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Abstract. The linear stability of two-dimensional boundary layer flow of an incompresi-

ble viscous fluid over a flat deformable sheet is investigated when the sheet is stretched in

its own plane with an outward velocity proportional to the distance from a point on it.

Using Galerkin's method the stability equations are solved for three-dimensional dis-

turbances periodic in a direction normal to the plane of the basic flow and it is shown that

the flow is stable.

1. Introduction. Flow in the boundary layer over moving solid surfaces was investigated

by Sakiadis [1], Due to the entrainment of the ambient fluid, this boundary layer is

different from that in Blasius flow over a flat plate. Erickson, Fan and Fox [2] extended

this probem to the case when the transverse velocity at the moving surface is non-zero and

is such that similarity solutions exist. These studies have bearing on the problem of a

polymer sheet extruded continuously from a die and are based on the tacit assumption

that the moving sheet is inextensible. But situations may also arise in the polymer industry

where one has to deal with flow over stretching plastic sheet. McCormack and Crane [3]

gave a similarity solution in closed analytical form for steady two-dimensional boundary

layer flow over such a sheet which is stretched with a velocity proportional to x (i being

the distance along the sheet). The corresponding nonsimilar solution for the same problem

in the presence of a uniform free stream velocity was obtained by Danberg and Fansler

[4]-
However the stability of the flow over a stretching sheet does not seem to have received

any attention despite its importance in the polymer industry. The purpose of this paper is

to study the linear stability of the flow examined in [3] for three-dimensional disturbances.

2. Stability analysis. Consider the flow of an incompressible viscous fluid past a sheet

coinciding with the plane y = 0. Two equal and opposite forces are introduced along the

*-axis so that the sheet is stretched keeping the origin fixed. In a polymer processing
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application, the above situation is similar to the case of a flat sheet issuing from a thin slit

at the origin {x = 0, y = 0) and subsequently being stretched. Assuming boundary layer

approximations, the equations of continuity and momentum in the usual notations are

3«n 3fn , .
+ <«

Un

3u0 duQ d2u
'o a + vo^~ = v T' (2)u 3jc dy dy2

respectively. The boundary conditions are

u0 = cx, v0 = 0 at v = 0; u0 —■► 0 asy —> oo, (3)

c being a positive constant.

The similarity solution of the above system was given in [3] and [4] as

"o = cxF'(i}), v0= -(cp)1/2F( tj), (4a)

where

F(ti) = 1 - e~n\i? = (c/v)W2y. (4b)

The justification for assuming a linear velocity for the sheet as given by (3) is as follows.

As pointed out by Vleggaar [5], in a polymer processing application involving spinning of

filaments without blowing, laminar boundary layer occurs over a relatively small length of

the spinning zone: 0.0-0.5m from the die which may be taken as the origin of Fig. 1. This

is in fact the zone over which the major part of the stretching (and also heat transfer) takes

place. In such a process the initial velocity is low (about 0.3m/s), and a good approxima-

tion of the velocity of the filament or sheet is u0 = cx (at any rate for the first 10-60cm of

the spinning zone), where c is the constant velocity gradient. However, it should be noted

that in actual practice, the stretching filament or sheet may not always conform to the

linear speed assumed here.

Y

0
u0=cx

Fig. 1. Sketch of the physical problem.
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We now study the stability of the solution given by (4). Since the form of this solution is

similar to that for a two-dimensional stagnation-point flow, we examine, following Gortler

[6], the stability of (4) with respect to disturbances periodic in a direction normal to the

plane of the basic flow. It may be noted that Hammerlin's [7] detailed study of the

disturbance differential equations derived by Gortler suggests that instability can occur in

the form of Taylor-Gortler vortices.

We take the perturbed state as

u = «0 + u = u0 + cxfY (i), z, /), (5a)

v = v0 + v = v0 - Jcvf2{j), z, t), (5b)

w = w = vf3(tj, z, t), (5c)

P =Po + P =Po+ pvcf4(r), z,t), (5d)

where «0 and d0 are given by (4), p0 denotes the basic pressure distribution and w denotes

the perturbation velocity component normal to the xy-plane.

Following Gortler, we assume that the perturbations are periodic in z and have an

exponential time-dependence as follows:

u = cxu^T)) • (cos az)e^', v= — (cv)1/Zv1(r])(cos az)e^', (6a)

w = vawl(t])(smaz)e^', p = pvcpl(r])(cos az)e/3'. (6b)

The linearized three-dimensional perturbation equations are now

3u 3d 3w , .

S+37+aT-°- <7»

3 u 3 u _3"o 9" -3mo 1 3d
"37 + "°3^ + "^7 + "°37 + "^7 = ~p 3^ + "V"w- (8)

3d 3d _9d0 3d _3d0 1 3d . .

Ji+U°^ + UJ^ + V°d^ + VJ^- 37 + "V (9)

3vv 3vv dw 1 3p , . .
"57 + "»sT + "• 37 "a7 + 'v "• <10>

where v2 is the three-dimensional Laplace operator. Substitution of (6) in (7)-(10) gives

upon using (4),

ui - v\ + a2w1 = 0, (11)

u[' + Fu[ — (/? +a2 + 2F')u1 = -F"vu (12)

v" + Fv\ -(p + a2 - F')v1 = -p[. (13)

w" + Fw[ -(/? + a2)w1 = -Pl, (14)

where a prime denotes derivative with respect to rj and

a2 = va2/c, P = P/c. (15)

The no-slip boundary conditions are

u1 = v1 = wx = 0 at tj = 0 (16)
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and since the perturbations vanish at infinity, we must have

ul = vx = Wj = 0 as 7j —> oo. (17)

Using (16) and (17) in (11) gives v\ = 0 at tj = 0 and tj = oo. Thus the boundary

conditions become

ux = vx = v\ = 0 at 7) = 0 and tj = oo. (18)

Elimination of wx and px from (11), (13) and (14) gives'

v\v + Fv[" +(F' - p-2a2)v'( - a2Fv\ + a2(p +a2 - F')vx

= u(" + Fu[' +(F' - p-a2)u[. (19)

Differentiating (12) with respect to tj and combining with (19), we get

v\B + Fu[" +(F' - $-2ol2)v'{ +(F" - a2F)v\

+ [a2(/3 +a2 - F') + F "'\vx = 2 F'u[ + 2 F"uv (20)

Introducing

T=e'\ (21)

Eqs. (12) and (20) become

L1ul +(1 - T)LUl -((i +a2 + 2T)Ul = Tvu (22)

L\x +(1 - T)L\X +(T - p -2a2)L2v, - [r+ 52(1 - T)] Lvx

+ [a2(jS +a2 - T) + T]v1 = 2T(Lul - ux). (23)

Further the boundary conditions (18) reduce to

= vx = Lvx = 0 at T = 0 and at T = 1. (24)

Equations (22) and (23) subject to the boundary conditions (24) constitute an eigenvalue

problem for stability.

To solve the above system we use Galerkin's method, a succinct account of which is

given by Duncan [8]. We expand ux in a set of trial functions

7(1 - T), T2(l - T), T\l - T),... (25)

each of which satisfies (24). Similarly vx is expanded in the following set

7(1 - T)2, T2( 1 - T)2, T3(l - T)2,... (26)

each of which also satisfies (24). We begin with one-term approximation

ux = AT{\-T), vx = BT(l-T)2, (27)

where A and B are constants and introduce the following notation

L.„=Tm{\-T)". (28)

Then it can be readily shown that

LL.n = nL+ l.„—1 - mL.n (W> " > !)> (29a)

Lfm,0= (29t>)
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Substitution of (27) in (22) gives on using (28) and (29) the following residual

= A [ - 3/2,o + (1 " P ~«2)/i,i - /2.1 - A,2] - Bf2a. (30)

Noting that

1 'n I

the orthogonality condition

reduces to

jyL,n*T= (31)
■>0 (m + n + 1)!

T)RxdT = 0r w

A
^ + +<*2)

+ £-<>■ (32)

Similarly using (27) through (29) in (23), the following residual is obtained:

R2 = [505 — (2j8 +4a2)B - 2Aj /3j0 + [-305 + 6(0 +2a2)B + 4A]f21

+ [l-p-2a2 + a2(p+a2)] Bfu2 - 20Bf3 l

+ [17 - 3a2]Bf22+[a2 - 1 ]BfU3 + 2Bf40.

The orthogonality of R2 to 771 — T)2 then gives as before

A

105 +
4 /3 a 1 /_2o _4\
15 + 70 + 42 + 105 (^+a > B = 0. (33)

Equations (32) and (33) have a non-trivial solution if the determinant of the coefficients of

A and B vanishes. This gives on simplification

1 a2 \S2 / 139 17 _2 2a4 W

210 + 315 r + 1260 + 630" + 315 r

587 157 a4

1470 ' 1260a + 45 + 315 / °"

Since the coefficients in (34) are all positive for real values of the wave number a, it

follows that fi can neither be positive nor can have positive real part. Hence from (6) and

(15) we conclude that the flow is stable.

In order to see to what extent the one-term approximation (27) gives reliable results, we

proceed to solve the eigenvalue problem with a two-term approximation for ul and vx as

follows:

ux = ET( 1 - T) + «r2(l - T) = Efx l + Rf2l, (35a)

= GT{ 1 - T)2 + HT2{ 1 - T f = G/1-2 + Hf2 2, (35b)

where E, R, G and H are constants. It is important to note that in (35a), fl x and /2>1 are

linearly independent. Similarly f12 and /2 2 in (35b) are also linearly independent. Such

linear independence is necessary for the application of Galerkin's method. We then
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calculate the residual by substituting (35a) and (35b) in (22). The orthogonality of this

residual to both fl , and /21 then gives as before

A A
20 + 30 + 30

J_ A.
10 + 60 + 60

E +

E +

13 a2 j8

105 + 60 + 60

79 a2 j3

840 + 105 + 105

R + il+ io" o- <36>

s + 4 + ̂  = °- <37>

Proceeding exactly in the same manner, the two orthogonality relations deduced from

(23) are

E R

105 + 105 +

E R

420 + 252 +

4 a2 a4 / 1 a2

15 + 42 + 105 + 70 + 105r

+
317 23 _2 a4 /I a2 ,

1260 + 1260 01 + 280 + 105 + 280
H = 0, (38)

59 23a2 a4 /I a2 W
ion ion ~M -t £Q ion }P315 2520 280 168 280

64 13a2 a4 I 1 a2 ,
cic\ ion (.1 n \P315 1260 630 180 630

H = 0. (39)

For the existence of a non-trivial solution the determinant of the coefficients of £, R, G

and H in (36) through (39) must vanish. After a lengthy algebra, this condition can be

written as

c4/?4 + c3/?3 +(c'2 + c'{)V2 +(c[ + c[')p+(c'0 + c'o') = 0. (40)

where,

c4 = 36288 + 32508a2 + 378054, (41a)

c3 = 2526552 + 2155356a2 + 238140a4 + 1512056 (41b)

c'2 = 49926744 + 3810580252 + 7044282a4

+519372a6 + 2268058, (41c)

c'{ = -9504 - 2844a2, (41d)

c[ = 313922196 + 183510936a2 + 70474320 a4 + 7767648a6

+ 454356a8 + 15120a10, (41e)

c" = -309384 - 33264a2 - 5688a1, (41 f)

c'0 = 491272992 + 367592148a2 + 134811936a4 + 3489507056

+2842434a8 + 140616a10 + 3780a12, (41g)

c'o = -3184992 - 414072a2 - 23760a4 - 2844a6. (41h)

It may be noticed from above that

c'i' c2' c\ c'\ and co co- (42)
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Hence neglecting c'0\ c" and c'{ in comparison with Cq, c[ and c'2 respectively. Eq. (40) can

be expressed as

[252/P +(5292 + 504a2)/? + (10962 + 5292S2 + 252a4)]

X [(144 + 129a2 + 15a4)/?2 +(7002 + 5556S2 + 2,12a4 + 30S6)/?

+ (44816 + 11898a2 + 5524a4 + 243a6 + 1558)] = 0. (43)

Since in both the quadratic factors, the coefficients are all positive for real values of a, it

follows that /? can neither be positive nor can it have positive real part. Hence the flow is

stable.

As a specific example, we assume a2 — 10. In this case Eq. (34) based on one-term

approximation gives the following values for /?.

(^i)i-term = -14.5, (&),,_ = -13.3. (44)

On the other hand, Eq. (43) based on two-term approximation gives

(^i)2-,erm = -12.33, (&)2.term= -11.58, (45)

(&)2,e™ = -28-67, (&)2.,erm = -32.64. (46)

While the two-term approximation generates two additional values of /? given by (46), it

can be seen on comparing the values of and /?2 in (44) and (45) that the agreement is

not bad.

However to make sure that we indeed get good convergence we next proceed to the

three-term approximation.

u\ ~ Jfi.i + 2,i + J, (47)

yl = 1.2 2,2 Of 1.2, (^8)

where J, K,...,Q are constants.

Omitting the details of calculation and proceeding in exactly the same way as before, we

find after a fairly heavy algebra the dispersion relation for the stability problem as

UV= 0. (49)

Here U and V are both cubic polynomials in /? given by

U = 36/P +(2214 + 108a2)/P +(19164 + 4428a2 + 108a4)/?

+ (25812 + 19164a2 + 2214a1 + 36S6), (50)

K= (43560 + 65098a2 + 12826a4 + 484a6 )/?3

+ (6144864 + 7288072a2 + 1281874a1 + 50578a6 + 1452a8)/?2

+ [118793400 + 117452148a2 + 20725892a4 + 2424422a6

+ 62678a8 + 1452a10] /?

+ [436898870 + 205745496a2 + 11590405254 + 13508308a6

+ 1207646a8 + 24926a10 + 484512]. (51)
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Equation (49) implies either U = 0 or V = 0, and hence for stability, neither of these

equations should have any root with a positive real part. To test this we use the

Routh-Hurwitz criterion [9] for stability of a third-order system. If a0, ax, a2, and a3 are

the coefficients of /63, /32, /? and /?° respectively, in (50), then for non-existence of any root

of U = 0 with positive real part, this criterion demands that ala2 — a0a3 > 0. This is

indeed true since

ala2 - a0a3 = 41499864 + 1118340052 + 637632S4 + 10368a6. (52)

Similarly if b0, bx, b2 and b3 are the coefficients of/?3, /?2, /? and /?° respectively in (51),

then

bib2 - b0b3 = 7.1093797 X 1014 + 1.5500988 X 1015a2

+ 1.1115895 X 10'V + 3.1153282 X 1014a6

+ 4.8217339 X 101358 + 4.4832861 X 1012a10

+ 2.1997299 X 10ua12 + 7.6159607 X 10V4

+ 1.4617574 X 10 8a16 + 1874048518 (53)

which is clearly positive. Hence it follows from (52) and (53) that neither U = 0 nor V = 0

has any root with positive real part. Thus the system is stable.

For a2 = 10, the roots of U = 0 and V = 0 with the smallest magnitude are

(£1)3-*™= -H-65, (^2)3.term= -11.09, (54)

respectively, the other roots being —18.43 and —61.42 for U= 0 and —19.52 and

- 80.03 for V — 0. On comparing the values of and yS2 from (44), (45) and (54), we find

that the convergence of the Galerkin method using 3-term approximation is fairly good

and there is hardly any point in continuing this approximation any further, which will

only involve cumbersome algebra.

3. Discussion. It is worth pointing out that the two dimensional flow whose stability is

discussed here is akin to both stagnation-point flow and an asymptotic suction profile.

The stability of this flow on a deformable wall is studied with respect to Gortler-type

disturbances because the streamlines are curved. It turns out that the flow is stable and

this may be explained physically as follows. In such a flow there are certainly regions

where the circulation (product of local velocity and the local radius of curvature of the

streamline for the basic flow) decreases as the local centre of curvature is approached

normal to the curved streamlines. This is due to the fact that the fluid velocity increases as

the sheet is approached due to the stretching of the sheet. Thus Rayleigh's criterion [10]

suggests stability. In a two-dimensional stagnation-point flow, however, the above circum-

stances are reversed and one does find centrifugal instability as in the analyses of Gortler

and Hammerlin.

It should be noted, however, that our stability analysis is confined to infinitesimal

Gortler-type disturbances, which are non-propagating. It cannot, therefore, be ruled out

that the flow may be unstable to other types of disturbances which may be infinitesimal or
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of finite amplitude. Experiments are, therefore, needed to confirm our theoretical predict-

ion about stability. Nevertheless we feel that the present study, albeit confined to linear

theory, throws some light on the stability of a flow having important bearing on polymer

industry.
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