
ON THE STANLEY DEPTH OF WEAKLY POLYMATROIDAL
IDEALS

M. R. POURNAKI, S. A. SEYED FAKHARI, AND S. YASSEMI

Abstract. Let K be a field and S = K[x1, . . . , xn] be the polynomial ring in n
variables over the field K. In this paper, it is shown that Stanley’s conjecture holds
for I and S/I if I is a product of monomial prime ideals or I is a high enough power
of a polymatroidal or a stable ideal generated in a single degree.

1. Introduction

Let K be a field and S = K[x1, . . . , xn] be the polynomial ring in n variables over
the field K. Let M be a finitely generated Zn-graded S-module. Let u ∈ M be a
homogeneous element and Z ⊆ {x1, . . . , xn}. The K-subspace uK[Z] generated by all
elements uv with v ∈ K[Z] is called a Stanley space of dimension |Z| if it is a free K[Z]-
module. Here, as usual, |Z| denotes the number of elements of Z. A decomposition
D of M as a finite direct sum of Stanley spaces is called a Stanley decomposition of
M . The minimum dimension of a Stanley space in D is called Stanley depth of D and
is denoted by sdepth(D). The quantity

sdepth(M) := max
{
sdepth(D) | D is a Stanley decomposition of M

}
is called Stanley depth of M . Stanley [10] conjectured that

depth(M) ≤ sdepth(M)

for all Zn-graded S-modules M . For a reader friendly introduction to the Stanley
depth, we refer the reader to [8].

Let I be a monomial ideal of S whose Rees algebra is R(I) and let m = (x1, . . . , xn)
be the graded maximal ideal of S. Then the K-algebra R(I)/mR(I) is called the fibre
ring, and its Krull dimension is called the analytic spread of I and is denoted by `(I).
This invariant is a measure for the growth of the number of generators of the powers
of I. Indeed, for k � 0, the Hilbert function H(R(I)/mR(I), K, k) = dimK(Ik/mIk),
which counts the number of generators of the powers of I, is a polynomial function
of degree `(I)− 1.

Let I be a weakly polymatroidal ideal of S which is generated in a single degree
and `(I) its analytic spread. In this paper, we show that sdepth(I) ≥ n − `(I) + 1
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and sdepth(S/I) ≥ n− `(I) (see Theorem 2.5) and we conclude that if I is a product
of monomial prime ideals of S, then I and S/I satisfy Stanley’s conjecture. We also
show that if either I is a polymatroidal ideal or it is a stable ideal of S which is
generated in a single degree, then Ik and S/Ik satisfy Stanley’s conjecture for k � 0
(see Corollaries 2.7 and 2.11).

2. The results

In this paper, we deal with polymatroidal ideals. They were introduced in [4]
and represent a natural generalization of matroidal ideals. In the following, we define
polymatroidal ideals, and for more detailed information, we refer the reader to [4, 5, 6].

Definition 2.1. Let I be a monomial ideal of S = K[x1, . . . , xn] which is generated
in a single degree, and assume that G(I) is the set of minimal monomial generators of
I. The ideal I is called polymatroidal if the following exchange condition is satisfied:
For monomials u = xa1

1 . . . xan
n and v = xb1

1 . . . xbn
n belonging to G(I) and for every i

with ai > bi, one has j with aj < bj such that xj(u/xi) ∈ G(I).

Weakly polymatroidal ideals are generalizations of polymatroidal ideals, and they
are defined as follows.

Definition 2.2 ([5], Definition 12.7.1). A monomial ideal I of S = K[x1, . . . , xn]
is called weakly polymatroidal if for every two monomials u = xa1

1 . . . xan
n and v =

xb1
1 . . . xbn

n in G(I) such that a1 = b1, . . . , at−1 = bt−1 and at > bt for some t, there
exists j > t such that xt(v/xj) ∈ I.

It is clear from the above definition that every polymatroidal ideal is weakly poly-
matroidal.

Lemma 2.3. Let I be a monomial ideal of S = K[x1, . . . , xn] which is generated in a
single degree. Then for every 1 ≤ i ≤ n, we have `((I : xi)) ≤ `(I).

Proof. It is enough to show that for every integer k ≥ 1, µ(Ik) ≥ µ((I : xi)
k), where

µ(I) denotes the number of minimal generators of I. Now assume that I is generated
in degree p and G(I) = {u1, . . . , us} is the set of minimal monomial generators of
I. Without loss of generality, we may assume that there exists 0 ≤ t ≤ s such that
u1, . . . , ut are divisible by xi and ut+1, . . . , us are not divisible by xi. Let u′j = uj/xi

(1 ≤ j ≤ t).
For every integer k ≥ 1, we define an injective map f from G((I : xi)

k) to G(Ik),
and this completes the proof. In order to do this, let u ∈ G((I : xi)

k). Then we may
write u as below, where 0 ≤ q ≤ k:

u = u′i1 . . . u′iquiq+1 . . . uik .

Note that q = kp − deg(u), and therefore q is independent from the above represen-
tation. Therefore, we may define

f(u) := xq
i u = ui1 . . . uiquiq+1 . . . uik ∈ Ik.
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Since Ik is generated in degree pk, f(u) ∈ G(Ik). We now prove that f is injective.
Assume that there exist u, v ∈ G((I : xi)

k) such that f(u) = f(v). Then by definition
of f , for every j 6= i, we have degxj

(u) = degxj
(v). Hence, if degxi

(u) > degxi
(v),

then v|u and if degxi
(v) > degxi

(u), then u|v and in the both cases we derive a
contradiction because u, v ∈ G((I : xi)

k). Therefore, degxi
(u) = degxi

(v) and so
u = v, which implies that f is injective. �

For proving our main result, we need the following lemma.

Lemma 2.4. Let I be a weakly polymatroidal ideal of S = K[x1, . . . , xn] which is
generated in a single degree. Then (I : x1) satisfies the same property.

Proof. It is clear from the definition that (I : x1) is a weakly polymatroidal ideal.
Therefore, we prove that it is generated in a single degree. Suppose that G(I) =
{u1, . . . , us} is the set of minimal monomial generators of I, and let deg(ui) = k.
Without loss of generality, we may assume that u1, . . . , ut are divisible by x1 and
ut+1, . . . , us are not divisible by x1, where 1 ≤ t ≤ s. Let vi = ui/x1 (1 ≤ i ≤ t).
We claim that (I : x1) is generated by v1, . . . , vt. In order to prove the claim, let
v ∈ (I : x1) be a monomial. Then x1v ∈ I and so there exists 1 ≤ i ≤ s in such a way
that ui divides x1v. If 1 ≤ i ≤ t, then v is divisible by vi and therefore v ∈ (v1, . . . , vt).
Therefore, we may assume that i ≥ t+1. Now ui is not divisible by x1 and so ui|v. By
Definition 2.2, there exists j ≥ 2 such that x1ui/xj ∈ I. Since deg(x1ui/xj) = k, there
exists 1 ≤ p ≤ t such that up = x1ui/xj and hence vp = ui/xj divides v and therefore
v ∈ (v1, . . . vt). This proves the claim and completes the proof of the lemma. �

We are now in the position to state and prove our main result.

Theorem 2.5. Let I be a weakly polymatroidal ideal of S = K[x1, . . . , xn] which is
generated in a single degree. Then we have the following assertions:

(i) sdepth(I) ≥ n− `(I) + 1 and sdepth(S/I) ≥ n− `(I).

(ii) depth(S/I) ≥ n− `(I).

Proof. We prove (i) and (ii) simultaneously by induction on n and k, where k is the
degree of generators of I. Let G(I) = {u1, . . . , us} be the set of minimal monomial
generators of I, and let deg(ui) = k. If n = 1, then I is a principal ideal, and so
we have `(I) = 1, sdepth(I) = 1, and depth(S/I) = sdepth(S/I) = 0. Therefore, in
this case, the inequalities in (i) and (ii) are trivial. If k = 1, then I is a complete
intersection and so `(I) = s. In this case, the inequality in (ii) is trivial, and the
inequalities in (i) follow from [9, Theorem 1.1] and [7, Proposition 3.4]. We now
consider n ≥ 2 and k ≥ 2. Assume that there exists a variable xj such that

xj /∈
s⋃

i=1

Supp(ui),

where for a monomial u ∈ S, Supp(u) is the set of variables which divide u. Hence,
xj is regular over S/I and so depth(S/I) = depth(Sj/ISj) + 1, where Sj is the
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polynomial ring obtained from S by deleting the variable xj. Therefore, the induction
hypothesis on n implies that depth(S/I) ≥ n − `(I). On the other hand, by [9,
Theorem 1.1] and [7, Lemma 3.6], we conclude that sdepth(S/I) = sdepth(Sj/ISj)+1
and sdepth(I) = sdepth(ISj) + 1. Therefore, using the induction hypothesis on n, we
conclude that sdepth(I) ≥ n − `(I) + 1 and sdepth(S/I) ≥ n − `(I). Therefore, we
may assume that

s⋃
i=1

Supp(ui) = {x1, . . . , xn}.

Let S ′ = K[x2, . . . , xn], and consider I ′ = I ∩ S ′ and I ′′ = (I : x1). Now I =
I ′S ′ ⊕ x1I

′′S and S/I = (S ′/I ′S ′) ⊕ x1(S/I ′′S) and therefore by the definition of
Stanley depth we have

(1) sdepth(I) ≥ min{sdepthS′(I ′S ′), sdepthS(I ′′)}
and

(2) sdepth(S/I) ≥ min{sdepthS′(S ′/I ′S ′), sdepthS(S/I ′′)}.
On the other hand, by applying the depth lemma on the exact sequence

0 −→ S/(I : x1) −→ S/I −→ S/(I, x1) −→ 0,

we conclude that

(3) depth(S/I) ≥ min{depthS′(S ′/I ′S ′), depthS(S/I ′′)}.
Using Lemmas 2.3 and 2.4 and the induction hypothesis on k, we now conclude that
depthS(S/I ′′) ≥ n− `(I), sdepthS(I ′′) ≥ n− `(I) + 1, and sdepthS(S/I ′′) ≥ n− `(I).

Note that I ′S ′ is a weakly polymatroidal ideal of S ′ which is generated in a single
degree. Since

x1 ∈
s⋃

i=1

Supp(ui)

and the generators of I ′S are not divisible by x1, using [5, Lemma 10.3.19], we conclude
that `(I ′S ′) ≤ `(I)− 1, and therefore, by our induction hypothesis on n, we conclude
that

sdepthS′(I ′S ′) ≥ (n− 1)− `(I ′S ′) + 1 ≥ (n− 1)− (`(I)− 1) + 1 = n− `(I) + 1

and similarly sdepthS′(S ′/I ′S ′) ≥ n− `(I) and depthS′(S ′/I ′S ′) ≥ n− `(I). Now the
inequalities (1), (2), and (3) complete the proof of the theorem. �

It is known and easy to prove that ht(I) ≤ `(I) for every monomial ideal I. In the
following corollary, we give a stronger lower bound for the analytic spread of a weakly
polymatroidal ideal which is generated in a single degree.

Corollary 2.6. Let I be a weakly polymatroidal ideal of S = K[x1, . . . , xn] which is
generated in a single degree. Then

max{ht(p) | p ∈ Ass(S/I)} ≤ `(I).
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Proof. Let p ∈ Ass(S/I) be given. By [2, Proposition 1.2.13] we have depth(S/I) ≤
n − ht(p), while by Theorem 2.5 we have depth(S/I) ≥ n − `(I). This implies that
ht(p) ≤ `(I) for every p ∈ Ass(S/I) and completes the proof of the corollary. �

Let I be a monomial ideal of S = K[x1 . . . , xn]. A classical result by Burch [3] says
that

min
t

depth(S/I t) ≤ n− `(I).

By a theorem of Brodmann [1], the quantity depth(S/I t) is constant for large t. We
call this constant value the limit depth of I, and we denote it by limt→∞ depth(S/I t).
Brodmann improved the Burch’s inequality by showing that

lim
t→∞

depth(S/I t) ≤ n− `(I).

Corollary 2.7. Let I be a polymatroidal ideal of S = K[x1, . . . , xn]. Then there exists
an integer k0 ≥ 1 such that for every k ≥ k0, Ik and S/Ik satisfy Stanley’s conjecture.

Proof. Note that by [5, Theorem 12.6.3], every power of a polymatroidal ideal is again
a polymatroidal ideal. Since every polymatroidal ideal is a weakly polymatroidal
ideal which is generated in a single degree, Theorem 2.5 implies that for every k ≥ 1,
sdepth(Ik) ≥ n− `(Ik) + 1 = n− `(I) + 1 and sdepth(S/Ik) ≥ n− `(Ik) = n− `(I).
Now applying Burch’s inequality completes the proof. �

Definition 2.8. Let F be a nonempty subset of [n]. We denote by PF the monomial
prime ideal (xi | i ∈ F ). A transversal polymatroidal ideal is an ideal I of the form

I = PF1PF2 . . . PFr ,

where F1, . . . , Fr is a collection of nonempty subsets of [n] with r ≥ 1.

It follows from the above definition that the product of transversal polymatroidal
ideals is again a transversal polymatroidal ideal and that every transversal polyma-
troidal ideal is a polymatroidal ideal.

Corollary 2.9. If I is a transversal polymatroidal ideal of S = K[x1, . . . , xn], then I
and S/I satisfy Stanley’s conjecture.

Proof. Note that by Theorem 2.5, we have sdepth(I) ≥ n−`(I)+1 and sdepth(S/I) ≥
n − `(I). Also, [6, Corollary 3.14] implies that depth(S/I) = n − `(I). Therefore, I
and S/I satisfy Stanley’s conjecture. �

One should note that Corollary 2.9 essentially says that if I is a product of some
monomial primes, then I and S/I satisfy Stanley’s conjecture.

Definition 2.10. Let u be a monomial in S = K[x1, . . . , xn]. We denote by m(u) the
maximum number j such that xj|u. Then a monomial ideal I of S is called a stable
ideal if for all monomials u ∈ I and all i < m(u) one has xi(u/xm(u)) ∈ I.

It is clear from the above definition that every stable ideal is weakly polymatroidal.
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Corollary 2.11. Let I be a stable ideal of S = K[x1, . . . , xn] which is generated in a
single degree. Then there exists an integer k0 ≥ 1 such that for every k ≥ k0, Ik and
S/Ik satisfy Stanley’s conjecture.

Proof. Since every power of a stable ideal is again stable, Theorem 2.5 implies that
for every k ≥ 1, sdepth(Ik) ≥ n − `(Ik) + 1 = n − `(I) + 1 and sdepth(S/Ik) ≥
n− `(Ik) = n− `(I). Now applying Burch’s inequality completes the proof. �
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