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ON THE STABILITY OF THE L2 PROJECTION IN H1(Ω)

JAMES H. BRAMBLE, JOSEPH E. PASCIAK, AND OLAF STEINBACH

Abstract. We prove the stability in H1(Ω) of the L2 projection onto a family
of finite element spaces of conforming piecewise linear functions satisfying cer-
tain local mesh conditions. We give explicit formulae to check these conditions
for a given finite element mesh in any number of spatial dimensions. In par-
ticular, stability of the L2 projection in H1(Ω) holds for locally quasiuniform
geometrically refined meshes as long as the volume of neighboring elements
does not change too drastically.

1. Introduction

Let {ϕk}Mk=1 denote the nodal basis for a piecewise linear (continuous) finite
element approximation space Vh based on a conforming triangulation (of simplices)
{τl}Nl=1 of a polyhedral domain Ω in Rn, n = 1, 2, . . . . We shall always assume that
the triangulation is locally (but not globally) quasiuniform. The L2 projection Qh
of a given function u onto the finite element space Vh is defined by

〈Qhu, vh〉L2(Ω) = 〈u, vh〉L2(Ω) for all vh ∈ Vh.(1.1)

Here 〈·, ·〉L2(Ω) denotes the inner product on L2(Ω). The L2 projection is obviously
bounded on L2(Ω); indeed, ‖Qhu‖L2(Ω) ≤ ‖u‖L2(Ω) holds for all u ∈ L2(Ω). In
this paper we are concerned with the stability of the L2 projection as a map Qh :
H1(Ω)→ Vh ⊂ H1(Ω). In particular, we will prove the stability estimate

‖Qhu‖H1(Ω) ≤ c · ‖u‖H1(Ω) for all u ∈ H1(Ω)(1.2)

under certain conditions on the finite element trial space Vh, specifically, on the
underlying triangulation.

The stability of Qh in H1(Ω) is of general interest, in particular, for Galerkin
finite or boundary element methods for elliptic and parabolic boundary value prob-
lems [4, 6, 13]. For example, the stability estimate (1.2) is needed to analyze the
properties of a Neumann series corresponding to a second kind boundary integral
equation, see [9].

Using interpolation arguments we get

‖Qhu‖Hs(Ω) ≤ c · ‖u‖Hs(Ω) for all u ∈ Hs(Ω), s ∈ [0, 1].(1.3)
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From (1.3) we can conclude the stability estimate (see for example [7])

c · ‖uh‖Hs(Ω) ≤ sup
vh∈Vh

|〈uh, vh〉L2(Ω)|
‖vh‖

H̃−s(Ω)

for all uh ∈ Vh,(1.4)

where H̃−s(Ω) = (Hs(Ω))′ is defined by duality with respect to the L2 inner prod-
uct. The estimate (1.4) is essentially needed in the derivation of hybrid coupled
finite element domain decomposition methods [1] and for hybrid boundary element
methods [11] as well as in the construction of efficient preconditioners in finite and
boundary element methods [12].

For globally quasiuniform triangulations, the estimate (1.2) is a direct conse-
quence of a global inverse inequality. In [6], (1.2) was shown for nonuniform tri-
angulations in one and two dimensions satisfying certain mesh conditions. The
analysis is based on decay properties of the L2(Ω) projection and results in condi-
tions which depend on the global behavior of the mesh.

In this paper we prove the stability estimate (1.2) for arbitrary n = 1, 2, . . .
provided that local stability conditions are satisfied. This approach is valid for more
general trial spaces, in particular, for trial functions of arbitrary polynomial degree,
but for simplicity, we only consider the case of piecewise linear basis functions. In
this case, we formulate explicit local mesh conditions which imply (1.2). These
conditions can be easily checked for a given finite element mesh, allowing the user
to redefine the mesh if necessary.

The remainder of this paper is organized as follows. Some preliminary notation
is given in Section 2. In Section 3 we recall from [5, 8] the definition as well as
some error and stability estimates for a quasi interpolation operator needed in our
analysis. Our main result is formulated in Theorem 4.1. The proof is based on a
general stability condition and several technical results given in Section 5. In Section
6 we discuss the stability condition in case of piecewise linear basis functions. Based
on the eigenvalue analysis of locally defined weighted Gram matrices, we derive
computable criteria for guaranteeing that the stability condition is satisfied.

2. Notation

Let

Th = {τl}Nl=1, ∆l :=
∫
τl

dx for l = 1, . . . , N.(2.1)

As usual, we consider a family of meshes depending on h, the maximum diameter
of any simplex. We assume that the triangulations are locally quasiuniform. This
means that the diameter of the simplex divided by the diameter of the largest
ball contained in the simplex is bounded independently of h for all simplices in all
triangulations. Define

hl := ∆1/n
l for l = 1, . . . , N.(2.2)

Let {xk} the set of all nodes of the mesh Th, where xk is associated to the basis
function ϕk (ϕk(xk) = 1). We define

ωk := suppϕk, k = 1, . . . ,M.(2.3)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE STABILITY OF THE L2 PROJECTION IN H1(Ω) 149

Let I(k) denote the index set of all elements τl satisfying τl ⊂ ωk. Then we define
a local mesh size associated to the basis function ϕk by

ĥk :=
1

#I(k)

∑
l∈I(k)

hl for k = 1, . . . ,M.(2.4)

Here and in the rest of the paper, # denotes cardinality. Since the mesh Th is
assumed to be locally quasiuniform, there exists a positive constant γ ≥ 1 not
depending on h such that

γ−1 ≤ ĥk
hl
≤ γ for all l ∈ I(k), k = 1, . . . ,M.(2.5)

We define J(l) to be the set of indices of the vertices in τl. Note that an inverse
inequality holds locally [4], i.e.,

‖vh‖H1(τl) ≤ c · h−1
l · ‖vh‖L2(τl) for all vh ∈ Vh, l = 1, . . . , N.(2.6)

Here and in the remainder of the paper, we use c with or without subscript to
denote a generic positive constant which is independent of h.

3. Quasi interpolation

To prove the stability estimate (1.2) we need to use a projection operator Ph
which is stable in H1(Ω) and which satisfies local error estimates in L2(τl) valid
on all finite elements τl for l = 1, . . . , N . For this we will use the concept of quasi
interpolation operators first introduced by Clement in [5]; see also [8].

We define local trial spaces of piecewise linear continuous functions by

V kh := {v|ωk : v ∈ Vh}.(3.1)

Let Qkh denote the L2 projection onto V kh . We clearly have

‖Qkhu‖L2(ωk) ≤ ‖u‖L2(ωk),

‖(I −Qkh)u‖L2(ωk) ≤ c · ĥk · |u|H1(ωk).
(3.2)

Moreover, since the mesh is assumed to be locally quasiuniform, we have (see, e.g.,
[3])

‖Qkhu‖H1(ωk) ≤ c · ‖u‖H1(ωk) for all u ∈ H1(ωk),(3.3)

for k = 1, . . . ,M .
Now we define a quasi interpolation operator by

(Phu)(x) =
M∑
k=1

(Qkhu)(xk) · ϕk(x) .(3.4)

It is easy to check that Ph is a projection. Moreover, Ph is stable in H1(Ω) and
satisfies some local error estimates as asserted in the following lemma.

Lemma 3.1. Let u be in H1(Ω). There exists a positive constant c independent of
h such that

‖(I − Ph)u‖L2(τl) ≤ c ·
∑
k∈J(l)

ĥk · |u|H1(ωk) for l = 1, . . . , N.(3.5)

Moreover,

‖Phu‖H1(Ω) ≤ c · ‖u‖H1(Ω) for all u ∈ H1(Ω).(3.6)
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Proof. The proof follows the general ideas already given in [5]. Let τl be an arbitrary
but fixed finite element and let k̃ ∈ J(l) be a fixed index. For x ∈ τl we have the
representation

(Phu)(x) = (Qk̃hu)(x) +
∑

k∈J(l),k 6=k̃

[
(Qkhu)(xk)− (Qk̃hu)(xk)

]
ϕk(x).

Let s = 0, 1. Note that

‖ϕk‖Hs(τl) ≤ c · hn/2−sl .

Then, using (3.2) and (3.3), it follows that

‖(I − Ph)u‖Hs(τl) ≤ c1 · ĥ1−s
k̃
· |u|H1(ωk̃)

+ c2 · hn/2−sl

∑
k∈J(l),k 6=k̃

|(Qkhu)(xk)− (Qk̃hu)(xk)|

Now

‖vh‖L∞(τl) ≤ c · h−n/2l · ‖vh‖L2(τl) for all vh ∈ Vh, l = 1, . . . , N.

Thus, (3.2) gives, for xk ∈ τl,

|(Qkhu)(xk)− (Qk̃hu)(xk)| ≤ ‖Qkhu−Qk̃hu‖L∞(τl)

≤ c · h−n/2l · ‖Qkhu−Qk̃hu‖L2(τl)

≤ c · h−n/2+1
l ·

{
|u|H1(ωk) + |u|H1(ωk̃)

}
.

Hence,

‖(I − Ph)u‖Hs(τl) ≤ c ·
∑
k∈J(l)

ĥ1−s
k · |u|H1(ωk)

for s = 0, 1 and l = 1, . . . , N . Using this estimate for s = 0 gives (3.5), while for
s = 1 we get (3.6) by summing over all elements.

4. Main results

In this section, we will formulate and prove the main result of this paper, the
stability estimate (1.2) assuming some appropriate mesh conditions. For this, we
define local weights

γk :=
√ ∑
l∈I(k)

h−2
l · ‖ϕk‖2L2(τl)

for k = 1, . . . ,M.(4.1)

In addition, for each element τl, we define local matrices Gl, Dl and Hl by

Gl[j, i] = 〈ϕli, ϕlj〉L2(τl), Dl = diag
(
‖ϕli‖2L2(τl)

)
, Hl = diag

(
ĥli

)
,

for i, j = 1, 2, 3 Here ϕli and ϕlj are the basis functions corresponding to the ith and
jth vertex of the lth element, respectively, while ĥli is the related value of ĥ.

Now we are able to formulate local conditions to be used in the remainder of
this section, specifically,

(H−1
l GlHlx

l, xl) ≥ c0 · (Dlx
l, xl) for all xl ∈ R#J(l).(4.2)

Here (·, ·) denotes the inner product on R#J(l).
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Remark 4.1. Let H denote the diagonal matrix,

H = diag
(
ĥk

)
.

For u ∈ RM , define v = Hu and w = H−1u. The corresponding finite element
functions are given by

uh =
M∑
k=1

ukϕk, vh =
M∑
k=1

vkϕk, wh =
M∑
k=1

wkϕk.

We note that (H−1
l GlHlu

l, ul) = 〈vh, wh〉L2(τl), where ul denotes the components
of u associated with the element τl. By local quasiuniformity, (4.2) is thus equivalent
to

‖uh‖2L2(τl)
≤ c〈vh, wh〉L2(τl).(4.3)

If all of the simplices have the same measure then H−1
l GlHl = Gl, so

〈vh, wh〉L2(τl) = 〈uh, uh〉L2(τl)

and (4.3) is trivial. The inequality will still hold provided that the measures of
neighboring simplices do not vary too much. Explicit local conditions on the mesh
for the case of piecewise linear elements are given in Section 6.

The following result is the main theorem of this paper.

Theorem 4.1. Let condition (4.2) be satisfied. Then the L2 projection Qh : H1(Ω)
→ Vh ⊂ H1(Ω) is stable. In particular, there exists a positive constant c indepen-
dent of h such that

‖Qhv‖H1(Ω) ≤ c · ‖v‖H1(Ω) for all v ∈ H1(Ω).(4.4)

The proof of this theorem depends on the following lemma. A similar estimate
was used in [2] to construct spectrally equivalent multilevel preconditioners in finite
element methods in the case of globally quasiuniform meshes. The proof of the
lemma will be given in the next section.

Lemma 4.1. Let condition (4.2) be satisfied. Then there exists a positive constant
c such that

N∑
l=1

h−2
l · ‖v

h‖2L2(τl)
≤ c ·

M∑
k=1

[
〈vh, ϕk〉L2(Ω)

ĥk · ‖ϕk‖L2(Ω)

]2

(4.5)

for all vh ∈ Vh.

Proof of Theorem 4.1. Using the triangle inequality, (3.6), and (2.6), we get

‖Qhv‖2H1(Ω) ≤ 2 ·
{
‖Phv‖2H1(Ω) +

N∑
l=1

‖(Qh − Ph)v‖2H1(τl)

}

≤ c ·
{
‖v‖2H1(Ω) +

N∑
l=1

h−2
l · ‖(Qh − Ph)v‖2L2(τl)

}
.
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From Lemma 4.1 and the Schwarz inequality it follows that
N∑
l=1

h−2
l · ‖(Qh − Ph)v‖2L2(τl)

≤ c ·
M∑
k=1

[
〈(Qh − Ph)v, ϕk〉L2(Ω)

ĥk · ‖ϕk‖L2(Ω)

]2

= c ·
M∑
k=1

[
〈(I − Ph)v, ϕk〉L2(ωk)

ĥk · ‖ϕk‖L2(Ω)

]2

≤ c ·
M∑
k=1

ĥ−2
k · ‖(I − Ph)v‖2L2(ωk)

Hence, the assertion follows from (3.5).

5. Proof of Lemma 4.1

In this section, we prove Lemma 4.1. We start by introducing some notation.
We define two additional M ×M diagonal matrices given by

Dγ = diag (γk) , Dϕ = diag
(
ĥk · ‖ϕk‖L2(Ω)

)
,(5.6)

where ĥk and γk are defined as in (2.4) and (4.1), respectively. The first step in the
proof of Lemma 4.1 involves estimating the inverse of a scaled Gram matrix.

Lemma 5.1. Let assumption (4.2) be satisfied. Then there exists a positive con-
stant c such that

‖x‖2 ≤ c · ‖Ax‖2 for all x ∈ RM ,

where A is the scaled Gram matrix defined by

A = D−1
ϕ GD−1

γ(5.7)

and G is the Gram matrix Gij = 〈ϕi, ϕj〉L2(Ω).

Proof. Let u, ul, v, w, uh, vh and wh be as in Remark 4.1. Setting G̃ = H−1GH
and using (4.2) gives

(G̃u, u) = (Gv,w) = 〈vh, wh〉L2(Ω) =
N∑
l=1

〈vh, wh〉L2(τl)

=
N∑
l=1

(H−1
l GlHlu

l, ul) ≥ c0 ·
N∑
l=1

(Dlu
l, ul) = c0 · (Du, u).

Here D is the diagonal matrix with entries ‖ϕk‖2L2(Ω). Let D1/2 = diag(‖ϕk‖L2(Ω)).
From

c0 · ‖D1/2u‖22 = c0 · (Du, u) ≤ (G̃u, u)

= (D−1/2G̃u,D1/2u) ≤ ‖D−1/2G̃u‖2‖D1/2u‖2,
we conclude that

c0 · ‖D1/2u‖2 ≤ ‖D−1/2G̃u‖2 for all u ∈ RM .

Taking ũ = Dγu gives

c0 · ‖D1/2D−1
γ ũ‖2 ≤ ‖D−1/2DϕD

−1
ϕ G̃D−1

γ ũ‖2 = ‖D−1/2DϕÃũ‖2,
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where Ã = D−1
ϕ G̃D−1

γ . The ratio of the diagonal entries satisfies

D1/2[k, k]
Dγ [k, k]

=
‖ϕk‖L2(Ω)√ ∑

l∈I(k)

h−2
l ‖ϕk‖2L2(τl)

≥ c · ĥk

and

Dϕ[k, k]
D1/2[k, k]

=
ĥk · ‖ϕk‖L2(Ω)

‖ϕk‖L2(Ω)
= ĥk

for all k = 1, . . . ,M . Thus,

c · ‖Hũ‖2 ≤ ‖HÃũ‖2 for all ũ ∈ RM .

Taking x = Hũ above gives

c · ‖x‖2 ≤ ‖HÃH−1x‖2 = ‖HD−1
ϕ H−1GHD−1

γ H−1x‖2 = ‖Ax‖2
for all x ∈ RM . This completes the proof of the lemma.

We now give the proof of Lemma 4.1.

Proof of Lemma 4.1. Let v ∈ RM and set vh =
∑M

k=1 vkϕk ∈ Vh. Then, the left
hand side of (4.5) is bounded by

N∑
l=1

h−2
l · ‖vh‖2L2(τl)

≤ c ·
N∑
l=1

h−2
l

∑
k∈J(l)

v2
k · ‖ϕk‖2L2(τl)

= c ·
M∑
k=1

v2
k

∑
l∈I(k)

h−2
l · ‖ϕk‖2L2(τl)

= c ·
M∑
k=1

v2
kγ

2
k = c ·

M∑
k=1

x2
k = c · ‖x‖22,

where xk = γkvk. The right hand side in (4.5) is

M∑
k=1

[
〈vh, ϕk〉L2(Ω)

ĥk‖ϕk‖L2(Ω)

]2

=
M∑
k=1

 M∑
j=1

vj ·
〈ϕj , ϕk〉L2(Ω)

ĥk‖ϕk‖L2(Ω)

2

=
M∑
k=1

 M∑
j=1

xj ·
〈ϕj , ϕk〉L2(Ω)

γj ĥk‖ϕk‖L2(Ω)

2

=
M∑
k=1

[(Ax)k]2 = ‖Ax‖22,

using the matrix definition (5.7). Hence, (4.5) follows from Lemma 5.1.

Although we only considered the case of piecewise linear basis functions, the
same approach may be used for higher order piecewise polynomial finite element
spaces. In addition, the case of Vh ⊂ H1

0 (Ω) with basis functions vanishing along
the boundary ∂Ω can be treated with only slight modifications. In this case we
consider the index set I(k) only for nodes xk associated with a basis function
ϕk ∈ Vh. Then all proofs given above apply. Note that the dimension of the local
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matrices for boundary simplices decrease since the rows and columns corresponding
to boundary nodes do not appear.

6. Finite element spaces

The stability estimate in Theorem 4.1 is based on the condition (4.2). If we
define the symmetric matrix

GS
l :=

1
2
[
HlGlH−1

l + H−1
l GlHl

]
,(6.1)

then (4.2) is the same as

(GS
l xl, xl) ≥ c0 · (Dlxl, xl) for all xl ∈ R#J(l).(6.2)

Let τl in Th be an arbitrary element. Note that #J(l) = n + 1. A simple compu-
tation shows that

Dl = dn ·∆l · I with dn =
2

(n+ 1)(n+ 2)
,(6.3)

where I is the identity matrix in n+ 1 dimensions. Moreover,

GS
l =

1
4
· dn ·∆l ·Al,(6.4)

where the matrix Al is defined by

Al[i, j] =


4 for i = j,

ĥli

ĥlj
+
ĥlj

ĥli
for i 6= j,

i, j = 1, . . . , n+ 1.

Here ĥlj is the value of ĥ corresponding to the jth vertex of the lth element. Hence,
to show (6.2) it is sufficient to consider the eigenvalues {λi} of the matrix Al. To
this end, we give the following proposition.

Proposition 6.1. Let α1, . . . , αn+1 be real numbers with αi 6= 0 for i = 1, . . . ,
n+ 1, and consider the matrix

A[i, j] =

{
4 for i = j,

αi
αj

+
αj
αi

for i 6= j, i, j = 1, . . . , n+ 1.

Then, all eigenvalues of A are in the set {λ+, λ−, 2}, where

λ± = 3 + n±

√√√√n+1∑
i=1

α2
i ·

n+1∑
i=1

α−2
i .(6.5)

Proof. We first consider the case when α1, α2, . . . , αn+1 are not all equal. Let
M+ = (α1, α2, . . . , αn+1)t and M− = (α−1

1 , α−1
2 , . . . , α−1

n+1)t. Then A = 2I + N,
where N = M− ·Mt

+ +M+ ·Mt
−. Note that the matrix N is symmetric with range

equal to the two dimensional subspace spanned by M+ and M−. Thus, zero is an
eigenvalue of N with multiplicity n− 1. We need only compute the two remaining
eigenvalues. By expanding the corresponding eigenvectors in the basis {M+,M−},
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it is elementary to see that the remaining two eigenvalues of N are eigenvalues of
the matrix  n+ 1

n+1∑
i=1

α2
i

n+1∑
i=1

α−2
i n+ 1


The proposition immediately follows for this case.

If α1 = α2 = · · · = αn+1 then M+ and M− are linearly dependent, so 2 is an
eigenvalue of A with multiplicity n. The remaining eigenvalue is λ+ = 2n+4. This
completes the proof of the proposition.

It follows from (6.4) that the local condition (6.2) is satisfied if all eigenvalues
of Al are strictly positive and bounded away from zero. By the proposition, this is
equivalent to

3 + n−

√√√√n+1∑
i=1

(ĥli)−2 ·
n+1∑
i=1

(ĥli)2 ≥ c(6.6)

with c independent of τl. Inequality (6.6) provides a mesh constraint for adaptive
triangulations.

Remark 6.1. We can satisfy (6.6) for any 0 < c < 2 provided that we design a mesh
which gives rise to a γ (in (2.5)) sufficiently close to one. It immediately follows
from (2.5) that

3 + n−

√√√√n+1∑
i=1

(ĥli)−2 ·
n+1∑
i=1

(ĥli)2 ≥ 2− (n+ 1)(γ2 − 1).

Thus (6.6) holds if

γ ≤
√

1 +
2− c
n+ 1

.

Thus, a mesh gives rise to an H1(Ω) stable L2 projection provided that the change
in measures of neighboring simplices are controlled.

Finally, if a finite element mesh Th is given, the mesh condition (6.6) and there-
fore the stability assumption (4.2) can be checked explicitly (by direct computa-
tion). To illustrate the applicability of the mesh condition (6.6), we consider an
adaptive finite element mesh for n = 2 as shown in Figure 1, generated by an
adaptive algorithm described in [10]. In Table 1, we give values for

c = max
τl

(
5−

√√√√ 3∑
i=1

(ĥli)−2 ·
3∑
i=1

(ĥli)2

)
as a function of the refinement level L and the number of finite element nodes M .

Table 1. Computational results for c

L 0 1 2 3 4 5 6 7 8 9
M 8 17 28 53 87 155 291 532 1034 2003
c 2.00 1.93 1.59 1.52 1.52 1.66 1.61 1.09 1.49 1.50
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Figure 1. Adaptive finite element triangulation
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