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A necessary condition for the stability of the Hartree-Fock solution in many-body problem. 

is presented. If this condition is not satisfied, then the solution becomes no longer stable as 

was discussed by Overhauser in connection with the one-dimensional spin wave model. A 

variational method is proposed in this case to construct a stable solution which has definitely 

.a lower energy than the Hartree-Fock value. The workability of our method is tested in 

some realistic examples like the B.C.S.-Bogolyubov theory of superconductivity. Then the 

method is applied· to field theory which seems to be inconsistent in view of the presence of 

"ghost states"- A canonical transformation leads to a new vacuum state with lower energy, 

but the high momentum part of the coupling is not damped. 

§ l. Introduction 

Recently, a serious question has been raised concerning the stability of 

the Hartree-Fock solution by Overhauser1' who treated the one-dimensional 

system of interacting fermions and found a new solution which gives a lower 

energy than the Hartree-Fock value. In such a system, the free ground state 

is not connec-ted with the true one adiabatically, but rather with some kind of 

excited state. The B.C.S. theory of superconductivity2> is another example where 

the ground state rs far from the Fermi distribution. 

Now in the Overhauser model, one can show that the propagator for a 

:pair of particle and hole with spin either parallel or antiparallel according to 

the sign of force has an imaginary pole, the corresponding excitation being 

-completely unstable. In the B.C.S. theory, the propagator .for a pair of particle 

Qr of hole with opposite momenta and spins has also an imaginary pole at 

the momentum close to the Fermi value.8> One may expect that this difficulty 

is intimately connected with the instability of the Fermi distribution, that is, the 

Hartree-Fock solution against the deformation in accordance with such an excitation. 

Following · this observation, one will introduce in § 2 an approximate col

lective operator by applying the method of normal mode, 4' calculate the 

variational energy with respect to the deformed state corresponding to thier 

-collective excitation, and then show that the second derivative of this energy 

at the Hartree-Fock state is actually positive if the eigenfrequency is real, but 

is zero if this is imaginary. In the former case the Hartree-Fock state is stable 

within the family of variations employed and in the latter case it is unstable. 
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654 K. Sawada and N. Fukuda 

Then a family of variational functions are suggested which would make the 

energy lower than the Hartree-Fock value. In order to assure the absolute 

stability, one will in principle have to look for a complete set of these· excited 

modes, but from physical grounds lower. excited states will usually play an. 

important role. 

In the following three sections, the criterion of instability is applied to the 

three-dimensional model of Overhauser, to the B.C.S. theory of superconductivity,. 

and to the Bogolyubov Hamiltonian of liquid He4 with negative scattering length.6> 

It is then shown that our new variational solution will actually tum out to be 

the lower energy state. The new excited eigenmodes, phonon spectrum, for 

instance, based on this ground state now have real frequencies. 

In § 6, the method is applied to field theory by taking the meson-nucleon. 

system as an illustration. The meson spectrum now includes an imaginary 

frequency which is made use of to derive a new ground state with lower energy. 

The canonical transformation leading to this state has two effects. One is to 

change the effective coupling between the meson and nucleon which becomes: 

weaker than the original one. The high frequency part of the coupling is how

ever not altered. The other effect is that the eigenfrequencies of the meson 

are now all real. 

§ 2. Stability condition fo:.; the Hartree-Fock solution 

of a Fermi gas 

As an orientation of our basic idea, let us first consider a Fermi gas in. 

which particles are interacting through ordinary two-body forces. The Hamil

tonian of our system is given in the second quantized form as 

(2·1) 

where p's are the momentum and spin of a particle, Cp's and c;•s are an

nihilation and creation operators of a particle, respectively, and v(q) the· 

Fourier transform of the potential. In the hole theory formulation in which 

the Fermi distribution is taken as a vacuum, Cp's are replaced by 

{
ap, for lpl>pF, 

Cp= 
bp *, for lp\ <pF, 

(2·2) 

where ap and bp are the annihilation operators of a " particle" and a "hole ",. 

respectively, and PF the Fermi momentum. 

It is one of the most important objects in the recent many-body problem 

to find some kind of approximate normal modes in the interacting system which 

are usualJy called collective oscillations. The condition for the normal mode 

is given by the presence of operators A., and A.* which satisfy an equation 
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On the Stability of the Hartree-Fock Solution 655 

(2·3) 

where w. is the frequency of the collective oscillation. These A.'s are a func

tion of original operators a's and b's, and obey the canonical commutation 

relation, plus or minus according 'to the Fermion and Boson type collective 

motion. One of the typical examples is the plasma oscillation at high density 

discussed by us and others.4J In some cases, however, the collective frequency 

(IJ0 becomes imaginary as will be shown in the following sections, which turns 

out to be connected with the instability of the Hartree-Fock solution. 

A theorem concerning this instability can be formulated as follows. Sup

pose there is an operator S which is an n-th order ordered polynormial of a's 

and b's and satisfies 

[S*, H]_= -(I)S*+C (2·4) 

where C is composed of products of more than n ordered operators.* (I) may 

be real or imaginary. Denoting the free vacuum, that is, the Fermi distribu

tion by (/)0 which is known to be the Hartree-Fock solution of our system, we 

will consider a family of variational functions defined by 

(2 ·5) 

Then the variational energy is given by 

E(J.) =(lJf(i.), HlJf(i.) )=((/Jo, e-i:>.(8*+8J He'"(8*+8J(/Jo), (2 ·6) 

which is of course equal to the Hartree-Fock energy for A=O; If one takes 

the first derivative of Eq. (2·5) with respect to i. and makes A tend to zero, 

one has 

__?__E(A)I = ( -i)((/Jo, [S*+S, H]_@0 ) 

oA ~-o 
(2·7) 

which is zero on account of Eq. (2 · 4). This is the ordinary statement that 

the Hartree-Fock solution is the variational one. If one takes ap or bl' itself 

as S, one will have the Hartree-Fock single particle energy as tu' 

In order to see whether the solution is really stable, one has to look into 

the sign of the second derivative of E(i.) at i.=O which is given by 

(2·8) 

since the commutators of S's and C's have the zero expectation value. In the 

case where all tu's are real and positive,6l one can show that the expectation 

value of [S, S*J_ is positive and one has 

* S and C are assumed to have no constant terms. 
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656 K. Sawada and N. Fukuda 

a2 \ -.-EO) > 0, for w> 0. 
OA2 >--o 

(2·9) 

The Hartree-Fock solution satisfies, therefore, the minimum condition within 

the family of variations employed here. However, if some of w's are imaginary 

{lu=iF), then one has 

0 ~ 2 E().)\ =0, for w=iF, 
OA >.=0 

(2 ·10) 

:and the minimum condition is usually violated.* It will be shown in the fol

lowing sections that there exists in this case another ground state solution with 

:lower energy which is to be obtained by the variational principle by making 

.use of trial functions similar to Eq; (2 ·5) : 

(2 ·11) 

where the function S(a) has the same structure asS with respect to operators, 

a's and b's, but the coefficients contain some variational parameters. 

§ 3. ·Spin wave model of Overhauser-Three-dimensional case-

As an application of our stability condition, let us consider in this section 

.a model discussed by Overhauser> where the potential is assumed to be of the 

a-function. For the sake of convenience, one will separate the spin index and 

·employ the two-component operator defined by 

Cp= (CP.,.). 
Cp{o 

(3·1) 

Then the total Hamiltonian is written as 

(3·2) 

where 7 is the strength of the potential and is positive for repulsion and nega

tive for attraction. 

Now one takes as the operator S* a form suggested by the study of col

lective oscillations in a Fermi gas,4> in particular the plasma oscillation, and 

puts 

(3 ·3) 

where u is 1 or any of the Pauli matrices, u .,, u 11 and u ., and q. is an arbitrary 

* We will put the special case out of consideration in which EIII(O) =0 and EIV(O)>O. 
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On the Stability of the Hartree-Fock Solutwn 657" 

momentum. The meaning of a and b is clear from Eqs. (2 ·2) and (3 ·1) .. 

The coefficients (f)'s are to be determined from Eq. (2·4), where the operator· 

C now consists of products of more than three ordered operators. Putting; 

(3 ·-4)! 

and taking a-=1 one has the following coupled integral equations for (f)'s;; 

(lu- wp; q)({)~: q=r ~P' ( ({)~,: q- g~,: q)' 

(lu+wp; q) 8~. q= 
" " " 

(w- Wp; q) X~; q= 
" " 

,, 

(lu-wp; q) B~;q= 
" " " 

(3 ·5) 

from which the secular equation for lu is obtained as 

(3·6} 

If one takes a-=a-,, a-11 or a-., the sign m front of r is changed and one has,. 

instead of ( 3 · 6), an equation 

(3·7) 

From the stability conditions, Eqs. (2 ·8) and (2 ·9), one can conclude that 

if the coupling is sufficiently large, either Eq. (3 ·6) or Eq. (3 · 7) according 

to the sign of r has an imaginary root for lu and the Hartree-Fock solution 

becomes unstable. In the one-dimensional case, this instability always occurs 

for q equal to 2PF irrespective of the strength and sign of r as pointed out 

by Overhauser. More specifically, for the repulsive case (r>O), Eq. (3·6) 

leads only to real lu, whereas Eq. (3 ·7) has always an imaginary solution in 

the one-dimensional problem. For the attractive case (r<O), the role of Eqs. 

(3 · 6) and (3 · 7) is interchanged.7l 

In order to get the Overhauser solution for the one-dimensional repulsive 

case (r> 0) according to our procedure, Eq. (2 ·11), one puts 

S= -i I:; Ck* a-,+ia-11 Ck+qak, 

lc 2 

which generates the transformations 

ei(S+S*) Ckt e-i(S+S*) =cos ale. Clct- sin ak. clc+q-l,' 

e><~+S•) Ck-J, e-i(S+S•) =COS «1c-q • Ck-J, +Sin «k-q. clc-qt • 

(3·8) 

(3·9) 

The mmxmum condition for the expectation value with respect to IJf(a) deter

mines the function ak by 
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f658 K. Sawada and N. Fukuda 

2ak=tan-1A; 1 =r I; ( (Ill <PF)- ( ll+ql <pF)) ltlz:1lwz: q~. (3 ·10) 
ltJ1c,q 1 V ltlz;q+pq 

The transformed Hamiltonian takes the form, disregarding the constant term 

which is actually l-ower than the Hartree-Fock energy, 

Hovernauser= I; E~ct C~cr C~ct + I; E~<-~, Ckt C~c-~, + ( 4 operators ordered), (3 ·11) 
k k 

with 

E _ E~c+Ek+q +Vlu!:q+pq2 luk:q 
1c-1--:- 2 2 I I 

(l)k; q 

There is another form of S (a) in this case given by 

S =i L;k Ck * Uz Ck+qak, 

(3·12) 

(3·13) 

which however leads to a higher ground st'ate energy than the value obtained 

above. 

The above result is identical with what Overhauser has already obtained, 

but our criterion seems to work in more general cases in finding the varia

tional trial functions. It should be noticed that the Hartree-Fock solution will 

be stable in the three dimensional case within the family of variations employed 

here, if the coupling is sufficiently weak.8> 

§ 4. B.C.S. theory .of superconductivity 

Let us now turn to the difficulty which one encounters in de~ ing with the 

B.C.S. model Hamiltonian of superconductors. In this case, one can sum up 

all ladder type diagrams up to infinite order following the technique of Gell

Mann and Brueckner,S> the remaining diagrams being inversely proportional to the 

total volume to be neglected, but the propagator for a pair of electrons has 

an imaginary pole.8> This situation can be easily reproduced in our language 

and is shown, as expected, to lead to the instability of the Hartree-Fock solu

tion. 

The B.C.S. Hamiltonian is written as 

+r:Ek(a~\ +bkt) (a!k_. +b-k_.) · L;k' (a_,,,_. +b~k· _.) (akrt +b"t:,t), ( 4 ·1) 

where Ek's (~0 according as lki~PF) are measured from EF. Consider the 

operator S defined by 

S= L;k(Aka1!\ a~k .. +Bkbkt b_k_.). (4 ·2) 

Then the coefficients A's and B's are to be determined from Eq. (2 ·4), where 

the operator C now consists of products of four ordered operators; One has 
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in this way 

On the Stability of the Hartree-Fock Solution 

(co-2Ek)Ak=;r:Ekt(Ak,-Bk,), 

(w-2Ek)Bk=r:Ek,(Ak,-Bk,). 

From which follows the eigenvalue equation for w : 

659 

(4·3) 

(4·4) 

This result is identical with what was obtained in the diagram method.10> 

For the repulsive case (r>O), all the eigenvalues (co~O) shift from 

zero to the outer side with respect to zero and are of course real, but for the 

:attractive case (r < 0), this shift occurs to toward zero and the eigenvalue 

.adjacent to zero goes over into an imaginary value. According to our criterion, 

the Hartree-Fock solution f/J0 becomes unstable in the latter case and the new 

trial functions should be looked for in the form of Eq. (2·10), namely 

-which generates the Bogolyubov transformation}> Thus one sees that our cri

terion works also in this case. 

It should be noticed at this point that the collective mode discussed here 

is a special kind of scattering mode for a pair of opposite momenta and spins. 

The general treatment of scattering modes for the full Hamiltonian (2 ·1) has 

been presented elsewhere by one of the authors (K.S.),11l which will serve as 

the instability criterion for the Hartree-Fock solution when the interaction 

:includes an appreciable attractive part. 

§ 5. Liquid helium with negative scattering length 

Another example to which our instability criterion can be applied will be 

found in the model Hamiltonian derived by Bogolyubov and others for the 

.discussion of a dilute Boson gas.5> This is written as 

I:I=:EkPk*(dkEk+ ~ no2 a+:Eqnq2ano+(+:Eqpq*p!qafdofdo+H.c.), (5·1) 

where {dq and pq * are the annihilation and creation operators for a Boson with 

momentum q, respectively, and the constant a is proportional to the scattering 

length. The sum in Eq. ( 5 ·1) does not include q = 0. The Hartree solution 

is in this case the state in which all the particles are degenerate in the state 

K=O. If this solution is stable, then one will obtain, following Bogolyubov, 

the excitation energy of the form 

-./ Ek2+2aNEk= wk, 

where N is the total number of the particles. 

(5·2) 
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660 K. Sawada and N. Fukuda 

In the language of normal mode, one can equivalently obtain the result by 

choosing the operators S in Eq. (2 ·4) as10> 

(5·3) 

Then, putting n0=N- :Eq.nq and {10*{30=N, one has, omitting (L;qnq) 2 term com

pared to N, 

[S,.*, H]_=A,.{- (E,.+aN)[3,.*-aN(3_,.} +B,.{(E,.+aN)(3_,.+aN[1,.*} 

=-ctJ,.(A,.f1,.*+B,.[3_,.), (5·4) 

from which follow the equations to determine the coefficients A and B: 

{ctJ,.- (E,.+aN)} A,.+aNB,.=O, 

-aNA,.+ {w,.+ (E,.+aN) }B,.=O. (5·5) 

The solubility condition for this leads to the eigenfrequency w,. given by Eq. 

(5·2). 

If the scattering, length (a) is negative, then wq becomes imaginary for 

low momentum q-0 and the Hartree solution is unstable. One may expect 

in this case to obtain a stable solution by adopting the variational trial· func

tions, 

(5·6) 

One of the authors (K.S.) and Vasudevan9> have recently determined the pa

rameter a from the variational principle and actually obtained the ground state 

energy lower than the Hartree value. It was shown moreover that the real 

excitation energy was derived in this way. 

§ 6. Application to :field theory 

It is anticipated also in field theory that some of the approximate eigen

modes of strongly interacting elementary particles may be imaginary and the 

free vacuum state becomes unstable according to our criterion. Then one may 

choose some appropriate variational trial functions to obtain the stable vacuum 

state with the real eigenmodes for excitation. The effective coupling will be 

changed in this case. 

Let us consider, as a typical example, a system of the nucleon and the 

pseudoscalar neutral meson which are interacting each other through pseudo

scalar coupling. The Hamiltonian is given . by 

H= :E,.ff,. * ff,.v,.+ :Ep:,c;·cp•c, 

(6·1) 

where ff,.'s are the meson operatO!S and C's the nucleon operators with positive 
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On the Stability of the Hartree-Fock Solution 661 

and negative energy, s being the spin index~* The function u ts the ordinary 

Dirac spinor and 

g . 

g,.= (2JJ,.!J)l/2' 

lJ,.=vKA+p.2, cp= ± t/p2 +m2, (6·2) 

where !2 is the normalization volume, and p. and m the masses of meson and 

nucleon, respectively. In the hole theory, one usually puts· 

{
ap• for EJ>>O, 

Cp'= 
b'p* for Ev < 0, 

(6·3) 

where a is the annihilation operator for the nucleon and b for the anti-nucleon. 

In order to avoid the divergence difficulty, one will occasionally introduce the 

· high momentum cutoff. 

Let us first look for approximate eigeJ;J.modes for the meson by choosing 

the function S in Eq. (2 ·4) as · 

(6·4) 

Then the coefficients A's are to be determined from Eq. (2 ·4) where C now 

consists of products of three ordered operators. One gets in this way 

(aJ-JJk)A,.=- g,.~M•'D~:;_,. { (u;~T<P2up•-)- (u;~k-p2uz:)}, 

(w+JJ,.)Bk=-g,.~P.•.•' (same as above), 

(aJ- (cp-cp_,.)) D~:~_,.=g,,(u;• p 2 u~_,.) (A1 •• +Bk), (6 ·5) 

where p-'s (or p+'s) refer to the negative (or positive) energy state hereafter. 

The eigenvalue equation for w becomes 

namley, 

1= 

ai-JJ 2+ 2g 21J" { l(u"p>l:.p2u~_,.+)l 2 + l(u~~p2u;_,.-)l 2 l=O, 
,. ,. k ,L..,p,.•,•' I!' I lc. I I I I I J w+ Cp + p-k -(1)+· Cp + ck-k 

4gk2 1Jk 

(1)2-!Jk2 

L:: 2(lcP+<kt2)1 + IEp-<kJ2)!) {lcpi 2-(1/4)(Jcp+<kt2)1-lc1>-<kJ2)1)2} 

11 {- w2 + ( Jcp+<kJ2) 1 + Jcp-<kJ2) I ) 2
} Jcp+<kf2) llcp-<kt2) l ' 

(6·6) 

from which one sees that if the cutoff for the sum is large enough, an imagi

nary solution is obtained and the free vacuum becomes unstable. This situa

tion will be seen clearly in the Appendix for the special case k=O. 

The following variational trial functions are now tenable from our criterion 

to obtain the stable solution : 

* The unit h=c=l is taken. The Dirac operator p2 is equal to i r4 r6 in terms of the ordinary 

r-matrices. 
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662 K. Sawada and N. Fukuda 

which generates the transformations 

so,.*~so,.*+A,.*, so,.~so,.+A,., 

c;· ~ :Ep',•' c;:' (e-w)_;;l;p. 

The new Hamiltonian has the form 

H ~ Htran•t· = H1 + H2 +Eo, 

= "" * ' +"" C*'' {""( -m)•'•· ., ( w)"" =1 = £....Jk 9'k 9',.11,. £....Jp',P" : P' £....Jpr e P'PcP e PP" ,,,,, 

+ L;,.g,.(A,,+A!,.) :E_peo(e-w)~:p(U:' p,u~_,.)(ew)_;,_,.;:,} c;:,: 

(6·7) 

(6·8) 

+ L;,.g,.(so,.+so!,.) :E : c:r (e-w)_;;:p(u:· p,u~_,.)(ew).;,_,.;::, c~:,: 
plpllp 
a/ 11/ It 

H,= :Ek 9'k * {11,.A,. +g,. :E (e-w);::-p(u;• p,u~+k) (em).;,+,.;,-} +H. C. 
plrlpat , 

Eo= L;,.A,.* A,.111,+ :E_pp,(e-w);:-pcp(ew);~,-
••' 

+"" (A +A* ) "" ( -w)''' ( *' t ) ( w).t ,, £....Jkgk 1.·. -k £ .... JP'•'P't e P,-P Up P2Up-k e p-kp'-. (6·9) 

The stationary condition for Eo with respect t6 A and A* leads to the equa

tions 

(6·10) 

which makes H, vanish. To make variation with respect to D, .one must take 

into account the condition 

"" . (e-tD) •'• (etD) ••' --' 1 £....Jp,B pip ppl- • (6·11) 

By introducing the Lagrange indefinite multiplier, one obtains another equation 

(ap,,p,-SP-.<_;:,) (ew);~,+ap,,p,- L;,.g,.(Ak+A!,.) :E <U:'p,u_;,_,.) (ew)~_,.;:,=o, 
t 

(6·12) 

from which it follows that 

(6·13) 

For the sake of convenience, one may therefore replace Eq. (6·12) by 

(cp- .<_;:,) (ew);~, + L;,.g1,(A,. +A!,.) :Et (u;• p,u],_,.) (ew)_;,_,.,;, =0. (6 ·14) 

Multiplying this with (e-tD)_;::::P and taking sum over s and p, one gets 

""( -tD)BIIIB c ( tD)BBI JBI ;) ;) 
£....Jp1 e pllfpCp e PP'-"I11UBIBI11Uplplll 

+"" (A +A* ) "" ( -tD)'"'' ( *' •" ) ( tD)'" •' · 0 £....Jl• g"' ,. _,. £....J e l>"'P up p, up-k e p-k 1>' = . 
pas II 

(6·15) 
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On the Stability of the Hartree-Fock Solution 663 

One can now rewrite the transformed Hamiltonian, Eq. (6 ·9), and Eqs. 

(6·10) and {6·14) in terms of the function 

Vqt(p) = L:s(±Ep)up'(ein);q.' (6·16) 

where ( ± cp) means the sum over the sign of the energy with momentum p. 

Namely, one has 

Heram1. = L:k9'k * Si'k!Jk+ L:;P•: C;'CJ,: J.j, 

+ L:;kgk(SOk+SO:!:k) :E: c;s L:; (v;•(p")p2v;;,(p"-k))C;;,: 
ps pll 

pfsl 

+ L:;kAk* A,.11k+ ~ .• Ap'-; 

11kAk+gk :E Cv;'-(p')p2vp'-(p' +k)) =0, 
PP1• 

(ap+{dm-J.q1)vq1(p) +L:;kg,.(A,.+A!k)P2Vq1(p-k) =0. 

(6·17) 

(6·18) 

(6·19) 

In deriving Eq. (6·17), use has been made of Eq. (6·15). The last two equa

tions lead to a non-linear equation for v, the general solution of which is dif

ficult to obtain, and one is obliged to content oneself with the following par

ticular solution. Let us put . 

Vq1(p) =Jq, pWq1• 

Then Eqs. (6·18) and (6·19) become 

which has a solution 

~~,.Ak+ak; ogk L:qt(wi~ P2wqe_) =0, 

(aq+{dm+2goAoP2-Aq1)wq1=0, 

w t = 1 ( 1 + 2goAo ) t 
q (1+{2goAo/(i1q+cq)} 2) 112 J.q+cq p2 uq, 

where u/ is the ordinary Dirac amplitude and 

Aq=Vcq2 + (2goAo) 2, for cq>O, 

= -vcq2 + (2goAo) 2, for cq<O. 

The function Ak is zero for k#O and A 0 satisfies 

1+ 4gt :E (-1) 0, 
!Jo '1 \ Aq\ 

(6·20) 

(6·21) 

(6·22) 

(6·23) 

(6·24) 

which has the, solution if the cutoff is sufficiently large.12) Our transformed 

Hamiltonian ( 6 ·17) has now the form 

Htramt.= L:~osok*Si'k.!Jk+ L:;p.: c;scp·: ± Vcp2+ (2goAo) 2 

+ L:;kgk( Si'k +so:!:k) ~ •• ,: c;·. (1 + {2goAo/~..lp+c1,)} 2)112 
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664 K. Sawada and N. Fukuda 

X 1 . (u*"· {P (1+ (2goAo)2 ) 
(1+ {2goAo/<Ap-k+Bp-k)} 2)112 P 

2 (Ap+Bp) (Ap-k+cp-k) 

+2goAo( 1 + 1 )}u~-k)xc;~k: -2~/cp/+.dEo, (6·25) 
..lp+Bp ..lp-k+Bp-k 

with 

.dE =-L: (Vcp2+(2gaAo) 2 -/cp/) 2 (<O) 
0 

1' Vcp2 +(2goAo) 2 ' 

(6·26) 

which is the energy decrease on account of our transformation. 

It should be noticed here that the solubility of Eq. (6·24) leads to the 

condition for the cutoff momentum and the coupling constant, which is con

sistent with the condition that Eq. (6 ·6) has an imaginary solution. The rea

sonable values for these quantities adopted in the cutoff theory give 

4go2 L;q _1_> 1, 

JJo /cq/ 
(6·27) 

which is the condition that Eq. (6 ·6) with k=O has an imaginary solution for 

{!) (see the Appendix) and is at the same time the condition that Eq .. (6 ·24) 

has a real solution for 2g0 A 0 • Thus our criterion seems really to work. The 

effective coupling in Eq. (6·26) has now a scalar term in marked contrast to 

the original coupling in Eq. (6·1), but these interaction terms becomes always 

smaller with respect to the positive-negative component and vanishes in the 

strong coupling limit. 

After the transformation, one can construct the eigen-value equation cor

responding to Eq. (6 ·6) again, but in this case on account of the deformation 

of vacuum (or mathematically due to Eq. (6 ·24)) there is no imaginary root 

(see the Appendix), and the free vacuum defined by our new Hamiltonian Eq. 

( 6 · 25) is now stable against the deformation considered. 

§ 7. Conclusion 

A criterion has been presented to see the stability of the Hartree-Fock solu

tion for the given dynamical system. If one can construct any kind of approxi

mate collective modes which may have an imaginary frequency, then the Hartree

Fock solution becomes unstable in the sense that a state deformed in accordance 

with this collective oscillation will give a lower ground state energy. A method 

of choosing appropriate variational trial functions is proposed in this case and 

is actually shown to give stable solutions in some examples, that is, the three

dimensional spin wave model of Overhauser, the theory of Liquid He4 with 

negative scattering length and the B.C.S. theory of superconductivity. This 

method is then applied to field theory, in particular a meson-nucleon system 

which in fact shows the instability mentioned above, and one sees that the 
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On the Stability of the Hartree-Fock Solution 665 

" zeroth order " vacuum is deformed into another which now includes virtual 

pairs and mesons and that the effective coupling is changed in such a way that 

the new eigenfrequencies of the meson and nucleon become real. The high 

frequency part of the original coupling is not altered, but there might be some 

collective modes, e.g. nucleonic level strucutre, arising from this part, just like 

the plasma oscillation which screens the long-range tail of the Coulomb force. 

Appendix 

The eigenvalues of the meson 

The eigenvalue equation, Eq. 

(6 ·6), can be evaluated explicity. 

As an illustration, let us consider 

the special case k=O. Then one 

has to solve the equation 

The right-hand s'ide is shown 

as a function of o} in Fig. 1, on 

the assumption that the · instabili

ty condition Eq. (6 ·27) is satisfi

ed, which means the point B lies 

above 1. (v0 is, of course, smaller 

than m.) The point A corre

sponds to an imaginary eigen

value. If the stability condition 

is satisfied, one has Fig. 2 in 

which the point B lies below 1 

and a collective mode of excita-

w' 

Fig. 1. 

Fig. 2. 

tion associated with the point C appears which lies between 0 and Min(v0
2, 4m2). 

But as stated in the text, any reasonable cutoff momentum and coupling strength 

can hardly satisfy the stability condition. 

In the system which is described by the Hamiltonian Eq. (6 ·25), we can 

again construct (approximate) ·normal modes corresponding to Eq. (6 ·4), and 

the eigenvalue equation has a similar form to Eq. (6 ·6), the only difference 

being that u's and c's are now replaced by w's and A's which satisfy Eq. 

(6·21), namely 

{ I ( '* sl 12 I ( "* sl 12 
ol-v 2+2g 2 11 ""' Wp-p2wp+-1<) + Wp+p2wp--1<) }=O. 

k • " k £.....J I I I I I 1 I I P••' to+ Ap + Ap-k - w + Av + Ap-h• 

This leads to the eigenvalue equation .(for k=O) 
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666 K. Sawada and N. Fukuda 

1=- 4go2JJo :E Jcl,/2 

oi-v0
2 IP ( /..lp/ 2- oi/ 4) /..11'/ 

The right hand side is an increasing function of ci ranging from - co to 0~ 

and at al = 0 we have 

right hand side= 4g02 :E ~ 1 - Jc1,J 2 <1 
llo L' /Al'/ /..ll>/2 ' 

owmg to the eigenvalue equation for Ao, Eq. (6·24). One has therefore no 

imaginary solution for c11. There appears instead a solution for c11 which lies 

between 0 and Min (v0 , 2/..lo/) and is to be connected with the solutions for 

k~O to make a continuous spectrum. 
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