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Let AR(D) denote the set of functions belonging to the disc algebra having real Fourier coefficients. We show
thatAR(D) has Bass and topological stable ranks equal to2, which settles the conjecture made by Brett Wick
in [18]. We also give a necessary and sufficient condition forreducibility in some real algebras of functions on
symmetric domains with holes, which is a generalization of the main theorem in [18]. A sufficient topological
condition on the symmetric open setD is given for the corresponding real algebraAR(D) to have Bass stable
rank equal to1.
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1 Introduction

The notion of stable rank of a ring (which we call Bass stable rank) was introduced by H. Bass [2] to facilitate
computations in algebraic K-theory. We recall the definition of the Bass stable rank of a ring below.

Definition 1.1 Let A be a commutative ring with identity1. Let n ∈ N. An elementa = (a1, . . . , an) ∈ An

is calledunimodularif there existsb = (b1, . . . , bn) ∈ An such that

〈b, a〉 :=

n∑

k=1

bkak = 1.

We denote byUn(A) the set of unimodular elements ofAn.
We say thata = (a1, . . . , an) ∈ Un(A) is reducible(in A), if there existh1, . . . , hn−1 ∈ A such that

(a1 + h1an, . . . , an−1 + hn−1an) ∈ Un−1(A). TheBass stable rank ofA, denoted by bsrA, is the least integer
n such that everya ∈ Un+1(A) is reducible (and it is infinite if no such integern exists).

The Bass stable rank is a purely algebraic notion, but when studying commutative Banach algebras of func-
tions, analysis also plays a role. In [13], M. Rieffel introduced the notion of topological stable rank, analogous to
the concept of Bass stable rank:

Definition 1.2 LetA denote a commutative unital Banach algebra. Thetopological stable rank ofA, denoted
by tsrA, is the minimum integern such thatUn(A) is dense inAn (and it is infinite if no such integer exists).

Jones, Marshall and Wolff [9] showed that the Bass stable rank of the complex disc algebraA(D) is equal to1,
and Rieffel [13] showed that its topological stable rank is equal to2. Recall that the complex disc algebraA(D)
is the Banach algebra of all complex-valued functions defined on the closed unit discD that are holomorphic in
the open unit discD and continuous onD, endowed with the supremum norm:‖f‖∞ = supz∈D

|f(z)|.
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4 Rupp and Sasane: Stable rank and reducibility in real algebras

In this article, we study the Bass/topological stable ranks, and also consider reducibility of corona pairs, in
some real Banach algebras of “real symmetric” functions. Wedefine these below. Throughout this article, we use
z∗ to denote the complex conjugate ofz, and we useΩ to denote the closure of the setΩ ⊂ C.

Definition 1.3 Thereal disc algebra, denoted byAR(D), is the set of all functions ofA(D) having real Fourier
coefficients. Equivalently,

AR(D) = {f ∈ A(D) | ∀z ∈ D, f(z) = (f(z∗))∗}.

The real disc algebraAR(D) is a real Banach algebra with the supremum norm‖ · ‖∞.
More generally, ifD is an open set inC, then byA(D) we mean the set of functions holomorphic inD

that are continuous and bounded onD. If D is real symmetric(that is,z ∈ D if and only if z∗ ∈ D), then
we use the symbolAR(D) to denote the set of functionsf belonging toA(D) that arereal symmetric, that is,
f(z) = (f(z∗))∗ (z ∈ D).

If D is a real symmetric open set, thenCR(D) denotes the set of complex-valued, bounded, continuous
functionsf defined onD, that satisfyf(z) = (f(z∗))∗ (z ∈ D).

Brett Wick conjectured [18] that the Bass stable rank ofAR(D) is equal to2, and we prove this in Section 2,
by first showing that the topological stable rank ofAR(D) is 2. In Section 4 we extend the main result of B. Wick
[18] to the case of subalgebras ofAR(D). We also completely characterize reducible elements in algebrasAR(D)
of real symmetric functions on domains with holes (under mild assumptions) in Theorem 6.4. This generalizes
the main result in [18] from the case of the disc to more general domains. Finally, in Theorem 6.6, we give a
sufficient topological condition on the open setD for AR(D) to have Bass stable rank equal to1.

2 Bass and topological stable rank ofAR(D)

In this section we prove that bsrAR(D) = tsrAR(D) = 2.
We begin by making the observation that the polynomials withreal coefficients are dense inAR(D). Indeed,

givenf ∈ AR(D), f has real Fourier coefficients, which are the same as the coefficients in the Taylor expansion
of the analytic functionf about the point0 in D. Sincef is continuous on the circle, and its negative Fourier
coefficients vanish, the Cesàro means of the Fourier seriesfor f are trigonometric polynomials with real coeffi-
cients which converge uniformly tof . The corresponding polynomials inz give the desired sequence converging
uniformly tof in AR(D).

Theorem 2.1 The topological stable rank ofAR(D) is 2.

P r o o f. First of all we note thatU1(AR(D)) is not dense inAR(D). Indeed,U1(AR(D)) is the set of units in
AR(D), andf is invertible as an element inAR(D) only if it has no zero inD. But the uniform limit of a sequence
of functions from the disc algebra which are never zero inD is either identically zero or has no zeros inD; see
[1, Theorem 2, p. 178]. So taking any function with finitely many zeros inD, sayz, we have a contradiction. So
tsrAR(D) > 1.

Next we show thatU2(AR(D)) is dense inAR(D)2. Take(f, g) ∈ AR(D)2 and approximatef, g by polyno-
mialsp, q, respectively, having real coefficients. Sincep ∈ R[z], we have the following product representation
for p:

p(z) = C
∏

(z − rj)
∏

(z2 + sjz + tj),

whereC, rj , sj, tj are real numbers. Ifp andq have a common root inD, then we replacerj , sj, tj by rj +ǫ, sj +

ǫ, tj + ǫ with a sufficiently small realǫ so that the new polynomial̃p has no common root withq in D, and so
(p̃, q) ∈ U2(AR(D)) is near(f, g). Consequently tsrAR(D) ≤ 2.

We recall the following result [4, Theorem 3, p. 293]:

Proposition 2.2 LetA be a commutative unital real (or complex) Banach algebra. IfUn(A) is a dense subset
of An, thenbsrA ≤ n.

Theorem 2.3 The Bass stable rank ofAR(D) is 2.
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P r o o f. First we show that bsrAR(D) > 1. Considera := (z, 1 − z2) ∈ AR(D)2. The elementa is
unimodular, since withb := (z, 1) ∈ AR(D)2, we have〈b, a〉 = 1. Howevera is not reducible. Indeed, otherwise
there exists an elementh ∈ AR(D) such that withf(z) := z + h(z)(1 − z2), z ∈ D, f is an invertible element
of AR(D). However,f(−1) = −1 andf(1) = 1, and so by the intermediate value theoremf(c) = 0 for some
c ∈ (−1, 1), contradicting the invertibility off .

From Theorem 2.1 it follows thatU2(AR(D)) is dense inAR(D)2, and so by Proposition 2.2, we obtain that
bsrAR(D) ≤ 2. This completes the proof.

Remark 2.4

1. Brett Wick conjectured in [18] that the Bass stable rank ofAR(D) is equal to2; the above result settles this
conjecture.

2. Bass and topological stable ranks ofAR(D) play an important role incontrol theoryin the problem of
stabilization of linear systems. We refer the reader to [12]and [17] for background on the connection
between stable rank and control theory.

3 Preliminaries

3.1 Reducibility in general real Banach algebras

We adapt the definition from [14, Definition 1.1] to the case ofreal Banach algebras as follows:

Definition 3.1 Let A be a real commutative Banach algebra with unit element denoted by1. Suppose that
(f, g) ∈ A2 andλ, µ ∈ R. The real numbersλ, µ are calledequivalentif there exist elementsh, k ∈ A such that

f − λ + hg = (f − µ) exp(k).

It is not hard to see that for fixed(f, g) this indeed gives an equivalence relation. We denote the equivalence class
of λ by [λ].

Theorem 3.2 If (f − µ, g) ∈ U2(A), then[µ] is open inR.

The proof is the same as that of [14, Proposition 1.2], but allnumbers have to be real.

Theorem 3.3 Let (f, g) ∈ U2(A) and suppose that for some positiveǫ the interval(−∞, ǫ) belongs to the
real inversion set

IR(f, g) := {λ ∈ R | (f − λ, g) ∈ U2(A)}.

Then(f, g) is reducible inA.

The proof is similar to that of [14, Proposition 1.3]: Take a real numberM such thatM > ‖f‖. Then there
existsl ∈ A such thatf − (−M) = exp(l). Then(f − (−M), g) ∈ U2(A) and, by assumption,−M and0
belong to the same connected component ofIR(f, g). But then Theorem 3.2 implies thatµ = −M andλ = 0
are equivalent. (Otherwise the open connected set(−∞, ǫ) would split into disjoint open sets, namely certain
equivalence classes.) Thus there existh, k ∈ A such thatf + hg = (f − (−M)) exp(k) = exp(k + l).

3.2 Some notation and terminology.

When we consider domains with holes in sections 5 and 6, the following notation will be convenient.

Notation 3.4 Let D denote a bounded symmetric domain inC with n holes, having a boundary that is a
union of pairwise disjoint Jordan curves. The outer boundary curve is denoted byΓn+1. From thesen holes,
bounded by pairwise disjoint Jordan curvesΓj , we haver holes intersectingR and2m which do not intersect
R. Heren = r + 2m. For notational reasons the Jordan curvesΓj belonging to the upper half plane are
indexed byj = r + 1, . . . , r + m, while the Jordan curves belonging to the lower half plane are indexed by
j = r + m + 1, . . . , r + 2m. These curvesΓr+m+j are the reflection ofΓr+j . Let Cj be a hole ofD (j =
1, . . . , r, r+1, . . . , r+2m). Choose for eachj ∈ {1, . . . , r} a pointxj ∈ R∩Cj , and forj ∈ {r+1, . . . , r+m}
let zj ∈ Cj . Finally letS = {x1, . . . , xr, z1, . . . , zm, z∗1 , . . . , z∗m}. See Figure 1. To ensure that the domainD
is always to the left of the orientation, we assume that the Jordan curvesΓ1, . . . , Γn surrounding the holes are
negatively oriented, whereas the outer boundary curveΓn+1 is positively oriented.
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Fig. 1 The domainD with n = r + 2m holes.

Definition 3.5 If D denotes an open subset ofC, then we say thecorona theoremholds forA (⊂ AR(D)) if
the following is true for alln ∈ N:

(f1, . . . , fn) ∈ Un(A) if and only if there existsδ > 0 such that
∑n

j=1
|fj(z)| ≥ δ (z ∈ D), that is, if and

only if the functionsf1, . . . , fn have no common zero inD.

Definition 3.6 For functionsg ∈ AR(D) thezero setZg of g is

Zg := {z ∈ D | g(z) = 0},

and forδ > 0 the level setZ(δ) is

Z(δ) := {z ∈ D | |g(z)| ≤ δ}.

Of course the inclusionZg ⊂ Z(δ) holds.

Following B. Wick [18], we will use the following terminology:

Definition 3.7 Let f, g ∈ AR(D). The functionf is said to bepositive on real zeros ofg (abbreviated asf is
POZ ofg), if f has the same sign at all real zeros ofg.

For example, consider(f, g) := (z, 1 − z2) ∈ AR(D)2. Thenf is not POZ ofg.

3.3 Technical lemmata.

In this subsection, we will prove two technical lemmata which will be used in the sequel. The first one is well-
known among the workers in the field. For the sake of completeness we include a proof.

Lemma 3.8 For every functiong ∈ AR(D), the complementC \ Z(δ) of the level setZ(δ) is connected.
Moreover, the complementC \ Zg of the zero setZg is also connected.

P r o o f. For constant functionsg the assertions are trivially true. So we may assume thatg is non constant.
By the very definitionC \ D ⊂ C \ Z(δ), and so ifC \ Z(δ) is not connected, there exists a bounded component
G ⊂ D. Being in the complement of the level set, we must have|g(z)| ≥ δ for all z ∈ ∂G ⊂ D. On the other
hand,|g(z)| ≤ δ for all z ∈ ∂G ⊂ D, because∂G ⊂ ∂(C \ Z(δ)) = ∂Z(δ) ⊂ Z(δ). This gives|g(z)| = δ for
all z ∈ ∂G by the maximum modulus theorem, implying|g(z)| ≤ δ for all z ∈ G, a contradiction. Hence no
such bounded component of the complement ofZ(δ) can exist. ThatC \ Zg is connected follows from

C \ Zg =
⋃

δ>0

(C \ Z(δ))

and the fact that
⋂

δ>0
(C \ Z(δ)) 6= ∅ (indeed,C \ D ⊂ C \ Z(δ) for everyδ > 0).
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In order to facilitate handling zero sets, we prove the following result, in which we enclose the zero set by
finitely many closed sets.

Lemma 3.9 Let g ∈ AR(D) be such that it has at least one zero inD, but it does not vanish identically. Then
for all δ > 0, there exist finitely many closed setsH1, . . . , HN ⊂ D, lying symmetrically with respect to the real
axis, that is,Hj = H∗

k for certainj, k, with the following properties:

1. Zg ⊂ ∪N
j=1Hj ⊂ Z(δ).

2. Hj ∩ Hk = ∅ (j 6= k).

3. 1◦ If no real zero ofg belongs toHj , thenHj ∩ R = ∅, Hj belongs entirely to the upper (respectively
lower) half plane, andHj = H∗

k for somej 6= k.

2◦ If at least one real zerox0 of g belongs toHj (that is,x0 ∈ Zg ∩ Hj ∩ R), thenHj = H∗

j holds and
Hj is connected.

P r o o f. The zero setZg is compact, hence finitely many componentsKj , j = 1, . . . , M , of the relatively
open setH := {z ∈ D | |g(z)| < δ} will suffice to coverZg. Note that these components are open becauseH
is locally connected. SinceH is symmetric with respect to the real axis, its components are symmetric as well.
Unfortunately, the closuresKj need not be disjoint. However, we may take the closed connected components of⋃N

j=1
Kj; at most there areM such components. These components are symmetric as well.

To ensure all the three assertions hold, we must eventually truncate the closed setsKj:

1◦ If no real zero ofg is in Kj , then|g(z)| ≥ ρj > 0 for all z ∈ (Kj ∩ R) × (|Im(z)| ≤ δj). Hence no zero
of g belongs toz ∈ (Kj ∩ R) × (|Im(z)| ≤ δj). We truncate as follows:Hj := Kj ∩ (|Im(z)| ≥ δj). The
closed setKj splits in two closed sets belonging entirely to the upper (respectively lower) half plane.

2◦ If at least one real zero ofg belongs toKj , then we don’t truncate, that is,Hj := Kj. By symmetry we have
Hj = H∗

j , andHj = Kj is connected, becauseKj is.

By construction all the zeros ofg belong to exactly one closed setHj , j = 1, . . . , N .

4 Reducibility in real symmetric algebras on the disc

In this section we generalize the main result of B. Wick [18] to subalgebrasA of AR(D).
In real algebrasA ⊂ AR(D) where the corona theorem holds, the real inversion set from Theorem 3.3 is given

by

IR(f, g) = R \ f(Zg).

That the corona theorem holds forAR(D) follows easily from the corona theorem for the complex algebraA(D)
by symmetrization of the solution. We refer the reader to [10] for a constructive proof (not using any Gelfand
theory nor Banach algebra theory) of the corona theorem for certain subalgebras ofA(D) and certain domainsD
(including, of course,D).

Theorem 4.1(Units) Let A denote one of the algebrasAR(D), CR(D) respectively. For any unitu ∈ A−1

eitheru or −u can be expressed as

u = exp(h),

whereh ∈ A.

P r o o f. First of all we prove the theorem in caseA = CR(D). Choose a closed discU ⊃ D, small enough
so that a continuous extension ofu to U has no zeros inU . Using a theorem of Borsuk [3, Corollary 4.33], there
exists a continuous logarithmh onU ⊃ D. However, this functionh need not be symmetric. Because the unitu
is symmetric we derive

u(z) = exp(h(z)) = exp((h(z∗))∗), z ∈ D.
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8 Rupp and Sasane: Stable rank and reducibility in real algebras

BecauseD is connected andh is continuous inD, there exists an integerk such that

h(z) = (h(z∗))∗ + 2kπi.

Restricting to the interval[−1, 1] gives Imh(x) = kπ. Sinceu is a unit,u(z) is either a positive or negative real
number whenz ∈ [−1, 1].

1◦ If u(x) > 0, then we haveu(x) = exp h(x) > 0, that is, the integerk is even. But thenh − kπi is a
symmetric continuous logarithm ofu.

2◦ If u(x) < 0, then we just look at the unit−u.

Hence there existsh ∈ CR(D) such thatu = exp(h).
The remaining caseA = AR(D) now follows from the first case and the implicit function theorem as follows:

By the holomorphic inverse function theorem applied toz 7→ exp(z), we see that it has a local holomorphic
inverse around each pointz0, saygz0

. Thusz 7→ h(z) = gz0
(u(z)) is holomorphic nearz0 as well.

Theorem 4.2 Let A denote a subalgebra ofAR(D) containing all real polynomials such that the corona
theorem holds forA. The following are equivalent for any unimodular pair(f, g) ∈ U2(A):

1. There exists a continuous and zero free extensionF of f from the zero setZg to F ∈ CR(D)−1.

2. (f, g) is reducible inA, that is, there exists a unitu ∈ A−1 and there exists ah ∈ A such thatf + hg = u.

P r o o f. The implication (2)⇒(1) is obvious: indeed if there existh ∈ A and a unitu ∈ A−1 such that
f + hg = u, thenu serves as the desired zero free extension off from the zero setZg to u ∈ CR(D)−1.

(1)⇒(2): Using Theorem 4.1 for units inCR(D), we write eitherF or−F as

F = exp(K),

whereK ∈ CR(D). For eitherf or−f this gives

f(z) = exp(K(z)) (z ∈ Zg),

and sof (respectively−f ) is in fact an exponential on the zero setZg.
If g is the zero function thenf must be invertible inA, because the pair(f, 0) was assumed to be unimodular.

So (f, 0) is reducible inA, and the unitu is just the functionf . Hence we may assume thatg is not the zero
function, and so the interior of the zero setZg is empty by the identity theorem. By Lemma 3.8 the complement
C\Zg of the zero set is connected. Using Mergelyan’s theorem there exist polynomialsqn converging uniformly
on Zg to K. BecauseK is symmetric, we can also approximate by the symmetrizationof qn, that is, the real
polynomialsq̃n given by

q̃n(z) :=
qn(z) + (qn(z∗))∗

2

converge uniformly toK too. Pick a real polynomialq such that

Re(f(z) exp(−q(z))) > 1/2 (z ∈ Zg).

Using the corona theorem, all pairs(f exp(−q)−λ, g) are unimodular forλ ∈ (−∞, 1/2). For the real inversion
set from Theorem 3.3 this gives the inclusion

IR(f exp(−q), g) = R \ (f exp(−q))(Zg) ⊃ (−∞, 1/2).

Again Theorem 3.3 shows that(f exp(−q), g) is reducible inAR(D), hence(f, g), that is, there exists a unit
U ∈ AR(D)−1 andH ∈ AR(D) such that

f + Hg = U.
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U being a unit, we must have

|U(z)| > δ > 0 (z ∈ D).

Now the real polynomials are dense inAR(D). Take real polynomialsh ∈ A nearH such that

|U(z) − (H(z) − h(z))g(z)| > δ/2 > 0 (z ∈ D).

We conclude that

f + hg = U − (H − h)g

belongs to the algebraA and has no zeros inD and so it is invertible, proving the reducibility of(f, g) in A.

Theorem 4.3 Let A denote a subalgebra ofAR(D) containing all real polynomials such that the corona
theorem holds forA. The following assertions are equivalent for any unimodular pair (f, g) ∈ A2:

1. (f, g) is reducible inA.

2. f is POZ ofg.

P r o o f. (1)⇒(2): Suppose that(f, g) is reducible inA. Then there existh, u ∈ A, u ∈ A−1 such that

f + h · g = u.

By Theorem 4.1 eitheru or−u can be written as

u = exp(k),

for a functionk ∈ AR(D). We arrive atf +h ·g = exp(k), respectively the same equation with− exp(k) instead
of exp(k). Hence the functionf is POZ ofg.

(2)⇒(1): Now assume thatf is POZ ofg. If g has no zero at all inD, then we have|g(z)| ≥ ρ > 0 for all z ∈ D.
But thenM := (1 + ‖f‖

∞
)/ρ gives

|f(z) + Mg(z)| > 1 + ‖f‖
∞

− ‖f‖
∞

= 1,

and sof + Mg is invertible inA; hence the pair(f, g) is reducible. We may also assume thatg is not the zero
function. Otherwisef itself is invertible and again the pair(f, g) would be reducible. So our assumption is:g
has at least one zero inD but is not identically zero. In order to use Theorem 4.2, we must show that there exists
a continuous, zero free extensionF of f from the zero setZg to D.

Because(f, g) is unimodular there existsδ > 0 such that|f(z)| + |g(z)| ≥ δ for all z ∈ D. By Lemma 3.9
(with δ/2 instead ofδ), there exist finitely many pairwise disjoint closed setsH1, . . . , HN ⊂ D lying symmetri-
cally with respect to the real axis, such that:Zg ⊂ ∪N

j=1Hj and|g(z)| ≤ δ/2 holds there. Hence|f(z)| ≥ δ/2
in the union of this sets. Moreover, we have a continuous logarithm of f on Z(δ/2): To prove this we quote
a theorem of Borsuk, see [3, Corollary 4.33]: Every continuous, zero-free function onZ(δ) has a continuous
logarithm onZ(δ) if and only if C \ Z(δ) is connected. This is the case by Lemma 3.8. In particular, there exist
functionslj , continuous in the closed setsHj ⊂ Z(δ), such that

f(z) = exp(lj(z)), z ∈ Hj , j = 1, . . . , N.

By assertion (3) of Lemma 3.9, if no real zero ofg belongs toHj thenHj ∩ R = ∅. Moreover,Hj belongs
entirely to the upper (respectively lower) half plane. The desired logarithm is very easy to obtain for these sets,
because they don’t intersect the real line. By symmetry we haveHj = H∗

k for somej 6= k. So we may redefine
lj(z) = (lk(z∗))∗.

Thus only the case of a real zerox0 of g belonging toHj remains to be discussed. In this caseHj is connected.
Sincef is POZ ofg, we may assume thatf(x0) > 0 holds for all real zeros ofg. Becausef is real symmetric
we derive

f(z) = exp(lj(z)) = exp((lj(z
∗))∗) (z ∈ Hj = H∗

j ).
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10 Rupp and Sasane: Stable rank and reducibility in real algebras

SinceHj is connected andlj is continuous inHj , there exists an integerk such that

lj(z) = (lj(z
∗))∗ + 2kπi.

Restricting to the real zerox0 ∈ Hj ∩ R of g gives Imlj(x0) = kπ. As f(x0) = exp(lj(x0)) > 0, the integerk
must be even. Nowlj − kπi is the desired symmetric logarithm off onHj = H∗

j .
By Tietze’s Theorem we can find a continuous functionl onD such that

l(z) = lj(z) z ∈ Hj , j = 1, . . . , N.

The desired logarithm is now given by symmetrization inD:

L(z) :=
l(z) + (l(z∗))∗

2
.

Recall that we either havelj(z) = (lk(z∗))∗ for Hj = H∗

k , j 6= k, or elselj(z) = (lj(z
∗))∗ andHj = H∗

j . We
end up withF = exp(L), where we haveexp(L(z)) = f(z) (z ∈ Zg).

5 Units in AR(D) and CR(D)

We recall the notation of the winding numbern(Γ; z) from [3, Definition 4.2]:
Let Γ denote a closed loop given by a continuous parametrizationt 7→ ζ(t) (a ≤ t ≤ b), andz denote a point

outsideΓ. Then there exists a continuous logarithmh of ζ(t) − z, that is

ζ(t) − z = exp(h(t)), a ≤ t ≤ b.

The winding numbern(Γ; z) is defined to be

n(Γ; z) :=
h(b) − h(a)

2πi
=

φ(b) − φ(a)

2π
,

whereφ denotes the imaginary part of the logarithmh. From this definition the following facts are easily seen:

(F1) Letf, g denote zero free continuous functions near the closed loopΓ. Then we can form the closed loops
f(Γ), g(Γ), (f · g)(Γ) by their parametrizationsf(ζ(t)), g(ζ(t)), (f · g)(ζ(t)), respectively. Sincef andg
never vanish onΓ, we conclude

n((f · g)(Γ); 0) = n(f(Γ); 0) + n(g(Γ); 0).

Also n(exp(f)(Γ); 0) = 0.

(F2) The curvesΓr+m+j are the reflection ofΓr+j with reversedorientation, and so

n(f(Γr+m+j); 0) = n(f(Γr+j); 0)

holds for all continuous symmetric functions, zero free near Γr+j .

Theorem 5.1(Product theorem for units)Let the notations be as in Notation 3.4. LetA denote one of the
algebrasAR(D), CR(D). For any unitu ∈ A−1 there exist integersn1, . . . , nr, nr+1, . . . , nr+m and a function
h ∈ A such that the following structure theorem holds: Eitheru or −u can be factored as

u = p · exp(h),

wherep ∈ A−1, h ∈ A and the unitp is given by

p(z) =

r∏

j=1

(z − xj)
nj ·

m∏

j=1

(z2 − 2(Re(zj))z + |zj |
2)nr+j .
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P r o o f. Choose a small compact neighborhoodU ⊃ D, so small that a continuous extension ofu to U has
no zeros inU . Each hole ofU belongs to exactly one hole ofD. The factorization foru in U follows then from
[3, Theorem 4.59]. To be precise:

u = p · exp(h),

wherep ∈ A−1, h is analytic inU ⊃ D, and the unitp is given by

p(z) =
r∏

j=1

(z − xj)
nj

m∏

j=1

(z − zj)
nr+j

m∏

j=1

(z − z∗j )nr+m+j .

With these products and the facts above we can compute the integersnk (k = 1, . . . , r + 2m):

n(u(Γk); 0) =
r∑

j=1

nj ·n(Γk; xj)+
m∑

j=1

nr+j ·n(Γk; zj)+
m∑

j=1

nr+m+j ·n(Γk; z∗j )+n(exp(h)(Γk); 0),

that is,n(u(Γk); 0) = nk (k = 1, . . . , r+2m). Recall that the curvesΓr+m+j are the reflection ofΓr+j . Observe
that reflection hasreversedorientation. Using the fact F2 and the symmetric choice of our points, we derive

nr+m+j = n(u(Γr+m+j); 0) = n(u(Γr+j); 0) = nr+j (j = 1, . . . , m).

We conclude that
(
z − z∗j

)nr+m+j · (z − zj)
nr+j = (z2 − 2 · Re(zj) · z + |zj|

2)nr+j (j = 1, . . . , m).

This proves the product representation. We now show that thelogarithmh can be chosen to be symmetric. Using
the symmetry of the functionsu andp, we conclude that

exp(h(z∗)∗) = exp(h(z))

holds in the connected setD. Thus there is an integerk such thath(z) = (h(z∗))∗+2kπi. Hence Im(h(x)) = kπ
(x ∈ R ∩D). Take a pointx0 ∈ R ∩D, such thatx0 > max{x1, . . . , xr}. Thenp(x0) > 0, and we consider the
two cases:

1◦ If u(x0) > 0, then we haveexp h(x0) = u(x0)/p(x0) > 0. Since Im(h(x0)) = kπ it follows thatk is even.
But thenh − kπi is a symmetric logarithm ofu/p.

2◦ If u(x0) < 0, then we just look at the unit−u.

6 Reducibility in algebras of real symmetric functions

In this section we generalize our technical lemmata to the case of certain finitely connected domains.

Lemma 6.1 LetD denote a domain as described in Notation 3.4. For every non constant functiong ∈ AR(D),
the complementC \ Z(δ) of the level setZ(δ) is connected for all sufficiently smallδ > 0. Moreover, the
complementC \ Zg of the zero setZg is also connected.

P r o o f. We will first prove that the complementC \ Zg of the zero set is connected. Ifg is not identically
zero, then by [15, Theorem 3.1], the zero setZg ⊂ D is totally disconnected, and so its covering dimension is
zero. Hence its open complementC \ Zg is connected, see [8, Theorem IV.4].

Now we prove thatC \ Z(δ) is connected. We connect each holeCj by pairwise disjoint cross-cutsQj ⊂ D,
j = 1, . . . , n, connectingΓj to Γj+1 such thatg(z) 6= 0 for all z ∈

⋃n

j=1
Qj.(This can best be done mappingD

homeomorphically onto the closure of a circular domain, seefor example [11]. Note that even in this situation,
the zero set remains totally disconnected.)
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12 Rupp and Sasane: Stable rank and reducibility in real algebras

Assume thatδ is sufficiently small, that isδ < δ0/2, where

δ0 := min

{
|g(z)|, z ∈

n⋃

j=1

Qj

}
.

From Topology we know thatD \
⋃n

j=1
(Qj ∪Cj) is a simply connected domain. The restriction to the choiceδ

gives

Z(δ) ⊂ D \
n⋃

j=1

(Qj ∪ Cj).

If C \ Z(δ) is not connected, then there exists a bounded componentG. In contrast to the simply connected case
D, we may have two cases:

1◦ G ⊂ D or

2◦ G ∩ (C \ D) 6= ∅, that is, there existsz0 ∈ G belonging to a hole, sayC: soz0 ∈ C. But then the holeC is
contained inG. Using our cross-cuts we can find a path inC\Z(δ) connectingC to the outer boundaryΓn+1

of D and beyond. So the starting point of this path belongs toG, whereas the endpoint does not. Hence there
exists a boundary pointw ∈ ∂G belonging to

⋃n

j=1
Qj ⊂ D. Since∂G ⊂ ∂(C \ Z(δ)) = ∂Z(δ) ⊂ Z(δ)

we must have|g(w)| ≤ δ, contradicting the choice ofδ < δ0

2
= 1

2
min{|g(z)|, z ∈

⋃n

j=1
Qj}.

Thus only the first caseG ⊂ D remains to be dealt with. But this is done exactly as in the proof of Lemma 3.8.
Hence no such bounded component of the complement ofZ(δ) can exist.

Lemma 6.2 Let D denote a domain as described in Notation 3.4 and letg ∈ AR(D) be such that it has at
least one zero inD, but it does not vanish identically. Then for allδ > 0, there exist finitely many closed sets
H1, . . . , HN ⊂ D, lying symmetrically with respect to the real axis, that is,Hj = H∗

k for certainj, k, with the
following properties:

1. Zg ⊂ ∪N
j=1Hj ⊂ Z(δ).

2. Hj ∩ Hk = ∅ (j 6= k).

3. 1◦ If no real zero ofg belongs toHj , thenHj ∩ R = ∅, Hj belongs entirely to the upper (respectively
lower) half plane, andHj = H∗

k for somej 6= k.

2◦ If at least one real zerox0 of g belongs toHj (that is,x0 ∈ Zg ∩ Hj ∩ R), thenHj = H∗

j holds and
Hj is connected.

P r o o f. The proof proceeds exactly as in the proof of Lemma 3.9. Note that the components of the level set
H are open becauseH := {z ∈ D | |g(z)| < δ} are locally connected by the Jordan curve theorem. We just
replace the use of Lemma 3.8 by Lemma 6.1.

Theorem 6.3 Let the notations be as in 3.4 above. LetA denote a subalgebra ofAR(D) containing all real
polynomials such that the corona theorem holds forA. Let(f, g) ∈ A2 be a unimodular pair. Then the following
assertions are equivalent:

1. There exists a continuous and zero free extensionF of f from the zero setZg to F ∈ CR(D)−1.

2. (f, g) is reducible inA, that is, there exists a unitu ∈ A−1 andh ∈ A such thatf + hg = u.

P r o o f. The implication (2)⇒(1) is obvious: indeed if there existh ∈ A and a unitu ∈ A−1 such that
f + hg = u, thenu serves as the desired zero free extension off from the zero setZg to u ∈ CR(D)−1.

(1)⇒(2): Using the factorization theorem 5.1 for units inCR(D), we can factor eitherF or−F as

F = p · exp(K),
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wherep ∈ A−1 (becauseA contains all polynomials and the corona theorem holds) andK ∈ CR(D). For either
f or−f this gives

f(z)

p(z)
= exp(K(z)) (z ∈ Zg),

and so the fraction is in fact an exponential on the zero setZg. The rest of the proof is now entirely analogous to
the corresponding case in the proof of Theorem 4.2.

Recall the Notation 3.4: LetD denote a symmetric domain inC with n holes. From thesen holes, bounded
by pairwise disjoint Jordan curves, we haver holes intersectingR and 2m which do not intersectR. Here
n = r + 2m.

Let Cj be a hole ofD (j = 1, . . . , r, r +1, . . . , r +2m). Choose for eachj ∈ {1, . . . , r} a pointxj ∈ R∩Cj ,
and forj ∈ {r + 1, · · · r + m} let zj ∈ Cj .

Finally let S = {x1, . . . , xr , z1, . . . , zm, z∗1 , . . . , z∗m}. See Figure 1. For such domains we associate the
following family of 2r polynomials:

P :=

{
p(z) :=

r∏

j=1

(z − xj)
mj

∣∣∣∣ mj ∈ {0, 1}

}
. (1)

As an example, consider an annulus with center at the origin,and let us choosex1 = 0. ThenP has only two
polynomials, namelyp1(z) := 1 andp2(z) := z.

In [18], Brett Wick showed that a unimodular pair(f, g) in AR(D)2 is reducible inAR(D) if and only if f is
POZ ofg. We generalize this result from the case ofD to our domainsD.

Theorem 6.4 As in Notation 3.4, letD denote a symmetric domain withn holes, bounded by pairwise disjoint
Jordan curves, and letP denote the associated family of2r polynomials (1). LetA denote a subalgebra ofAR(D)
containing all real polynomials such that the corona theorem holds forA. The following assertions are equivalent
for a unimodular pair(f, g) ∈ A2:

1. (f, g) is reducible inA.

2. For at least one polynomialp ∈ P the productp · f is POZ ofg.

P r o o f. (1)⇒(2): Suppose that(f, g) is reducible inA. Then there existh, u ∈ A, u ∈ A−1 such that

f + h · g = u.

By the factorization theorem for units (Theorem 5.1) inAR(D), there exists an invertible polynomialP ∈ A
such that eitheru or−u can be factored as

u = P · exp(k),

for a functionk ∈ AR(D). We arrive atf + h · g = P · exp(k), respectively the same equation with−P instead
of P . Hence the functionP · f is POZ ofg. But the sign ofP (x) depends only on the exponents modulo2 of its
linear factorsx − xj . So we can find a polynomialp ∈ P such thatp · f is POZ ofg.

(2)⇒(1): Now assume that for a polynomialp ∈ P the productp · f is POZ ofg. Sincep ∈ A−1, it is enough to
show that the corona pair(f̃ , g) is reducible, wherẽf := f/p. The rest of the proof is entirely analogous to the
corresponding case in the proof of Theorem 4.3.

Remark 6.5 The familyP obviously depends on the choice of points in the associated set S, hence so does
the second assertion in Theorem 6.4, whereas the question ofreducibility is independent of the particular choice
of S. This mystery can be cleared by Eilenberg’s theorem [3, Exercise 4.36, p. 100]:

For any two pointsa, b belonging to the same hole ofD there exists a continuous logarithmlog z−a
z−b

which we
think of as extended continuously toC. Thus the product representation of the unit in the proof of Theorem 6.4
won’t change much as long as both points belong to the same hole.
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14 Rupp and Sasane: Stable rank and reducibility in real algebras

The proof of Theorem 2.1 can be generalized to the real BanachalgebrasAR(D), whereD is as in Notation
3.4. By Mergelyan’s theorem, (real) rational functions aredense in this Banach algebra, and so the proof alters
only slightly. So we conclude that the Bass stable rank of these algebras is less than or equal2. However, our
domainsD contain an open interval(a, b) ⊂ R. Consider the unimodular pair(z − a+b

2
, (z − a)(z − b)). The

necessary condition thatf is POZ ofg is violated, and so this pair is not reducible, hence the stable rank of
AR(D) is 2. Are there situations where the stable rank of the real algebras is one? Obviously we must allow open
sets instead of domains, since there are no symmetric domains such thatD ∩ R = ∅.

Question: For which bounded symmetric open setsD ⊂ C do we have bsrAR(D) = 1?

If the stable rank ofAR(D) is 1, then the open setD necessarily must fulfill the following requirement:D∩R

is either empty or totally disconnected.
If D∩R is not empty and not totally disconnected, then it contains an open interval(a, b) ⊂ R. The unimodular

pair (z − a+b
2

, (z − a)(z − b)) is again not reducible by the intermediate value theorem.

Theorem 6.6 Let D ⊂ C be a bounded symmetric open set such thatD+ := D ∩ {Im(z) > 0} is a finitely
connected domain andD ∩ R is either empty or a totally disconnected set of linear measure zero. Then the Bass
stable rank ofAR(D) is 1.

P r o o f. Using [5, Theorem 3.11], we see that the complex Banach algebraA(D+) has Bass stable rank one,
because by Mergelyan’s theorem the rational functions withpoles offD+ are dense inA(D+). Again the corona
theorem holds inA(D) by Arens’s theorem, hence inAR(D), see for example [6, Theorem 1.9, p. 31]. Let(f, g)
be a unimodular pair inAR(D). If D ∩ R = ∅, we proceed as follows: the unimodular pair(f, g) is reducible in
A(D+), that is, there existu, h ∈ A(D+), u invertible inA(D+) such thatf + hg = u . Now we reflectu, h to
the lower half plane. SinceD ∩ R = ∅ this reflection is well-defined, hence(f, g) is reducible inAR(D).

So we may assume thatD ∩ R is not empty and is a totally disconnected set of linear measure zero.

1◦ f(x) 6= 0 for all x ∈ D ∩ R.

Take a peak-functionp in the upper half plane for the totally disconnected setD ∩ R of linear measure
zero. The existence of such a peak function follows from Rudin’s theorem (see for instance [7, p. 81]) by
conformally mapping the unit disc onto the upper half plane.Then the functionq := 1 − p ∈ A(D+)

vanishes atz0 if and only if z0 ∈ D ∩ R. The corona theorem forA(D+) and1◦ now implies that the pair
(f, q · g) is unimodular inA(D+), and so it is reducible inA(D+). Thus there existsh ∈ A(D+) such that
f + h · (qg) has no zeros inD+. We define the functionH ∈ AR(D) by reflection:H(z) := h(z)q(z) in
casez ∈ D+ andH(z) := (h(z∗)q(z∗))∗ in casez ∈ D \ D+. Sinceq vanishes identically onD ∩ R this
reflection is well-defined. We conclude thatf + H · g has no zeros inD and so it is invertible by the corona
theorem. Therefore the pair(f, g) is reducible inAR(D).

2◦ f(x) = 0 for somex ∈ D ∩ R.

We approximatef uniformly by real rational functionsfn on D, and again use Mergelyan’s theorem and
symmetry. SinceD ∩ R is totally disconnected, we can perturb the finitely many zeros of fn slightly
(respecting symmetry) such thatfn has no zeros inD ∩ R. Using 1◦ we see that the pairs(fn, g) are
reducible inAR(D), and so(f, g) is reducible inAR(D), see for example [5, Lemma 3.7].

Acknowledgement:The authors thank the referees for their numerous comments which improved the exposition
of the paper.
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