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Abstract— We provide an analysis of the classic Kuramoto
model of coupled nonlinear oscillators that goes beyond the
existing results for all-to-all networks of identical oscillators.
Our work is applicable to oscillator networks of arbitrary
interconnection topology with uncertain natural frequencies.
Using tools from spectral graph theory and control theory, we
prove that for couplings above a critical value all the oscillators
synchronize, resulting in convergence of all phase differences
to a constant value, both in the case of identical natural
frequencies as well as uncertain ones. We also provide a series
of bounds for the critical values of the coupling strength.

I. BACKGROUND AND INTRODUCTION

Over the past decade, considerable attention has been
devoted to the problem of coordinated motion of multiple
autonomous agents. A variety of disciplines (as diverse
as ecology, the social sciences, statistical physics, com-
puter graphics and, indeed, systems and control theory) are
developing an understanding of how a group of moving
objects (such as flocks of birds, schools of fish, crowds
of people [9], [19], or collections of autonomous robots
or unmanned vehicles [17], [18]) can reach a consensus
and move in formation without centralized coordination.
Interestingly, this has coincided with a surge of activity in
the area of network dynamics, which focusses on the re-
lationship between graph structure and dynamical behavior
of large networks of diverse origin.

A classic example of distributed coordination in physics,
engineering and biology is the synchronization of arrays
of coupled nonlinear oscillators [14], [15], [24]. Building
on long-standing experiments (dating back to Huyghens
and van der Pol), the problem of collective synchronization
was explored mathematically by the Russian school of
Andronov. Norbert Wiener [23] also recognized its ubiquity
in the natural world, and even speculated about its relevance
to the existence of characteristic rhythms in the brain [16].

Following on key insights by Winfree [24], Kuramoto [7]
proposed in the 1970s a tractable model for oscillator
synchronization that has become archetypal in the physics
and dynamical systems literatures. (See [14] for an excellent
review of the state-of-the-art on this model.) More recently,
researchers in the control community [6], [10], [13], [21]

A. Jadbabaie and N. Motee are with the Department of Elec-
trical and Systems Engineering and GRASP Laboratory, Univer-
sity of Pennsylvania, Philadelphia, PA 19104.email: {jadbabai,
motee }@grasp.upenn.edu

M. Barahona is with the Department of Bioengineer-
ing, Imperial College London, United Kingdom.email:
m.barahona@imperial.ac.uk

have recognized that nonlinear synchronization phenomena
are mathematically related to the problem of coordination
and consensus among multi-agent systems [5], [11].

II. M ODEL DESCRIPTION

The classic Kuramoto model describes the dynamics of
a set ofN phase oscillatorsθi with natural frequenciesωi.
The time evolution of thei-th oscillator is given by:

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), (1)

whereK is the coupling strength, a key parameter in the
problem. One of Kuramoto’s results was to show numeri-
cally that when theωi’s are randomly chosen from a Cauchy
probability distribution in the infiniteN limit, there is a crit-
ical value of the coupling above which all phase differences
remain constant, i.e., the oscillators synchronize [7], [8]. If
we think of the oscillators as points moving on a circle,
they would rotate keeping the phase differences constant.

Kuramoto used the magnitudeR of the centroid of the
points as a ‘natural’ measure of synchronization:

Reψ =
1
N

N∑
i=1

ej θi . (2)

Clearly, if all the ωi’s are the same thenR = 1 when
all agents are in sync. If the natural frequencies are not
identical but the oscillators synchronize,R converges to
a constantR∞ < 1. On the other hand, when all agents
are completely out of phase with respect to each other the
value ofR remains close to0 most of the time. Because
it characterizes the dynamical behavior of the system,R is
referred to as theorder parameterin the physics literature.

Kuramoto’s analysis used simple trigonometry to rewrite
the state equation (1) in terms of the order parameter. After
switching to a rotating frame, Eq. (1) becomes:

θ̇i = ωi −
K

N
R sin(θi − ψ). (3)

In other words, each phase is modulated by the magnitude
R and phaseψ of the averagephasor. In physics notation,
this constitutes amean fieldor “all-to-all” model.

With some brilliant intuition, Kuramoto showed that for
an infinite number of oscillators there is a critical coupling
Kc below which the oscillators are incoherent (i.e., fully un-
synchronized). In addition, there is another critical coupling
KL ≥ Kc above whichall oscillators are synchronized. In



that regime, the order parameterR grows exponentially in
time until it saturates at a valueR∞(K) ≤ 1. The branch
of R with K > KL is called the fully synchronized state,
while K < Kc corresponds to the totally unsynchronized
state. Kuramoto also calculated analytically the value for
Kc andR∞ for a few well-known distributions in the case
of an infinite number of oscillators connected all-to-all.

Despite its success, several aspects of the well-studied
N → ∞, all-to-all Kuramoto model are still a puzzle,
as summarized beautifully in the review by Steve Stro-
gatz [14]. For instance, what does it mean thatR stays close
to zero in the unsynchronized stateK < Kc? This cannot
be true at all times: whenK = 0 and theωi’s are irrational
with respect to each other, the trajectories are dense on the
N -torus resulting in anR which will almost surely visit any
number between 0 and 1. However, simulations indicate that
it is true most of the time. On the other extreme, the case of
few oscillators has been tackled in the dynamical systems
literature with rigorous bifurcation analysis. However, even
basic results are not available for the large but finiteN case,
which is of utmost interest in systems engineering.

Our goal here is to perform a system theoretic analysis
of the finiteN case with arbitrary connectivity. To proceed,
we rewrite the model in terms of the incidence matrix
of the undirected graph that describes the interconnection
topology— the standard all-to-all case is then the specific
case of the complete graph. We then provide several neces-
sary as well as sufficient lower bounds for the critical cou-
pling KL. These include a bound forK below which there
is no fixed-point, and a value ofK above which there is a
unique fixed-point. We also show that contrary to the case
of infinite oscillators, there is no partial synchronization
phenomena, and the critical value of the order parameter
R∞ is not close to 0 as in Kuramoto’sN → ∞ analysis.
In other words, the generic branching ofR at the critical
valueKc does not occur whenN is finite. This extends a
similar result in [4] for the case of 2 oscillators with a finite
set of values for the natural frequencies.

III. G RAPH THEORETICAL FORMULATION OF

KURAMOTO’ S MODEL

A good source for the necessary graph theory terminol-
ogy is [3]. We formalize our results through two matrices
that encode the topology of the connections. The incidence
matrix B of an oriented graphGσ with N vertices and
e edges is theN × e matrix such that:Bij = 1 if the
edge j is incoming to vertexi, Bij = −1 if edge j is
outcoming from vertexi, and0 otherwise. The symmetric
N×N matrix defined as:L = BBT is called the Laplacian
of G and is independent of the choice of orientationσ.
The Laplacian has several important properties:L is always
positive semidefinite with a zero eigenvalue; the algebraic
multiplicity of its zero eigenvalue is equal to the number
of connected components in the graph; theN -dimensional
eigenvector associated with the zero eigenvalue is the vector
of ones,1N . It is known that the spectrum of the Laplacian

matrix {λi(L)} captures many topological properties of
the graph. Specifically, Fiedler showed that the first non-
zero eigenvalueλ2(L) (sometimes denoted the algebraic
connectivity) gives a measure of connectedness of the graph.
If we associate a positive numberWi to each edge and
we form the diagonal matrixWe×e := diag(Wi), then the
matrix LW (G) = BWB is a weighted Laplacian which
fulfills the above properties.

In this framework, the Kuramoto model (1) can be
generalized to any general interconnection topology as:

θ̇ = ω − K

N
B sin(BT θ), (4)

whereB is the incidence matrix of the unweighted graph,
and θ and ω are N × 1 vectors. (It is also helpful to
define thee × 1 vector of phase differencesφ := BT θ.)
A generalization of the order parameter defined in (2) for
the general Kuramoto model is:

r2 =
N2 − 2e+ 21Te cos(BT θ)

N2
. (5)

It is easy to show that when the graph is complete, this is
the square of the magnitude of the average phasor, i.e., for
B = Bc, we haver2c = R2. While the average phasor
interpretation does not generalize to general connected
graphs, the above notion generalizes to arbitrary connected
graphs.

Remark 1: In the limit of small angles, the general Ku-
ramoto model (4) gives the continuous-time Vicsek flocking
boid model [20] which was analyzed in [5]:̇θ = ω −
(K/N)B sin(BT θ) ≈ ω − (K/N)Lθ. Conversely, the
classic Kuramoto model (1) can be thought of as a nonlinear
extension of the Vicsek model for a complete graph.

Remark 2: It is straightforward to show that the analyt-
ical simplification (Eq. 3) in the (standard) all-to-all model
appear as a result of the special symmetry of the Laplacian
of the complete graph:

Lc = BcB
T
c = NI − 1N 1TN

N
. (6)

IV. SYNCHRONIZATION OF IDENTICAL COUPLED

OSCILLATORS

We start by considering the general Kuramoto model (4)
in its unperturbed version, i.e., when all the natural frequen-
ciesωi are identical:

θ̇ = −K
N
B sin(BT θ). (7)

(By switching to a rotating frame, it is easily shown that
we can assume that the natural frequenciesωi are all zero,
without loss of generality.)

Theorem 1:Consider the unperturbed Kuramoto
model (7) defined over an arbitrary connected graph with
incidence matrixB. For any value of the couplingK > 0
and for almost all initial conditions starting in(−π, π)N ,
the phase differences will go to an even multiple of
2π, i.e., the oscillators will synchronize. Moreover, the



rate of approach to synchronization is no worse than
(2K/πN)λ2(L), where λ2(L) is the Fiedler eigenvalue
or the algebraic connectivity of the graph.

Proof: Consider the functionU(θ) = 1−r2, wherer2

has been defined in (5). A simple calculation reveals that
∇θU = (2/N2)B sin(BT θ) which leads to

U̇(θ) = ∇θU θ̇ = − 2
KN

θ̇T θ̇ ≤ 0.

Therefore, the positive function0 ≤ U(θ) ≤ 1 is a non-
increasing function along the trajectories of the system. By
using LaSalle’s invariance principle we conclude thatU is
a Lyapunov function for the system, and that all trajectories
converge to the set wherėθ is zero, i.e., the fixed points.

Define now the e × e diagonal matrix W (φ) :=
diag(sinc(φi)), where sinc(φi) = sin(φi)/φi is positive

for φi ∈ (−π, π)e. Note also that the angles move on
a torus, which implies thatθ ∈ (−π, π)N . The diagonal
weight matrix W (φ) > 0 can be thought of as phase-
dependent weight functions on the graph. The trajecto-
ries converge to fixed-points, which are the solutions of
LW θ :=

(
BW (φ)BT

)
θ = 0. The fact that(θ01N ) is

the only stable equilibrium solution follows easily: for any
connected graph the nullspace of the weighted Laplacian
contains only the vector1N . The only other equilibrium
solutions correspond toφi = (2li + 1)π, i.e., when the
phase differences are all odd multiples ofπ. However,
for such values of phase differences the Jacobian matrix
Bdiag(cos(φ))BT which is also a weighted Laplacian,
would be negative semidefinite (indeed, negative definite
when we ground the system by projecting the equations
to the space orthogonal to1). This means that the set of
points where all the phase differences are an odd multiple
of π form an unstable equilibrium. Clearly the set has zero
measure, so almost all trajectories will converge to the stable
equilibrium set.

Alternatively, one could use the approach in [12] and
consider the quadratic Lyapunov function candidateU =
1
2θ
T θ. A simple calculation reveals that

U̇ = −K
N
θTB sin(BT θ) = −K

N
θTBW (φ)BT θ ≤ 0.

Using the same argument as above, we conclude that
almost all trajectories converge to the synchronized state
where all phase differences are zero. While the first Lya-
punov functionU(θ) provides a stronger decrease, it is
hard to get an estimate on the rate of convergence. With
the quadratic functionU(θ) however, we can show that for
almost all points in(−π, π), the convergence is exponential
with the rate determined by the second smallest eigenvalue
of the weighted Laplacian:

U̇ ≤ −K
N
λ2(BW (φ)BT )||θ1⊥ ||2 ≤ − 2K

πN
λ2(L)||θ1⊥ ||2,

sinceλ2(BW (φ)BT ) ≤ (2/π)λ2(BBT ).
Corollary 1: For the complete graph,λ2(Lc) = N and

the synchronization rate for the mean-field model is no
worse than2K/π.

Remark 3:Similar results hold even if the topology of
the graph changes in time [5]. The result can be extended to
general notions of connectivity, i.e., when the interconnec-
tion graph is not connected at all times but there is a path
between any two nodes over contiguous, non-overlapping,
and uniformly bounded time intervals. It is also possible
to generalize to the case of directed graphs by introducing
notions of weak connectivity [10].

Remark 4:The synchronization argument can be read-
ily extended to the case of more complicated coupling
functions f(·) (other than thesin(·) function) so long as
φT f(φ) ≥ 0.

Remark 5:The function1Te cos(BT θ) is an energy func-
tion for the XY-model in statistical physics. It was consid-
ered as a Lyapunov-like function for the Kuramoto model
by Van Hemmen and Wreszinski [4], as well as in [6].

Remark 6:The global results obtained by Watanabe and
Strogatz [22] and [13] require all-to-all connectivity. An
extension of the methodology in [22] to arbitrary topologies
does not appear to be trivial.

V. THE CASE OF NON-IDENTICAL OSCILLATORS

In the rest of the paper we treat the more complicated
case of oscillators with non-identical natural frequencies.
Although there is an extensive literature for theN → ∞
case with all-to-all connectivity, we will focus here on the
case of finiteN and arbitrary topology given by Eq. (4).
We consider the frequencies to be random perturbations
which, albeit drawn from a probability distribution, remain
constant in time, i.e., the dynamics (4) is deterministic
yet uncertain. This problem is distinct to some treatments
in the physics literature, which transform the problem
into a Fokker-Planck equation, effectively connected to a
stochasticdifferential equation.

Synchronization is best defined in agroundedsystem,
where the phases are defined with respect to a reference
variable (or ’ground’). This can be achieved by any projec-
tion VN×(N−1) such that

V TV = I, V V T = I− 1N1TN
N

, V T1N = 0. (8)

Thus,V is a matrix ofN−1 orthonormal vectors orthogonal
to the vector 1N which generate the set of grounded
coordinatesθ̄ := V T θ and frequencies̄ω := V Tω. The
grounded Kuramoto model is:

˙̄θ = ω̄ − K

N
V TB sin(BTV θ̄) = ω̄ − K

N
V TBW (θ̄)BTV θ̄,

(9)
where, again,W (θ̄) := diag(sinc(φi)) and φ = BTV θ̄.
In this grounded system, the synchronized state is afixed
point.

Remark 7:From Eq. (9) it is easy to see why the natural
frequencies can be centered around zero without loss of
generality. Multiply Eq. (9) from the left byV and use (8)
andBT1N = 0 to recover the original Eq. (4) with new
variablesΘ = θ − [〈ω〉t]1N and frequenciesΩ = ω −
〈ω〉1N , where< ω > is the average frequency.



VI. B OUND FOR THE ASYMPTOTIC VALUE OF THE

ORDER PARAMETER

Consider a Lyapunov function candidate based on the
square of the order parameterr2 defined in (5). The
derivative of this function along the trajectories is

ṙ2 =
1
N2

[
K

N
(sinBT θ)TBTB(sinBT θ)− ωTB sinBT θ

]
,

which is an ellipsoid in thesin(BT θ) coordinate centered
at NωK . Outside of a neighborhood of the origin given by

||B sin(BT θ)||2 >
N

K
||ω||2 (10)

the derivative is positive, resulting in growth of the order pa-
rameter. The boundary of this region contains the equilibria.
By using an ultimate boundedness argument, the trajectories
are confined to the smallest sublevel-set ofr containing the
set defined by (10).

We now use (10) to obtain an estimate of the asymptotic
value of the order parameter. The vectorsin(BT θ) can be
decomposed into two orthogonal components:y1(θ), in the
null space ofB, andy2(θ) in the range space ofBT . The
first component is annihilated when it is multiplied byB
on the left. As a result, the region over whichṙ2 is positive
can be characterized as

||y2(θ)||2 >
N

K
√
λ2(L)

||ω||2.

whereλ2(L) is the algebraic connectivity of the unweighted
graph. We now bound the value ofU over the region where
ṙ2 is negative. A simple bounding reveals that

21T cos(BT θ) ≤ ||1||2+|| cos(BT θ)||2 = 2||1||2−|| sin(BT θ)||2,

from which

r2 ≤ N2 − || sin BT θ||2

N2
≤ N2 − ||y2(θ)||2

N2
≤

N2 − N2||w||2
K2λ2(L)

N2
.

We can immediately observe that the asymptotic behavior
of the order parameter is inversely proportional to the alge-
braic connectivity of the graph. Of course, because of the
over-bounding, the bound is conservative—its asymptotic
value is 1 as opposed to the actual less-than-one value.
Nevertheless, this gives us a bound on the growth rate of
r2, and, as a result, the growth rate onr is bounded by

1√
λ2(L)

.

This means that asymptotically

r ≤

√
1− ||w||2

K2λ2(L)

which would result in an increase rate ofO( 1√
N

) when the
graph iscomplete.

Remark 8:Consider a complete graph where the natural
frequencies are independent random variables chosen from
a normal distributionωi ∼ N (0, σ). Then ||w||2 scales as

√
Nσ, which results in a bound forr <

√
1− (σ/K)2 that

is independent ofN .
Remark 9: In [4], the authors added a linear termωT θ

to the Lyapunov function candidate to guarantee negativity
of the derivative everywhere except at the fixed-points, re-
ducing the perturbed model to a gradient system. The linear
term, however, makes the Lyapunov function indefinite.

We will see in the next section that ifK is large enough
to guarantee the existence of a unique fixed point (via
a contraction argument), condition (10) will be trivially
satisfied. This means that ifK is large enough the derivative
of the order parameter will be positive, resulting in the
asymptotic stability of the synchronized state.

VII. B OUNDS FOR THE CRITICAL COUPLING

As the couplingK is decreased, there is a critical value
KL below which no fixed point exists, resulting in a running
solution for the grounded system (9). This means that the
system cannot be fully synchronized forK < KL.

An easysufficientcondition for the fixed point̄θ∗ to be
stable is forφ∗ = BTV θ̄∗ to be contained in any closed
subset of(−π

2 ,
π
2 )e, which implies that|θ∗| < π

4 . This is
demonstrated by taking the Jacobian ofV TB sinBT θ, and
noting that it is equal toV TBdiag[cos(BT θ∗)]BTV , which
is positive definite over that set.

A. Critical value of coupling for complete graphs

Our results generalize those of Van Hemmenet al. [4]
in the case of a complete graph. Specifically, it can be
shown that the critical value of the coupling is determined
by the value ofK for which the fixed point disappears.
This can be explained by looking at the fixed point equation
B sin(BT θ∗) = Nω

K .
Let ωmax = ||ω||∞ and note that the induced infinity

norm of a matrix is the maximum absolute row sum, i.e.,
||B||∞ = dmax, wheredmax is the maximum degree of the
graph. In the case of a complete graph,dmax = N − 1.
Then,

Nωmax
K

≤ dmax

resulting in the following lower bound forKL, the coupling
above which a fixed point exists:

KL >
Nωmax
dmax

.

This bound can be tightened by using the generalized
inverse of V TB and bounding the component of the
sin(BT θ) in the range ofBT . The generalized inverse,
denoted by(V TB)#, is equal toBTV Λ−1, whereΛ is the
N−1 diagonal matrix of the eigenvalues of the unweighted
Laplacian. We therefore have the following expression

(sin(BT θ))R(BT ) = BTV Λ−1V T
Nω

K
.

Noting thatL# = V Λ−1V T , we have

(sin(BT θ))R(BT ) = BTL#B sin(BT θ) = BTL#Nω

K
.



The generalized inverse of the Laplacian, in the case of
a complete graph can be written asL#

c = 1
N (I − 11T

N ).
Noting that the infinity norm of thesin vector is less than
or equal to 1, and thatBTL#B = BTB

N , we have

||BTω||∞
K

≤ ||BTB||∞
N

,

which gives us the bound

KL ≥ ||BTω||∞
N

2(N − 1)
.

This is in excellent agreement with that of Van Hemmen
et al. [4] which they obtained for the simplest case of two
oscillators.

Remark 10:If the graph is a tree,V TB has full row
rank andsin(Bθ) does not have a component in the null
space ofL. In that caseKcL > ||BTL#ω||∞ is a tight
bound, meaning that it is necessary and sufficient for
synchronization. In the general case, however, this bound
is just necessary.

B. Existence and uniqueness of stable fixed points

The fixed point equation can be written as

θ = (BW (BT θ)BT )#
Nω

K
= L#

W (BT θ)
Nω

K
.

Using Brouwer’s fixed point theorem (i.e., a continuous
function that maps a non-empty compact, convex setX into
itself has at least one fixed-point), we can develop condi-
tions which guarantee the existence (but not uniqueness) of
the fixed point. If a fixed-point exists in any compact subset
of θ ∈ (−π

4 ,
π
4 ), it is stable, since this will ensure thatBT θ

is between−π
2 and π

2 . We therefore have to ensure that

K >
4
π
N max
|θi|<π

4

||L#
W (BT θ)||∞||ω||∞.

Simulations indicate that in the case of a complete graph,
the infinity norm of the matrixL#

W scales asO( 1
N ). It is

worth mentioning that the norm ofL#
W is a well studied

object in the theory of Markov chains. The infinity norm
of L#

w is a measure of the sensitivity of the stationary
distribution of the chain associated withL with respect to
additive perturbations [2].

If the uncertain natural frequencies are 2-norm bounded,
a better strategy would be to impose the boundedness
condition with respect to the Euclidean norm. A sufficient
condition for local stability of the fixed-point is forθi to
belong to(−π

4 ,
π
4 ). This amounts to having the Euclidean

norm of θ be less thanπ4
√
N . Again, using Brouwer’s

sufficient condition for existence of fixed-points we have:

||BW (BT θ)BT )#||2
N ||ω||2
K

≤ π

4

√
N.

Hence, a sufficient condition for synchronization of all
oscillators can be determined in terms of a lower bound
for K:

K ≥ 4
π

√
N ||w||2

min|θi|≤π
4
λ2(LW (θ))

,

where we used the fact that||(BW (BT θ)B)#||2 = 1
λ2(LW ) ,

andλ2 is the algebraic connectivity of the (weighted) graph.
A lower bound on the minimum value ofλ2 occurs for the
minimum value of the weight which is2π . As a result,

K ≥ 2
√
N ||w||2
λ2(L)

. (11)

Remark 11:Using the upper bound provided for the
order parameter earlier, we can derive an upper bound
for the asymptotic value ofr at KL: r∞(KL) ≤

√
3

2 .
Furthermore, if the stable fixed-point is in(−π/4, π/4)N ,
then the order parameter is lower bounded by

√
16− π2/4.

This means that, contrary to some of the distributions in the
N →∞ case,r is not close to zero atKL.

C. Bounds for the existence of a unique fixed-point

In order to guarantee the existence of a unique fixed
point we use Banach’s contraction principle and ensure
that the right hand side is a contraction. By noting that
the Lipschitz constant for thesinc(·) function isαs = 1

2 ,
we provide a sufficient condition for contractivity (and
therefore uniqueness of the fixed-point).

We impose the contractivity condition on theN − 1
dimensional grounded system. In the grounded case, we
haveθ̄ = V T θ, and

θ̄ = (V TBW (BT θ)BTV )−1NV
Tω

K
.

After some algebra, the contraction requirement amounts
to

K ≥ π2

4
Nλmax(L)||w||2

λ2(L)2
, (12)

whereλmax is the largest eigenvalue of the Laplacian of
the graph.

Interestingly, this value ofK also ensures that the deriva-
tive of r2 is increasing,i.e., inequality (10) is satisfied, which
means that the order parameter is increasing. Of course this
is probably stronger than what is necessary for uniqueness,
as the contraction argument is only sufficient. Nevertheless,
we see that there is a large enough but finite value of the
coupling which guarantees the existence and uniqueness of
fixed points.

We now state the following theorem whose proof is
omitted due to lack of space:

Theorem 2:Consider the Kuramoto model for non-
identical coupled oscillators with different natural frequen-
cies ωi. For K ≥ KL := 2

√
N ||w||2
λ2(L) , there exist at least

one fixed-point for|θi| < π
4 or |(BT θ)i| < π

2 . Moreover,
for K ≥ π2

4
Nλmax(L)||w||2

λ2(L)2 there is only one stable fixed-
point (modulo a vector in the span of1N ), and the order
parameter is strictly increasing.



VIII. C ONCLUDING REMARKS

In this paper we provided a stability analysis for the
Kuramoto model of coupled nonlinear oscillators for ar-
bitrary topology. We showed that when the oscillators are
identical, there are at least two Lyapunov functions which
prove asymptotic stability of the synchronized state, when
all the phase differences are bounded byπ

2 . We also showed
that when the natural frequencies are not the same, there
is a critical value of the coupling below which a totally
synchronized state does not exist. Several bounds for this
critical value based on norm bounded uncertain natural
frequencies were shown to be in excellent agreement with
existing bounds in the physics literature for the case of the
all-to-all graph.

We also point out that contrary to the infiniteN case,
there is no partially synchronized state, i.e., for values of the
coupling below the critical value, the system of differential
equations has a running solution. Furthermore, we showed
that there is always a large enough but finite value of
the coupling which results in synchronization of oscillators
and convergence of the angles to a unique fixed-point.
Another result of this paper is that the value of the order
parameter is not zero for the critical couplingKL. In fact,
at least when the fixed-point is in the(−π/2, π/2) region,
a rough estimate indicates that the value ofr is bounded
between

√
16−π2

4 ≈ 0.62 and
√

3
2 . Future research in this

direction is needed to determine the bound forK when the
natural frequencies are not just norm bounded quantities but
uncertain numbers chosen from a probability distribution.
Finally we mention that our value for the upper bound of
the order parameter is actually quite close to simulations.

Our work hints at the advantageous marriage of systems
and control theory and graph theory, when studying dynam-
ical systems over or on networks [1].
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