H = H0(t),

f(R,G) = f 0 + f 0
R(R−R0) + f 0

G(G−G0) +O2 (10)

where the superscript 0 refers to the values of f(R,G) and its derivatives evaluated at

R = R0 and G = G0. The O2 term includes all the terms proportional to square or

higher powers of R and G that will be included in the equation, although only the linear

terms of the induced perturbations are considered. Hence, by introducing expression

(9) in the FLRW background equation (6) and using the expansion (10), the equation

for the perturbation δ(t) becomes in the linear approximation,

c2δ̈(t) + c1δ̇(t) + c0δ(t) = cmδm(t) , (11)

where coefficients c0,1,2 and cm are explicitly written in the Appendix at the end of the

communication. These coefficients depend explicitly on the f(R,G) and its derivatives

evaluated in the background solution. In addition, there is a second perturbed equation

obtained from the matter continuity equation (7) once it is perturbed with expressions

(9). Thus,

δ̇m(t) + 3H0(t)δ(t) = 0 . (12)

Hence, for a particular FLRW cosmological solution, its stability can be studied in the

context of f(R,G) gravity by analyzing and solving the equations (11) and (12). Due to

the linear character of (11), the solution for δ(t) can be in general split in two branches:

the first one corresponding to the solution of the homogeneous equation in (11), which
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reflects the perturbations induced by the chosen particular gravitational Lagrangian.

The second branch would correspond to the particular solution of that equation, which

is merely affected by the growth of matter perturbations δm(t). Hence, the general

solution can be written as,

δ(t) = δhomogeneous(t) + δparticular(t) . (13)

In the upcoming sections, we shall consider several cosmological solutions, and their

stability will be then studied. Nevertheless, let us firstly do some general considerations.

By recovering the Hilbert-Einstein f(R,G) = R, the stability equation (11) yields,

− 6H2
0δ(t) = cmδm(t) . (14)

which can be understood as an algebraic relation between the geometrical and the matter

perturbations. Hence, in GR the full perturbation around a cosmological solution is

fully determined by the matter perturbations (or vice versa). In fact, by taking explicit

expression for cm in the Appendix and equation (12) it is straightforward to prove that

δ(t) = −1

2
δm(t) ∝ a(t)3/2 (15)

Nevertheless, the algebraic relation (15) between δ(t) and δm(t) in GR is in general

absent for higher order theories of gravity. For these theories, the evolution of the

perturbations is in general determined by a coupled system of ordinary differential

equations, (11) and (12), where the underlying gravitational Lagrangian plays an

essential role on the form of the c0,1,2 coefficients as can be seen in the Appendix.

Let us illustrate the previous comments by considering theories whose Lagrangians can

be rewritten as follows

f(R,G) = f1(G) + f2(R) . (16)

Then, the perturbation equation (11) becomes much simpler and some information can

consequently be extracted. For instance, after assuming that GR should be recovered in

some limit, which basically means that the higher derivatives of the function (16) should

become negligible, the coefficient c1 in (11) becomes null, and by diving the equation

by c2, it yields,

δ̈(t) +
f 0
R

3(16f 0
GGH0(t)4 + f 0

RR)
δ(t) =

cm
18(16f 0

GGH0(t)4 + f 0
RR)

δm(t) . (17)

where c′m = cm
18(16f0

GG
H0(t)4+f0

RR
)
. In order to ensure the stability of a particular solution

in vacuum in the GR limit and provided that f 0
R > 0, the denominator in (17) has to

satisfy,

16f 0
GGH0(t)

4 + f 0
RR > 0 . (18)

In fact, this constraint was also proved in [25] to guarantee the generalized second law

of Thermodynamics for these theories in de-Sitter scenarios. Note that for f(R,G) =

R + f(G), the Lagrangian is restricted to be f 0
GG > 0 to ensure the stability of any

solution in the GR limit [18]. Nonetheless, this constraint on the second derivative with

respect to G may produce, according to [19], instabilities in the matter cosmological
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perturbations for this kind of models. However, a wider range of functions f1(R) in (16)

may circumvent the existence of such instabilities.

4. Stability of De Sitter solutions

Let us start our study of the stability of different cosmological solutions by studying

some of the simplest cosmological solutions, namely the de-Sitter (dS) solutions,

H0(t) = H0 → a(t) = a0e
H0t , (19)

where H0 is constant. According to (5), the Ricci and Gauss-Bonnet terms are given in

this case by R0 = 12H2
0 and G0 = 24H2

0 . Then, inserting the expression for the Hubble

parameter (19) in equation (6) once vacuum is considered, we get

1

2
(G0fG(R0, G0)− f(G0, R0)) + 3H2

0fR(R0, G0) = 0 (20)

Therefore, any f(R,G) function can in principle admit vacuum de Sitter solutions

provided that the previous algebraic equation has positive roots for H0. Hence, for some

particular f(R,G) models, the current accelerating epoch of the Universe expansion – as

well as the inflationary epoch – can be explained. Following a different approach, one can

consider equation (20) as an ordinary differential equation for the f(R0, G0) function

so that the corresponding solution would admit any H2
0 value. Thus, by solving the

equation (20) in terms of f(R,G), the following action is obtained,

f(R, G) = αG
[

R− 6H2
0 log(G)

]

(21)

where α is an arbitrary integration constant. Therefore functions as the one in (21)

admit an infinite number of vacuum dS solutions H0.

Let us now study the stability of de Sitter solutions in vacuum, where the

perturbation is affected only by the underlying gravitational theory. According to the

equation for the perturbations (11), it yields,
(

16H4
0f

0
GG + 8H2

0f
0
RG + f 0

RR

)

δ̈(t) +
(

48H5
0f

0
GG + 24H3

0f
0
RG + 3H0f

0
RR

)

δ̇(t)

−
(

64H6
0f

0
GG − 1

3
f 0
R + 32H4

0f
0
RG + 4H2

0f
0
RR

)

δ(t) = 0 . (22)

Therefore, the stability of each dS solution depends on the values of the function f(R,G)

and its derivatives evaluated in {R0, G0}. The general solution of equation (22) can be

easily obtained, and is given by,

δ(t) = C1e
µ+t + C2e

µ−t , (23)

where

µ± = 9H0F
0 ±

√

3F 0 (−4f 0
R + 75H2

0F
0). (24)

where the variable F 0 ≡ 16H4
0f

0
GG+8H2

0f
0
RG+f 0

RR was introduced to lighten the notation.

The growth of the perturbation will depend both upon the overall sign of the parameters

µ± in expression (24) and also upon the real or imaginary character of the square root.

Thus, four different cases can be distinguished:
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• F0 < 0 and f 0
R < 75H2

0F
0/4: implies complex solutions and ℜ(µ±) < 0, therefore

solutions behave as a damped oscillator of decreasing amplitude. Solutions are thus

stable.

• F0 > 0 and f 0
R > 75H2

0F
0/4: implies complex solutions and ℜ(µ±) > 0, therefore

solutions as an oscillator of increasing amplitude. Solutions are thus non-stable.

• F0 > 0 and
4f0

R

75H2
0F

0 ∈ (0, 1): implies that both µ± are real and µ+ > 0. Solutions

are thus non-stable.

• F0 < 0 and
4f0

R

75H2
0F

0 ∈ (0, 1): implies that both µ± are real and µ− < 0. In this

case, µ+ > 0 provided that |f 0
R| > |12H2

0F0| and µ+ < 0 whenever |f 0
R| < |12H2

0F0|.
Therefore the solutions are non-stable and stable respectively.

According to the Appendix definitions, since F 0 = − c2
18H2

0
, then c2 > 0, i.e., the

positivity of the second order coefficient in the perturbation equation (11), turns out to

be the necessary (but not sufficient) condition to provide stability of the dS solutions in

vacuum.

In order to illustrate the previous calculations, let us consider the function

f(R,G) = κ1R + κ2R
nGm . (25)

Here {κ1, κ2} are positive coupling constants. For simplicity we take n = 1 and m = 3,

so that the equation (20) can be solved, and we find the following dS solution,

H0 =
1

2
√
3

(

κ1

16κ2

)1/6

. (26)

Thus, considering the perturbation solution (24), and introducing the function (25) and

its derivatives evaluated in (26), the solution for the perturbation is determined,

δ(t) =



C1 exp





√

25κ1κ2 − 223/332κ
1/3
1 κ

5/3
2√

3 3
√

25κ1κ2
2

t



+ C2





× exp



−
3
√
κ1 +

√

25κ1 − 223/332κ
1/7
1 κ

2/3
2√

3 3
√
28κ1κ

1/6
2

t



 (27)

Hence, the stability depends on the value of the exponential of the first term in (27),

which is given by the values of the coupling constants κ1 and κ2. In this sense, for

κ1 > 2
(

1152
25

)3/2
κ2, the perturbation grows exponentially, and the dS solution becomes

unstable, otherwise the perturbation turns out to behave as a damped oscillator that

tends to zero, so that the solution becomes stable.

5. Stability of power-law solutions

In this Section we are interested in cosmological solutions of the type,

a(t) ∝ tα → H(t) =
α

t
. (28)
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that shall be referred to as power laws. These solutions represent the scale factor

evolution for standard fluids, such as dust (α = 2/3) or radiation (α = 1/2) dominated

Universe provided that GR is assumed as the underlying valid gravitational theory.

For the solutions (28), the Gauss-Bonnet term and the Ricci scalar, given by

expressions (7), take respectively the following form,

G =
24α3(α− 1)

t4
, R =

6α(2α− 1)

t2
. (29)

Let us now explore two different kinds of gravitational Lagrangian f(R,G) able to

mimic the power-law solutions described by (28) in the presence of standard fluids. It is

obvious that one has to solve first the background FRLW equation (6) in order to find

the appropriate function f(R,G). The considered two types of f(R,G) Lagrangians are

the following

5.1. f(R,G) = f1(G) + f2(R)

For the sake of simplicity, let us start by considering the subfamily of functions given

in (16). Then, for this type of Lagrangian the Friedmann equation (6) can be split into

two equations [15], as

− 24H3Ġ (f1)GG +G (f1)G − f1 = 0 ,

−3HṘ (f2)RR + 3(Ḣ +H2) (f2)R − 1

2
f2 + κ2ρm0 = 0 (30)

The first equation in (30) can be written in terms of G, as

G2 (f1)GG +
α− 1

4
G (f1)G − α− 1

4
f1 = 0 , (31)

which is an Euler equation, whose solution is easily obtained, and yields

f1(G) = C1G
1−α

4 + C2G , (32)

where C1,2 are integration constants. Note that the second term in (32) is the trivial

Gauss-Bonnet solution and can be removed, since it becomes a total derivative and does

not contribute to the field equations. In the same way, the second equation in (30) takes

the form

R2 (f2)RR +
α− 1

2
R (f2)R − 2α− 1

2
f2 + κ2(2α− 1)ρm0 = 0 , (33)

In the presence of a perfect fluid, whose equation of state is given by pm0 = wmρm0,

from the energy conservation equation (7) with the class of cosmological solutions given

in (28), the energy density yields,

ρm0 = ρm0(ttoday)t
−3(wm+1)α = ρm0(ttoday)

[

R

6α(2α− 1)

]
3(1+wm)α

2

. (34)

where α 6= 1/2 has been assumed‡. Hence, the equation (33) for f2(R) gives the solution,

f2(R) = k1R
µ+ + k2R

µ− + βRA , (35)

‡ This is a special case to be discussed separately.
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where k1,2 integration constants and

µ± =
3− α(7− 2α)

4(1− 2α)
±

√

1 + α(10 + α)

4
,

β ≡ −3κ2ρm0(ttoday)(2α− 1)

[6α(2α− 1)]A
[

A(A− 1) + 1
2
A(α− 1)− 2α−1

2

] ,

A ≡ 3(1 + wm)α

2
. (36)

Then, the complete function f(R,G) is reconstructed for this class of cosmological so-

lutions, and can be expressed as the sum of the expressions (32) and (35).

Concerning the stability of this kind of solutions, we have to evaluate the function

f(R,G) and its derivatives in (28), and solve the perturbation equations (11) and (12).

However, analytical solutions for equation (11) are in general difficult to be found. Only

numerical solutions can be obtained by fixing the values of the free parameters of the

theory, i.e., the coupling constants. In order to circumvent this intrinsic difficulty, let us

consider the following particular cases: the radiation and dust matter evolutions, where

α = 2/3 and α = 1/2 respectively, and α > 1, which gives an accelerating expansion.

5.1.1. Dust dominated Universe, α = 2/3: In the case of an expansion of the type

of dust matter, given by α = 2/3, the Gauss-Bonnet term G < 0 according to (29),

so that the gravitational Lagrangian (32) becomes complex, which may be interpreted

as a non-physical case. In order to avoid this scenario, we set C1 = 0, and thus the

Lagrangian turns out f(R,G) = f2(R), given by (35) . For solving the differential

equation (11), we use numerical methods. In order to illustrate the richness of this

case, we considered specific values for the coupling constants k1 = k2 = 0.1ρm0 with

the appropriate dimensions. In figure 1, the evolution of δ(z) and δm(z) are plotted as

functions of redshift z, and assuming different initial conditions for both perturbations.

We also explore the effects of the variation of the initial condition for the first derivative

δ′(z) in figure 2. We can see that regardless the initial conditions, the perturbation δ

oscillates tending to zero at z = 0 and similarly for δm in figures 1 and 2. Moreover,

the case of a radiation-like fluid wm = 1/3 is explored in figures 3 and 4, where the

perturbations increase at small values of the redshift z = 0 in comparison with the

pressureless case. While in figure 5 the values δ(z = 0) and δm(z = 0) are plotted versus

the initial conditions assumed at z = 1000.

5.1.2. Late-time acceleration, α > 1: Another interesting example is given by a power-

law cosmological solution with α > 1. In GR, this kind of solution is provided by the

presence of a perfect fluid whose EoS parameter is given by w < −1/3 and consequently

compatible with the currently observed accelerating expansion. Coming back to f(R,G)

gravity theories, we are interested in studying its stability when dust matter wm = 0
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Figure 1: The stability of the solutions for the model f(R,G) = f1(G) + f2(R) is shown. Here we

assume α = 2/3 and wm = 0, and the action reduces to f(R,G) = f2(R). The perturbations δ(z) and

δm(z) are represented versus the redshift z. At the top figures, the initial condition δm0 at z = 1000

is varied while δ0 = 0.001 and δ′0 = 0 are fixed. At the bottom, δm(1000) = 0.001 is fixed while

the evolution of δ(z) and δm(z) is shown as a function of δ0. As shown, independently of the initial

conditions, the perturbations behave as a damped oscillator, turning out very small at z = 0.

Figure 2: As Fig. 1, the stability for the solutions described by α = 2/3 and wm = 0 is analyzed.

Here the perturbations δ(z) and δm(z) versus the redshift z are represented and the initial conditions

δ0 = δm0 = 0.001 are fixed, while δ′0 is varied along the range {−10−3, 10−3}. Unlike Fig. 1, the values

of the initial condition δ′0 may produce a large amplitude in the oscillations of the perturbations along

the evolution, leading to large effects at z = 0.

is included. It can be shown that the equation (11) exhibits a pole, whose position

in relation with the redshift depends upon the coupling constants values. For small

redshifts the perturbation oscillates close to z = 0, where the dark energy epoch is

expected. Hence, it seems that in the presence of dust matter (baryons and cold
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Figure 3: The stability of the power law solution with α = 2/3 and wm = 1/3 is studied for the

model (35). As in Fig. 1, at the top figures the initial condition δm0 at z = 1000 is varied whereas

δ0 = 10−3 and δ′0 = 0 are fixed. At the bottom, δm(1000) = 10−3 is fixed while the evolution of δ(z)

and δm(z) is shown as a function of δ0. Here, the perturbations for non null initial conditions grow

along the redshift evolution, producing instabilities at z = 0.

Figure 4: As in Fig. 3, the stability for the solutions given by α = 2/3 and wm = 1/3 is analyzed.

However, here the perturbations δ(z) and δm(z) are represented versus the redshift z with the initial

conditions δ0 = δm0 = 0.001, whereas δ′0 is varied along the range {−10−3, 10−3}. In this case, the

perturbations grow very fast for non null initial conditions on δ′0, producing large instabilities at z = 0.

dark matter), this kind of solutions becomes unstable for large redshifts, when the

radiation/matter dominated epochs occur, and naturally the power-law with α > 1 is

not valid anymore. However the solution tuns out to be stable when we approach to the

current epoch, and late-time acceleration is well reproduced. For illustrative purposes,

we have considered k1 = k2 = 0.1 × ρ0 and C1 ∼ ρm0(ttoday) whose perturbations are

depicted in Fig. 6. In this case the contribution coming from the Gauss-Bonnet part (32)
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Figure 5: This represents a summary of the stability of f(R,G) = f1(G) + f2(R) for the power law

solutions in the dust case α = 2/3: Evolution of cosmological and dust perturbations δ and δm for

wm = 0 (left panel) and wm = 1/3 (right panel) respectively. Initial conditions {δ0, δm0} are imposed

at redshift z = 1000 and varied in the range {−10−3, 10−3}, while δ′(z = 1000) = 0 is fixed. In both

figures, the hypersurfaces with larger slope correspond to δm(z = 0), while the other hypersurfaces

corresponds to δ(z = 0), which are not constant but with a much more little growth than δm. In both

cases, the evolution of the final values for the perturbations follow a linear relation with the initial

conditions, as natural since the perturbations equations are studied in the linear regime.

Figure 6: Stability of f(R,G) = f1(G)+f2(R) for α = 2: The evolution of the perturbations δ(z) and

δm(z) versus the redshift z, and the initial values for δm0 at the top, and δ0 at the bottom. Here we

consider α = 2 and initial conditions imposed close to the pole z ∼ zpole where δ0 = 0.001 and δ′0 = 0

are fixed for the top figures, and δm0 = 0.001 for the bottom figures. In both cases, we have assumed

wm = 0. Different values of the coupling constants change the position of the pole zpole. In all the

cases the perturbation δ(z) behaves smoothly close to z = 0 while it obviously becomes very large for

z close to the pole. In the same way δm(z) tends to small values close to z = 0.
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Figure 7: Evolution of cosmological and dust perturbations δ and δm for α = 2 with the presence

of a pressureless fluidwm = 0. Initial conditions {δ0, δm0} are imposed at redshift z = 0 and varied

in the range {−10−3, 10−3}, while δ′(0) = 0 is fixed. As above, the hypersurface with larger slope

corresponds to δm(z = 2.08), while the other hypersurface corresponds to δ(z = 2.08). The final values

are calculated at z = 2.08, very close to the pole shown in fig. 6. The perturbations do not become

larger than the initial values assumed before the divergence.

has to be included since G > 0 and the action is therefore real. As in the cases above,

different initial conditions for both δ and δm were considered, but now at z = 0 since we

are interested in studying the past evolution of this solution with α > 1, as it reproduces

late-time acceleration at the current epoch. As shown in Fig. 6, the perturbations diverge

for large redshifts, so the solution is stable around z = 0 but introduces large instabilities

for large redshifts, where naturally the presence of a pressureless fluid (dust) should

dominate. Moreover, the values of δ(z = 0) and δm(z = 0) are evaluated depending on

the initial conditions δ(z = 2.08) and δm(z = 2.08) in figure 7.

5.1.3. Radiation dominated Universe, α = 1/2: In the case for α = 1/2, the equation

(33) has to be solved separately from the general case, which for α = 1/2, becomes,

R2(f2)RR − 1

4
R(f2)R = 0 , (37)

whose general solution is given by,

f(R) = C1R
5/4 + C2 . (38)

Nevertheless, note that this is not the only solution for the case α = 1/2 since this

value for the power-law exponent implies straightforwardly R = 0. Thus, any function

f2(R) that accomplish limR→0 f2(R) ∼ Rn with n ≥ 0, will satisfy the equation (37).

However, by analyzing the Friedmann equation for f2(R) in (30), in terms of the cosmic

time instead of the Ricci scalar, one can show that no gravitational action other than
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Hilbert-Einstein (n = 1) will satisfy this equation. Let us prove the previous statement

by considering an hypothetical action given by f2(R) ∝ Rn, the equation (30) yields,

6nα
1− 2α + n(2n+ α− 3)

t2

[

α(2α− 1)

t2

]n−1

+ κ2ρ0t
−3(1+wm)α = 0 (39)

Then, if α = 1/2 is assumed, the first term in the l.h.s. of (39) vanishes, whilst the

second is never zero unless ρm0 = 0 (vacuum). Hence, the only possible solution is given

for n = 1, where the f2(R) action becomes the Hilbert-Einstein action, which imposes

that wm = 1/3 as natural for a radiation type expansion.

Hence for α = 1/2, the gravitational action needs to be either f(R,G) = R+f1(G),

or f(R,G) ≡ f(G). In the first case, for f1(G) given by expression (32), but since G < 0

according to (29), the action (32) would become complex, and non physical, such that

f(R,G) = R. For the second possibility, f(R,G) ≡ f(G), the action only depends on

the Gauss-Bonnet term, and the FLRW equations (30) can be rewritten as,

G2fGG +
α− 1

4
GfG − α− 1

4
f + κ2α− 1

4
ρm = 0 , (40)

while the expression for the energy density of a perfect fluid pm = wmρm is given by,

ρm(t) = ρm0(ttoday) t
−

3(1+wm)
2 = ρm0

[

G

24α3(α− 1)

]
3(1+wm)α

4

. (41)

Hence, the equation (40) can be easily solved,

f(G) = C1G
1−α

4 + C2G+ βGA , (42)

where

β =
κ2ρm0(ttoday)

4

1− α

[24α3(α− 1)]A
[

(A− 1)A+ α−1
4
(A− 1)

] ,

A =
3(1 + wm)α

4
. (43)

However, as above the Gauss-Bonnet term G < 0 since α < 1 and the gravitational

action becomes complex, which in principle lacks any physical sense. Hence, in the

case of α = 1/2, the gravitational action reduces to the Hilbert-Einstein action with

the presence of a radiation-like fluid. This analysis provides an interesting consequence,

since the universe evolution crosses a radiation dominated epoch, if the gravitational

action is of the type of f(R,G) = f1(G) + f2(R), the extra terms in the action should

be negligible during such epoch, and the action must approach Hilbert-Einstein action.

5.2. f(R,G) = µRβGγ

Let us assume now a gravitational Lagrangian of the form

f(R,G) = µRβGγ (44)

where µ is a dimensionful constant and β and γ are constant exponents an let us study

the power-law solutions as the ones given at (28) for two standard fluids, radiation an

dust matter.



On the stability in f(R,G) gravity 16

5.2.1. Radiation dominated era, α = 1/2: For f(R,G) models as given in expression

(44), it is straightforward to prove that in the absence of any fluid and provided that

β > 1 and any even value of γ (since G < 0, this constraint gets rid of imaginary

terms), they can mimic radiation-like scale factor evolution, i.e. α = 1/2. This can

be performed by solving equation (6) in the absence of fluid sources and considering a

function like (44). For this kind of models, equation (11) becomes

t2δ′′(t)− 1

2
t (4β + 8γ − 9) δ′(t)− 1

2
(4β + 8γ − 5) δ(t) = 0 (45)

This is an Euler-like equation that yields to the solutions

δ(t) = C+ tα+ + C−t
α− (46)

where C± are arbitrary constants and

α± = β +
1

4
(−7 + 8γ ± |8γ + 4β − 3|) (47)

In order to understand the stability of the perturbation given by expression (46), one

should study the sign of α± exponents: provided that the requirement β > 1 is satisfied,

it can be proved that α− is always negative. Concerning α+, this exponent is negative

provided that γ < 1/8(5 − 4β) and γ even number as explained above. Otherwise α+

would be positive and the perturbation unstable.

If one now considers a radiation fluid characterized by both ω = 1/3 and α = 1/2

it is possible to show that Lagrangians such as (44) cannot satisfy equation (6) for any

value of their parameters. If we relax now the constraint on α permitting α 6= 1/2, then

the combination β + 2γ has to be negative in order to guarantee α > 0 . It can be

shown that in this case, equation (6) is not satisfied for any parameter combination§.
Therefore, none of these two last cases can be accomplished by Lagrangians such as

(44).

5.2.2. Dust dominated era, α = 2/3: For this case, we have considered three different

scenarios: In the absence of matter, models given by (44) can hold a power-law scale

factor with α = 2/3. In this case, µ can take in principle any value whereas γ (which

has to be even as in the previous case) and β must be related as follows

γ ≡ γ± =
1

24

(

13 + 6β ±
√

121− 180β + 324β2
)

(48)

in order to satisfy the background equation (6). With this requirement, the perturbation

equation (11) becomes a Euler-like equation

t2δ̈(t)− 1

6

[

−17 + 18β ±
√

121 + 36β(−5 + 9β)
]

tδ̇(t)

+
1

6

[

5− 18β ∓
√

121 + 36β(−5 + 9β)
]

δ(t) = 0 (49)

§ In fact, the required µ would be imaginary.
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Figure 8: Values today (z = 0) for cosmological and matter (dust) perturbations, δ and δm
respectively for β = 5 (left panel) and β = −1 (right panel) in expression (53) and H0(t) = 2/3t

in (12). Initial conditions were imposed at redshift z = 1000 ranging in the interval (−0.001, +0.001)

for both δ(z = 1000) and δm(z = 1000). In both panels, the hyperplanes with larger slope correspond

to δm evaluated today. The other hyperplanes which seem of constant value in the 3-dimensional

representation correspond to δ today. In both panels can be seen how δm achieves today values bigger

– in absolute value – than the initial conditions. On the other hand, δ remains with amplitudes today

smaller than the initial values.

whose solutions are

δ±(t) =
C1

t
+ C2t

−3+2β+4γ± (50)

where the second exponent is always a real number regardless the β value. Moreover,

it can be proved that for δ+(t)", i.e. γ+ choice, the second power-law in (50) possesses

a positive exponent, whereas δ−(t) holds both power-law solutions with negative expo-

nents. Therefore, the solutions provided by the γ− choice would be stable whereas the

ones by γ+ would not be.

The second case consists in considering the presence of dust matter (ω = 0) and a

power-law scale factor with exponent α = 2/3. In that case γ and µ depend on β as

follows

γ =
1− β

2
, µ =

(2ı)β−13(3−β)/2κ2ρm0(ttoday)

9β − 5
. (51)

From the last expression, it is straightforward to conclude that one of the two following

constraints must be imposed to guarantee µ to be positive and real:

β = 4n+ 1 and β >
5

9
; β = 4n+ 3 and β <

5

9
with n ∈ Z (52)

For this case, the equation (11) is again Euler-type with a source term proportional to

δM(t). Thus

t2δ̈(t) + 3tδ̇(t) +

[

1 +
8

45(−1 + β)
+

12

5 + 45β

]

δ(t) =
2(−5 + 9β)

9[1 + (8− 9β)β]
δM(t)

(53)
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Figure 9: Stability of f(R,G) given by (44) in the dust (ω = 0) case: Evolution of cosmological and

dust perturbations, δ and δm respectively for β = 5 in expression (53). Different initial conditions at

redshift z = 1000 were imposed. The two upper panels represent the evolution in redshift for δ (left) and

δm (right) for fixed δm(z = 1000) = 10−3 whereas δ(z = 1000) varied from −0.001 to 0.001. One can

see how the evolutions of both perturbations acquire decreasing amplitudes when approaching today.

At the lower figures, it is depicted again δ (left) and δm (right) this time for fixed δ(z = 1000) = 10−3

whereas δm(z = 1000) varied from −0.001 to 0.001. On the left panel it can be seen how δ tends to

null amplitude today regardless the values for δm(z = 1000). On the contrary, the values of δm (right

panel) tend to decrease in amplitude by depending on its initial value.

In order to illustrate the rich phenomenology of this case, we have considered β = 5

for the first constraint‖ and β = −1 for the second according to (52). For these two

cases, in Figure 8 we have plotted the values for δ and δm today for a wide range of initial

conditions. On the one hand, for β = 5, the homogeneous Euler-like associated equation

to (53) would present complex conjugate exponents. The presence of the matter term

induces solutions as the ones presented in Figures 9. In this figure, the perturbations

amplitudes for δ seem to decrease whereas those for δm increase but remaining all of

them in the linear regime. On the other hand, for β = −1 the homogeneous associated

equation to (53) would present two distinct negative real exponents. The inclusion of

the matter term leads to the perturbations amplitudes to decrease in absolute value as

presented in Figure 10 both for matter and Hubble parameter perturbations.

Finally, we decided to study a dust fluid characterized by both ω = 0 but α 6= 2/3.

It is possible to show that Lagrangians such as (44) can satisfy equation (6) provided

‖ Note that β = 1 will imply γ = 0 , i.e., the usual EH Lagrangian would be recovered.
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Figure 10: Stability of f(R,G) given by (44) in the dust (ω = 0) case: Evolution of cosmological and

dust perturbations, δ and δm respectively for β = −1 in expression (53). Different initial conditions at

redshift z = 1000 were imposed. The two upper panels represent the evolution in redshift for δ (left)

and δm (right) for fixed δm(z = 1000) = 10−3 whereas δ(z = 1000) varied from −0.001 to 0.001. One

can see how the δ perturbations tend to decrease its amplitudes when approaching today. Concerning

δm, with initial amplitude of 10−3, acquired final amplitudes ranging from 0 to 10−3. At the lower

figures, it is depicted again δ (left) and δm (right) this time for fixed δ(z = 1000) = 10−3 whereas

δm(z = 1000) varied from −0.001 to 0.001. On the left panel it can be seen that δ tends today to

amplitudes ranging between zero and −5 · 10−4, i.e., the amplitudes decrease for all the δm initial

conditions. Concerning the evolution for δm (right panel), the amplitudes today are smaller than the

corresponding initial amplitudes.

that

α =
2

3
(β + 2γ) , (54)

and µ a certain combination of {β, γ, ρm(ttoday)} that guarantees this parameter to be

both real and positive. Therefore, models like (44) may host dust fluid (ω = 0) with a

power-law evolution exponent α 6= 2/3 for a suitable choice of parameters. In order to

illustrate this case, we consider one example with β = −1 and γ = 3/2 and consequently

µ = 75/256
√

3/2κ2ρm(ttoday). According to expression (54), the obtained value for the

α exponent is 4/3. Figure 11 represents δ and δm evaluated today for a wide range of

initial conditions for these two quantities. On the other hand, Figure 12 represents the

redshift evolution also for δ and δm by fixing different initial conditions. There, it can

be seen how whereas the Hubble parameter perturbation remains small and decreases in

amplitude, the matter perturbation grows in amplitude whereas remaining in the linear

regime.
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Figure 11: Values today for cosmological and matter (dust) perturbations, δ and δm respectively,

for the power-law scale factor with exponent α = 4/3: Parameters of the gravitational Lagrangian

were chosen to be β = −1, γ = 3/2 and µ = 75/256
√

3/2κ2ρm(ttoday). The hyperplane with larger

slope corresponds to δm evaluated today whose values range from −0.03 to 0.03, i.e., 30 times bigger

than initial amplitudes and therefore showing the instability of the δm evolution. With regard to δ,

the hyperplane for δ today acquires amplitudes ranging from −3 · 10−3 to 3 · 10−3, i.e., three times the

initial value and consequently showing as well the instability of the δ evolution.

6. Stability of f(R,G) mimicking ΛCDM solution

We analize in this section the stability of the f(R,G) function mimicking ΛCDM

cosmological evolution without any cosmological constant term. This model was

originally presented in Following [15] and its key features will be described below. The

cosmological speed-up effect of the cosmological constant in the Concordance model is

precisely replaced by the modification introduced by f(R,G) with respect to the usual

EH Lagrangian.

The scale factor solution within GR with dust and cosmological constant is given

by:

a(t) =

(

Ωm

ΩΛ

)2/3

sinh1/3

(

3
√
ΩΛ

2
H0 t

)

(55)

where H0 holds for Hubble parameter today and Ωm,Λ hold respectively for dust and

cosmological constant fractional densities today¶. According to [15], the Gauss-Bonnet

contribution to the gravitational action that is able to mimic ΛCDM evolution is given

by

f(G) = θ ζ(G)2 + ϑ ζ(G) +H2
0 ǫ , (56)

¶ For illustrative purposes we shall consider Ωm = 0.27 and ΩΛ = 0.73.
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Figure 12: Stability of f(R,G) given by (44) in the case of dust (ω = 0) and scale factor with

power-law exponent α = 4/3: Evolution in redshift of cosmological and dust perturbations, δ and δm
respectively. As in Figure 11, parameters of the gravitational Lagrangian were chosen to be β = −1,

γ = 3/2 and µ = 75/256
√

3/2κ2ρm(ttoday). Different initial conditions at redshift z = 1000 were

imposed. The two upper panels represent the evolution in redshift for δ (left) and δm (right) for

fixed δm(z = 1000) = 10−3 whereas δ(z = 1000) varied from −0.001 to 0.001. One can see how the

δ perturbations tend to reduce its amplitudes when approaching today showing the stability of this

case. Concerning δm, with initial amplitude of 10−3, acquired final amplitudes ranging from 10−3 to

4 ·10−3,i.e., increasing its amplitude by a factor 4. At the lower figures, it is depicted again δ (left) and

δm (right) this time for fixed δ(z = 1000) = 10−3 whereas δm(z = 1000) varied from −0.001 to 0.001.

On the left panel it can be seen how δ today acquires values ranging from 0 to 5 · 10−4, i.e., decreasing

its amplitude (initially 10−3) for the δm initial condition. Concerning the evolution for δm (right panel),

the amplitudes today range from 0 (for δm(z = 1000) = 10−3) to −4 ·10−2 (for δm(z = 1000) = −10−3).

where

ζ(G) =
3H2

0 ±
√

81H4
0 − 3G

6l
, (57)

with l = κ2ρ0a(t = ttoday)
−3/3 and G is given by expression (5), while according to [15],

{θ, ϑ} are

θ =
l2

H2
0

[

κ−2 − 2

9
(ǫ+ 1)

]

; ϑ = l

[

1

5
κ−2 +

2

9
(ǫ+ 1)

]

, (58)

where ǫ is a constant+ as well. Therefore, the full gravitational Lagrangian is expressed

as follows [15]

f(R,G) = R +
1

2

(

θ ζ(G)2 + ϑ ζ(G) +H2
0 ǫ
)

(59)

+ In the original reference, authors used δ symbol for this constant. In order to avoid confusion, we

have preferred to use ǫ symbol.
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Now that we have revised the form of the f(R,G) Lagrangian able to mimic the

background solution (55), we study the system made of by the equations (11) and (12).

The stability of this model for several different initial conditions can be established has

been represented in Figs. 13, 14 and 15. Both signs in expression (57) were considered

leading to two different analyses: For the positive branch in expression (57), the obtained

solutions were oscillatory with decreasing amplitude for all the studied initial conditions.

According to the numerical results depicted in Figures 13 (left panel) and 14, δm(t)

attains bigger amplitudes today (in absolute value) than δ(t) in this branch. On the

other hand, for the negative branch in expression (57), the δ decrease in amplitude

whereas δm solutions increase for all the studied initial conditions. According to Figure

13) (right panel), δm increases in absolute value faster than δ. Fig. 15 illustrates how δ

amplitude tends to decay whereas δm increases.

Figure 13: Values today for cosmological and dust perturbations, δ and δm respectively, for the

f(R,G) model (59) mimicking ΛCDM. Positive (negative) sign in expression (57) were represented in

left (right) panels. Initial conditions were imposed at redshift z = 1000 ranking from (−0.001, +0.001)

for both δ(z = 1000) and δm(z = 1000). For the positive branch (left panel) the maximum amplitude

of δ today is ±2 · 10−4. Thus, the final amplitude is 20 times smaller than the initial ones guaranteeing

that δ remains in the linear regime and the perturbations remain small. The final value for δ turns out

to be independent of the initial conditions for δ and does depend solely upon the initial conditions of

δm. Concerning δm, its final amplitude for δm acquires maximum-minimum values of ±2 · 10−3, i.e.,

twice times the initial amplitude. These values depend both upon initial conditions for δ and δm. For

the negative branch (right panel) the maximum amplitude of δ today is ±2 · 10−3. The value for δm
today depends both upon the initial conditions fixed for δ and δm. The maximum amplitude for δm is

±0.04, i.e, 40 times bigger than the initial amplitude.
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Figure 14: Stability of f(R,G) given by (59) for positive sign in expression (57): Evolution in

redshift of cosmological and dust perturbations, δ and δm respectively. Different initial conditions at

redshift z = 1000 were imposed. The two upper panels represent the evolution in redshift for δ (left)

and δm (right) for fixed δm(z = 1000) = 10−3 whereas δ(z = 1000) varied from −0.001 to 0.001. On

the left panel, one can see that regardless the initial conditions for δ this quantity today approaches

null amplitude with decreasing oscillating amplitude. On the right panel, δm follows the same behavior

decaying from 10−3 to null amplitude today. At the lower figures, δ (left) and δm (right) are depicted

again this time for fixed δ(z = 1000) = 10−3 whereas δm(z = 1000) varied from −0.001 to 0.001. The

oscillatory character of the upper figures appears again. In fact, in both panels of the lower figures, δ

tends to zero regardless the initial value of δm as well as does δm today.
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Figure 15: Stability of f(R,G) given by (59) for negative sign in expression (57): Evolution in

redshift of cosmological and dust perturbations, δ and δm respectively. Different initial conditions at

redshift z = 1000 were imposed. The two upper panels represent the evolution in redshift for δ (left)

and δm (right) for fixed δm(z = 1000) = 10−3 whereas δ(z = 1000) varied from −0.001 to 0.001. On

the left panel, one can see that regardless the initial conditions for δ this quantity today approaches

null amplitude. On the right panel, δm instead grows to bigger amplitudes achieving today values

between 2− 4 · 10−3. At the lower figures, δ (left) and δm (right) are depicted again this time for fixed

δ(z = 1000) = 10−3 whereas δm(z = 1000) varied from −0.001 to 0.001. δ tends to zero amplitude

regardless the initial value of δm. Nonetheless, δm increases its final amplitude today ranging from

−4 · 10−3 to 2 · 10−3 with regard to the initial amplitude.

7. Conclusions

In this work we have extended the study of f(R,G) modified gravity theories to provide

an accurate description of the instabilities that these theories may present. For such

scenarios, the linearized perturbed equations have been derived. They were obtained

once the modified Einstein equations are implemented with perturbations in both the

Hubble parameter and matter density. The resulting coefficients have been explicitly

presented for the first time in the existing literature and a strong dependence on the

chosen f(R,G) model was observed.

We have studied three of the most important cosmological solutions in the standard

cosmological concordance model around a spatially flat FLRW background: de Sitter
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expansion, power laws and the scale factor solution as provided for ΛCDM model. The

required f(R,G) gravitational Lagrangians to provide de Sitter and power-law solutions

are explicitly determined whereas the model mimicking ΛCDM is revised . Concerning

the perturbations, in the first case, we have found that a certain combination in the

sign of some derivatives of the gravitational Lagrangian evaluated in the cosmological

background is required to ensure the stability of the solution. This may provide a way

to understand the end of an inflationary era produced by one of these de Sitter points

(which appear as natural solutions of f(R,G) gravity), as well as for understanding the

evolution of dark energy epoch.

With respect to the power-law solutions, the complexity of the coefficients for the

perturbed equations led us to study two representative models: either a sum of functions

of scalar curvature and Gauss-Bonnet term or powered products of these two scalars.

These models may encapsulate the main features for cosmologically viable f(R,G)

theories in some asymptotic regimes. Their rich phenomenology was summarized in

Table 1.

Besides, the usual power-law behavior for the scale factor in general relativity when

either dust or radiation are the dominant components in the fluid sector, was found to

be mimicked, even in the absence of such fluids, by appropriate choices in the pa-

rameter space of these models. The radiation dominated evolution, i.e. a(t) ∝ t1/2,

deserves special attention in the case of actions of the type f(R,G) = f(G) + f(R).

For this case, we have shown that the background evolution requires the action reduces

to Hilbert-Einstein action, a result that was also naturally extended to f(R) theories.

Consequently, the radiation dominated era can not be described in principle for this

kind of Lagrangians, or at least, effects of such terms should be negligible during that

epoch. Concerning the evolution of the perturbations, we have shown that for models

of the form f(R,G) = f1(G) + f2(R), the perturbations oscillate tending to zero at

z = 0 provided that the initial condition δ′0 is assumed to be null, and the background

evolution (α) coincides with the EoS parameter of the perfect fluid. Also note that

independently of the model, the final values has a direct linear relation with the initial

ones imposed. Note also that in the case α = 2 (accelerating expansion), the perturbed

equation presents a pole at a particular redshift, while the perturbations remain small

up to the divergence.

Finally, the case of the f(R,G) model able to mimic the ΛCDM scale factor led us

as well to relevant conclusions. According to previous literature, this model presents two

branches. Our analysis showed the decreasing and oscillatory character of perturbations

in the positive branch regardless the initial conditions. Therefore, this solution may

be considered as stable with respect to small perturbations. On the other hand, the

negative branch showed that matter perturbations are not constrained in amplitude

even if the perturbations for the Hubble parameter approach zero for a wide choice of

initial conditions.
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Hence, the wide study on both cosmological solutions and stability of homogeneous

perturbations for in f(R,G) gravity carried out in this paper may help to a better

understanding for such higher order theories of gravity. We have shown that

gravitational action plays a very important role in the stability of the solutions depending

both upon the form of the f(R,G) theory and the parameters of the model, which means

a great difference with respect to general relativity. The search for stability in widely

accepted cosmological solutions helps to constrain the parameters space of the f(R,G)

models that may be viable and therefore may deserve further study by future analyses

of the full spectrum of cosmological perturbations in modified gravity.

Model f(R,G) = f1(G) + f2(R)

a(t) ∝ tα EoS Stability

2
3

wm = 0 Stable with δ̇0 = 0. δm grows very fast when δ̇0 6= 0.

wm = 1/3 Unstable: δ and δm grow with z.

2 wm = 0 Existence of a pole zpole fixed at large redshift. Stable close to z = 0.

Model f(R,G) = µRβGγ

Configuration a(t) ∝ tα EoS Stability

Vacuum
α = 1

2
- β > 1, γ one or even number and γ < 1

8
(5− 4β)

α = 2
3

- Any β γ one or even number and γ = γ− given by eqn. (48)

Fluid

α = 1
2

ω = 1
3

Impossible to satisfy.

α = 2
3

ω = 0 Eqns. (47) and (48) must be satisfied,

δm decreases and δ increases.

α 6= 1
2

ω = 1
3

Impossible to satisfy.

α = 4
3

ω = 0 β = −1, γ = 3
2
, δ tends to zero and δm increases.

Table 1: Summarization of the stability of power-law solutions for f(R,G) models given by expressions

(16) and (44). In the cases where no fluids are considered (Vacuum) it can be seen that stability of

the cosmological solutions can be achieved for appropriate choice in the parameters space. Once either

dust of radiation fluids are considered, one sees that usual power-law evolution is on the one hand not

feasible for radiation and, on the other hand, the stability depends on the initial conditions for dust. By

the a particular action for this kind of cosmological solutions, modified gravity may contribute during

the matter/radiation dominated eras, but also reproduce dark energy epoch(α = 2).
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Appendix

In this Appendix we present explicitly the coefficients of equation (11).

c2 = − 18H2
0 (16f

0
GGH

4
0 + 8f 0

GRH
2
0 + f 0

RR) ,

c1 = − 18H0

{

1536H8
0Ḣ0f

0
3G − f 0

RRḢ0 − 48H6
0

[

f 0
GG + 8Ḣ0(3f

0
RGG + 2Ḣ0f

0
3G)

]

− 8H4
0

[

3f 0
RG + 2Ḣ0(5f

0
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RRG + 24Ḣ0f
0
RGG)

]
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0
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RR + 8Ḣ0(f

0
RG + f 0
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0Ḧ0f
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,

1
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f 0
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,

cm = κ2ρm0(t) . (60)
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