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On the stabilization of optical isomers through tunneling 
friction 
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A handed molecule may be represented as a particle in a symmetric double well. When placed in contact with 
a low temperature medium, the mean position of the particle obeys an equation of motion identical to a 
damped harmonic oscillator. The standard relaxation theory is used to relate the damping to classical friction, 
in agreement with recent path integral methods; however, no renormalization of the tunneling matrix element 
occurs. The stability of handedness is explained in terms of the damped oscillator. 

The dynamics of a handed molecule may be usefully 
represented as the motion of a simple particle in a 
slightly asymmetric double well. Asymmetric because 
of the fundamental parity nonconservation. 1 The dy­
namical manifestation of the parity violation is a stabi­
lization of the handed forms of the molecule at a low 
level of excitation in the double well. This stabiliza­
tion comes about through a suppression of the amplitude 
of oscillation from one handed form to the other. 2 

When the above mentioned molecule is placed in an 
optically neutral environment, limiting theoretical cal­
culations have shown that the handed or localized states 
may be stable on time scales enormously l()ng compared 
to the tunneling frequency. 2-6 In addition, the effect of 
the asymmetry of the double well is entirely wiped out. 

The theoretical models to describe this model range 
from the quantum collision in a dilute gas to classical 
fluctuations in an arbitrary medium. Very recently, 
path integral methods have shown similar effects in a 
low temperature tunneling system where the effect of 
the medium would be ordinary friction if the particle 
was above the barrier in the double well. 7-9 

In this note, we would like to show that all these mod­
els are approximately equivalent. We shall point out 
that the stabilization of handedness is subject to an ex­
tremely simple and physical interpretation, which we 
shall denote as "tunneling friction ... 7,8 The meaning of 
this phrase will become more clear in the subsequent 
development. 

We begin with a particle confined in a symmetric 
double well potential interacting with a medium. As 
usual, the total Hamiltonian is given by 

H= Hs +Hw+ V, (1) 

where Hs is the bath Hamiltonian, Hw is the Hamiltonian 
of the double well, and V is the coupling. In this paper, 
we will assume that the temperature is low enough so 
that we need only consider the lowest two quantum states 
of the double well; however, we will also assume later 
that the temperature is larger than the splitting of those two 

a)J. S. Guggenheim Foundation Fellow. 

levels induced by the tunneling >natrix element. In this 
limit, the two state model of the double well is adequate. 
Thus, in the left-right baSiS, 

H = 5ux • (2) 

The most general form of V in the two state model is 

V=Vol+V I '(7 (3) 

where Vo and VI are quantum mechanical operators de­
pending on the coordinates of the medium. When the 
temperature is low, the medium can neither knock 
the particle over the double well nor through it, hence, 
we may approximate V by 

( 4) 

Thus the total Hamiltonian in the spin representation, 
left-right basis, is 

(5) 

We are now ready to pose and answer the question: if 
the particle is on the left-hand side of the well at t = 0, 
and the medium is in thermal equilibrium, what is the 
state of the particle as a function of time? In order to 
answer this, we must determine the equation of motion 
of a two level denSity matrix or, in other words, de­
termine the equation of motion of the polarization vector 
P(t), where 

P(t) = Tr p(t)u , (6) 

where p(t) is the full density matrix of the two level sys­
tem plus bath given by 

p(t) = exp( - iH t) Ps (1 + u.) /2 exp( - iHt) , 

where we have set n= 1. 

The equations of motion for P(t) may readily be 
derived from the simple relaxation theory of Nitzan 
and Silbey l0 which is valid in the weak coupling short 
correlation time limit. The short correlation time 

(7) 

limit and very strongly interacting gas phase limit may 
also be intuitively derived in this manner, or more 
rigorously by other methods. These methods are clear­
ly explained elsewhere. 4 

The equations of motion for P(t} in terms of its com­
ponents are 
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Px(t) = 2i 10 .. ([Vo(r) , Vt(O)]) dr Py(t) 

-2 [ .. dr([Vt(r), V1(O)].)cos20rPx(t) 

-2i 10" dr«(V1(r), V1(O)]) sin 2 Or , (8) 

p (t)= -20P.(t) + 1" dr«(Vo(r), V1(O)])Px(t) 
y 0 

-210" dr{(V1(r), V1(O)].) cos 2 OrPy(t) 

-2 fo" drSin20r«(V1(r), V1(O)].)P.(t) , (9) 

P.(t)=20Py (t). (10) 

In the above, the symbol [, J. is the anticommutator, 
and the average is over the bath in thermal equilibrium. 
As usual, we have extended the finite limits of integra­
tion to infinity, which is fully consistent with the initial 
assumptions. Note that the medium has been treated 
explicitly quantum mechanically and that these equations 
are correct at all temperatures such that the weak cou­
pling, short correlation time assumptions hold. We do 
not consider corrections to those assumptions here. 

We assume the medium is parity neutral, i. e., has 
no parity sense. In mathematical terms, this assump­
tion implies 

(11) 

for all temperatures considered here, where t:PB is the 
parity operator of the medium. Since the overall parity 
operator is 

(12) 

then Vo is parity even and Vi is parity odd. Therefore, 

(13) 

Because of this, the Bloch equations simplify greatly. 
The absence of a parity sense leads to a decoupling of 
the equation for P~(t) from the other components of P(t), 
so that 

Px = -?lPx+Y, (14) 

where the complex parameter A takes the form 

A=X + iX' = 2 f" dr exp(i20r) ([V1(T), V1(O)J.) (15) 
o 

and the inhomogeneous term y is 

y= 2i 1'" dTSin20r([Vt (T), V1(0)]) • 
o 

(16) 

Equation (14) is the standard rate equation which de-' 
scribes the approach to statistical equilibrium. We 
defer further discussion of this equation until we have 
discussed the equation of motion for Py(t) and p.(t). 
The two equations are 

(17) 

and 

(18) 

We see that X plays the role of a damping parameter and 
X' shifts the natural tunneling frequency. The Bloch 
equ~tions, (14), (17), and (18) are somewhat more gen­
eral than those derived by the classical fluctuation 
method and both more and less general than those derived 
from the quantum mechanical gas phase equations, as 
well as the phenomenological fluctuation theory present 
in the same work. The equations are more general 
than those determined from the classical fluctuation 
theory for two reasons: (a) the averages are quantum 
mechanical, a conSideration which is crucial in an 
atomic gas phase medium and (b) the correlation func­
tions are not necessarily proportional to delta func-
tions. In the delta function correlation function (the 
zero correlation time) limit, X' vanishes as does y. 
Both the S matrix gas phase theory and the pheno­
menological theory have essentially used condition b. 
The S matrix theory is more general than that presented 
here, because in a dilute gas, we need not assume weak 
coupling to derive the result. In addition, the pheno­
menological theory is entirely general within the short 
correlation time framework. Finally, it is known that 
for delta function Gaussian correlations, the equations 
derived here are exact; in all that follows we shall 
neglect the terms X' and y. 

The description of the dynamics of the handed mole­
cule in terms of the polarization vector P(t) is entirely 
natural given the approximation of the double well as a 
two state system. There is an alternative way of looking 
at the behavior of the particle in the double well, which 
is not only intuitively useful but necessary for the proper 
incorporation of classical friction. 

Classical friction is felt by the mean pOSition of the 
a particle in a potential. Hence we must determine the 
equation of motion of the mean position of the particle 
in the dOUble well from the Bloch equations. In order 
to do this, we must first determine the operator repre­
senting position. In the two state model, 

(19) 

But, 

(20) 

where qo is the minimum of the right-hand well. Thus, 

q = - qou •• (21) 

From the Heisenberg equations of motion we easily find 
the velocity operator q to be 

(22) 

We may now find the equation of motion of (q(t» since 
we know that 

(23) 

This equation of motion is a classical damped harmonic 
oscillator, 

(24) 

whose most general initial conditions are 

(q(O» = -qop.(O) (25) 

and 
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(26) 

Although all we have done is rewrite the Bloch equa­
tions in their circular form, the change in interpreta­
tion is profound. Subject to the conditions outlined at 
the beginning of the paper, the mean position of a par­
ticle in the double well behaves like a damped harmonic 
oscillator. The initial condition of localization in, e. g. , 
the left-hand side means simply that at t = 0 the mean 
position of the oscillator is displaced from equilibrium 
by an amount - qo. The initial velocity is just propor­
tional to the degree of coherence initially present in 
Py(O). The equation of motion for Px(t) retains its two 
level origin. 

We are now in a position to relate X, which we shall 
denote as A, to the classical friction through the Leggett, 
Bray, and Moore models. 7

• s 

We assume that the bath is just a collection of har­
monic modes, 

HB = (l/2) L: wl{a~al+ (1/2H· (27) 
I 

The coupling will be taken to be linear in the bath co­
ordinates, which is the simplest parity conserving 
interaction, 

(28) 

In order to determine A we must calculate the fluctua­
tion 

8 1(w) = (1/2) f+'" dfexp(iwt) ([XI(t),XI(O) 1. ) 
.'" 

(29) 

since 

(30) 

If we invoke the fluctuation-dissipation theorem, then 

A = qo L C~ coth,B1i . X"(21i) , 
I 

where 

,B = (1/kB T) 

We may determine X" by elementary commutator 
algebra, to obtain 

(31) 

(32) 

X" (21i) = (1T/2m l wl ){Ii(21i - WI) -1i(21i + WI)} , (33) 

where m l is the mass of the lth mode. 

We now invoke the assumption that kT» 21i in order 
to arrive at the final form. 

A = (q~1T/2j3li) L (C~/mlwl)Ii(21i - WI) 
I 

In the units of Bray and Moore, 

CI-CI/H. 

(34) 

(35) 

The expression for the classical friction may now be 
assumed, giving 

(36) 

where 71 is the classical friction constant, 

(37) 

The results of Bray and Moore follow with one limita­
tion: their Ii is renormalizedand, infact, approaches 
zero at T = O. This effect is not predicted by our work; in 
fact, the renormalization of Ii predicted by our model is in 
the opposite direction. It is not clear whether this dis­
crepancy is due to the use of the two state model (which 
should be valid in weak coupling) or perhaps to the ap­
proximation of the path integral in Bray and Moore. 8 

The phrase "tunneling friction, .. should by now be 
clear even if cannot be directly related to classical 
friction. The competition between the medium and the 
tunneling does not destroy the tunneling, but in the limit 
of overdamping renders it incoherent. This incoherent 
tunneling, as has been previously emphasized, enor­
mously stabilizes the handed forms of the molecule. 
The particle is essentially trapped in the well for 
macroscopic times. 

This trapping is familiar behavior for an overdamped 
oscillator. When such an oscillator is displaced from 
equilibrium to a point - qo with zero initial velocity, it 
will drift towards a pOSition - qo/ e from equilibrium in 
a time [A/(21i)2j, which is enormously long compared to 
the natural period of the oscillator. This slow drift 
towards equilibrium is, of course, equivalent to the 
shrinkage of the population difference of the two optical 
isomers discussed earlier. Concomitantly, any initial 
parity in the molecule Px(O) will decay rapidly to zero in 
a 1/ e time of 1/A. The latter is the well known T 2 while 
the former is Tl in analogy to magnetic resonance. 
Another physical system which is analogous to that con­
sidered in this paper is an excited state system con­
Sisting of two molecules, i. e., a dimer, which is coupled 
to a phonon bath. In this case, the two level electronic 
system consists of the two lowest excited electronic 
states of the dimer and the coupling to the phonons is 
usually taken to be linear in the phonon coordinate. The 
equations of motion for this and for related systems have 
been derived and studied by Haken and Strobl, 11 Rackov­
sky and Silbey, 12 Abram and Silbey, 13 Rahman, Kenkre 
and Knox, 14 and Wertheimer and Silbey. 15 In the most 
common examples of this system, {) is not small com­
pared A to and thus the oscillator is not overdamped. In 
addition, the term y is not negligible since it is the 
term which gives Boltzmann equilibrium between the 
two states (Il) ± Ir»). 

In conclusion, we have examined the low temperature 
behavior of a chiral molecule as represented by a par­
ticle in a double well potential coupled to a medium. 
By low temperatures, we mean low enough to treat only 
the lowest pair of states in the well; as pOinted out 
above, the temperature must be large8 compared to the 
tunneling induced splitting in order for certain of the 
approximations to be valid. To a large degree in­
dependent of the medium, the mean position of the par­
ticle in the well obeys the equation of motion of a 
damped harmonic oscillator. When this oscillator is 
overdamped and the initial conditions of oscillator re­
flects localization (i. e., an initial handed condition), 
then the localized state is essentially stabilized forever. 
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