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ON THE STABILITY OF TWO-DIMENSIONAL PARALLEL FLOWS
PART I.-GENERAL THEORY*

BY

C. C. LIN
Guggenheim Laboratory, California Institute of Technology

1. Introduction. The study of the stability of laminar motion and its transition
to turbulence dates back to the time of Helmholtz and Reynolds [46], and had
already attracted great attention at the end of the last century.** Since that time,
the subject has not only become a major problem for workers in hydrodynamics,
but has also attracted the attention of people like Lord Rayleigh [43-45], Lord
Kelvin [20-21], Lorentz [29], Sommerfeld [58], and Heisenberg [14], whose chief
interest is not limited to the study of mechanics. Although numerous contributions
have since been made, the subject has remained one of considerable dispute, as can
be seen from the two general lectures given by Taylor [70] and by Synge [63] as
late as 1938. Still more recently, there appeared the work of Gértler [8, 9] and of
Thomas [71].

Most of the work on the stability of laminar motions has the following final aims.

1) The first aim is to determine whether a given flow (or a given class of flows)
is ultimately unstable for sufficiently large Reynolds numbers. For this purpose, it
is desirable to obtain some simple general criterion which will give a rapid classifica-
tion of velocity profiles according to their stability.

2) The second purpose is to determine the minimum critical Reynolds number at
which instability begins. It is often easier to find sufficient conditions for stability
than to find the condition for passage from stability to instability.

3) Finally, we want to understand the physical mechanism underlying the
phenomena by giving theoretical interpretations and experimental confirmations of
the results obtained from mathematical analysis.

Although numerous attempts have been made in these directions, especially for
the apparently simplest cases of parallel flows in two dimensions, our knowledge is
still very meagre. The classical case of plane Pouiseuilla motion has remained an un-
settled problem.t and no satisfactory general results have been reached regarding the
stability of a real fluid. The best-known general criterion is that of Rayleigh (1880)
and Tollmien [74], classifying profiles according to the occurrence of a flex}t with re-
spect to the stability of a fluid at infinite Reynolds numbers. However, the sig-
nificance of their results has been too much exaggerated and often misunderstood,
and no physical interpretation has ever been given. The present work offers such an
interpretation, but also shows that the results can only give some indication regarding

* Received March 3, 1945, An abstract of this paper has already appeared under the same title [27].

** In 1888, the problem was proposed by Rayleigh and Stokes as the subject for the Adams Prize
Essay. Cf. p. 321 of Ref. [21], and also the footnote on p. 267 of Ref. [44].

1 Cf. Synge’s lecture [63].

1t Following Professors Frank Morley and H. Bateman, we shall use the word “flex” for “point of
inflection.”
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the instability of a real (viscous) fluid. This will be discussed in more detail below.

The chief aim of the present work is to try to answer the three questions men-
tioned above for two-dimensional parallel flows. This work is divided into three parts.
Part I (the present paper) deals with the general mathematical theory, with par-
ticular emphasis on attempting to clarify the mathematical difficulties involved in
the solution of the equation of stability. Part II deals with the stability problem in an
inviscid fluid (infinite Reynolds numbers). Part III deals with the problem in a real
fluid. The following results have been obtained.

1) It is shown that all velocity distributions of the symmetrical type and of the
boundary-layer type are unstable for sufficiently large (but finite) values of the
Reynolds number (Part III). The plane Poiseuille motion is included as a special
case.

2) A simple approximate method is obtained by which one can calculate the
minimum Reynolds number marking the beginning of instability with very little
numerical labor (Part III).

3) The tendency toward instability of a profile with a point of inflection is inter-
preted by considering the distribution of vorticity (Part II). The effect of viscosity is
considered as diffusing the disturbance from the “critical layer” inside the fluid and
from the solid boundary. A very simple quantity is thereby derived which serves as
a measure of the effect of viscosity (Part III). This can also be easily connected with
the general mathematical theory.

As numerical examples, we have worked out the curve of neutral stability for the
Poiseuille case and the Blasius case. Comparisons with existing results are discussed
(Part I1I). The relation between instability and transition to turbulence is also dis-
cussed in Part III of this work.

Since some of the present results differ markedly from customary beliefs, it is
necessary to trace the history of the existing lines of thought in order to give proper
recognition to earlier ideas and results used in the present work, and to analyze all
the results in disagreement with present conclusions. This requires the repetition of
some known results when they fall into the present line of treatment. The review of
literature is not intended to be exhaustive; only the necessary references are cited.
A more complete bibliography up to 1932 has been given by Bateman [2].

2. Historical survey of existing theories. There seem to be two schools of thought
in regard to the cause of transition from steady to turbulent conditions. One school
contends that transition is due to a definite instability of the flow, i.e., to a condition
in which infinitesimal disturbances grow exponentially. The second school regards
the motion in most cases as definitely stable for infinitesimal disturbances but liable
to be made turbulent by suitable disturbances of finite magnitude or by a large
enough pressure gradient. Both schools, however, generally agree that the fluid can
be considered as incompressible and that its motion is governed by the Navier-
Stokes equations of motion. Since the agreement between theory and experiment has
not been very satisfactory, it has also been proposed that the cause of transition
must be traced back to the effect of compressibility or to the possible failure of the
Navier-Stokes equations. The present work tends to confirm the simplest point of
view that the motion in most cases is definitely unstable for infinitesimal disturbances
governed by the Navier-Stokes equations for an incompressible fluid.

The theory of finite disturbances dates back to Reynolds [46] and Kelvin [21].
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It was developed by Schiller, Taylor and others.* Mathematical investigations of
such finite disturbances are mainly based on considerations of energy or of the square
of the vorticity of the disturbance, because the solution of the non-linear equations
satisfied by the disturbance is extremely difficult. At the end of Part III we shall
briefly discuss this line of thought together with the results of the present paper. For
more details, the reader is referred to the lecture of Taylor [70] and the papers of
Synge [62] and Thomas [71].

For small disturbances, positive definite integrals of the energy and vorticity of
the disturbance have been extensively used. These considerations have been discussed
by Orr [37], Lorentz [29], von K4rmé4n [18], Synge [63, 64] and others. For excel-
lent accounts of this phase of the theory, the reader is referred to the works of
Noether [35], von Kdrméan [18], Prandt! [42], and Synge [64]. Additional references
are cited at the end of this paper. As is now well-known, this method can only give
sufficient conditions for stability. Also, since all disturbances are usually allowed, in-
cluding those which do not satisfy the hydrodynamic equations of motion, a larger
viscous decay is required to insure stability than when these disturbances are ex-
cluded. Consequently, the limit of stability is always found to be much lower than
that indicated by experiment. However, from these considerations, Synge [63] has
arrived at a very convenient form of a sufficient condition for the stability of two-
dimensional parallel flows with respect to two-dimensional disturbances. This will be
found very useful for the discussions in Part IH.

To get more concrete results, we have to solve the linearized equations satisfied
by the disturbance. The most successful case appeared to be Taylor’s treatment of
Couette flow [67] between concentric cylinders. His work was verified by the experi-
ments carried out by himself [67, 69] and by others [28]. A rigorous mathematical
investigation in this connection was made by Faxon [4]. In fact, it is now known
that his analysis is a typical case of the stability of a fluid motion where the centri-
fugal force plays a dominant part. Such cases were first considered by Lord Rayleigh
[45], who gave a condition for the stability of an inviscid fluid. Mathematical proof
of a sufficient condition of stability of Couette flow was recently given by Synge [65].
Extension of Taylor’s work to the boundary layer over a curved wall was carried out
by Gértler [8, 9], who used numerical methods successfully.

While the investigation of curved flows was uneventful, the investigation of axi-
ally symmetrical flows was not extensive. The Poiseuille flow in a circular pipe was
studied by Sex! [55] with a conclusion of stability. Prandtl [42] gave some discus-
sions of the possible cause of instability in his article in the book “Aerodynamic
Theory,” edited by Durand.

The most extensive discussion of hydrodynamic stability seems to be the treat-
ment of parallel flows by attempting to solve the eigen-value problem associated
with the linearized equations governing the disturbance. This line of development
can be easily traced in the work of Helmholtz, Lord Rayleigh [43, 44], Orr [37],
Sommerfeld [58], von Mises [31, 32], Hopf [16], Prandtl [41], Tietjens [72],
Heisenberg [14], Tollmien [73-75], and Schlichting [52-54]. Other contributions are
those of Noether [36], Solberg [57], Southwell [59], Squire [60], Goldstein [6],
Pekeris [39, 40], Synge [61-65] and Langer [25].

* See Taylor's lecture [70] for references to the works on finite disturbances.
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For convenience, the theory deals with two-dimensional wavy disturbances propa-
gated along the direction of the main flow. Squire [60] has shown that three-dimen-
sional wavy disturbances are more stable than two-dimensional ones. However,
Prandtl still mentions the possibility of greater instability of three-dimensional dis-
turbances in his article [42 ] appearing after Squire’s paper.

The first study of two-dimensional hydrodynamic stability seems to have been
made by Helmholtz. He proved the instability of wavy disturbances over the surface
of discontinuity of two parallel streams of different velocities. Later, Rayleigh [43]
realized that Helmholtz’s approximation was not good enough to bring out the main
features of a flow with continuous velocity distributions. He therefore made an im-

proved approximation consisting
(@) (b) © of several linear profiles joined up
] continuously. The vorticity dis-
| tribution then has constant values
in several layers, but has a dis-
continuity in passing from onc
layer to another. Investigations
with continuous vorticity distri-
butions were also made. Ravleigh's
work was mainly concerned witch
FiG. 1. Broken profiles investigated by Lord Rayleigh. Case  an inviscid fluid. Two main results
(a) may be unstable; the other rwo cases are stable. were obtained. The first is that in-
stability (in an inviscid fluid) can
only occur with velocity distributions having a point of inflection It is usually be-
lieved that Lord Ravleigh has also proved that damped disturbances can also only
occur with such profiles. The possibility of a disturbance for a profile without a flex
then becomes a paradox [5]. Actually, Rayleigh’'s proof does not lead to such a
conclusion. This point will be more fully discussed in §5 and Part II. Rayleigh's
second result is obtained from the analysis of broken linear profiles; it substantiates
the first result by demonstrating definite instability of broken linear velocity distri-
butions of the type shown in Fig. 1(a), and only stability in the other cases. Rayleigh
[43] supported his result by obtaining the condition determining stability in the
approximate form

f”(w — )Wy =0, 2.1

vi

where w(y) is the velocity distribution, y, and y, are the coordinates of the solid
boundaries, and ¢ is a constant the real part of which represents the wave velocity
and the imaginary part of which gives damping or amplification.

Meanwhile, the exact analysis of linear velocity distributions including the effect
of viscosity was given by von Mises [31, 32], and Hopf [16] and was also studied by
Rayleigh [44]. The results indicate only stability. Prandtl and Tietjens [72] applied
Rayleigh’s method of approximation to the stability of the boundary layer, taking
account of the effect of viscosity. In such an approximation, the inner friction layer
mentioned above (§1) for continuous vorticity distributions is left out. The result of
Tietjens did not give a minimum critical Reynolds number.

It was Heisenberg [14] who first successfully studied the stability of a variable
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continuous vorticity distribution. As a particular example, he demonstrated that the
plane Poiseuille flow was unstable for sufficiently large Reynolds numbers. Also, using
the same equation (2.1) with which Rayleigh supported his approximation with linear
profiles, Heisenberg pointed out the fallacy in Rayleigh’s method. The essential point
is that the corners in the velocity profile introduce extraneous roots of the above
equation for ¢. Consequently, the results of this type of analysis depend upon the
manner in which the velocity distribution is approximated.

Heisenberg’s numerical computation was, however, incomplete and very rough,
and his theory was not generally accepted. Better known are the results of Tollmien
and Schlichting. They studied the cases of Blasius [73] and plane Couette flow [48],
using Heisenberg’s theory essentially. The former case was pursued very much in
detail. For the latter case, Schlichting followed the idea of Prandtl, asserting that the
instability may be attributed to the initial unsteady distribution prior to the forma-
tion of the linear profile. Indeed, the same kind of idea was also suggested by Prandtl
to account for the instability of Poiseuille flow by ascribing it to the entrance section
where the profile is not yet parabolic [41]. This problem will be discussed in some de-
tail later (§14, Part III).

For an inviscid fluid, Tolimien has also proved the instability of boundary-layer
and symmetrical profiles with a point of inflection [74]. For a viscous fluid, the pres-
ent investigation shows that instability depends upon the general type of these pro-
files rather than on the appearance of the point of inflection. The inner friction laver
plays a dominant role in determining the instability. Attempts to interpret this point
physically are given by Prandtl [42] and in the present paper.

3. General formulation of the problem. We shall now formulate the problem of
the stability of two-dimensional parallel flows mathematically In the first place. we
note that if the steady motion is strictly two-dimensional and parallel, the velocity
distribution must be either linear or parabolic (if body forces are absent). We then
have one of the following: 1) the plane Couette flows; 2) the plane Poiseuille flow;
3) a combination of these two flows. The problem would then be very restricted.

However, there are a large number of cases where the flow is essentially parallel
to one direction. These arc the cases where the boundary-layer consideration is per-
missible. The following are important special cases belonging to this class: 4) inlet
flow between parallel walls, flow in a slightly convergent or divergent channel; 5) flow
along a flat plate; 6) wake behind a cylindrical body, jet from a narrow slit. Whether
these flows can be properly considered as belonging to the same class as the above
three is a question of some controversy. Taylor has criticized Tollmien's work with
the boundary layer on this ground [70]. In the Appendix to Part III of this work,
we shall try to demonstrate that this treatment is generally permissible, but that the
interpretation of the results must be taken up with care. A discussion of Tollmien’s
work will also be found there.

In considering the stability of the main flow, we superpose upon it a hydrody-
namically possible small disturbance, and consider its behavior. The disturbance is
small in the sense that the inertia forces corresponding to the disturbance alone are
negligible and that its behavior is unaltered when its amplitude is (say) doubled or
halved. It is then simplest to consider separate harmonic components with respect to
time, which may be damped, neutral, or self-excited. By considering disturbances
which are also spacially periodic both in the direction of flow and in the direction
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perpendicular to the plane of symmetry of the main motion, Squire [60] was able to
show that two-dimensional disturbances are less stable than three-dimensional dis-
turbances. Hence, important features of the stability problem can be obtained by
considering two-dimensional disturbances alone. This is an essential difference be-
tween the stability of a parallel flow and of a curved flow. In the latter case, three-
dimensional disturbances are of utmost importance.

The consideration of periodic disturbances alone is again a question of some con-
troversy. Justification has been attempted and objection has been raised. We shall
see later that at least the difficulties raised are chiefly caused by a misinterpretation
of the mathematical results.

Admitting that we can consider two-dimensional disturbances alone, we have a
much simplified physical picture at hand. If the effect of viscosity is negligible, we
have the well-known fact of conservation of vorticity for two-dimensional motions.
Actually, the stability problem is found to depend both on the inertia forces and on
the viscous forces. However, the effect of viscosity is also well-known to be one of
diffusion of vorticity. Thus, important results can be expected from considerations
of vorticity transfer.

Let us now proceed with the mathematical formulation of the problem. We shall
give a complete derivation of the stability equations so that we can see how to settle
the disputes about the approximations in considering velocity distributions of the
boundary-layer type.

Admitting Squire’s work as a proper indication that only two-dimensional dis-
turbances need be considered, we may conveniently consider the equation of vorticity

Ay + YAy, — LAY, = vAAY, 3. 1)

with the velocity components

o . g
u_"’/”—ay, v = '//z—' ax’ (3'2)
and the vorticity
07 du
dx dy

As usual, v is the kinematical viscosity. We may add that Squire's original proof was
intended for flow bounded between two parallel walls. There is no difficulty in seeing
that the proof holds also for a fluid extending to infinity,* because the boundary con-
ditions for the disturbance are essentially the same.

Let us put
¥ =¥(x 9 +¥ (x99, (3.4

where ¥(x, y) represents the steady main flow and ¢¥’(x, y, £) represents the dis-
turbance. Main flows which vary but slowly with time can also be treated this way,
but we shall restrict ourselves to steady flows in order to fix our ideas.

If we substitute (3.4) into (3.1) the terms corresponding to the main flow cancel
out. If we then drop the terms quadratic in ¥'(x, ¥, ) and its derivatives, we have
the equation

AY! + VAV — VAYY + Y AT, — Y AT, = yAAY. (3.5)

* Cf. Ref. [15].
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We shall now assume the flow to be essentially parallel to the x-axis. Using the bound-
ary-layer approximation, we should drop the x-derivative of any quantity connected
with the main flow compared with its y-derivative. But for the disturbance we would
expect ¥/ and ¢, to be of the same order of magnitude. This will be verified a
posteriort in the specific examples. Further discussions will be found in the Appendix
to Part I11. With these considerations, (3.5) reduces to
v
Ayl + VA — ¥g 6_y3 = vAAY'. (3.6)
Now we shall make an approximation of the same order by taking for w=¥, and
0w /dy? =9V /9y® their local values at a given value xo of x. Then we may write

AY! + w(y)AY! — W' (Y] = vAAY . (3.7

For the boundary conditions, we shall also consider the Jocal boundaries. The problem
is then essentially simplified, and can be treated similarly to plane Couette and
Poiseuille flows. We consider a main flow between two parallel planes y=y,and y =1y,
with a more or less arbitrary distribution of velocity w(y). Then the disturbance
¥/(x, ¥, ) must be found as a solution of (3.7) satisfying the conditions «'=v'=0
over the boundaries.

The usual way of dealing with the solution of (3.7) subject to given boundary con-
ditions is to consider periodic disturbances. We shall refer all velocities to a charac-
teristic velocity U and all lengths to a characteristic length /, and define the Reynolds
number R = Ul/v. The two-dimensional periodic disturbance of a field of flow in which
the main flow is w(y) may be represented by the stream function y/ =¢(y)eie(=—¢t),
and the linearized differential equation for ¢(y) is

i
(w—0)(¢" — a’¢) — w'¢ = — R (¢ — 2a%" + a'¢), (3.8)

as can be easily obtained from (3.7). We shall take « always real and positive, while ¢
may be complex; thus,

¢ = ¢, + ic. (3.9)

To fix our ideas about the boundary conditions, let us consider a flow between the

planes y =y, and y =y,. The equation (3.8) is then to be solved under the boundary
conditions

é(yv) =0, o(y2) = 0, ¢'(m) =0, ¢'(ys) = 0. (3.10)

Let us now forget about the physical problem and consider the differential equa-
tion (3.8) as a linear differential equation of the fourth order in the complex y-plane.
To be sure, the function w(y) is defined only for real values of y between y; and ¥..
We can of course, consider it as defined for other values of ¥ by analytical continua-
tion. We shall assume that the function thus defined is holomorphic in every finite
region with which we shall be concerned. The equation (3.8) then has every point in
the region under consideration as a regular point, and its coefficients are also entire
functions of the parameters ¢, «, and aR (regarded as complex variables). By a well-
known theorem in the theory of differential equations, there exists a fundamental
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system of four solutions of (3.8) which are analytic functions of the variable y and
of the parameters ¢, a, and aR, being in fact entire functions of the parameters. The
consequences of these simple general analytical considerations appear to have escaped
serious attention from earlier investigators. In §§4, 5 of this paper, we shall find this
type of consideration very important in settling the controversies about the question
of convergence of the series used in the actual solution of equations (3.8) and (3.14).

Let us denote the above-mentioned system of solutions of (3.8) by ¢:(y), ¢2(y),
¢3(y), ¢4(¥), the dependence upon the parameters ¢, a, aR being understood. The con-
ditions (3.10) then give rise to the secular equation

61(y) @2y b)) daly1)

d1(ye)  da(y2)  Bs(v2)  da(ye)
F(c, a, aR) = = (. 3.11
(€ Y= i) i) i(m) #i(w) 3.1)

i (v2) o1 (y2) &3 (y2) &4 (v2)

Since the function F(c, a, aR) is an entire function of the variables ¢, o, R, we may

solve for ¢, obtaining
¢ = ¢(a, R). (3.12)

There may be several branches of the solution, or there may be none as in the case
when F(c, a, aR) is (say) exp(aRc). In general, we would expect the solution to be
unique, or we may consider only one branch of the solution.

Since a and R are later taken to be real and positive, it is convenient to separate
(3.12) into its real and imaginary parts. Thus,

¢ = ¢(a, R), ¢ = ¢i{la, R). (3.13)

It is customary to plot curves of constant ¢; or ac; in the aR-plane. The curve ¢;=0
gives the limit of stability.

We are particularly interested in the case when the Reynolds number is very large.
The study of this case is complicated by the fact that the functions ¢, ¢s, ¢, ¢4 in-
volved have essential singularities at the infinite point of the aR-plane. From the
differential equation (3.8) itself, we see that when aR— «, we have the equation

(w — o)(¢" — a%¢) — w''¢ =0, (3.14)

which is only of the second order. Thus, two solutions of (3.8) are lost. From detailed
mathematical investigations, we shall find later that two linearly independent solu-
tions of (3.8), say ¢1 and ¢., will satisfy (3.14) in the limit of infinite aR, except
along certain straight lines through the point w=c. The other two linearly independ-
ent solutions ¢; and ¢, are highly oscillating for large R and would therefore disap-
apear in the limit of infinite aR. Furthermore, we shall see that ¢; and ¢, can be so
chosen that if ¢3(y1)>>¢4(31), then ¢s(y2) K4(y2), with corresponding relations for their
derivatives. It then appears plausible that the limiting form of (3.11) for infinite aR is

o1(y1)  é2(y1) -
¢1(y2)  @a(y2)

with ¢1(y), ¢2(y) satisfying (3.14).

0, (3.15)
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The condition (3.15) states that we are looking for a solution ¢(y) of (3.14) satisfy-
¢(y1) =0,  ¢(y2) =0, (3.16)

with the other two conditions of (3.10) relaxed. Physically, this means that we allow
a slipping along the walls y =y, and y =y,. For very large Reynolds numbers, only a
very thin layer of fluid will stick to the solid, and we have naturally an apparent
slipping. These points will be taken up again more carefully (§6) after a thorough
mathematical investigation of the solutions.

4. Solution of the equation of Orr and Sommerfeld by methods of successive ap-
proximation. The stability equation of Orr and Sommerfeld

(0 — (@ — a%) — w'é = — LR (6 — 207" + a'e) (4.1)
[0 3

has a fundamental system of four solutions, which are analvtic functions of y (where-
ever w(y) is analytic) and which are entire functions of «, ¢, and aR. In order to obtain
useful solutions, it is usual to expand the solutions as power series of a suitable small
parameter, say, (a@R)~1. However, since (aR)™! occurs with the highest derivative
in (4.1), the study of such an expansion becomes very complicated. It will be done
later.

a) Solution by convergent series. An alternative method* is to choose a small pa-
rameter ¢ related to (@R)~! and first make a change of variable (y, being an arbi-
trary point so far)

¥y - v = e, oy} = x(n), (4.2)

so that (4.1) becomes i

i
tw — c)(x” — ale’x) — 2w’y = — (x'v — 2a2e?x” + ate'x), (4.3)

aRe?
where
wg’
w—c¢= (wo — ¢) +‘wo'(é’7)+?(677)2+"' )

(4.4)

Wo
W = wd! o+ wd"(en) + - en)? o+ -

The solution is then obtained in the form
d(y) = x(n) = xO) + exV(n) + &P + -, (4.5)

and the differential equations for the approximations of successive orders can be ob-
tained by substituting (4.4) and (4.5) into (4.3) and equating all the coefficients of
the various powers of € to zero.

If we take yo to be the point where w=c¢, the proper choice of the parameter € is

e = (aR)™13, (4.6)

The differential equations for the functions x(5), x(V(n), x‘¥ (%), - - - are as follows:
0 gl g O 4 iy O = Q,

€ onx 9" 4 ix L .7

e winx™ 4 ix™iv =L, 4 (x), (®=1),]

* This method was first used by Heisenberg, loc. cit. [14], p. 588.
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where L,_i(x) is a linear combination of x(®(%), x¥'(n), - - -, x{»~P(y) and their de-
rivatives. In particular,

Lo(x) = wd’ (x© — 3 ©"). (4.8)

We note that the homogeneous part is the same for all the differential equations
in (4.7). Hence, if we can solve for the first approximation, the rest can all be obtained
by quadratures. Indeed, the first equation of (4.7) is Stokes’ equation* for x‘®’’, and
its solution can be readily expressed in terms of Bessel functions of the order 1/3.
Thus, for the first equation of (4.7) we have the four particular integrals**

(0) (0) " K 12 (1) i 3/2
X1 =1n X3 =f dnf dnn  Hisl3Gam)™ ),
+eoo +o

(4.9)
() (0) ? K 172 (@) . . 3/2
x2 =1, x4 =f dnf dnn Hisl2(iam) ]

T
where
ap = (wd)3, (4.10)

The higher approximations are given by

(n) v f K f " { (0)//f" 0)ys (o)llf * )/ }
i = — d d d L. — d L, ,
X S n n 4 X4 nXs 1x) — xa X4 1(x) 4.11)

(1=1,2,3,4).

These are the explicit formulae for finding the approximations of various orders. In
actual calculations, only the initial approximation (4.9) is required. Furthermore, the
series (4.5) is convergent provided e is restricted so that the series (4.4) are convergent.
For then the differential equation (4.3) for x(n), when normalized, has analytic func-
tions of the parameter e as its coefficients. Hence, a fundamental system of its solu-
tions consists of four analytic functions of e.

It should be mentioned that if y, is not taken at the particular point for which
w=¢, the proper parameter to be taken is (aR)~V? instead of (aR)~'3. In this case,
all the approximations can be expressed in terms of elementary transcendental func-
tions. However, it is not found particularly advantageous to do so, because the study
of “crossing substitution” (§5) would not be easy. Also, the method is then too much
different from those used by earlier investigators to allow an easy comparison of
the results.

b) Solution by asympiotic series. Although the previous method is theoretically

* Cf. the exact treatment of (4.1) by Hopf [16] and Rayleigh [44] for the case w’’ =0.

** Note that x;‘” and xf‘” and also x;') have no branch point at n=0. The order of the solutions
{dn, b2, ¢z, 4:4} agrees with Tollmien’s notation. They are {d:;, b4, P, ¢z} in Heisenberg's notation. Heisen-
berg gave the solutions ¢; and ¢ in terms of Hankel functions in the form

1ol 2. .
¢i=(w—c) | —H,, g(won)"’ dn, (i=12),
7

(p. 289, and Eq. (19a) p. 591). It can be easily verified that these are the same as x;‘”‘ up to a constant
factor wo'e and to the proper order of approximation. Note that throughout Heisenberg's paper, # is to
be replaced by — in order to conform to our notation. This can be seen from a comparison of our Eq. (4.1)
with his Eq. (7a). The difference arises from a difference of notation in the stream function ¢'(x, y, £).
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complete, it is usually more convenient to use asymptotic series for numerical pur-

poses, particularly in dealing with boundary-value problems. Heisenberg has given

two asymptotic methods, each of which gives only fwo particular solutions of (4.1).

These methods will now be described and investigated mathematically in more de-

tail, because Heisenberg’s work has received some criticism in this connection.*
The first of these methods is to develop ¢(y) in powers of (aR)~. We put

¢(3) = ¢ (y) + (aR)'¢V(y) + (aR) 6P () + - - -, (4.12)

and substitute in (4.1). Comparing corresponding powers of (aR)™1, we have the fol-
lowing differential equations

(w = OG®" — a%®) = w'$® =0,
(w — c)(@®" — ap®) — w'¢p® = — i[¢(k—1)iv — a2t a4¢(k—l)], (4.13)
(kz1).

The initial approximation satisfies the inviscid equation and can be solved by de-
veloping ¢(® in powers of a?. Indeed, two particular integrals of (4.13) are

)

6 = (w ~ ) [ho(y) + ' ha(3) + a'ha(y) + - - ), }

0 P 4 4.14
¢ = (w— )[l(y) + a ka(y) + o ks(y) + -+ ], (419
where
ho(3) = 1, ) = [t — 9 [yt = 9tha(a),
(n 2 0), L (4.15)

h(y) = f st = 07 k() = f Caytw — o7 f st = 0 k),
(n 2 0).

The point y; might have been any fixed point instead of one of the end points; but
it is found convenient to take it this way.

Having found two particular integrals for ¢®, we can obtain the higher approxi-
mations by quadratures. In actual calculations, this is not necessary

Because of the general nature of the Eq. (4.1), ¢(y) is an entire function of aR.
Hence, the infinite point of the aR-plane is a singular point, unless ¢(y) is independ-
ent of aR. Consequently, the series (4.12) is asymptotic, unless ¢(y) is a polynomial
in (@R)~1. We note also that (4.13) is of the second order, so that only twe solutions
are obtained by this method. The solutions of (4.13) are entire functions of a2 and
hence the series (4.14) are uniformly convergent for any finite region of the complex
a’-plane, for a fixed value of y, except when y is the singular point y, of the differential
equation (4.13).1

* Tollmien, loc. cit., 1929, p. 43.

t This can also be seen from the series itself. So long as it is possible to run a path of finite length
from y; to ¥ on which w—¢#0, the general terms a?"h;, and a2*+1ka, 4, of the two series are bounded by
A(ad)?#/(2n)! and B(aM)?*1/(2n+1)], respectively, (4, B, M being (suitably) fixed constants), and
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In fact, the differential equation (4.13) has a logarithmic singularity at the
point y,. This point is, however, an ordinary point in the exact equation (4.1),
and the singularity is introduced purely by the method of asymptotic integration.
However, the appearance of this singularity gives a serious ambiguity in the deter-
mination of the correct path leading from y; to y in order that (4.14) may give valid
approximations to integrals of (4.1) all along the path.* The proper way to settle this
question is to compare the solutions (4.14) with the asymptotic expansions of the regu-
lar solutions obtained by the previous method. This will be done later after we have
described the second asymptotic method of Heisenberg for the other fwo particular
integrals; for the same kind of problem also arises there.

To obtain two other integrals of (4.1) in asymptotic forms, let us make the trans-

formation
¢ = exp {fgdy} . (4.16)

Then, we obtain the non-linear differential equation
(w—9{(g@+¢) — o} — w”

i
i {gt + 6g% + 382+ 4gg” + g7 — 22(g + ") + ot} (4.17)
o
for the function g(y). We try to solve this by putting
8(3) = (@R)%go(y) + g1(y) + (aR)"'2galy) + - -+ . (4.18)

Then, we obtain the set of equations

2 . 4 . 8 2
(w—c)go=—igo, (w— )(gd + 2g0g1) = — (48081 + 6gogs ),
2 . 3 2 ’
(w — 0)(g{ + g1 + 28082 — a) — W’ = — i(4gogs + 681 + 2808188 + 3go — 2a’g0),

Hence we can obtain the successive approximations without integration. Thus,

’

S g
go=tViw=—0, p=-——r . (4.19)

For definiteness, we define

hence the series converge like the cosine and the sine series, respectively. Heisenberg did not prove the
convergence of these series, but stated that their convergence can be hoped to be sufficiently rapid for a?
of the order of unity (loc. cit., 1924, pp. 584, 587). This was made a point of criticism by Tollmien (loc.
cit., 1929, p. 43).

* Considerable dispute has arisen in this connection. Note that it is impossible to dispense with this
difficulty by remarking that the two different determinations will differ only by a constant multiple
of a particular integral. If we draw two paths from y, to y and obtain such a difference in the solution, it
is evident that the asymptotic solution cannot be valid on both paths, because the exact equation (4.1)
has no singular point at y=1y, and hence its solution must be single-valued. Although a mistake here
would not cause serious difficulties so far as the numerical evaluation of the eigen-value problem is con-
cerned, it does lead to misunderstanding and confusion elsewhere. Even after Heisenberg and Tollmien
have analyzed this problem in some detail, they still take the very misleading step of taking the complex
conjugate of the inviscid equation (Heisenberg, loc. cit., 1924, p. 596; Tollmien, loc. cit., 1935, p. 88).
This point will be discussed more fully later.
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T
argi=7, arg (w—¢) >0 for w—¢> 0. (4.20)

For negative values of w—¢, we cannot decide, without further investigation, whether
arg (w—c)=+m or arg (w—c)=—mx. The point y, where w=c, appeared in the
previous asymptotic solution as a logarithmic branch point; here it is an algebraic
branch point. The determination of the correct path should follow the same criterion
as the other two integrals, that (4.18) gives two asymptotic solutions of the exact
equation (4.1) all along the path. This path might be expected to be the same as that
in the previous case. All these will be discussed in the next section.

After such a question is settled, substitution of (4.19) into (4.16) and (4.17) gives
the two asymptotic solutions

v
¢3(v) = (w — )% exp {—f \ViaR(w — ¢) dy}» ,
* (4.21)
83 = (w— oo {+ [ VaRw =0 &y
vo
where factors of the order exp (aR)“”?:l—i—O{ (aR)~2} are taken as unity.

5. Analytical properties of the solutions. Having thus obtained four asymptotic
solutions of the equation (4.1), we must try to correlate them with the four solutions
(4.9) and (4.11), and above all to study the correct determination of path around
the artificial singularity introduced by the asymptotic methods. For this purpose, we
consider the asymptotic expansions of the four regular solutions obtained by the first
method and transfer back to the independent variable y.

Let us recall that the asvmptotic expansions of the Hankel functions Hl(})a(f),
HS;(E) are given by [76],

(1) 2N\ } Sm = (—=)(1/3,7)
H‘”(E)N(E) P {’ (“E» {1+ X i }

(— 7 <arg £ < 2m),

2\!* ‘ f = (1/3,7) (5-1)
(2) - 7r ’
T N WA L LY
s <7r£> P { ’( 12, Z (2i8)"
(— 2r < arg ¢ < 7).
If we put 3£ =2(Zagn)*'?, then (5.1) becomes
, 3\ 12 B 2 seisg 5 B
H{A[3Gam)”] ~<—) (i)™ exp {%m(m)“' e 1—’;} f1+06 "),
T
i S
(—"6— < arg (aon) <z>;
(5.2)

1/2

© -3/ 2 w1 5
(iaam) ' exp {%mon)“ e+ 1—’;} {1+ 0@

< 11nw < (aan) < 1r)
— ———— ar — .
6 g (aoem 6

—3/2

2 3/2 3
Hip[3Gam) ] ~ (7> )}
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With the help of these formulae and using the legitimate process of integrating
the asymptotic expansions term by term, we obtain

0) ) ewq’ 1 wq’
x1 + exa ~17+2 -0t = 'wo'y‘i'T}'z ,

Wo wo' €

()] () we’ wo'
x2 tex2 ~1+e—mlogn~1+—ylogy,
wo Wo

) —5/4 3/2 brif4
xs ~ const.n  exp {3(am) e |}

v
const. (y — yo)_m exp {— f ViaRw{ (y — o) dy} ,
yi

0) —5/4 3/2 wi/4
Xs ~ const.n exp {%(0107)) e }

v
const. (¥ — o) o exp {f vV iaRwd (y — vo) dy} .
vo

(5.3)

These formulae can be easily seen to agree with the four asymptotic solutions (4.13)
and (4.21) to the proper order of approximation, if we replace y, by y, in ¢ (which
is permissible).

In evaluating the asymptotic expressions (5.3), the argument ayn must satisfy
both requirements specified in (5.2), i.e.,

— T7/6 < arg (am) < /6. (5.4)

In this range, the asymptotic solutions (4.13) and (4.21) hold. Having thus established
the range of validity of these solutions, we no longer need to make further com-
parisons of the two methods of solution.

At least three plans are now possible for further numerical work. First, we may
use the four solutions obtained in the approximate form (4.9). Secondly, we may
use the four asymptotic solutions (4.14) and (4.21). Thirdly, we may approximate
{dn, b2, P, ¢4} by the four functions { O 6O O xﬂo)} given by (4.14) and (4.9).
The first method 1s very similar to the method used by Hopf [16] and Tietjens [72]
for linear velocity distributions, where the exacl solutions are given by functions of
the general nature of those in (4.9). For curved velocity distributions, the functions
x2, X2 do not give ¢, and ¢. with sufficient accuracy, and this plan is not good. The
second plan was used by Heisenberg in his investigation of the stability of the
Poiseuile flow; but he also realized that it served only part of his purpose, and he
stated that the third plan should be used.* Tollmien substantially adopted the third
plan for his investigation of the stability of the boundary layer, although he did not
point out the connection of his method with Heisenberg’s work. Instead of the expres-
sions (4.14) for ¢, and ¢, he used solutions in the forms of power series in y. These
solutions are easily manageable only for linear and parabolic velocity distributions.
Accordingly, he tried to approximate the Blasius profile with such profiles. Since such
approximations are not good enough in the neighborhood of the point y =1y, where
w =c, his discussion becomes very complicated. In the present work, we base our cal-

* Loc. cit., p. 404,
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culations upon the use of (4.14). It will be seen that our method can be applied to any
profile with good accuracy. A comparison with Tollmien's method will be discussed
in the Appendix to Part I11.

It may be added that the adoption of the third plan leaves an error of the order of
(aR)™!in ¢, and ¢, and an error of the order of (@R)~*2in ¢3 and ¢,. These errors can
be reduced by including the higher approximations. In practice, this is hardly neces-
sary. A detailed discussion of numerical accuracy will be found in the Appendix to
Part II1.

Having thus established the region of validity of the asymptotic solutions, we
shall try to settle a few questions of considerable

dispute, namely, (a) the “crossing substitution,”
(b) the inner friction layers, and (c) the complex
conjugate of the inviscid solution. <

a) The crossing substitution. From previous dis- % L
cussions, it is evident that if we pass from
y>Re(ys) to y<Re(yp) along a path below the

point y,, we are always in a region of the y-plane
where the above asymptotic solutions hold, and no
further investigation is necessary. In fact, if ¢;>0  ¢;=0

(and is small) and Re(wg ) >0, the point y, is above
the real axis, and the asymptotic solutions are valid
along the real axis of y. In the case of real ¢, the
point y, is on the real axis, and there is one point on
the real axis where the asymptotic solutions fail to
be valid. In the case ¢; <0, and Re(w¢)>0, the €< B~
. . . . y Ye Y Y y
point y, is below the real axis, and the lines Yo 2
arg {ae(y—y0)} = —77/6, ©/6 intersect the real Fic. 2. Diagram showing the rel-
axis in two points y/, ¥/’ with* 3 <y/ <¥/’ <¥2.  ative position of the real axis and the
Thus, the asymptotic expressions (4.14) and (4.21) region of validity of the asymptotic
represent one solution for y =<y<y'/ and solutions in each of the three cases.
¥r <y=<y:, but not the same solution for
v/ <y<yf’. It is necessary to obtain a suitable “crossing substitution” in order to
obtain the correct solutions for 7/6 <arg {ao(y—yo)} <57/6 (i.e., in crossing the
lines arg {ao(y —y0)} = —Tx/6, 7/6). For this purpose, we must obtain the asymp-
totic expansion of the Hankel functions HA[2(iam*?)/3], (j=1, 2), proper to that
region. The analytical expression for H{%) would then be quite different from that
given in (5.2). Thus, in crossing the two points y/ and y/’ of the real axis, the asymp-
totic solutions fail to be analytic. However, it is to be noted that the failure of
the asymptotic solutions along the real axis does not exclude their use in the in-
vestigation of the boundary value problems to be considered below, so long as we
are concerned only with the eigen-value problem. It is only necessary that these
solutions be valid in a connected region containing the end-points y; and y.. The cal-
culation of the amplitude distribution of the disturbance (the eigen-function) in the
neighborhood of the inner friction layers, however, is to be made with the regular
solution, or we can calculate the eigen-function for y/ <y<y/’ by using a proper

>
&=
we

* The whole theory must be modified for extremely highly damped solutions for which y,'< %,<3,< y,".
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“crossing substitution.” Since we are chiefly concerned with the eigen-value problem,
we shall not go into further details.

In order to make the situation still clearer, let us see what would happen if we try
to obtain our solutions for y/ <y <9/’ by going along a path above the point y,. For
simplicity, let us take the case of real ¢ with wJ >0, and consider the asymptotic
expressions ¢ and ¢ given by (5.3). We have (4, B being arbitrary constants)

)

—5/4
¢s ~An  exp {3(am)

¢§°’~Alnl" exp {#(ao|7|) e

3/2 611/4}

, (n > 0),
Ve + sxija), (< 0);

[())

by~ B’ﬂ CXP {3(am) ) (n > 0),
©

¢~ Blal™ exp {2(ao] n )¢ + Swisa}, (< 0).

These are obtained by taking a path below the point y,. If we had taken~the other
path, then arg () =7 for 7 <0, and we would have the functions ¢ and ¢, which
agree with ¢3; and ¢4 for >0, but are defined by

3/2 10/4;

35 ~ A0 exp {3ao|n|)% = 5wi/a),
3 ~B|a] " exp {aon]) e — 5wisal,

for n<0. Thus, if 4 and B are taken to be the same, we have

$o = —ige, i = —igs , for m<O.

Hence if we took @5 and ¢ as the proper determinations, we would have to make
the following “crossing substitution” corresponding to a passage from >0 to 7<0:
¢V —ip®; ¢ —ig®. If we note that P <K3® both for w—c>0 and for w—c<0,
we would also have the following equivalent change : 0 —¢® 469 ; 3 — g 3.
These may be compared with Eq. (16), p. 589 of Heisenberg's paper. In making the
comparison, we note his definition of the angle of w—¢ (p. 585), and the difference
of notation in the fundamental equation of stability.

The first study of “the crossing substitution” seems to be due to Stokes in con-
nection with the asymptotic expansions of Bessel functions. It may therefore be
properly designated as Stokes’ phenomenon [76]. We should also compare our re-
sults with the work of Jeffreys [17], the W-K-B method [23] in quantum mechan-
ics,* and the mathematical investigations of Langer [24] and others.** In those cases,
a differential equatiorr of the form €¢’'+¢q(y)p =0 is considered. If this equation
is treated by the method of §4 by writing¢=xP(n)+ex®@(n)+ - - -, y—yo=e¢7, and
g(y)=qd (en)+3g4’ (en)?+ - - -, the equation for x¥(y) is x@’'+q4 9x‘? =0 as com-
pared with (4.7), xOW —gnwd x®’’=0. It is evident that our % corresponds to 47 in
their case. Kramers has shown that the cuts in their asymptotic expansions are the
lines arg () = /3. Thus, in our case, the cuts should be arg () =7/6, 57/6. This
agrees with our previous discussions. An important difference is the following. In

* ] am indebted to Professor P. S. Epstein for calling my attention to this comparison.
** For example, S. Goldstein, Proc. Lond. Math. Soc. (2) 28, 81-90 (1928); C. C. Hurd, Téhoku
Math. Journ. 45, 58-68 (1939), and the papers of W. J. Trjitzinsky and others quoted there.
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their case, the two boundary points on the real axis are separated into two regions of
the complex plane by the cuts, so that a crossing substitution is absolutely necessary.
In our case, the two boundary points on the real axis belong to the same region, and a
crossing substitution is superfluous, so far as the eigen-value problem is concerned.

b) The inner friction layers. There is also a very significant physical interpretation
associated with the “crossing substitution” of the asymptotic solutions. The initial
approximations ¢ and ¢{ satisfy the inviscid equation. Hence, if ¢;>0, these solu-
tions hold throughout the interval (31, ¥2) of the real axis, and the effect of viscosity
is entirely negligible inside the fluid for sufficiently large Reynolds numbers. If ¢; <0,
the inviscid solution can never hold all along the real axis, and hence the effect of
viscosity inside the fluid is not negligible, however large the Reynolds number may
be. The singularity of the asymptotic solutions means a very rapid change of velocity
within a small distance so that the effect of viscosity is no longer negligible there.
Physically, such a point on the real axis corresponds to a layer of fluid where the
viscous forces play an important role.

Referring to the foregoing discussions, we see that there are two inner friction layers
for the damped oscillations, one for the neutral oscillations, and none for the self-excited
oscillations.

In the neutral case, the first term of (4.1) disappears at the critical layer w=c.
The equation then represents a balancing of the vorticity transferred by the disturb-
ance and that diffused away by the effect of viscosity. It is therefore understandable
that the effect of viscosity must be predominant there. In the other two cases, w—¢
never vanishes in the fluid, there is the vorticity carried by the main flow (relative
to an observer moving with the phase velocity ¢,) and there is always the change of
vorticity due to amplification or damping. In the case of amplified oscillations, these
two effects can be in equilibrium with the transfer of vorticity due to the disturbance,
and the effect of viscosity is completely negligible at very large Reynolds numbers.
In the case of damped oscillations, these effects presumably never balance each other,
thus resulting in the formation of two critical layers, where the effect of viscosity is
not negligible.

c) The complex conjugate of the solution ¢(y). It is often argued,* that if ¢(y) is a
solution of the inviscid equation with an eigen-value ¢, then @(y) is another solution
with the eigen-value ¢, satisfying the same real boundary conditions on the real axis.
Thus, to each damped solution, there is always a corresponding amplified solution,
and vice versa. This argument is in direct contradiction to the foregoing discussions,
because an amplified solution and a damped solution have entirely different charac-
teristics with respect to inner friction layers. It appears, therefore, that &(y) should
still represent a solution of the same nature as ¢(y).

This is indeed the case, and can be seen more clearly from an examination of the
complete equation (4.1). If we take the complex conjugate of that equation, and write
y for 4 (which is essentially done in the usual argument), we have

fw(y) — e} {¢" — a2} — w"(MNE = fﬁ {31 — 2028 + a'3}. (5.5)

* Heisenberg, loc. cit. p. 596; Tollmien, loc. cit., 1935, p. 88. The failure of such an argument would
indicate that Heisenberg’s classification of velocity profiles on p. 597 of his paper is untenable.
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The complete stream function ¢'(x, v, £) satisfying this equation is
Pz, 3,1 = Bly)eiat=,

Thus, if Im(c) <0, then Im(¢) >0, and we still have a damped solution. This should
also hold for the inviscid equation, since it is regarded as a limiting case of the viscous
equation. From the inviscid equation itself, there is no way of telling whether
Im(¢) >0 corresponds to damping or to amplification. In fact, the asymptotic solu-
tions of Eq. (5.5) (including the limiting inviscid solutions) hold for

— 7/6 < arg {ao(y - yo)} < 7x/6, w(ye) = €. (5.6)

Thus, we have a solution ¢(y), valid in a region which is quite improper for an asymp-
totic solution of (4.1). [Compare (5.4) and (5.6).] Hence, it is not legitimate to con-
clude that a solution of a different nature can be obtained by taking the complex
conjugate. The influence of these discussions upon the usual conclusions regarding
stability in an inviscid fluid will be discussed fully in the next part of the paper.
6. The boundary value problems. Having fully investigated the solutions of the
equation of disturbance, we shall now turn to a
study of the boundary-value problems which have vy
been taken up briefly at the end of §3. In general,
the boundary conditions are essentially that the
velocities of the disturbance should vanish on the 0
solid boundaries, and also at infinity if the field of
flow extends to infinity. However, it is often con-
venient to use equivalent boundary conditions for
certain types of velocity distributions. (2
In order not to be lost in too much generality,
we shall limit ourselves to three classes of velocity
distributions (as specified below and shown in
Fig. 3), and select our fundamental interval (y,, ys)
so that w’(y) 20 for y1 £y <y, We shall define our (3)
characteristic length so that y.—y =1, and let

$1y; ¢, @, aR), ¢(y; ¢, &, aR), $(y; ¢, a, aR), h Y2
#4(y; ¢, @, aR) be a fundamental system of solutions  gyg. 3. The three types of velocity
(4.1) arranged in the order discussed above. distributions.

Casge (1). Flow between solid walls in relative
motion. In this case, the boundary conditions are given by

#(y1) = ¢'(y1) = ¢(y2) = ¢'(32) =0, (6.1)

because the velocity of the disturbance should vanish on both the solid boundaries.
The determinantal equation corresponding to these conditions is

¢11 b da da

Fl(av Cr aR) = ¢:2 ¢122 ¢fz ¢:2
11 b dn du
b1z 22 3 Pa

where ¢n, ¢1f, etc., stand for ¢1(31), ¢f (31), etc. In this and all later discussions, a

=0, 6.2)
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subscript 1 or 2 attached to a function of y shall denote the value of that function at
y=1v; or y =Yy, respectively.

CaAsE (2). Symmetrical flow between solid walls at rest. In this case, it is easily seen
from (4.1) that the disturbance can be separated into two independent parts, one
symmetrical with respect to the line v =y, and the other antisymmetrical. (a) If ¢(y)
is a symmetrical function (antisymmetrical disturbance), then the conditions

o(y1) = ¢'(y1) = ¢'(y2) = ¢""(32) = 0 (6.3)
hold, and we have the determinantal equation

¢ P21 o da
¢’11 ¢I2l éu1 ¢;1
b ¢ dn du

1 rsr e rrr

b12 b2z P32 P

(b) If ¢(y) is an odd function of y —y, (symmetrical disturbance), then the boundary
conditions are

Fy(a, ¢, aR) = (6.4)

o(yv1) = ¢'(v) = ¢(y2) = ¢"'(y2) = 0, (6.5)

and we have the relation

Pu o1 ¢ ¢n

b1z P22 P2 @
Fie,caR) = |, 770 77 "=, (6.6)
¢u oa b du
b1z ¢ bs2 b
Casg (3). Flow of the boundary-layer type. In this case, the point y, is taken to
correspond to the “edge” of the boundary layer, beyond which the velocity is sub-
stantially constant. The boundary conditions to be satisfied at y, are the usual ones;

$(v1) = ¢'(3) = 0. 6.7)

The boundary conditions for y becoming infinite are to be replaced as follows.* Since
the particular integral ¢, becomes infinite as y becomes infinite, our boundary con-
dition requires that ¢ is a linear combination of ¢y, ¢s, ¢s alone. Thus,

¢ = C1¢1 + Cops + Csos, (6.8)

where C;, C., Cs are constants of integration. Also, the integral ¢3 makes practically
no contribution for y = y: so that we expect ¢(y) to satisfy the inviscid equation for
y2y,. Here w’/ =0, and hence two particular integrals are e*=¥. The condition that
¢—0 as y—> = excludes the integral e*v. Hence, ¢ must be proportional to e~ for
9>y, This may be expressed as follows:

¢ +ap =0 for y= 9, (6.9)

Hence, we have the determinantal equation

* Cf. Tietjens [72] and Tollmien {73].
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¢u b2 ¢31
Fyla,c, aR) = | ¢12+ oz ¢22+ pane 0 | = 0. (6.10)
¢;1 4>;x ¢;1

We note that the point y, can be replaced by any value of ¥ >y, This is equivalent
to the fact that the thickness of the boundary layer cannot be definitely defined. The
larger this thickness is taken, the more accurate the results should be .*

The functions Fy, Fa, F3, and F, are entire functions of the parameters «, ¢, and R.

Reduction of the equations for large values of aR. The equations (6.2), (6.4), and
(6.6) can be substantially simplified for large values of aR. Referring to (4.21), we
see that ¢s(y) =A(y)e Y, du(y)=B(y)e¥, where A(y) and B(y) are of the order of
unity, and Y is defined by the relation

y
Y = f ViaR(w — ¢) dy.
Y1

Hence, we have the following relations, giving the order of magnitude of certain
quantities:

’

¢332 As

L VRR@ o+, ol
é31 1 ¢a1 A,
! A A’
g _ {—W 4, __’}e—p,
¢31 A1 A1
¢II A r (6.11)
i, {iaR(wg — ¢) - + O/ aR_)} e’
b3 A,
117 A
g _ {— [iaR(w, - ¢) )32 2y O(aR)} er;
b3 Ay
1 Bi B
ﬁ=viaR('w1—c)+—ly ﬁ:—‘zep,
(.78 B, on B
! B Bl
?ﬁ= {\/iaR(wg—c —2+—2}e”,
b0 B, B
¢" B, (6.12)
A {iaR('wz ~— ) =+ 0(aR) }e”,
P41 B,
rr: B
S _ {[iaR(wz —¢) a2 4 O(aR)} e’,
¢41 Bl

where

ye
P = f ViaR(w — ¢) dy.
y1

It then appears that the sign of the real part of P is of consequence. It can be veri-

* In later calculation of the Blasius case, we shall take a boundary layer about 1.19 times as thick as
that used by Tollmien.
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fied that it is always positive when ¢;>0. For then the path of integration can
be taken along the real axis of y, and we have —w <arg (w—c¢)<0; consequently,
~w/4<arg (P)<m/4. With reference to (4.21), (6.11) and (6.12), we see that the
condition P=mnwi (n =an integer), expresses the fact that ¢sf ¢4y =¢4 P2d when terms
of the order (@R)V? are neglected. This is the corrected form of the first solution of
Heisenberg as expressed by the condition (27) on p. 596 of his paper. Heisenberg
also stated that such a condition can only be satisfied for damped solutions. In fact,
from the condition just obtained for ¢; >0, we see that Re(P) can be negative only
for highly damped solutions, for which the whole discussion must be modified. (Cf.
footnote on p. 29, §5.)

Neglecting quantities of the order e~# and («R)™! against quantities of the order
of unity, we have the following simplifications of Egs. (6.2), (6.4), and (6.6) for
Cases (1) and (2).

Cask (1). Flow between solid walls in relative motion. We have

fl(arc) =ﬁ ﬁ‘if&(a! 6) .
fala, ) o 42 fala, ©)

CaAsE (2a). Antisymmetrical disturbance in a symmetrical flow between solid walls.
We have

(6.13)

faler, ©)/fula, ©) = b1/ (6.14)

CASE (2b). Symmetrical disturbance in a symmetrical flow between solid walls. We
have

fila, ©)/fa(a, ¢) = b31/bs1. (6.15)

In these equations, the functions fi(e, ¢), fa(e, ¢), fa(e, ¢) and fi(a, ¢) are defined as
follows:

e L MDA T M
! Pa P21 P22
o & o o) (6.16)
11 12 11 12
€)= ’ ' (e, ¢) = ' e
fole ) =1 4, m‘ fute So oo

These functions depend only on «a and ¢, because we may take the inviscid solutions
for ¢1 and ¢, which are accurate up to the order of (@R)~'. It may be reiterated that
in computing @1z, G2, ¢13, ¢22 in (6.16), we must take the path leading from y; to y.
in the lower half plane.

Cask (3). Flow in the boundary layer along a flat plate. In this case we can reduce

(6.10) to
f:+ af _ fﬂ
fot+afs  ou

if we also replace ¢; and ¢, by their inviscid approximations. The equations (6.13),
(6.14), (6.15), and (6.17) are the final equations based on which the stability in-
vestigations are to be made.

The inviscid case. In the limit aR— . The above equations reduce to

(6.17)
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Si{e, ¢} = 0 for Case (1) and Case (2b), (6.18)
fola, ¢) = 0 for Case (2a), (6.19)
fo+ afi = 0 for Case (3). (6.20)

Mathematically, these are equivalent to the solution of the inviscid equation
(w—)(¢" — a’¢) — w'’¢p =0 (6.21)

subjected to one of the following three sets of boundary conditions

o(y1) = o(y2) =0, o(y1) = ¢'(32) =0, &(y) = ¢'(32) + ad(y2) = 0. (6.22)

We have thus arrived at the conclusion that some asymptotic behavior of the stability
conditions can be obtained by neglecting the effect of viscosity (provided proper care is
given to the inner friction layer). This was tacitly assumed in the work of Rayleigh
and others, while Heisenberg pointed out [loc. cit., p. 583] that a proof was neces-
sary in accordance with some remarks of Oseen (38); he also virtually gave the proof.

In the next part of the paper, we shall therefore consider the simpler problem of
an inviscid fluid. After a thorough investigation of that problem, we shall investigate
the effect of viscosity by considering Egs. (6.13), (6.14), (6.15), and (6.17) in greater
detail. These results may be compared with the earlier ones of Heisenberg and Toll-
mien.

Numerical calculations of the stability limit based upon these equations will also
be carried out for certain important special cases. For all these purposes, the evalua-
tion of the six functions fi{e, ¢), fa(e, ¢), fala, ¢), fola, €), b31/Di, daz/die is necessary.
We shall discuss this briefly here.

1) Ewaluation of fi(e, ¢), fale, ¢), fs(a, ¢}, fila, ¢). These quantities are related to
the inviscid solutions given by (4.14) with the path of integration subjected to the
condition (5.4). Hence, we have

on=—¢ ¢a1 =0, éu = i, ¢ = — —> (6.23)

¢z = (1 —¢) 3 a®"H,(c), $22 = (1 —¢) Z a?Kaat1(c),
n=0 n=0

]

¢’12 =1 -0 Z a®Hgu_1(c) + (1 — )7 ws ¢y, (6.24)

n=0

drr = (1 — 0" 2 a?"Kaule) + (1 — )10/ s,

where
Hon6) = han(y2), Hona(c) = (1 — ) 2hza(92), 1 (6.25)
Koni1(€) = kanra(y2), Koa(e) = (1 — ¢)2kanei(y2) '

are functions of ¢ alone. In the above evaluations, we have put w, =0, in accordance
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with the actual conditions in all the cases considered. We have also chosen the char-
acteristic velocity so that w,=1. Referring to (6.23), we have

fila, ©) = — céas, fola, €©) = — css,

' 1 . 1, T (6.26)
f3la, €) = wige + 7 P12, Sile, €©) = widar + — oo |
c

The actual evaluation therefore depends upon the calculation of the integrals (6.25).

2) Evaluation of ¢s1/d31, Paz/bs2- These quantities are related to the highly oscil-
lating integrals ¢; and ¢,. For values of aR so large that both (aR)Y3, (aR)3*(1 —¢)
>> 1, the approximate values of ¢s,/¢3;, and ¢, /¢4, are given by using (4.21). Thus,

ri/4 —7if4
bu T, e T (6.27)

®5 VaRe ¢2  VaR(I—0)
The condition (aR)3(1 —c¢)>>1 is generally satisfied, because ¢ is usually small and
aR is usually very large. This is especially true for Eq. (6.13), for it will be seen from
considerations of an inviscid fluid that this case is relatively stable. For the condition
(aR)¥3¢>1, the situation is different, because c is usually small. It is then more con-
venient to approximate @5 by x(n) given by (4.9) (or with higher approximations,
if so desired). We then have

¢31/¢;1 = (3 — yo0)F(z), (6.28)

where
(1)

Jradt foat e HIA[3050)
2 T PE O]

3/2
F(z) = ]

Z2 = — ao(m - 1]()). (629)

This function has been calculated numerically by Tietjens for real values of 2. We
have made slightly more extensive and more accurate calculations. The present result
differs slightly from that of Tietjens and is here tabulated in Table 1 and plotted in
Fig. 4 together. with the related function ¥(2) defined by

F@) = [t — F@) ] (6.30)
The asymptotic form of F(z) is
F(z) ~ z7%/2¢wil4, (z>1). (6.31)

This agrees with (6.27) if o(y1—¥0) =wd (31— o) is replaced by —c.
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F1G. 4. The function ¥(3) shown in its real and imaginary parts (cf. Table I).

TaBLE 1.—The functions F(z) and ¥(z).

3 F, F; Fr T

1.0 0.89161 —0.35025 0.80630 —2.60557
1.2 0.78969 —0.27310 1.77012 —2.29854
1.4 0.71970 —-0.21213 2.26836 —1.71669
1.6 0.66931 —0.16009 2,44985 —1.18600
1.8 0.63143 —0.11274 2.48104 —0.75892
2.0 0.60144 —0.06741 2.43927 —0.41253
2.2 0.57599 —0.02226 2.35196 ~0.12348
2.4 0.55230 —0.02395 2.22724 0.11916
2.6 0.52773 —0.07203 2.06929 0.31558
2.8 0.49952 0.12220 1.88566 0.46043
3.0 0.46456 i 0.17391 1.68938 0.54872
3.2 0.41947 = 0.22520 1.49726 0.58082
3.4 0.36110 0.27193 1.32516 0.56401
3.6 0.28802 0.30705 1.18429 0.51074
3.8 0.20352 0.32130 1.07982 0.43560
4.0 0.11800 0.30721 1.01118 0.35220
4.2 0.04698 0.26559 0.97361 0.27133
4.4 0.00240 0.20811 0.96056 0.20038
4.6 0.02160 0.14475 0.95989 0.13601
4.8 0.01477 0.09875 0.97659 0.09503

(To be continued)



1945} STABILITY OF PARALLEL FLOWS 141

REFERENCES

1. A. B. BasseTT, Proc. Roy. Soc. London (A) 52, 273-276 (1893).

2. H. BaTeman, Bull. Nat. Research Council, Washington, no. 84, 372-384 (1932).

3. O. BLUMENTHAL, Sitz. Akad. Wiss., Miinchen, 563-595 (1913).

4. H. FAxEN, Arkiv Mat. Ast. Fysik 21 A, no. 26, 11 p. (1928). (Curved.)

5. K. O. FriepricHs, Fluid dynamics (mimeographed lecture notes, Brown University, 1942), ch. 4,
pp- 200-209.

6. S. GoLpsTEIN, Proc. Camb. Phil. Soc. 32, 40-54 (1936).

7. S. GOLDSTEIN, Modern developments in fluid dynamics, The Clarendon Press, Oxford, 1938, pp.
135~136, 157, 194-200, 564.

8. H. GORTLER, Zeit. angew. Math. Mech. 20, 138-147 (1940). (Curved.)

9. H. GORTLER, Nachr. Ges. Wiss. Géttingen 2, 1-26 (1940). (Curved.)

10. G. HaMEL, Nachr. Ges. Wiss. Géttingen, 261-270 (1911).

11. W. H. HarrisoN, Proc. Camb. Phil. Soc. 20, 455-459 (1920-1921).

12, O. Haupr, Sitz. Akad. Wiss., Miinchen, 289 (1912).

13. T. H. HaveLock, Proc. Roy. Soc. London (A) 98, 428-437 (1921).

14. W. HEISENBERG, Ann. d. Phys. 74, 577-627 (1924).

15. S. H. HorLiNGDALE, Phil. Mag. (7) 29, 209-257 (1940).

16. L. HopF, Ann. d. Phys. 4, 1-60 (1914).

17. H. JEFFREYS, Proc. London Math. Soc. (2) 23, 428-436 (1924).

18. TH. vON KARMAN, Proc. Ist-Int. Congress Appl. Mech., Delft, 1924, p. 97; Abh. Aerodynam.
Inst. Tech. Hochschule, Aachen, 4, (1925).

19. TH. voN KARMAN, Proc. 4th Int. Congress Appl. Mech., Cambridge, England, 1934, Cambridge
University Press, Cambridge, 1935, pp. 5460, 77.

20. Lorp KELVIN, Mathematical and physical papers, Cambridge University Press, vol. 4, pp. 186~
187 (1880).

21. Lorp KELVIN, Mathematical and physical papers, Cambridge University Press, vol. 4, pp. 321-
330, 330-337 (1887).

22. L. V. King, Phil. Mag. (6) 31, 332-338 (1916).

23. H. A. KrRAMERs, Zeit. f. Phys. 39, 828-836 (1926).

24. R. E. LANGER, Trans. Amer. Math. Soc. 33, 23-64 (1931); 34, 447480 (1932).

25. R. E. LANGER, Bull. Amer. Math. Soc. 46, 257-263 (1940).

26. L. LiIcHTENSTEIN, Hydromechanik, Julius Springer, Berlin, 1929, pp. 409—414.
27. C. C. LiN, Proc. Nat. Acad. Sci. U.S.A. 30, 316-324 (1944).

28. J. W. LEwis, Proc. Roy. Soc. London (A) 117, 388-407 (1928). (Curved.)

29. L. A. LoreNTz, Abh. theoret. Phys. (Leipzig) 1, 43-71 (1907).

30. W. T. MAcCREADIE, Proc. Nat. Acad. Sci. U.S.A. 17, 381-388 (1931).

31. R. vox Miskes, Deut. Math. Ver. 21, 241-248 (1912).

32. R. voN MisEs, Festschrift Heinrick Weber, Teubner, Leipzig and Berlin, 1912, pp. 252-282.

33. F. NOETHER, Sitz. Akad. Wiss., Miinchen, 309-329 (1913).

34. F. NOETHER, Deut. Math. Ver. 23, 138-144 (1914).

35. F. NOETHER, Zeit. angew. Math. Mech. 1, 125-138, 218-219 (1921).

36. F. NOETHER, Zeit. angew. Math. Mech. 6, 232-243, 339-340, 428, 497498 (1926).

37. W. M. F. Org, Proc. Roy. Irish Acad. 27, 9-26, 69-138 (1906-1907).

38. C. W. OsEEN, Arkiv. Mat. Ast. Fysik 7, no. 15, 20 p. (1911).

39. C. L. PEKERIS, Proc. Cambridge Phil. Soc. 32, 55-66 (1936).

40. C. L. PExERIs, Jour. Aero. Sci. 5, 237-240 (1938).

41. L. PRANDTL, Zeit. angew. Math. Mech. 1, 431-436 (1921); 11, 407 (1931); Phys. Zeit. 23, 19-23
(1922); Vortrige aus dem Gebeite der Aerodynamik und Verwandter Gebeite, Aachen, 1929, Julius Springer,
Berlin, 1930, pp. 1-7.

42, L. PRANDTL, Aerodynamic theory, edited by W. F. Durand, Julius Springer, Berlin, 1935, vol. 3,
pp. 178-190.

43. LorRD RAYLEIGH, Scientific papers, Cambridge University Press, Cambridge, vol. 1, pp. 474487
(1880); vol. 3, pp. 17-23 (1887); vol. 3, pp. 575-584 (1892); vol. 4, pp. 203-209 (1895); vol. 6, p. 917 (1913).

44. LorD RAYLEIGH, Scientific papers, Cambridge University Press, Cambridge, vol. 6, p. 266 (1914);
vol. 6, p. 341 (1915).



142 C. C. LIN

45. LorDp RAYLEIGH, Scientific papers, Cambridge University Press, Cambridge, vol. 6, p. 447 (1916).
(Curved.)

46. O. ReYNoOLDS, Scientific papers, Cambridge University Press, Cambridge, vol. 2, pp. 535-577
(1895).

47. P. Savic, Phil. Mag. (7) 32, 245-252 (1941).

48. P. Savic and J. W. MurpHY, Phil. Mag. (7) 34, 139-144 (1943).

49. H. ScHLICHTING, Ann. d. Phys. (5) 14, 905-936 (1932).

50. H. ScHLICHTING, Nachr. Ges. Wiss. Géttingen, 160-198 (1932). (Rotating cylinders.)

51. H. SCHLICHTING, Zeit. angew. Math. Mech. 13, 171-174 (1933).

52. H. ScHLICHTING, Nachr. Ges. Wiss. Géttingen, 181-208 (1933).

53. H. ScuLicHTING, Naturwissenschaften 22, 376-381 (1934).

54. H. ScHLICHTING, Nachr. Ges. Wiss. Gottingen 1, 47-78 (1935).

55. Tu. SExL, Ann, Phys. 83, 835-848 (1927); 84, 807-822 (1927). (Circular tube.)

56. F. R. SHARPE, Trans. Amer. Math. Soc. 6, 496-503 (1905).

57. H. SOLBERG, Proc. Ist Int. Congress Appl. Mech., Delft, 1924, pp. 387-394.

58. A. SOMMERFELD, Proc. 4th Int. Congress Math., Rome, 1908, pp. 116-124.

59. R. V. SoutHweLL and L. CuITTY, Trans. Roy. Soc. London (A) 229, 205-253 (1930); Aeronauti-
cal Research Committee R. and M. no. 1200, (1930).

60. H. B. SQuIRrE, Proc. Roy. Soc. London (A) 142, 621-628 (1933).

61. J. L. Sy~NGE, Trans. Roy. Soc. Canada 27, 1-18 (1933).

62. J.L.SYNGE, J. Math. Physics 15, 205-210 (1936).

63. J. L. SYNGE, Semicentennial publications of the Amer. Math. Soc., 1938, vol. 2, pp. 227-269.

64. J. L. SYNGE, Proc. 5th Int. Congress Appl. Mech., Cambridge, Mass., U.S.A., 1938, Wiley and
Sons, New York, 1939, pp. 326-332.

65. J. L. SYNGE, Proc. Roy. Soc. London (A) 167, 250~-256 (1938). (Curved.)

66. K. Tamaki and W. J. HarrisoN, Trans. Cambridge Phil. Soc. 22, 425-438 (1920). (Curved.)

67. G. I. TAYLOR, Phil. Trans. Roy. Soc. London (A) 223, 289-343 (1923); also, Proc. 1st Int. Con-
gress Appl. Mech. Delft, 1924, p. 89. (Curved.)

68. G. I. TAYLOR, Proc. Roy. Soc. London (A) 156, 307-317 (1936).

69. G. 1. TaYLOR, Proc. Roy. Soc. London (A) 157, 546-564 (1936).

70. G. I. TAYLOR, Proc. 5tk Int. Congress Appl. Mech., Cambridge, Mass., U.S.A., 1938, Wiley and
Sons, New York, 1939, pp. 304-310.

71. T. Y. THoMAs, Amer. J. Math. 64, 754-767 (1942); Proc. Nat. Acad. Sci. U.S.A. 29, 243-246
(1943).

72. O. TEITJENS, Zeit. angew. Math. Mech. 5, 200-217 (1925).

73. W. ToLLMIEN, Nachr. Ges. Wiss. Gottingen, 21-44 (1929); Proc. 3rd Int. Congress Appl. Mech.,
Stockholm, 1930, vol. 1, pp. 105-108; Vortrige aus dem Gebeite der Aerodynamik und verwandte Gebeite,
Aachen, 1929, Julius Springer, Berlin, 1930, pp. 18-21,

74. W. ToLLMIEN, Nachr. Ges. Wiss. Géttingen (Neue Folge) 1, 70-114 (1935).

75. W. ToLLMIEN, Zeit. angew. Math. Mech. 15, 96-100 (1935).

76. G. N. WartsoN, Theory of Bessel functions, Cambridge University Press, Cambridge, ed. 1, 1922,
or ed. 2, 1944, p. 198; for Stokes’ phenomenon, see p. 201,



