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Abstract In this paper we solve the 
time-dependent shear flow of an 
Oldroyd-B fluid with slip along the 
fixed wall. We use a non-linear slip 
model relating the shear stress to 
the velocity at the wall and ex- 
hibiting a maximum and a mini- 
mum. We assume that the material 
parameters in the slip equation are 
such that multiple steady-state solu- 
tions do not exist. The stability of 
the steady-state solutions is in- 
vestigated by means of a one- 
dimensional linear stability analysis 
and by numerical calculations. The 
instability regimes are always within 
or coincide with the negative-slope 
regime of the slip equation. As ex- 

pected, the numerical results show 
that the instability regimes are 
much broader than those predicted 
by the linear stability analysis. 
Under our assumptions for the slip 
equation, the Newtonian solutions 
are stable everywhere. The interval 
of instability grows as one moves 
from the Newtonian to the upper- 
convected Maxwell model. Perturb- 
ing an unstable steady-state solution 
leads to periodic solutions. The am- 
plitude and the period of  the 
oscillations increase with elasticity. 
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Introduction 

Slip at the wall and constitutive instabilities have been 
among the most popular explanations for extrusion in- 
stabilities of polymer melts. The reader is referred to the 
review paper of Larson (1992) for a detailed discussion. 
Convincing experimental evidence for the role of slip has 
been provided by various groups (Hill et al., 1990; Piau 
et al., 1990; Hatzikiriakos and Dealy, 1992). Empirical 
slip equations relating the shear stress to the velocity of 
the fluid at the wall have been proposed by E1 Kissi and 
Piau (1989), Leonov (1990) and Hatzikiriakos and Dealy 
(1992). One characteristic of  the above slip equations is 
that in some range of  slip velocities the slope of the shear 
stress/slip velocity curve is negative. The two-dimensional 
linear stability analysis for Newtonian Poiseuille flow 
shows that steady-state solutions in the negative-slope 
regime might be unstable (Pearson and Petri, 1965, 1968). 

In a recent paper (Georgiou and Crochet, 1994), we 
studied the time-dependent compressible Newtonian 
Poiseuille flow with non-linear slip at the wall. Our nu- 
merical results show that when compressibility is taken in- 
to account and the volumetric flow rate at the inlet corre- 
sponds to the negative-slope regime of  the slip equation, 
self-sustained oscillations of the pressure drop and of  the 
mass flow rate at the exit are obtained. In the present 
work we show that the combination of non-linear slip and 
elasticity can also lead to self-sustained oscillations. To 
demonstrate this, we have chosen to study the shear flow 
of an Oldroyd-B fluid, a fluid with monotonic steady- 
shear response in the absence of slip. We assume that slip 
occurs along the fixed wall. 

By choosing the Oldroyd-B model, we assure that the 
instabilities are caused by the non-linear slip equation 
whereas elasticity acts only as the storage of the elastic 
energy that sustains the oscillations. The present ~- 
approach is thus fundamentally different from that of  ~< 
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various researchers who have considered models ex- 
hibiting a non-monotonic (i.e., double-valued) steady 
shear response (Yerushalmi et al., 1970; Lin, 1985; 
McLeish and Ball, 1986; Hunter and Slemrod, 1983; 
Kolkka et al., 1988; Malkus et al., 1989). One-dimen- 
sional linear stability analyses show that steady-state 
solutions are unstable whenever the slope of the shear 
stress-shear rate curve is negative. The presence of shear- 
stress maxima and minima results in an oscillatory mo- 
tion of  the fluid when some critical values are exceeded. 

The governing equations and the boundary conditions 
for the time-dependent shear flow of an Oldroyd-B fluid 
with slip along the fixed wall are presented in the next sec- 
tion. Even though the linear stability analysis of the flow 
to two-dimensional disturbances is possible (Pearson and 
Petrie, 1968), it suffices, for our purposes, to carry out 
the much simpler one-dimensional linear stability 
analysis presented in the third section. We show that 
steady-state solutions corresponding to the negative-slope 
part of the slip equation might be unstable. Stability 
depends not only on the slope of  the slip equation but 
also on the material parameters. The Newtonian solutions 
are always stable if the material parameters of  the slip 
equation are such that the steady-state solutions are 
unique. The interval of instability grows as one moves 
from the Newtonian to the upper-convected Maxwell 
model. In the final section we present numerical results 
showing that the instability regimes are broader than 
those predicted by the linear stability analysis. Perturbing 
an unstable steady-state solution leads to periodic solu- 
tions. The amplitude and the period of  the oscillations in- 
crease with elasticity. 

Governing equations 

We use the Oldroyd-B model for our studies. The extra 
stress tensor T is decomposed into a purely viscoelastic 
part T1 and a purely viscous part T 2 (Crochet et al., 
1984): 

r :  T~ +T2, (1) 
V 

T ~ + 2 T  1 = 2 rhd  , (2) 

/'2 = 2r/2d . (3) 

In the above equations, r h, r/2 and 2 are material param- 
eters. The shear viscosity is given by r h +r/2, and the 
ratio r/2/(r h + r/2) represents the ratio of the retardation 
time to the relaxation time. The Newtonian and the up- 
per-convected Maxwell models are special cases of the 
Oldroyd-B model (r/2 = 1 and 0, respectively). Moreover, 
the symbol V denotes the upper-convected derivative: 

V 

T 1 = T~ - Vv"  T 1 - T  1 • (Vv) r , (4) 

where TI is the time derivative of T~, v is the velocity 
vector, and the superscript Tdenotes the transpose. Final- 
ly, d is the rate-of-strain tensor defined by: 

d = ! [ ( V v ) + ( v v ) r ]  . (5) 
2 

Let us now consider the time-dependent shear flow of 
an Oldroyd-B fluid. The geometry and the boundary con- 
ditions of the flow are shown in Fig. 1. The lower wall 
moves with velocity V 1. We assume that the fluid sticks 
to that wall and therefore: 

v x =  V 1 at y = O  . (6) 

The upper wall is fixed. We assume that slip occurs along 
this wall following a slip law of the general form: 

aw = - F ( v w )  at y = H , (7) 

where G w is the shear stress and Vw the velocity of the 
fluid at the wall (slip velocity). Note that considering the 
same flow with slip along the moving wall instead leads 
to a mathematically equivalent problem. (Considering 
slip along both walls leads to a flow with multiple steady- 
state solutions which is undesired in our study.) 

The problem is one-dimensional ~ = 0 ,  vx = vx(Y, t), 

7 

Vy = 0 and T1 = T1 (y, t) / , and the x-momentum equa- 

tion is reduced to: 

OUx O T  xy OT~ y OT~ y 
p - - -  - -  t - - ,  ( 8 )  

0t 0y 0y 0y 

where p is the density. The component T~ y is zero and re- 
mains so at all times (provided that the disturbances are 
one dimensional). For the other two components of T 1 
we have: 

y=H / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

y=0 / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  x 

vz= V1 

Fig. 1 Boundary conditions for the time-dependent shear flow 
with slip at the fixed wall 
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0 T{  x 2 0 v x T,~y ~ 

/ 

TX~ y + 2 0 T~Y = rll --O v x 

Ot Oy 

= 0 ,  
In other words, v x varies linearly with y and the shear 

(9) stress is constant. 
Let us now consider the slip equation used by 

Georgiou and Crochet (1994). This equation involves 
(10) three material parameters, namely as, a2 and a 3, and its 

dimensionless form is: 

We observe that Eq. (9) for T~ x is not coupled with 
Eqs. (8) and (10), meaning that one can solve the system 
of the latter two equations first and then calculate T~ x. 

We would like to work with the dimensionless equa- 
tions. To non-dimensionalize the governing equations, we 
scale the lengths by the distance between the two walls H, 
the velocity by a characteristic velocity V, the stress com- 
ponents by (r h + ~2) V / H ,  and the time by H ~  V. Equa- 
tions (8) and (10) then become: 

Re0VX OT~ y OT~ y OTXl y 02Ux 
- - - + - - -  - -  q - t l 2 - -  

0 t  0 y  0y  0y  0y  2 ' 

T~y +We 0T~y = r/a--0vx 
0 t  0y  

( a~  = - F ( V w )  = - A ~  t +  1 

where 

Vw , (17) 

A t ~  a t / /  -, A 2 ~ a  2 ", A 3 - - a 3  V2 . (18) 
r/s +r/2 

Equation (17) exhibits a maximum and a minimum of o- w 
provided that A2 > 8. Another constraint for the problem 

(11) under study arises if we require that the velocity 
Vt = v w + F ( v w )  be a monotonic function of Vw, i.e. we 
demand that the steady-state solutions be unique for a 

(12) given value of Vs. This requirement is met in the general 
case when 

All the variables in the above two equations are dimen- 
sionless, including r/1 and /72 which are scaled by the 
shear viscosity; the dimensionless shear viscosity r h + r/z 
is thus equal to unity. Re and We are the Reynolds and 
Weissenberg numbers, respectively: 

p V H  2 V 
R e = - -  ; W e =  (13) 

I/i -}-/72 H 

Analytical and approximate solutions 

In this section, we provide the steady-state solutions of 
the system of (11) and (12) and then we study their stabili- 
ty to one-dimensional infinitesimal disturbances by 
means of  a linear stability analysis. Moreover, we present 
some analytical results for the limiting case of zero Re. 

Steady-state solution 

The steady-state solutions are as follows: 

v x =  V l + ( v ~ - V l ) y  , (14) 

T x y =  T~(Y + T ~  y = V w - V  1 , (15) 

where the slip velocity v w satisfies the condition: 

v w -  V~ = - F ( v w )  . (16) 

F, (Vw)  _ d F ( v w ) >  _ 1 , (19) 
dvw 

and in the case of Eq. (17) when 

A 2 <8  1+A1 
AI 

In Fig. 2, we show ~r w and Vl as functions of Vw for 
A 1 = 1, A 2 = 15 and A 3 = 100. 

Linear stability analysis 

l e t  (Vx, ir~ s) be a basic (i.e., steady-state) solution given 
by Eqs. (14) and (15). We will examine the transient 
response of the above basic solution to small one-dimen- 
sional perturbations (Vx)* and (T~Y)*: 

Vx(Y, t )  = O x + (vx)* (y, t )  , (20) 

T'~Y(y, t )  = T~Y + (T~Y) * (y, t )  , (21) 

with 

(vx)* (y, t )  = 6x(Y)eKt  ~ 0 x , (22) 

(T~Y)*(y, t )  = T~Y(y)eKr ~ T~Y . (23) 

The flow is considered linearly stable if (Vx)* and (T~Y) * 
decay over a finite period of time, i.e., when t¢ is negative. 
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Fig. 2 a) Shear stress a w as a function of v w with Eq. (17). b) 
Velocity V 1 of the lower wall as a function of v w (steady-state solu- 
tion). A 1 = i, A 2 = 15 and A 3 = 100 

In the case where the above quantities grow or oscillate 
with an undamped amplitude the flow is considered 
unstable. 

Substituting Eqs. (20)-(23) in the governing Eqs. (11) 
and (12) gives: 

d ?~ y d2 #x 
Re K ~)x = + 02 - -  , (24) 

dy dy  2 

? 7 = .  rh dgx (25) 
1 +We ~c dy  

Combining Eqs. (24) and (25) leads to the following 
ODE: 

d2tSx Re K (1 +We x) 

~ 2  l+q2We K 
6x = 0 . (26) 

The linearized boundary conditions read: 

z) x = 0  , a t y = 0  , (27) 

l + t / 2 w e K x ]  d v x -  - F ' ( O w ) 6  x , at y = 1 , 
- / dy 

(28) 

where F'(Ow) is the derivative of E 
Solving the system of the linearized equations yields 

the following expression for (vx)*: 

co 

(Vx)* (Y, t)  = ~ ane  ~¢ sin (m~y )  + aoe'%t sinh (moy)  
n = 2  

+ al  e 'qt  sinh (m~y)  . (29) 

There are thus two fundamental solution sets, the forms 
of which are dictated by the boundary conditions. The 
coefficients a are determined on the basis of the initial 
conditions. 

The eigenvalues m n, n = 2,3 . . . .  are the positive 
zeroes of 

cot m 
Re K - F '  (Ow) , (30) 

m 

with 

/¢ - -  1+/ , /2  
2We 

m 

+ ~ I1+  r/2 (R~e) m21 e - 4  ( R ~ )  m21 • (30 

Given that tcn < 0, all the terms of the first fundamental 
solution set will decay. 

The eigenvalues m 0 and rn 1 are the positive roots of 

coth m 
Re t¢ = - F ' ( O w )  . (32) 

m 

If F '  (Ow) > 0, it can be shown that Eq. (32) has a unique 
solution with 

1 [ ( ~ ) m  e tc o - - -  1 - r/2 
2We 

~ I  ( ~ e e ) 1  2 ( W e ) ]  + l - r / a  m e +4 Ree m2 ; ( 3 3 )  

in other words, the rn I term drops out. Because ~c0<0, 
the relevant term decays and the basic solution is stable. 
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If, however, - 1  <F'(ZJw)< 0, then there might be two 
or one or no solutions of  Eq. (32) with 

1 I (R~e)  m2 /£ = - - 1 + / / 2  
2We 

~ / I  ( W e )  12 ( W e ) ]  + 1- / /2  ~ m 2 +4 ~ m 2 , (34) 

depending on the value of F'  (Ow) and the ratio (We/Re). 
If  a solution does exist, then the initial disturbances will 
grow because K is positive. 

In Fig. 3, we show the stability curves for various 
values of//2. For a given//2, the stability of a basic solu- 
tion is determined from the values of  F'(Ow) and 
(We/Re). If F' (O~)>O,  the solution is stable indepen- 
dently of the value of (We/Re). If F'(Ow)<O, the solu- 
tion is unstable if 

- 1 < - F '  (Ow) < Scrit < 0 , 

where Scrit is an increasing function of  (We/Re). Note 
that F'(Ow) cannot be less than - 1  due to our assump- 
tion that V~ is a monotonic function of  v~ in steady 
state. We observe that increasing the value of/ /2 reduces 
the size of the instability regime. The Newtonian flow 
[(We/Re) = 0 or/72 = l ]  is always stable. 

In the limit of zero Reynolds number [(We/Re)~ oo], 
it is easily shown that the shear stress components, TXi y 
and T~ y, remain constant and the velocity v x remains 
linear at all times. Applying the conditions (27-28)  ex- 
plicitly gives the value of to: 

l +F'(Ow) 
K = (35 )  

W e  [//2 + F '  (g~)] 

1 

- r ' ( % )  0.8 

0 . 8  

0.5 0 . 6  

0 . 4  

0 . 2  
0.1 

I I I I 

20 40 60 80 i00 

W e / R e  

Fig. 3 Stabili ty curves for the  shear  flow of  an  Oldroyd-B fluid 
with slip a long  the fixed wall. The  f low is uns tab le  above the  corre- 
spond ing  curve. The  curves go to r/2 as ( W e / R e ) ~  oo 

Given that F ' ( O w ) > - l ,  the steady-state solutions are 
unstable when 

- 1 <F'(t~w) < - / /2  • (36) 

The stability curves of Fig. 3 asymptotically approach the 
value//2- 

Results for Re = 0 

For Re = 0, the validity of the linear-stability results is not 
restricted to infinitesimal disturbances. It is easily shown 
that for Re = 0, T~ y is independent of y and Vx varies 
linearly with y at all times: 

T~Y (y, t) = - F ( v w ) -  //2(v w -  V t) . (37) 

vx(y, t)  = v~ + ( v w - V ~ ) y  , (38) 

where the slip velocity v w satisfies the following ODE: 

W e  [ F ' ( v w ) +  //2] dvw + Vw+F(vw) = V 1 (39) 
dt 

o If we perturb Ow to V w and assume that the derivative 
F'  (vw) is locally constant, Eq. (39) gives: 

V w = V w + ( V ° - O w ) e x p  I - We 1 + F '  (Ow)[//2 + F '  (0w) ] t l  " (40) 

One can observe that the derivative term of Eq. (39) 
vanishes at the points where 

F' (vw)  = - / / 2  • (41) 

These points are obviously limit points: if Vw reaches 
such a point it will stay there and will never reach the 
steady-state corresponding to the imposed value of V~. 
In the case of the Maxwell fluid (//2 = 0), the limit points 
are the extrema of F(vw).  If Re = 0 and the function 
F(vw) is twice differentiable and exhibits a maximum at 

rain max and a minimum at Vw , as in Eq. (17), meaning Vw 
that its slope is negative and continuous in the open inter- 
val max rain (Vw ,Vw ), there exist two possibilities: 

1) - / / 2 < F ' ( v w ) < O  . 
The flow is stable for all values of vw. This possibility 
does not obtain with the Maxwell fluid (//2 = 0). 

2) - l < F ' ( V w ) < O  and ' L1 L2 F ( v w ) =  , / / 2  at Vw and Vw , 
L1 L2 wherevw <v .  . 

L2 The points v~ 1 and v w are obviously limit points. 
The solution is unstable in LI L2 (Vw,  This is il- U w ). c a s e  

lustrated in Fig. 4. Due to the presence of the two limit 
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Vw 

Fig. 4 Interval of instability and limit points for Re = 0 

.4  

points, the steady solution on one stable branch can- 
not  be reached if Vw(t = 0) is on the other branch. 

Numerical results 

We use standard finite elements in space and a fully-im- 
plicit (Euler backward difference) scheme in time for the 
numerical  solution o f  the system of  Eqs. (11) and (12). 
The method  has been tested against the predictions o f  
Eq. (40) in the case o f  a linear slip equation. Excellent 
agreement has been found. In all subsequent results we 
use the slip Eq. (17) with A 1 = 1, A a = 15 and A 3 = 100. 
Recall that  in our  t ime-dependent  runs we start f rom a 
steady-state solution (v °, V °) and perturb V ° to V 1 at 
t = 0 .  

We first verify the findings o f  the analysis o f  the previ- 
ous section for Re = 0. Let us consider two different 
values of /72:0 .9  and 0.1. When/72 = 0.9, the steady-state 
solutions are stable everywhere because F'(Ow)> - f ]  2 for 
all Ow; the solution always converges to the new steady 
state, even when 1/1 corresponds to the negative-slope 
regime of  the slip equation. In Fig. 5 a, we illustrate the 
evolution o f  v w when V ° = 0.6, V 1 = 1.01 
(F'(Ow) = - 0 . 6 ) ,  and We = 1. Notice that  Vw initially 
jumps towards the new steady state, an effect not  visible 
in Fig. 5 a. 

I f  now /72 : 0 .1 ,  then the flow is unstable in the 
subinterval o f  the negative-slope regime of  the slip equa- 
t ion where F ' ( V w ) < - r / 2 .  Let us again take V~ = 1.01 
and We = 1. In Fig. 5b, we summarize all the different 
possibilities when 111 falls into the unstable regime: a) I f  
V ° corresponds to one o f  the two stable branches o f  the 
slip equation, then Vw initially appears to approach  the 
unstable steady state but  stops when it reaches the nearest 
limit point, b) If  V ° corresponds to the unstable branch 

Vw 

Vw 

0 . 4  

0 . 3  

0 . 2  

0 . 1  

I I I I 

Stable  solut ion / -  

I I I I 

0 1 2 3 4 

Time~ t 

0 . 4  

0 . 3  

0 . 2  

0 . 1  

Uns tab le  solut ion 

- ~  . . . . . .  Liffi[~ ]5 b'iiif . . . . . . . . . . . . . . . . . . . .  

0 I ! I I 

0 1 2 3 4 5 

Time,  t 

Fig. 5 a) Convergence of v w to a stable solution in the negative- 
slope regime of the slip equation (112 = 0.9). b) Evolution of v w 
from different initial states when V 1 corresponds to an unstable 
solution (r/2 = 0.1). V I = 1.01, We = 1 and Re = 0 

o f  the slip equation, then v w moves away f rom the un- 
stable steady state and hits one o f  the limit points. 

The numerical  calculations for non-zero Reynolds 
numbers  show that  the instability regimes are broader  
than those predicted by the linear stability analysis. This, 
o f  course, is expected because linear stability analyses are 
valid only for infinitesimal disturbances. Let us consider 
again the basic solution for V 1 = 1.01 (F'(Ow) = -0 .6) ,  
Re = 0.01 and v/2 = 0.1. According to the linear stability 
analysis the flow is unstable for We greater than 0.0298 
(Fig. 3). Our  calculations show that  the critical value o f  
We at which instability appears is much  lower ( - 0 . 0 0 9 )  
and decreases even further  as the size o f  the per turbat ion 
increases. Our  calculations show that  above this critical 
value the solution becomes periodic irrespective o f  the 
initial conditions and that  the ampli tude and the period 
o f  the oscillations only depend on the imposed value o f  
v~. 
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Fig. 6 Periodic solutions for different values of  We when V 1 is in 
the unstable regime; V ° = 1.009, V 1 = 1.01, r/2 = 0.1 and Re = 0.01 
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Fig. 7 Solutions for small values of  We when V 1 is in the unstable 
regime; V ° = 0.5, V 1 = 1.0% ~2 = 0.i and Re = 0.01 

In Fig. 6, we illustrate the effect of  the We on the am- 
plitude and the period of the oscillations of the slip 
velocity v w. The imposed value of V 1 is 0.01 and we start 
from the steady-state solution at V ° = 1.009 (i.e., the per- 
turbation is "small"). The amplitude and the period of 
the oscillations increase with elasticity. Below a critical 
value of the Weissenberg number ( -0 .009)  the flow 
becomes stable. If  we increase the size of the perturba- 
tion, however, this critical Weissenberg number is even 
more reduced. This is shown in Fig. 7, where we start 
from V ° = 0.5. In Fig. 8, we plot the amplitude (AVw) 
and the period (Tp) of the slip velocity oscillations vs 
We. 

Finally, in Fig. 9, we show the effect of the viscosity 
scale 17 S. Increasing r/s affects only the values of Re and 
A 1 which are inversely proportional to r/s. This is 
equivalent to reducing the "real" Reynolds number. As 
expected, the amplitude and the period of the oscillations 
are reduced as we increase r/s and below a critical value 
of  the flow becomes stable. 

Conclusions 

We have studied the time-dependent shear flow of an 
Oldroyd-B fluid considering non-linear slip along the 
fixed wall. According to the one-dimensional linear 
stability analysis, the Newtonian solutions are always 
stable, under our assumptions for the slip equation pa- 
rameters. The instability regimes, which are always within 
or coincide with the negative-slope regime of the slip 
equation, grow in size as one moves from the Newtonian 
to the upper-convected Maxwell model. The numerical 
calculations show that the instability regimes are much 
broader than those predicted by the linear stability 
analysis, their size depending on the magnitude of the 
perturbation. The combination of non-linear slip and 
elasticity results in periodic solutions in the unstable 
regime. The amplitude and the period of the oscillations 
increase with elasticity. 
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