
ON THE STABILIZATION OF LINEAR SYSTEMS

C. E. LANGENHOP

1. In a recent paper V. N. Romanenko [3] has given a necessary

and sufficient condition that the system

dx du
(1.1) — = Ax + bu, — = px + qu

dt dt

be "stabilizable." Here A is an n by n matrix, x and b are m by 1

column matrices (or vectors), p is a 1 by n row matrix and q and u

are scalars. We shall assume that the elements of all these may be

complex numbers. The vector x can be interpreted physically as the

output of a linear system characterized by the matrix A. The vector

b corresponds to some feedback or control mechanism with u the

controlling signal and p and q adjustable parameters in the control-

ling circuit. Romanenko calls the system (A, b) stabilizable if for any

nonempty set 5 of n + l or less complex numbers there exist p and q

such that

(A     b\

has 5 as its set of characteristic values (spectrum). In particular then,

if (A, b) is stabilizable there exist p and q such that all characteristic

values of G have negative real parts and every solution of (1.1) is

such that x(t)—>0 and u(t)—>0 as i—>+ ».

In his paper Romanenko claims to be generalizing a known condi-

tion, which he attributes to Yu. M. Berezanskil, namely, that if the

characteristic values of A are all distinct, then (A, b) is stabilizable if

and only if

(1.3) b, Ab, • • • , An_1b are linearly independent.

Romanenko's condition appears to be considerably more complicated

than (1.3) while it is our intention here to show that in fact (1.3) is

necessary and sufficient for (A, b) to be stabilizable irrespective of

any condition on the characteristic values of A. Actually this is a

corollary to our more general Theorem 1 given below.

As pointed out to the author by Dr. J. P. LaSalle the condition

(1.3) and related ones have considerable significance in a seemingly
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different aspect of control theory, namely, the controllability of linear

dynamical systems [2]. Undoubtedly there is a deeper connection

between stabilizability and controllability. At any rate a certain

canonical form developed in the study of the latter concept provides

a simplification of our original proof and a generalization of the

Berezanskiï-Romanenko result.

2. Rather than (1.2) we consider matrices of the form

(A    B\
(21) G = (p 0)

where A is n by n, Q is m by m and B and P are correspondingly sized

submatrices. We assume that the elements of all these may be com-

plex. By Sr we denote a nonempty set of r or less complex numbers

fik; that is, Sr= {ßk\k=l, 2, ■ ■ ■ , r}, where the ptk need not all be

distinct. The rank h of the matrix H=(B, AB, ■ ■ ■ , A"~1B) is the

significant feature of our results, the first of which is

Theorem 1. The condition h^r — m is necessary and sufficient that

for each Sr there exist P and Q such that the spectrum of G contains Sr.

Proof of necessity. Take any set Sr such that the ptk in Sr are

distinct and different from any characteristic value of A, and let P

and Q be such that the spectrum of G contains this Sr. Then there

exist vectors

O * - 1. 2.
w

where £* and rjk are « by 1 and m by 1 column matrices, respectively,

such that

G e)C) = ̂C)
or

(2.2) k = 1,2, ■ ■ ■ ,r.
P%k + Qvk = ßkVk,

From the first of (2.2) we may write

(2.3) & = (ukl - A)-'Br,k

since A—ßkI is nonsingular. Using the characteristic equation of A,

one may write
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(2.4) (pkl - A)-' = E Cj(pk)A'~l

for suitable scalar functions c¡(¡¿). Substituting (2.4) into (2.3), we

have

n

(2.5) & = S A^Bci(pk)nk = Hh,       k = 1, 2, • • • , r,

where the transpose of the nt» by 1 column matrix f/t is defined by

U = (ci(pk)r¡k, c2(pk)Vk , • • • , cn(y.k)i)k).

Now by choice of Sr the vectors

0-\Vk/
k - 1, 2,

are linearly independent and it is readily seen that the rank of the

matrix (£i, £2, • • • , £r) must therefore be at least r — m. From (2.5)

it is then clear that the rank of H must likewise be at least r — m.

Proof of sufficiency. The proof is accomplished by means of a

similarity transformation on G to convert A and B to convenient

canonical forms. We first dispose of the case B = 0, however. In this

event h — 0 and the condition h^r — m becomes m~¡zr. It is clear then

that we may choose P arbitrarily and Q such that the spectrum of Q

and hence also that of G contains Sr. Henceforth, then, we assume

B^O.
Consider now a matrix / of the form

(2.6) /
\o r)

where / is an n by n identity and A is a nonsingular m by m matrix.

Then

/ A       BR-1 \
(2.7) JGJ-1 = I )

\RP    PQRr1/

and it is evident that we may achieve any reordering of the columns

of B with no essential change in the statement of the proposition to

be proved. Thus if the columns of B are denoted by &¡, i= 1, 2, • • • ,m,

we may assume without loss of generality that the set of h columns

oí H

(2.8) h, Ah, ■ ■ ■ , il*»-1*!, ■ ■ ■ ,b„ Ab., ■ ■ ■ , A»--%
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is linearly independent. Here l^s^m, Â.èli *=1, 2, • • -, s, and

Yi-i hi = h. We may further assume (see Chapter VII of [l]) that

the sequence (2.8) is such that for i g? 2 the linear subspace V, spanned

by Ai~1bi,j=l, 2, ■ • • , A<, is invariant modulo Fi+F2+ ■ • • + F;_i

under premultiplication by A. That is,

hi i—1    hk

(2.9) A Hi = Y ctijA^bi +YY ßnkAi-'bk,
3 = 1 *=1 3=1

for some set of scalars ay, /3,-y* and where the double summation in

(2.9) does not appear if i = 1.

We now introduce a similarity transformation on G by means of a

matrix K of the form

(2.10) K c :>
where I is an m by m identity and T is a nonsingular n by n matrix.

Then

/TAT-1   TB\
(2.11) KGK-1 = ( ).

The matrix T is defined by choosing certain combinations of the

vectors in (2.8) as a new basis system for the space of n by 1 column

matrices. Thus we introduce

(2.12) ea = A^bi -   Y ctijAi-^bi,        . "   '   ''"'   *"'
j~k+l * — 1) 2,   ■ ■ ■ , s,

and where the summation does not appear in case k = hi. That is

(2.13) eihi = bi,       i = 1,2, ■ ■ ■ , s.

Note from (2.12) and (2.13) we have for k^2

(2.14) Aeik = eilk-i + aikeihi,        i = 1, 2, ■ ■ ■ , s,

and, using (2.9) in addition, we have, since the A^b/s may be ex-

pressed as linear combinations of the e¿y's,

t'-l    hk

(2.15) Aen = aneihi + Y Y yak ekj,       i = 1,2, - ■ ■ , s,
k=l 3=1

for some set of scalars y,jk and where, again, the double summation

is absent in the case i—1.

From the linear independence of the set (2.8) and the remark just

preceding (2.15) it is evident that the set
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(2.16) en, • ■ • , eihv e2i, ■ ■ ■ , e2hl, ■ ■ ■ , e„i, • • • , e,h,

is likewise linearly independent. If h= / ,Li hi<n we may adjoin to

the set (2.16) n — h additional vectors to get a set which spans the

space of n by 1 matrices. We now view the matrix A as defining the

linear transformation x—>Ax and we let T be defined so that for any

n by 1 matrix x the matrix Tx is the column of components of x rela-

tive to the set (2.16) (augmented if required) as basis. With respect

to this basis the matrix of the linear transformation x—>Ax is the

matrix TA J"-1 and, moreover, Tbi = uai, ai — hi+ ■ ■ ■ +h, and u„ is an

n by 1 column all of whose components are zero except the crth which

is 1. From (2.14) and (2.15) we may thus infer that TAT~l has the

following block form:

Ci   Ei2

0       C2

(2.17) TAT'

■ ■ Eu   Fi

■ ■ E2s    F2

0     0

.0     0

where C¡ has the canonical form

Í0      1

(2.18)

Moreover,

Ci

0      0

an    ai

(2.19) TB

0     0

0    0

■C,

■ 0

F,

L

■ ■ 1

• • aih.

Vi    0   • • ■ 0     wi

0     v2 • • ■ 0     w2

■ • V,    w,

• -0     0
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where »¿ is an hi by 1 column all of whose components are zero except

the last which is 1. The submatrices w( have m — s columns.

We now choose P and Q in convenient form. Let

Q = diag(?i, q2, Im)

and let P be such that

pi   0   • • ■ 0      0

0     p2 ■ ■ ■ 0      0

(2.20) PT-

0     0

0     0

p,     0

0     M

where pi is a 1 by hi row and M ism —s by n — h. The determinant of

KGK~l — \I is now readily evaluated by means of Laplace expansions

using minors from appropriate columns. Thus, if we expand by minors

from the first hi columns along with the (w + l)st column we find that

only one of these is nonzero, namely, that using the first hi rows and

the (n + l)st row. The complementary minor will be a determinant

array with exactly similar block structure to that of KGK~l — \I. It

may thus be expanded similarly by using the corresponding columns,

namely, those which appear in KGK-1— XI as the second h2 columns

along with the («+2)nd. Continuing in this way we may write

(2.21) det(KGK~l -XI) =
L-\I       0

M      Q* -XI
n d — XI     Vi

pi       qt — X

where <2* = diag(g3+i, • • • , qm) and, of course, each appearance of /

denotes an identity of appropriate size.

First we observe that Q* may be chosen so that the spectrum of G

contains any prescribed set Sm_3. We next examine the determinants

in the product factor in (2.21). Each of these has the same structure

and may readily be evaluated by a Laplace expansion using minors

from the last two rows. The result is

Ci — XI      Vi

pi      qi — X
= (-X)k^ + (qi - aik,)(-X)k<

hi

+ Y (a'j-i + lian - Piài—*)*-1 + (?»«<i - Pu),
3=2
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where the pn, j=l, 2, • • • , At-, are the components of the row pi.

In this form it is evident that we may determine q¡ and the pn,

j=l, 2, • • • , hi, so that the coefficients of this polynomial are any

we desire. Thus g» and pi may be determined so that this factor of

det(KGK~l —\I) has any given collection of A.- + 1 roots. This is true

for each i so using this and the fact mentioned earlier regarding the

choice of Q* it is clear that we may specify P and Q so that G con-

tains in its spectrum any given nonempty set of m — s+ 2<-i (A. + l)

= h+m or less complex numbers. Thus if h^r — m we see that for any

Sr there exist P and Q such that G contains Sr in its spectrum.

Corollary 1. The condition h = n is necessary and sufficient that for

each Sn+m there exist P and Q such that G has Sn+m as its spectrum.

Proof. In any case h^n, so ilr = n+m, then the condition h^r — m

is equivalent to A = n.

Corollary 2. Condition (1.3) is necessary and sufficient that (A, b)

be stabilizable.

Proof. This is Corollary 1 in the case m=l.

Remark. Even in case h<n there may exist P and Q such that all

characteristic roots of G have negative real parts. It is clear from

(2.21) that this is the case provided the characteristic roots of L have

negative real parts which, in turn, is related to how the linear sub-

space complementary to that spanned by the columns of H is associ-

ated with those characteristic roots of A which have negative real

parts. In any case this question does not appear to be directly

answerable merely in terms of the rank of H.

3. In this section as an application of the results in §2 we point out

the relevancy of condition (1.3) to the behavior of a more complicated

system of differential equations than (1.1). Thus we consider the

system

dx .
— = Ax + bu,
dt

(3.1)
dr+1u *L      dku
-= px + y, Qk-1
dt*1      r       to     dtk

where A, b, x, u, p are as before and qk, A = 0, 1, 2, • • -, r, are scalars.

Theorem 2. For any integer r^O, if condition (1.3) holds, then there

exist p, qk, A = 0, 1, • • • , r, such that, for every solution of (3.1),

x(t)—>0 and «(£)—»0 as i—>+«>.
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(3.2)

Proof. Introduce variables uk by the relations u0>=u,

duk-i
«*

dt
= 1,2,

Then (3.1) may be written in the equivalent matrix form

d
(3.3) -

x

«0

[A   b    0   0

0   0    10

«/■-2

l«r-lj

dur

dt

0    0    0    0

0    0    0    0

x

Ut-2

Mr-lJ

+ Ur,

= (P, 9.0 q,-i)(x', «o, • • • , Mr-i)' + erur.

This is the form of (1.1) with (x', u0, ■ ■ • , wr-1)' playing the role of

x' there, ur the role of u, (p, q0, ■ ■ ■ , qr-i) the role of p and

(3.4)

A   b    0    0

0   0    10

0    0    0    0

0    0    0    0 0

and    b*

0 1

0

1

playing the roles of A and b, respectively. From Corollary 2

P, Ç.0, ■ • • , qr exist such that íc(í)—»0, uk(t)—»0, & = 0, 1, • • • , r, as

i-»+ co if b*, A*b*, A*2b*, ■ ■ ■ , A*n+r~lb* are linearly independent.

From the form of A* and b* as given in (3.4) it is easy to verify that

this is true if condition (1.3) holds.

Analogous applications of Corollary 1 may be made.
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