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Abstract. We reconsider the problem of stability of the triangular Lagrangian equilibria of
the restricted problem of three bodies. We consider in particular the Sun—Jupiter model and
the Trojan asteroids in the neighbourhood of the point L4. In the spirit of Nekhoroshev’s
theory on stability over exponentially large times, we are able to prove that stability over the
age of the universe is guaranteed on a region big enough to include a few known asteroids. This
significantly improves previous works on the same subject.
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1. Introduction

We reconsider the problem of stability of the Lagrangian equilibria of the restricted
problem of three bodies in the light of Nekhoroshev’s theory of stability over exponen-
tially large time intervals. More precisely, we look for stability for times of the order of
the estimated age of the universe.

The problem has been previously investigated in the same spirit by Giorgilli et al.
(1989), Simé (1989) and Celletti & Giorgilli (1991) . The underlying idea was to combine
analytical and numerical tools in order to prove that if the initial datum of an orbit is
sufficiently close to the equilibrium (in phase space), then the orbit is confined in some
neighbourhood of the equilibrium for a very long time, fixed in advance. The problem
is to produce realistic stability estimates, possibly applicable to real asteroids. Actually,
the work of Simé (1989) and of Celletti & Giorgilli (1991) on the Sun—Jupiter—L, case
has produced realistic estimates: roughly speaking, stability over the age of the universe
is proved in a neighbourhood the size of which is of order 10* Km. Unfortunately,
as discussed by Celletti & Giorgilli (1991), the size of the region where asteroids are
actually found turns out to be larger, by a factor 300 (in the best case) to 3000, than
the estimated stability region.

The problem is whether or not this kind of estimates can be improved. We attempt
to achieve a not negligible improvement by taking into account three possible changes
with respect to the quoted work. The first point is concerned with the choice of coordi-
nates; the second point consists in a better choice of the norms used in order to estimate
the size of some functions; the third point is connected with the possibility of making
expansion up to higher orders with respect to the previous works.

As to the first point, our remark is that numerical investigations show that the
projection of the stability region on the plane of Jupiter’s orbit is a banana—shaped
region which lies close to the circle with center in the sun and radius roughly equal to
the Sun—Jupiter distance. Now, all previous works were based on expansions in cartesian
coordinates around the Lagrangian equilibrium point. That cartesian coordinates are
not suitable to describe regions with a circular shape is evident to everybody. Thus,
we used polar coordinates, which are better candidates. This elementary remark is the
most important source of improvement.

The second point is rather technical, and will be discussed in detail in sect. 2.3.
Roughly speaking, the problem is how to compute an estimate of the size of a function
when we know the coefficients of its Taylor expansion. With respect to previous works
we introduce here a better norm.

The third point can be illustrated as follows. According to Nekhoroshev’s theory,
the series arising from classical perturbation theory have an asymptotic character. This
means that at some point one should reach an optimal value for the order of expansion,
which gives the best possible result. The exponential stability times typical of Nekhoro-
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shev’s theory are actually based on an analytical estimate of such an optimal order.
From a practical viewpoint it turns out that the optimal order could be so high that it
cannot be reached in explicit expansion using computer algebra. However, it is legiti-
mate to explore how the results improve when the expansion order is increased. For this
reason, we decided to study the planar problem instead of the spatial one, as considered
in the quoted works. Indeed, reducing the number of degrees of freedom from 3 to 2
allows us to make perturbation expansion up to order 35 instead of 22. However, the
most interesting result is that looking for stability results over the age of the universe
for the known asteroids we find that sometimes the optimal order is less than 34, which
means that we are actually close to that limit.

The application of the present method to the known Trojan asteroids in the Sun—
Jupiter—L4 system shows that the overall improvement gives realistic results. Indeed, it
turns out that 4 known asteroids are inside the region where stability can be guaranteed
for a time as long as the estimated age of the universe. Moreover, the majority of the
real asteroids fail to enter this region by just a factor 10. Thus, it is likely that with
some further improvement of our method we might succeed in proving the practical
stability of the orbit of most Trojan asteroids. A possible suggestion is, for instance,
choosing coordinates more adapted to the actual shape of the stability domain, as given
by numerical computations.
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2. Theoretical framework

We start with the Hamiltonian of the restricted problem of three bodies in the planar
circular case. For simplicity, we refer to the Sun—Jupiter case. We introduce a uniformly
rotating frame (O, q1,q2) as follows: the origin is located at the center of mass of the
Jupiter—Sun system; the axes are oriented in such a way that the Sun is always at the
point (u,0) and Jupiter at the point (1 — u,0); the physical units are chosen so that
the mass of Jupiter is u and the mass of the Sun is 1 — p, the distance between Jupiter
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and the Sun is 1, and the angular velocity of Jupiter is 1. Then the Hamiltonian has
the form

1 1—p 7
(1) H=s(pi+p3) + q2p1 — qp2 — -
2 Via-m?+a  Via+1-p)?+a
In this system of coordinates the Lagrangian point L, is located at ¢; = —%(1 —2u),

g2 =, p1=—q2, p2=q1.

2.1 Expansion around the point L,

On the Hamiltonian (1) we perform a sequence of transformations.
(i) We move the origin to the Sun, thus considering a heliocentric system. The gener-
ating function of the corresponding canonical transformation is

Wi = —(Q1 + p)p1 — Q2p2 + nQ2

where ()1, Q2, P>, P> denote the heliocentric coordinates.
(ii) We introduce polar coordinates via the canonical transformation generated by

Wy = —po(Py cos ¥ + Py sind)

where the polar coordinates are denoted by p, ), and the corresponding momenta
will be denoted as p,, ps.

(iii) Forgetting that v is an angle, we introduce a local reference system in the neigh-
bourhood of the point Ls. Remarking that in polar coordinates the point Ly is

2
= ? s
the canonical transformation is generated by

QZI, v pg:07 p19:17

2T
W3 =pz(0—1)+ (py +1)0 — ?py .

The canonical coordinates will be denoted by x,y, p;,p,. After these transforma-
tions the Hamiltonian is given the form

1 (py + 1) 2m 1—p
H:_[z y—}_ - 1 =l
5 Dyt EESIE py — x4+ 1)cos | y+ 3 TE

(2) B L
\/(g; +1)% 4+ 14 2(x + 1) cos(y + Z)

(iv) We expand the Hamiltonian in Taylor series around the origin, thus giving it the
form

(3) H=Hy+Hs+Hy+...



On the stability of the trojan asteroids 5
where

1
4 Hy = —(p2 +p2) -2 -+

and Hg for s > 2 is a homogeneous polynomial of degree s in z,y,p,,py. The
explicit expansion of the terms of degree s > 2 of the Hamiltonian up to a given
order is actually made by computer.

The final transformation gives the quadratic part of the Hamiltonian the diagonal
form

Y

1 9 9 33
“)ﬁ——“yu#xy

w1 w2
(5) Hy = Mt +9) + 23+ 43)
where x1, x2, Y1, y2 are the canonical coordinates, and wy and ws are the frequencies.
This is done via the linear symplectic transformation generated by the matrix

(6) C = (exmy 2 eamy /%, frmy M2, fomy P

where the real column vectors ey, eo, f1 and fo are defined as

8w? + 4v/30r + 9
8
16iw; + 4a + 3V/3
. 8
(7) e +ifj = ' 8w]2- + 4\/§a +9 ’
zwj 8

da+3v3  4vV3a+9
W 3 -+ 1

the real constants m;, (j = 1,2) are given by

2 2
8w2 4+ 4v/3a+ 9
(8) m; = wiDs Df:<wj o >_Q(¢h+§>+(&%g@>’

and w? , w3, a are defined as

1 1 J 27 1 1 / 27
2 2
wr ==+ = 1___|_4052 wE=-__"= 1___|_402
(9) ! 2 2 4 ’ 2 2 2 4 ’

(1-2u)3V3
: .

We emphasize that in order to have m; positive in (8) we must put w; > 0 and
wy < 0.

a=—
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After these transformations the Hamiltonian turns out to be a power series expansion
of the form (3), with Hs in the diagonal form (5). Remark that all the operations above
can be explicitly performed on computer, using for instance an algebraic manipulator.

2.2 Construction of Birkhoff’s normal form

The form above of the Hamiltonian is specially adapted for application of normal form
theory. To this end, following Giorgilli et al. (1989), we use the formalism of Lie trans-
forms. For completeness sake, we recall the main points of the scheme. Considering a
generating sequence {xs},~3, With xs(2,y) a homogeneous polynomial of degree s, we
define the Lie transform operator T}, as

(10) T, => E,

s>0

where the sequence {E,} ., of operators is recursively defined as
~J
(11) Ey=1, E,= Z; “LygaBog
]:

here, L, - = {x, -}. The operator T), is linear and invertible, and preserves products and
Poisson brackets. For details and proofs, see the paper of Giorgilli & Galgani (1978).

For a fixed integer r > 3, we say that the Hamiltonian is in Birkhoff’s normal form
up to order r if it has the form

(12) H" =Hy+ Zs+ ...+ Z. +R" |

where Hy has still the form (5), Z; (s = 3,...,r) depends only on the actions
I; = (22 4+ y?)/2, and R(") is a remainder, actually a power series starting with terms
of degree r 4+ 1. Under suitable nonresonance hypotheses on the unperturbed frequen-
cies w, the Hamiltonian can be given the normal form above up to order r via a Lie
transform generated by a finite generating sequence x(") = {xs,...,x,}, where x; is a
homogeneous polynomial of degree s.

Both the generating sequence and the normal form are determined by solving with
respect to the unknowns Zs, ..., Z,. and xs,..., x, the equation

(13) TynH™ =H ,

where H is the original Hamiltonian. The explicit algorithm, as well as a computer pro-
gram doing all necessary algebraic manipulations, is fully described by Giorgilli (1979),
so we skip all details.
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2.3 Estimate of the stability time

The generating sequence x(") can be used to construct a canonical transformation

(14) = Tx(r)l' y y' = TX<7~)y ,

where z’,1y’ are the new variables, that we shall call “normal coordinates”. By con-
struction, the transformed Hamiltonian H(")(z', 1) = T;(i)H is in normal form up to

order r (recall that the operator T\ is invertible). Thus, H () admits approximate
first integrals of the form

1
(15) Li(a'y') = 5 (33}2 + y}2) , j=12,

which are actually action variables for the normalized part of the Hamiltonian. This
information is the basis of our estimate of the size of the stability region. Indeed, we
have

(16) I ={1;,H"} ={1;,RM} ,

which is a power series starting with terms of degree r + 1.

We need now a few analytical tools, namely: domains, where stability properties will
be investigated, and norms, which will allow us to estimate the size of various functions.
We fix positive constants Ry, Re, and consider a family of domains of the form

(17) Ayr = {(x,y) eR* : xf +yj2- < Q2R?} ,

where o is a positive parameter.

In order to introduce norms we need some considerations. Consider a homogeneous
polynomial f of degree s. We are actually interested in estimating the maximum absolute
value of f over a domain A,r for fixed values of p and R. In other words, we are
interested in estimating a quantity like

|f|QR: sup |f(x,y)| )
(z,y)EAR
namely the supremum norm of f over the domain A,r. Actually, computing such a
quantity is impractical. So, we do the following. We want to introduce polar coor-
dinates r;,9; in each of the coordinate planes z;,y;, namely, we want to transform
x; = rjcosj,y; = r;sind;. Actually, it is more convenient to perform the equivalent
transformation to complex variables

) ,
%’ZE(Sﬁim’), yj:%(fy in;)

where _
Tj  —iv, _ My i

5;':E€_ ;M= NG
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By this, the transformed function f(£,n) is still a homogeneous polynomial of degree s,
that we write as

] ki k
f&m) = > Cir ok ka§1 MY 5
Ji+jet+ki+ka=s

where C}, j,k 1, are complex coefficient which are completely determined by the trans-
formation. From (x,y) € A,r we clearly have 0 < r; < goR,;. Thus, it is an easy matter
to conclude that the supremum norm |f|,r above does not exceed the norm

J1+k1 pjat+ka
Y |Cyyjakiko| BRI RETRE
Jijzkiks

(18) I7ler < 527

The latter norm is easy to compute; thus, we shall use it in the following. Remark that,
by definition, the elementary property | f|l,r = 0°| f||r holds.

Of course, the domains (17) and the norm (18) are properly defined both in the
original coordinates (x,y) and in the normal coordinates (2',y’).

In order to estimate the stability time we use normal coordinates. We remark that,
by definition, one has (z’,y’) € A, g if and only if I; < QQR? /2. Suppose that the initial
point of an orbit lies in the domain A, g for some positive gg. We fix a larger domain
Ayr, with ¢ > gg, and ask how long the orbit will be confined in the latter domain. To
this end, we use the trivial inequality

(19) |1;(t) = 1;(0)] < |¢] sup |1

oR

which is clearly true until the orbit eventually escapes from A,r. The problem is how
to estimate sup |I;]. To this end, we proceed as follows. Write the remainder R(") as a
power series, e.g.,

(20) RO = B + B, +.

It is obviously impossible to determine the whole series, but the first term, namely H, ﬁ +)1
can be easily constructed. Thus, we use the approximate estimate

(21) sup || < 20I{L5, H; Hlon
oR

This choice is heuristically justified as follows. Standard estimates (see for instance
Giorgilli et al. (1989)) allow to prove that the power series above for the remainder is
absolutely convergent in the domain A,r provided g is small enough. More precisely,
one proves that one has ||H S(T)H r < C*7"71D for some positive constant C' and for
D= ||H(T)1 | g- Actually, C~! is the convergence radius for . Now, if we take o < C~1/2,
then the supremum of the remainder does not exceed the norm of its first term multiplied
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by two. This justifies the factor 2 in (21). Of course, we should check that the actual
values of p satisfy the restriction above. This technical point will be discussed in sect. 3.4
below.

Using (21), we estimate the escape time 7,.(gp, 0) as

. R}e* - of)
(22) 700, 0) = min —I—
=L AL, Hy L Hor

This quantity still depends on the normalization order r, and on the radii gy and g of
the initial and the final domain. We now want to remove the dependence on r and p,
thus getting an estimated escape time depending only on the initial conditions, namely
on gg. To this end, we optimize the time with respect to r and p. First, keeping r fixed,
we write the r.h.s. of (22) as

R2(0* — 05)

(23) 11 (r) )
40" {Ly, Hya b r

here, the mentioned property of the norm has been used. This expression has clearly a
maximum for
r+1

24 — .
( ) 0 00 7’—1’

this is the value of p that we shall put in (22), thus getting 7 depending only on r and
00- Secondly, we compute this quantity for r running from 3 to some maximal value
r, and choose an optimal value, rop¢ say, which maximizes the estimated escape time.
Thus, we produce an estimated escape time depending on g only, namely

25 T — ax s T ) .

(25) (00) = max. Sup 7 (€0, 0)
The actual value of 7 clearly depends on the power of the computer and on the efficiency
of the program doing all the necessary algebraic manipulations.

3. Results

All our work is based on polynomial expansions. The key remark is that a polynomial

in several variables is uniquely represented by an array of coefficients. Thus, performing

algebraic manipulations on power series truncated at some order just requires routines

for the following operations:

(i) storing and retrieving the coefficient corresponding to a given monomial, which in
turn is identified by the exponents of the variables;

(ii) algebraic operations such as sum, products, differentiation and Poisson brackets,
linear change of coordinates;
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(iii) solution of the homological equation during the process of computation of the nor-
mal form, i.e., the equation { Ha, x5} +Z5 = Qs where x; is the generating function,
Z is the normal form and @), is a known polynomial of degree s.
A detailed description of the program doing all such manipulations is given by Giorgilli
(1979).
All the expansions have been done with a programs written ad hoc. Use of general
purpose symbolic manipulators has been restricted to checking some of the operations.

3.1 Expansion of the Hamiltonian and computation of the normal form

All the algebraic manipulations were done on power expansions truncated at order
7 = 35. The expansion of a function of 4 variables up to degree 35 requires 82251
coefficients. On the other hand, the process of construction of normal form requires the
computation of several functions, with a total of 2549 782 coefficients.

We start with the Hamiltonian in form (2), and expand it in Taylor series around
the origin. To this Hamiltonian we apply the linear transformation with the matrix (6),
using as parameter p the value 9.5387536 x 10~%, corresponding to the Sun-Jupiter
case. The harmonic frequencies turn out to be

w1 =~ 9.9675752552 x 1071 | wy ~ —8.0463875837 x 1072 .

At the end of this procedure the Hamiltonian has the form of a power expansion Hs +
Hs + ...+ Hj;, with Hs in the diagonal form (5).

The second step consists in determining the generating function which gives the
Hamiltonian the normal form (12). At the same time, for 3 < r < 7 we compute the

coefficients of the first term Hﬁ:_)l of the remainder that we need in order to use (21).
This is an easy byproduct of the program computing the normal form.

Having determined the generating sequence, we can determine the canonical trans-
formation (14) as well as its inverse (if we need) by just applying the operator T}, defined
by (10).

The final step consists in estimating the escape time. This is done via a straight-
forward application of the procedure at the end of the previous section. The results will
depend, of course, on the choice of the parameters R, Ry entering the definition (18)
of the norm.

3.2 General results concerning the time and the region of stability

For a general discussion we use the values Ry = Ry = 1 in the definition of the norm.
The results are summarized in fig. 1. In the upper part the graph of the estimated escape
time T'(0p) is reported. Recall that this is the minimal time required for an orbit starting
on the domain A, r to reach the border of the domain A,r, with p given by (24). The
value of r to be used in this formula is the optimal one computed according to the
procedure at the end of sect. 3.1, and can be seen in the lower graph of the figure.
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One will notice that the upper curve in fig. 1 is composed of straight segments, the
slope of which changes in correspondence with a change in the optimal order r. This is
easily understood from formula (23). Of course, the actual value of r can not exceed 34,
because we stopped the computation of all functions, including the remainder, at order
35.

Let us now consider the problem of stability for an object in the neighbourhood
of the point L4. Precisely, let us look for stability for a time as long as the age of the
universe. Since the time unit is (27)~! the period of Jupiter, the estimated age of the
universe is about 10'° time units. The corresponding value of Log gg is —1.536, namely,
00 ~ 2.911 x 1072.

In order to find the meaning of this value for the physical system we should perform
all transformations back to the polar coordinates. This is a hard task to be performed
by hand, of course, because the domains are defined in normal coordinates. However,
a rough evaluation is the following. Accepting that the transformation from the old
coordinates to the normal ones
(26) v=T e, y=Ty .
namely the inverse of (14), is well defined on the domain A, , the image T)Z(}) (Agr) is
close to a polydisk in the old coordinates. An estimate of the size of the latter domain
can be computed as follows. Consider the actions I; = (27 +y7)/2 and I§ = (yc;2 +y§-2)/2
in the old and normal variables, respectively. Consider also the function

—1
I] (.T, y) ‘:L.:T*l x! ,y:Til‘ y/ - (TX(T) Ij) (,ZL’/, y/)
(") (™)

(here, we used the well known property of Lie transforms that the substitution of coor-
dinates can be effected by transforming the functions). The r.h.s. of the latter expression
is a power series the lowest order term of which is exactly I ;; let us write this series as

1 j’ + @gg) + <I>§-4) + .... Thus, we get the approximate estimate
15 = 15 o < @Bl ®57 ]+ -+ bl 257 -

Again, this is reasonable provided gg is smaller than, say, half of the convergence radius
of the series (26). For a further discussion on this point, see sect. 3.4 below. The r.h.s. of
the latter expression can be explicitly computed, since the generating sequence is known,
and so the operators Fq,..., F are known, too. Using the explicit expressions of the

Tmax

functions and the value above of g, we find
[y~ I, p ~5.032 x 107° < 0.11917 .
I~ I3], p ~1.834 x 107% < 0.217 1 .
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We conclude that the stability domain in the old coordinates contains a polydisk of
radius 0 = \/9(2) — 2|1, — 15| ~ 2.192 x 1072, Now, the coordinates of Jupiter are
(1.307022 x 1073, —3.990948 x 1073, —4.541613 x 1073, 1.717878 x 10~ 1), so that Jupiter
is on the border of a polydisk of radius gjup ~ 1.718342 x 10!, Thus, the estimated
size of the stability domain is roughly 0.127 times the distance of Jupiter from the point
Ly.

3.3 Comparison with the existing asteroids

In order to see how far our estimates can be applied to the existing asteroids we follow
Celletti & Giorgilli (1991). Using the 1994 catalog we extract the elements of the Trojan
asteroids at a fixed epoch, namely December 14, 1994, J.D.= 2449700.5. Next, we find
the elements of Jupiter at the same epoch. Assuming that the orbit of Jupiter is circular,
the position of the point L4 is easily found. Then we transform the elements of the
asteroids in cartesian coordinates in a rotating heliocentric system with the z axis
orthogonal to the plane of Jupiter’s orbit. In order to reduce the problem to a planar one,
we project the position of the asteroid in the x,y plane by forcing z = 0, and finally we
determine the position relative to the point L4, and the coordinates 1, x2, y1,y2 which
diagonalize the quadratic part of the Hamiltonian. The latter transformation is explicitly
described in sect. 3.1. At this point we adapt the radii Ry, Ry for the computation of

the norm to the initial data of each asteroid by just putting R; = ﬁ/x? + yJQ.. Finally,

we determine the radius gy which ensures stability, in the sense above, for the age of
the universe. The results are reported in table 1. The first column reports the number
of the asteroid; the next two columns give the values of the parameters R;, Rs; the
third column gives the estimated value of py. By the definition of R;, Ry the asteroid
is inside the stability region if g9 > 1. It is seen that four asteroids fall inside the
estimated stability region. On the other hand, in the worst case the estimated size is
too small by a factor 30. It is also interesting to remark that for most asteroids an
improvement of our estimates by a factor 10 would ensure stability. Thus, the present
study constitutes a significant improvement with respect to the previous works. We
emphasize that the improvement concerns both the choice of the polar coordinates,
which fit better the actual shape of the stability domain with respect to the cartesian
ones, and the estimate of the size.

3.4 A critical discussion of our approximation method

At some points of our procedure we used approximations of some values by truncating
the series at some finite order. We refer in particular to the estimate of the remainder in
sect. 2.3, formula (21) and to the estimate of the deformation in sect. 3.2. In both cases,
the main question is whether the domain of convergence of the series expansions for the
transformation of coordinates, the normal form and so on contains or not the polydisk
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Ay, r for the values of gy that we are considering. For definiteness, let us consider the
case Ri = Ry = 1, and for gy the value 2.911 x 10~2, which, according to our estimates,
ensures stability for the age of the universe.

An analytical estimate can be attempted in the following way. We use a result of
Giorgilli et al. (1989). It is proven there that if the generating sequence satisfies ||x|| 5 <
a*73b for all s > 3 and for some positive a and b, then the coordinate transformation (14)
is absolutely convergent in a polydisk A, with o = (3b+ 8a/ 3)_1. The same is easily
proven for the inverse transformation (26), and for the transformation of any other
function, for instance the actions I or I ]’ Now, since the generating sequence is finite,
the constants a and b can be explicitly determined by direct computation of the norms
and best fitting. For, it is enough to set

1/(s—3
HXsHR) /(579
”X3||R

We find a ~ 14.164 and b ~ 6.526, which gives a convergence radius 1.744 x 10~2, too
small by a factor 1.67 with respect to our value of g.

However, we stress that the estimates above are purely analytic, and so certainly
pessimistic. So, let us proceed heuristically as follows. Consider for instance the series
Ty 17; that we used in sect. 2.3. Since we know the expansion of that series up to order
35, we can try to evaluate its convergence radius by using some convergence criterion for

b= sl » a= max (

3<s<F

power series. To this end, having computed the norms of (I>§-3), cee @;35), for 3 <s<33
we fit them with a geometric sequence, i.e., we look for constants ¢ and d such that
H<I>§-s) | < cd®. We do the same for the coordinate transformations and find the following
values:

function c d

X 6.526  14.164
Ty 1.0 14.693
Tyas 1.0 14.890
Ty 1.0 14.782
Tyy2 1.0 15.123
T, 'L 0.5 13.522
T, I 0.5 14.047

The worst case gives d ~ 15.123, which gives an estimated convergence radius o =~
6.612 x 10~2. If we accept the latter value as a good indicator of the true convergence
radius, we conclude that the value above of g; is actually smaller than the convergence
radius of the series by a factor 2.2. Thus, our values are safely inside the convergence
domain.
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Perhaps one might remark that the extra factor 2 that we inserted in the esti-
mate (21) in order to take into account the effect of the rest of the series is actually too
small. However, the heuristic argument above shows that replacing 2 by some bigger
factor (10 or 100, for instance) should give a correct result. On the other hand, looking at
fig. 1 it is immediately seen that the effect on the estimated value of gg is not so relevant:
according to formula (22) the curve for T, is simply translated, taking slightly smaller
values, but the slope of the segment in the region corresponding to gy ~ 2.911 x 1072
is so high that the value of p giving the age of the universe is changed only a little. For
instance, replacing 2 by 100 would change o9 only by 13 percent.
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Figure captions
Figure 1. Upper figure: estimated stability time 7T as a function of the size gy of

the initial domain, in Log Log scale. The estimated age of the universe corresponds to
LogT ~ 10. Lower figure: optimal order r as a function of gg.
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Table 1. Estimated stability region for the known asteroids. The first column

gives the catalog number. The second and the third column are the radii Ri, R2

corresponding to the initial data. The fourth column gives the value of ¢ which
ensures stability over the age of the universe; the asteroid is inside if ¢ > 1. The
fifth column is the optimal order for the wanted time, with a maximum of 34. The

table is sorted in decreasing order with respect to the stability parameter p.

88181612
89211605
41790004
1870
2357
9257
88181912
5233
4708
88181311
1871
31080004
94031908
2674
88180412
88180710
88191102
88182510
2207
89201902
94031500
89212405
89211705
5907
88181411
4792
88180811

3.130230 x 1072
3.314960 x 102
1.651660 x 102
3.871410 x 1072
4.234620 x 102
3.183610 x 1072
7.083260 x 1072
4.163300 x 102
7.099190 x 1072
3.914500 x 1072
5.121390 x 1072
7.002890 x 1072
1.443780 x 1072
6.527500 x 1072
7.829610 x 1072
5.420360 x 102
9.320020 x 1072
8.859670 x 1072
1.747150 x 102
7.247770 x 1072
4.552550 x 1072
3.008840 x 1072
6.369570 x 102
9.759570 x 1072
9.442780 x 1072
1.091900 x 101
1.160100 x 10~*

2.101250 x 1073
1.959370 x 1072
3.106310 x 1072
1.717610 x 102
2.850950 x 1072
4.242410 x 1072
6.687100 x 1073
4.662950 x 102
1.894850 x 1072
5.262120 x 1072
4.691570 x 1072
2.745100 x 1072
6.123500 x 1072
3.592170 x 1072
1.451120 x 1072
5.338740 x 1072
1.316370 x 1072
3.638490 x 1072
8.093470 x 1072
6.844550 x 1072
8.358320 x 1072
8.992360 x 1072
8.261660 x 102
6.062860 x 1072
6.523500 x 1072
5.448570 x 1072
5.001570 x 102

1.487790

1.135130

1.100990

1.048060

8.470200 x 107!
7.504500 x 107!
6.597200 x 107!
6.495000 x 107!
6.275300 x 107!
6.063800 x 107!
6.000700 x 107!
5.956600 x 107!
5.928600 x 107t
5.894200 x 107!
5.876200 x 107!
5.425600 x 107!
4.979700 x 1071
4.658500 x 10~*
4.487900 x 107!
4.163900 x 107*
4.075300 x 10~ ¢
4.005000 x 1071
3.826400 x 107!
3.790100 x 107 ¢
3.757900 x 107!
3.617700 x 107!
3.519900 x 107!

33
34
34
33
34
34
33
34
32
34
34
32
34
34
32
34
33
32
34
34
34
34
34
34
34
34
33
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Table 1. (continued)

3240
5638
43690004
31630002
4348
4827
4722
1173
10240002
2594
4829
88180812
4754
4707
43170004
89210305
88182012
4805
5511
89211505
20350004
884

2893
1872
88181213
51910004
4828
5130
5476
88181410

1.362500 x 107!
1.079900 x 10~*
1.018300 x 101
1.430300 x 10~*
1.265200 x 10!
5.760190 x 1072
1.354100 x 101
1.600900 x 107!
8.412220 x 1072
9.109540 x 102
6.679660 x 102
1.671900 x 1071
4.806640 x 1072
1.470000 x 101
1.345900 x 107!
1.881300 x 1071
1.910400 x 1071
1.221800 x 101
1.328100 x 1071
1.139400 x 1071
1.754200 x 107!
1.441100 x 1071
1.219200 x 1071
8.983270 x 1072
1.130100 x 101
1.823100 x 107!
5.293490 x 1072
5.491180 x 1072
9.824540 x 1072
7.307780 x 1072

2.751300 x 1072
8.124580 x 1072
9.101430 x 1072
4.449490 x 10~2
7.450120 x 1072
1.213100 x 101
8.204770 x 1072
4.983620 x 1072
1.368200 x 1071
1.393500 x 1071
1.486500 x 10~*
9.927530 x 1072
1.677300 x 1071
1.294500 x 101
1.403400 x 107!
1.057300 x 1071
1.094400 x 1071
1.606700 x 101
1.631800 x 1071
1.739200 x 1071
1.475100 x 101
1.686700 x 10~*
1.871300 x 1071
2.039900 x 107!
2.026600 x 107!
1.740300 x 107!
2.216600 x 107!
2.227200 x 107!
2.389300 x 107!
2.659600 x 107t

3.359200 x 107 ¢
3.162000 x 107!
3.061600 x 107!
3.046700 x 107!
2.977800 x 107 ¢
2.868400 x 107!
2.755600 x 10!
2.721800 x 107 ¢
2.434500 x 107!
2.360100 x 107!
2.358500 x 107!
2.247200 x 107!
2.157600 x 107!
2.138800 x 107!
2.106900 x 107t
2.032200 x 107!
1.989500 x 10!
1.974600 x 101
1.908600 x 1071
1.890100 x 1071
1.838900 x 101
1.820300 x 10~*
1.758800 x 1071
1.723100 x 1071
1.673900 x 101
1.644500 x 107!
1.637500 x 1071
1.629200 x 101
1.483600 x 10~*
1.362000 x 10!

32
34
34
32
34
34
34
32
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34

17



18

A. Giorgilli and Ch. Skokos

Table 1. (continued)

88191602
2223
40350004
88180813
2241
6002
88192301
3708
88190103
88181810
87171400
88191003
5119
88180512
88190703
1172
31040004
4715
4832
90221206
1873
88180701
41010004
617
88181510
88182511
5648
88191203
9637
90202212

2.174600 x 107 ¢
7.393250 x 1072
5.551710 x 1072
1.353000 x 10~*
6.331600 x 1072
1.724500 x 1071
8.331460 x 102
2.174100 x 107*
1.383900 x 1071
1.248200 x 101
1.661600 x 10~*
1.184300 x 1071
1.935700 x 10~*
2.171600 x 107!
1.325300 x 107!
1.178100 x 1071
1.007800 x 107!
1.572100 x 101
2.347900 x 107 ¢
2.372900 x 107!
6.303730 x 1072
2.256900 x 107!
1.736500 x 1071
2.613400 x 107!
1.879700 x 101
2.228500 x 107t
2.483200 x 107!
2.284500 x 107!
2.749200 x 107!
2.078400 x 107t

2.189900 x 107t
2.835900 x 107!
2.853600 x 107!
2.759800 x 107!
2.929700 x 107t
2.683600 x 107!
2.981600 x 107!
2.654700 x 107 ¢
3.006200 x 107!
3.104200 x 107!
3.084000 x 107!
3.296100 x 10~ ¢
3.044200 x 107!
2.968600 x 10!
3.294100 x 107 ¢
3.436400 x 107!
3.769800 x 107!
3.739900 x 107!
3.473200 x 107 ¢
4.004800 x 1071
4.416100 x 107!
4.698200 x 10~*
4.898900 x 1071
4.619700 x 1071
5.021700 x 107!
5.151500 x 107*
5.119400 x 107!
5.581600 x 10~ !
5.709900 x 107!
6.032100 x 107 ¢

1.333500 x 107!
1.278500 x 1071
1.272900 x 1071
1.255000 x 10~*
1.239700 x 107!
1.230000 x 1071
1.214500 x 101
1.171100 x 107!
1.162400 x 1071
1.144900 x 101
1.106500 x 10~*
1.089100 x 1071
1.086700 x 10~*
1.079300 x 101
1.078800 x 10!
1.046900 x 1071
9.614220 x 1072
9.453910 x 1072
9.399910 x 102
8.377690 x 1072
8.205510 x 1072
7.394110 x 1072
7.333020 x 1072
7.324830 x 1072
7.132770 x 1072
6.839150 x 1072
6.776230 x 1072
6.354580 x 1072
6.081990 x 102
5.963150 x 1072

34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
34
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Table 1. (continued)

2895
5120
3451
4791
4709
3317
4867
1867
88172500
1208
2363

1.843700 x 107!
2.533600 x 107!
2.285800 x 107!
1.298900 x 10~*
1.737100 x 10!
3.085000 x 107!
2.331200 x 107!
2.169200 x 107 ¢
2.429700 x 107!
3.619200 x 107!
2.937300 x 107!

6.294600 x 1071
6.210100 x 107!
6.288900 x 107!
6.811600 x 107!
6.851900 x 10~ ¢
7.051000 x 1071
7.362600 x 1071
7.582500 x 107!
9.020800 x 107!
9.975700 x 107!
1.012520

5.746530 x 1072
5.713580 x 1072
5.705220 x 1072
5.332690 x 1072
5.294080 x 1072
4.989590 x 1072
4.901550 x 102
4.773260 x 1072
4.017310 x 1072
3.597040 x 1072
3.573360 x 102

34
34
34
34
34
34
34
34
34
34
34
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