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Abstract

In this work we solve completely the starting and stopping problem when the dynamics of the

system are a general adapted stochastic process. We use backward stochastic differential equations

and Snell envelopes. Finally we give some numerical results.
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0. Introduction: First let us deal with an example in order to introduce the problem we consider

in this paper.

Assume that a power station produces electricity whose selling price fluctuates and depends on

many factors such as consumer demand, oil prices, weather and so on. It is well known that electricity

cannot be stored and when produced it should be consumed. Now for obvious economic reasons we

suppose that electricity is produced only when its profitability is satisfactory. Otherwise the power

station is closed up to time when the profitability is coming back, i.e., till the time when the market

selling price of electricity reaches a level which makes the production profitable again.
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So for the power station there are two modes: operating and closed. At the initial time, we assume

it is in its operating mode. On the other hand, like every economic unit, there are expenditures when

the station is in its operating mode as well as in the closed one. In addition, switching from a mode

to another is not free and generates sunk costs.

The problem we are interested in is to find the sequence of stopping times where one should

make decisions to stop the production and to resume it again successively in order to maximize the

profitability of the station and then to determine the maximum profit.

More precisely suppose the electricity market selling price is given by a stochastic process X =

(Xt)t≤T . As it is discussed previously, a management strategy of the power station is an increasing

sequence of stopping times δ = (τn)n≥1 where for n ≥ 1, τn ≤ τn+1 and τ2n−1 (resp. τ2n) are the

times where the station is switched from the operating to the closed mode (resp. conversely). Now let

J(δ) be the profit of the power station provided by the implementation of the strategy δ. Naturally it

depends on the given process X. Therefore we look for a strategy δ∗ such that J(δ∗) ≥ J(δ) for any

other δ.

The problem we consider in this paper is of real options type. It is usually called the reversible

investment problem. In recent years, real options area has attracted considerable interest

([BO],[BS],[DP],[DZ],...). The motivations are mainly related to decision making in the economic

sphere. For more details on this subject see e.g. the book by Dixit & Pindyck [DP] and the references

therein.

In the literature, our problem is also called starting and stopping (or switching). In the previous

example, we have considered electricity production. However there are many real cases where this

problem intervenes. Among others, we can quote the management of oil tankers, oil fields,....

From the economic point of view, the problem of starting and stopping has been already considered

by A.Dixit [D] in the case when T is infinite and X is a geometric Brownian motion. His approach is

based on elliptic PDEs.

In this article we solve completely the starting and stopping problem when the dynamics of the

system is a stochastic process X = (Xt)t≤T adapted with respect to a Brownian filtration, whatever

it may be and when T is finite. The main tools are the notions of reflected backward stochastic

differential equation (BSDE in short) and Snell envelope. We show that our problem turns into the

existence of a pair of adapted processes (Y 1, Y 2) which satisfies a system expressed by means of Snell

envelopes. In a second step, we show that the existence of an optimal strategy and its expression is

given. At the end we discuss a method to simulate the optimal strategy and we give some numerical

results.

Another interest of our work is that we bring a new point of view to tackle the starting and

2



stopping problem when the dynamic of the system is affected by the control. With respect to the

above example, it means that the process X depends on the running implemented strategy δ. Such

problems are met in the management of raw material mines like copper, gold, steel,... In [BO] and

[DZ], the approach is based on PDEs, and solution are provided only under fairly stringent conditions.

We think that our approach based on BSDEs could bring new results. Though this is a task with

which we deal with in a forthcoming paper.

This paper is organized as follows: Section 1 is devoted to the setting of the starting and stopping

problem. Further we show that our problem reduces to the existence of a pair of processes (Y 1, Y 2)

solution of a system expressed by means of Snell envelopes. Then we construct the optimal strategy. In

Section 3 we show the existence of (Y 1, Y 2) and we present examples. Finally we give some numerical

results.

1 Setting of the problem. Preliminary results

Throughout this paper (Ω,F , P ) is a fixed probability space on which is defined a standard d-

dimensional Brownian motion B = (Bt)t≤T whose natural filtration is (F0
t := σ{Bs, s ≤ t})t≤T .

Let F = (Ft)t≤T be the completed filtration of (F0
t )t≤T with the P -null sets of F , hence (Ft)t≤T

satisfies the usual conditions, i.e., it is right continuous and complete. We now introduce the following

notations: let

- P be the σ-algebra on [0, T ]× Ω of F-progressively measurable sets

-M2,k be the set of P-measurable and IRk-valued processes w = (wt)t≤T such that E[
∫ T

0
|ws|2ds] <

∞
- S2 be the set of P-measurable, continuous processes w = (wt)t≤T such that E[supt≤T |wt|2] < ∞
- S2

i be the subset of S2 of processes K := (Kt)t≤T which are non-decreasing and satisfy K0 = 0.

In particular, if K ∈ S2
i , then E(K2

T ) < ∞.

For any stopping time τ ∈ [0, T ], Tτ denotes the set of all stopping times θ such that τ ≤ θ ≤ T .

A management strategy is an increasing sequence of F-stopping times δ := (τn)n≥1 where for any

n ≥ 1, τ2n (resp. τ2n−1) are the moments where the production is frozen (resp. on).

A strategy δ := (τn)n≥1 is called admissible if P-a.s., limn→∞ τn = T . The set of admissible

strategies is denoted Da.

Now in a short period of time dt, when the production is open, it provides a profit which is equal

to ψ1(t,Xt)dt. The quantity ψ1(t,Xt) can be negative. Such a situation happens when the electricity

price is low enough at point that management expenses are not recovered. On the other hand, when

the production is frozen there are sunk costs which are equal to ψ2(t, Xt)dt. At least because one
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should maintain the production equipment in a good state in order to operate in due time. Finally

there are also costs linked to stop the production or to start it again. For example, one can think of

the fees generated by laying of the workers or engaging them again.

So the outcome of those considerations is that when an admissible management strategy δ :=

(τn)n≥1 is implemented, the average global profit is given by:

J(δ) = E[
∫ T

0
Φ(s,Xs, us)ds−

∑

n≥1

{D11[τ2n−1<T ] + a11[τ2n<T ]}]

where :

[i] Xt is the electricity market price at t ; the process (Xt)t≤T belongs to M2,1

[ii] for any t ≤ T , ut = 1 if the production is open and 0 otherwise. Actually the process u = (ut)t≤T

is linked to the implemented strategy δ and for any t ≤ T we have ut = 11[0,τ1](t)+
∑

n≥1 11]τ2n−1,τ2n](t)

[iii] Φ(t, x, 0) = ψ2(t, x) and Φ(t, x, 1) = ψ1(t, x)

[iv] D (resp. a) stands for the sunk cost when the production is stopped (resp. starts)

[v] the functions ψj(t, x), (t, x) ∈ [0, T ]×IRd and j = 1, 2, are sub-linearly growing, i.e, there exists

C such that |ψj(t, x)| ≤ C(1 + |x|) .

Now the problem we are interested in is to find an optimal strategy for the manager, i.e, a strategy

δ∗ = (τ∗n)n≥1 ∈ Da such that J(δ∗) ≥ J(δ), for any admissible strategy δ. In a second stage we deal

with the numerical results of the optimal profit and strategy.

Note that here, the function Φ may depend on time in a general way, which is not the case in

Dixit.

1.1 The Snell envelope notion

Let U = (Ut)t≤T be an F-adapted IR-valued càdlàg process without negative jumps and which belongs

to the class [D], i.e., the set of random variables {Uτ , τ ∈ T0} is uniformly integrable. Then, it is

well known that there exists an F-adapted IR-valued continuous process Z := (Zt)t≤T (see e.g. [CK],

[EK], [H]) such that:

(i) Z is the smallest super-martingale which dominates U , i.e, if (Z̄t)t≤T is another càdlàg super-

martingale such that ∀t ≤ T , Z̄t ≥ Ut then Z̄t ≥ Zt for any t ≤ T

(ii) For any F-stopping time γ,

Zγ = esssupτ∈Tγ
E[Uτ |Fγ ] (1)

The process Z is called the Snell envelope of U . Moreover, the following properties hold true:
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(iii) Let γ be an F-stopping time and τ∗γ = inf{s ≥ γ, Zs = Us} ∧ T then τ∗γ is optimal after γ,

i.e.,

Zγ = E[Zτ∗γ |Fγ ] = E[Uτ∗γ |Fγ ] = esssupτ≥γE[Uτ |Fγ ]. (2)

(iv) If Un, n ≥ 0, and U are càdlàg and uniformly square integrable processes such that the

sequence (Un)n≥0 converges increasingly and pointwisely to U then (ZUn)n≥0 converges increasingly

and pointwisely to ZU ; ZUn and ZU are the Snell envelopes of respectively Un and U .

The proof of (iv) is given in the appendix of [CK]. For more details on Snell’s envelope, one can

refer to [EK] ¦

Let δ = (τn)n≥1 be an admissible strategy. The strategy δ is called finite if during the time interval

[0, T ] it allows to the manager to make only a finite number of decisions, i.e, P (ω, τn(ω) < T,∀n ≥
0) = 0. Hereafter the set of finite strategies will be denoted D.

Proposition 1 : The supremum over admissible strategies and finite strategies are the same: supδ∈Da
J(δ) =

supδ∈D J(δ).

Proof : If δ = (τn)n≥1 is an admissible strategy which does not belong to D, then J(δ) = −∞. Indeed,

let A = {ω, τn(ω) < T,∀n ≥ 1}. Since δ ∈ Da \ D then P (A) > 0, hence

J(δ) ≤ E[
∫ T

0
(|ψ1(s,Xs)| ∨ |ψ2(s, Xs)|)ds

−(
∑

n≥1 D11[τ2n−1<T ] + a11[τ2n<T ])11A − (
∑

n≥1 D11[τ2n−1<T ] + a11[τ2n<T ])11Ā] = −∞
since the processes (ψi(s,Xt))t≤T belong to M2,1 and P (A) > 0. Indeed, the process X belongs to

M2,1 and ψi is sub-linearly growing. It implies that J(δ) = −∞ and then supδ∈Da
J(δ) = supδ∈D J(δ).

¦
We now focus on the optimal profit.

Proposition 2 : Assume there exist two IR-valued processes Y 1 = (Y 1
t )t≤T and Y 2 = (Y 2

t )t≤T of S2

such that ∀t ≤ T ,

Y 1
t = esssupτ∈Tt

E[
∫ τ

t
ψ1(s,Xs)ds + (−D + Y 2

τ )11[τ<T ]|Ft], (3)

Y 2
t = esssupτ∈Tt

E[
∫ τ

t
ψ2(s,Xs)ds + (−a + Y 1

τ )11[τ<T ]|Ft]. (4)

Then Y 1
0 = supδ∈D J(δ). Moreover the strategy δ∗ = (τ∗n)n≥1 defined as follows:

τ∗0 = 0

∀n ≥ 1, τ∗2n−1 = inf{s ≥ τ∗2n−2, Y
1
s = −D + Y 2

s } ∧ T

τ∗2n = inf{s ≥ τ∗2n−1, Y
2
s = −a + Y 1

s } ∧ T

is optimal.
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Proof : Actually we have

Y 1
t +

∫ t

0
ψ1(s,Xs)ds = esssupτ≥tE[

∫ τ

0
ψ1(s,Xs)ds + (−D + Y 2

τ )11[τ<T ]|Ft].

Now Y 1
0 is F0-measurable then it is P − a.s. a constant and then Y 1

0 = E[Y 1
0 ]. On the other hand,

according to (2),

Y 1
0 = E[

∫ τ∗1

0
ψ1(s,Xs)ds + (−D + Y 2

τ∗1
)11[τ∗1 <T ]] ,

where τ∗1 is given as in the proposition. From the properties of Snell’s envelope

Y 2
τ∗1

= esssupτ∈Tτ∗
1

E[
∫ τ

τ∗1
ψ2(s,Xs)ds + (−a + Y 1

τ )11[τ<T ]|Fτ∗1 ]

= E[
∫ τ∗2

τ∗1
ψ2(s,Xs)ds + (−a + Y 1

τ∗2
)11[τ∗2 <T ]|Fτ∗1 ].

It implies that

Y 1
0 = E[

∫ τ∗1

0
ψ1(s,Xs)ds +

∫ τ∗2

τ∗1
ψ2(s,Xs)ds−D11[τ∗1 <T ] + E[(−a + Y 1

τ∗2
)11[τ∗2 <T ]|Fτ∗1 ] 11[τ∗1 <T ]]

= E[
∫ τ∗1

0
ψ1(s,Xs)ds +

∫ τ∗2

τ∗1
ψ2(s,Xs)ds−D11[τ∗1 <T ] − a11[τ∗2 <T ] + Y 1

τ∗2
11[τ∗2 <T ]]

since [τ∗1 < T ] ∈ Fτ∗1 and [τ∗2 < T ] ⊂ [τ∗1 < T ]. Therefore

Y 1
0 = E[

∫ τ∗2

0
Φ(Xs, us)ds−D11[τ∗1 <T ] − a11[τ∗2 <T ] + Y 1

τ∗2
11[τ∗2 <T ]]

since between 0 and τ∗1 (resp. τ∗1 and τ∗2 ) the production is open (resp. suspended) and then ut = 1

(resp. ut = 0) which implies that

∫ τ∗2

0
Φ(Xs, us)ds =

∫ τ∗1

0
ψ1(s,Xs)ds +

∫ τ∗2

τ∗1
ψ2(s,Xs)ds.

Now following this reasoning as many times as necessary we obtain

Y 1
0 = E[

∫ τ∗2n

0
Φ(Xs, us)ds−

∑

1≤k≤n

(D11[τ∗
2k−1

<T ] + a11[τ∗
2k

<T ]) + Y 1
τ∗2n

11[τ∗2n<T ]]. (5)

But the strategy δ∗ is finite. Indeed let A = {ω, τ∗n < T,∀n ≥ 1} and let us show that P (A) = 0.

Suppose that P (A) > 0 then for any n ≥ 1,

Y 1
0 ≤ E[

∫ T

0
(|ψ1(s,Xs)| ∨ |ψ2(s,Xs)|)ds− (

∑

1≤k≤n

(D11[τ∗
2k−1

<T ] + a11[τ∗
2k

<T ]))11A

−(
∑

1≤k≤n(D11[τ∗
2k−1

<T ] + a11[τ∗
2k

<T ]))11Ā + sups≤T |Y 1
s |11[τ∗2n<T ]].

Now the right-hand side converges to −∞ as n →∞ since the process Y 1 belongs to S2 and ψi(., X.) ∈
M2,1, then Y 1

0 = −∞. But this is contradictory because, once again, Y 1 ∈ S2. Henceforth the strategy

δ∗ is finite. Going back to (5) and taking the limit as n →∞ we obtain Y 1
0 = J(δ∗).
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Now let us show that Y 1
0 ≥ J(δ) for any δ ∈ D. Let δ = (τn)n≥1 be a finite strategy. According to

(2), τ∗1 is optimal and then

Y 1
0 ≥ E[

∫ τ1

0
ψ1(s,Xs)ds + (−D + Y 2

τ1)11[τ1<T ]].

On the other hand

Y 2
τ1 ≥ E[

∫ τ2

τ1
ψ2(s,Xs)ds + (−a + Y 1

τ2)11[τ2<T ]|Fτ1 ]

and then

Y 1
0 ≥ E[

∫ τ1

0
ψ1(s,Xs)ds−D11[τ1<T ] + E[(−a + Y 1

τ2)11[τ2<T ]|Fτ1 ]11[τ1<T ]]

≥ E[
∫ τ1

0
ψ1(s,Xs)ds +

∫ τ2

τ1
ψ2(s,Xs)ds−D11[τ1<T ] − a11[τ2<T ] + Y 1

τ211[τ2<T ]]

since [τ1 < T ] ∈ Fτ1 and [τ2 < T ] ⊂ [τ1 < T ]. Therefore we have,

Y 1
0 ≥ E[

∫ τ2

0
Φ(Xs, us)ds−D11[τ1<T ] − a11[τ2<T ] + Y 1

τ211[τ2<T ]].

Now making this reasoning as many times as necessary we obtain for any n ≥ 0,

Y 1
0 ≥ E[

∫ τ2n

0
Φ(Xs, us)ds−

∑

1≤k≤n

(D11[τ2k−1<T ] + a11[τ2k<T ]) + Y 1
τ2n

11[τ2n<T ]]. (6)

As the strategy δ is finite then the right-hand side of (6) converges to J(δ) as n → ∞. Therefore we

have Y 1
0 = J(δ∗) ≥ J(δ) which implies that the strategy δ∗ is optimal ¦

2 Existence of the pair (Y 1, Y 2).

We now focus on the existence of the pair (Y 1, Y 2). Let us recall the following result related to

reflected BSDEs with one lower barrier ( El-Karoui et al. [EKal]).

Let ξ ∈ L2(Ω,FT , IR; dP ) and

f : (t, ω, y, z) ∈ Ω× [0, T ]× IR1+d −→ f(t, ω, y, z) ∈ IR

be a P⊗B(IR1+d)-measurable mapping. In addition we assume that the process (f(t, 0, 0))t≤T belongs

to H2,1, and that there exists a constant k ≥ 0 such that for any y, y′, z, z′ ∈ IR :

|f(ω, t, y, z)− f(ω, t, y′, z′)| ≤ k(|y − y′|+ |z − z′|).

Finally let S := (St)t≤1 be an IR-valued process of S2 such that ST ≤ ξ. Then we have :
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Theorem 1 (EKal) : There exists a triple (Y,Z, K) := (Yt, Zt,Kt)t≤T of P-measurable processes,

with values in IR1 × IRd × IR1 such that:




Y ∈ S2, Z ∈ H2,d and K ∈ S2
i (K0 = 0)

Yt = ξ +
∫ T

t
f(s, Ys, Zs)ds + KT −Kt −

∫ T

t
ZsdBs t ≤ T

∀t ≤ T, Yt ≥ St and
∫ T

0
(Yt − St)dKt = 0 ¦

(7)

In addition, Y can be interpreted as a Snell envelope in the following way: ∀ t ≤ T ,

Yt = esssupτ≥tE[
∫ τ

t
f(s, Ys, Zs)ds + Sτ11[τ<T ] + ξ11[τ=T ]|Ft]¦ (8)

Let (Y 1,n, Y 2,n) ∈ (S2)2 be the sequence of processes defined as follows:

Y 1,0
t = E[

∫ T

t
ψ1(s,Xs)ds|Ft], t ≤ T




−dY 2,n

t = ψ2(t,Xt)dt + dK2,n
t − Z2,n

t dBt, Y 2,n
T = 0

Y 2,n
t ≥ −a + Y 1,n−1

t and (Y 2,n
t + a− Y 1,n−1

t )dK2,n
t = 0




−dY 1,n

t = ψ1(t, Xt)dt + dK1,n
t − Z1,n

t dBt, Y 1,n
T = 0

Y 1,n
t ≥ −D + Y 2,n

t and (Y 1,n
t + D − Y 2,n

t )dK1,n
t = 0,

As in (8), the processes Y 1,n and Y 2,n (n ≥ 1) have representations as Snell envelopes in the

following way: for any t ≤ T ,

Y 1,n
t = esssupτ≥tE[

∫ τ

t
ψ1(s,Xs)ds + (−D + Y 2,n

τ )11[τ<T ]|Ft] (9)

and

Y 2,n
t = esssupτ≥tE[

∫ τ

t
ψ2(s,Xs)ds + (−D + Y 1,n−1

τ )11[τ<T ]|Ft] (10)

First we begin to focus on the properties of Y 1,n and Y 2,n.

Proposition 3 The following properties hold true:

[i] for n ≥ 1 the processes Y 1,n and Y 2,n are continuous

[ii] the sequences (Y 1,n)n≥1 and (Y 2,n)n≥0 are convergent in H2,1 to càdlàg processes Ỹ 1 and Ỹ 2

respectively. In addition we have E[supt≤T |Ỹ i
t |2] < ∞, i = 1, 2.

Proof : Since −a < 0, −D < 0 and, Y 1,0 is continuous and Y 1,0
T = 0 then it easily seen by induction,

through Theorem 1, that the processes Y 1,n and Y 2,n are defined, continuous and satisfy Y 1,n
T = 0,

Y 2,n
T = 0.
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For t ≤ T let Dt
n be the set of admissible strategies δ = (τk)k≥0 such that τ1 ≥ t and τn+1 = T , P-

a.s.. On the other hand for δ ∈ Dt
n let us set Φ̄(t, δ) :=

∫ T

t
Φ(s,Xs, us)ds−

∑

n≥0

(D11[τ2n+1<T ]+a11[τ2n<T ],

P-a.s., where (ut)t≤T is the underlying process associated with the strategy δ. It holds true that the

process Y 1,n satisfies the following property:

Y 1,n
t = esssupδ∈Dt

n
E[Φ̄(t, δ)|Ft]. (11)

Actually let us consider the following sequence of stopping times:

τ1
t := {s ≥ t, Y 1,n

s = −D + Y 2,n
s } ∧ T, τ2

t := {s ≥ τ1
t , Y 2,n

s = −a + Y 1,n−1
s } ∧ T

τ3
t := {s ≥ τ2

t , Y 1,n−1
s = −D + Y 2,n−1

s } ∧ T, ....,

τ2n
t := {s ≥ τ2n−1

t , Y 2,1
s = −a + Y 1,1

s } ∧ T and τ2n+1
t = T.

Let us set δ̃ := (τ1
t , ..., τ2n+1

t ), then δ̃ ∈ Dn
t . On the other hand

Y 1,n
t = Y 1,n

τ1
t

+
∫ τ1

t

t
ψ1(s,Xs)ds−

∫ τ1
t

t
Z1,n

s dBs

since between t and τ1
t the process Y 1,n does not reach the barrier −D+Y 2,n and therefore the process

K1,n does not increase. It follows that:

Y 1,n
t = E[

∫ τ1
t

t
ψ1(s,Xs)ds + Y 1,n

τ1
t
|Ft]

= E[
∫ τ1

t

t
ψ1(s,Xs)ds + (−D + Y 2,n

τ1
t

)11[τ1
t <T ]|Ft]

(12)

since Y 1,n
τ1
t

= (−D + Y 2,n
τ1
t

)11[τ1
t <T ]. But

Y 2,n
τ1
t

= Y 2,n
τ2
t

+
∫ τ2

t

τ1
t

ψ2(s,Xs)ds−
∫ τ1

t

τ1
t

Z1,n
s dBs

since, once again, K2,n
τ2
t

= K2,n
τ1
t

due to the fact that K2,n increases only when Y 2,n reaches the barrier

Y 1,n − a. Now as Y 2,n
τ2
t

= (Y 1,n−1
τ2
t

− a)11[τ2
t <T ] then

Y 2,n
τ1
t

= E[
∫ τ2

t

τ1
t

ψ2(s,Xs)ds− a11[τ2
t <T ] + Y 1,n−1

τ2
t

11[τ2
t <T ]|Fτ1

t
].

Now plug that equality in (12) to obtain:

Y 1,n
t = E[

∫ τ1
t

t
ψ1(s,Xs)ds + 11[τ1

t <T ]

∫ τ2
t

τ1
t

ψ2(s,Xs)ds−D11[τ1
t <T ] − a11[τ2

t <T ] + Y 1,n−1
τ2
t

11[τ2
t <T ]|Ft]

since 11[τ1
t <T ] is Fτ1

t
-measurable and [τ2

t < T ] ⊂ [τ1
t < T ]. But

∫ τ1
t

t
ψ1(s,Xs)ds + 11[τ1

t <T ]

∫ τ2
t

τ1
t

ψ2(s, Xs)ds =
∫ τ1

t

t
ψ1(s,Xs)ds +

∫ τ2
t

τ1
t

ψ2(s,Xs)ds
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since when τ1
t = T the stopping time τ2

t is also equal to T . Henceforth

Y 1,n
t = E[

∫ τ1
t

t
ψ1(s,Xs)ds +

∫ τ2
t

τ1
t

ψ2(s,Xs)ds−D11[τ1
t <T ] − a11[τ2

t <T ] + Y 1,n−1
τ2
t

11[τ2
t <T ]|Ft].

Now making this reasoning as many times as necessary we obtain :

Y 1,n
t = E[

∫ τ1
t

t
ψ1(s, Xs)ds +

∫ τ2
t

τ1
t

ψ2(s,Xs)ds + ... +
∫ T

τ2n
t

ψ1(s,Xs)ds−
∑

k=1,n

(D11[τ2k−1
t <T ] + a11[τ2k

t <T ])|Ft]

= E[
∫ T

t
Φ(s, Xs, ũs)ds−

∑

k=1,n

(D11[τ2k−1
t <T ] + a11[τ2k

t <T ])|Ft]

= E[Φ̄(t, δ̃)|Ft];

ũ is the underlying process associated with the strategy δ̃.

Now let us consider another strategy δ which belongs to Dn
t , i.e, δ = (τ1, τ2, ..., τ2n, T ) with τ1 ≥ t,

P-a.s.. Since the process K1,n is non-decreasing then

Y 1,n
t ≥ E[Y 1,n

τ1 +
∫ τ1

t
ψ1(s,Xs)ds|Ft].

But Y 1,n
τ1 ≥ (Y 2,n

τ1 −D)11[τ1<T ] then

Y 1,n
t ≥ E[

∫ τ1

t
ψ1(s,Xs)ds−D11[τ1<T ] + Y 2,n

τ1 11[τ1<T ]|Ft].

As Y 2,n
τ1 ≥ E[Y 2,n

τ2 +
∫ τ2

τ1
ψ2(s,Xs)ds|Fτ1 ], through dK2,n ≥ 0, and since Y 2,n

τ2 ≥ (Y 1,n−1
τ2 − a)11[τ2<T ]

then we have

Y 2,n
τ1 ≥ E[

∫ τ2

τ1
ψ2(s,Xs)ds− a11[τ2<T ] + Y 1,n−1

τ2 11[τ2<T ]|Fτ1 ].

Once again plug that inequality in the previous one to obtain

Y 1,n
t ≥ E[

∫ τ1

t
ψ1(s,Xs)ds +

∫ τ2

τ1
ψ2(s,Xs)ds−D11[τ1<T ] − a11[τ2<T ] + Y 1,n−1

τ2 11[τ2<T ]|Ft]

≥ E[
∫ τ2

t
Φ(s,Xs, us)ds−D11[τ1<T ] − a11[τ2<T ] + Y 1,n−1

τ2 11[τ2<T ]|Ft].

Now making this reasoning as many times as necessary to obtain Y 1,n
t ≥ E[Φ̄(t, δ)|Ft]. Therefore (11)

follows.

We now focus on the convergence. Since Dn
t ⊂ Dn+1

t then through (11) we have P-a.s., Y 1,n+1
t ≥

Y 1,n
t for any t ≤ T . As the processes Y 1,n’s are continuous then we have also P-a.s., Y 1,n+1 ≥ Y 1,n.

On the other hand, for any t ≤ T and for any δ ∈ Dn
t , we have

|Φ̄(t, δ)| ≤ E[
∫ T

0
{|ψ1(s,Xs)|+ |ψ2(s,Xs)|}ds|Ft].

Henceforth Y 1,n
t ≤ E[

∫ T

0
{|ψ1(s,Xs)| + |ψ2(s, Xs)|}ds|Ft]. It follows that the sequence (Y 1,n)n≥0

converges in H2,1 to a process (Ỹ 1
t )t≤T which, in addition, satisfies E[supt≤T |Ỹ 1

t |2] < ∞ through

Doob’s inequality and since the processes (ψi(s,Xs))s≤T , i = 1, 2, belong to H2,1.
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Now let us show that Ỹ 1 is càdlàg . For any n ≥ 1, from (9), the process (Y 1,n
t +

∫ t

0
ψ1(s, Xs)ds)t≤T

is an F-supermartingale which converges increasingly and pointwisely to (Ỹ 1
t +

∫ t

0
ψ1(s, Xs)ds)t≤T ,

therefore the limit is also a càdlàg F-supermartingale (see e.g. [KS], pp. xx), henceforth the process

Ỹ 1 is càdlàg .

Finally let us focus on the convergence of (Y 2,n)n≥1. But this a direct consequence of the increasing

convergence of (Y 1,n)n≥1 to Ỹ 1, the relation (10) and Point 1.1-(iv) above. Henceforth there exits a

P-measurable càdlàg process Ỹ 2 which is the H2,1-limit of (Y 2,n)n≥1 and which is uniformly bounded

in L2(dP ) ¦

Finally we are ready now to prove the existence of a pair of processes (Y 1, Y 2) which satisfies (3)-

(4).

Theorem 2 : There exists a pair of continuous processes (Y 1, Y 2) which satisfies (3)- (4)

Proof : Once again according to Point 1.1-(iv) and the characterizations (9)-(10), the limits Ỹ 1 and

Ỹ 2 satisfy to : for any t ≤ T ,

Ỹ 1
t = esssupτ≥tE[

∫ τ

t
ψ1(s,Xs)ds + (−D + Ỹ 2

τ )11[τ<T ]|Ft] (13)

and

Ỹ 2
t = esssupτ≥tE[

∫ τ

t
ψ2(s, Xs)ds + (−D + Ỹ 1

τ )11[τ<T ]|Ft]. (14)

It remains to prove that the processes Ỹ i are continuous.

A result by Hamadène [H] related to reflected BSDEs with càdlàg barriers implies the existence of

processes (Zi
t)t≤T ∈ H2,1, (Ki

t)t≤T (resp. (Ai
t)t≤T ) non-decreasing, P-measurable, continuous (resp.

purely discontinuous) and E[(Ki
T )2] < ∞ (resp. E[(Ai

T )2] < ∞) (Ki
0 = 0 (resp. Ai

0 = 0)), i = 1, 2,

such that: for any t ≤ T ,



−dỸ 1

t = ψ1(t,Xt)dt− dK1
t − dA1

t − Z1
t dBt, Ỹ 1

T = 0

Ỹ 1
t ≥ −D + Ỹ 2

t , (Ỹ 1
t + D − Ỹ 2

t )dK1
t = 0 and ∆tỸ

1 = (−D + Ỹ 2
t− − Ỹ 1

t )+11[∆tỸ 2<0]

and



−dỸ 2

t = ψ2(t,Xt)dt− dK2
t − dA2

t − Z2
t dBt, Ỹ 2

T = 0

Ỹ 2
t ≥ −a + Ỹ 1

t , (Ỹ 2
t + a− Ỹ 1

t )dK2
t = 0 and ∆tỸ

2 = (−D + Ỹ 1
t− − Ỹ 2

t )+11[∆tỸ 1<0] ;

here ∆tỸ
i (i = 1, 2) is the jump size of Ỹ i at t and Ỹ i

t− is the left limit of Ỹ i at t. Those backward

equations imply in particular that if Ỹ 1 (resp. Ỹ 2) has a negative jump at t then Ỹ 2 (resp. Ỹ 1) has

also a negative jump at t. In addition the jump size of Ỹ 1 (resp. Ỹ 2) is smaller than the one Ỹ 2 (resp.

Ỹ 2). It follows that the processes A1 and A2 are undistinguishable.
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Now let us set, for any t ≤ T , Y 1
t = Ỹ 1

t + A1
t − E[A1

T |Ft] and Y 2
t = Ỹ 2

t + A2
t − E[A2

T |Ft].

Therefore Y 1 and Y 2 belong to S2 (note that they are continuous processes). On the other hand, let

ηi, i = 1, 2, be the processes of H2,1 such that E[A1
T |Ft] = E[A1

T ] +
∫ t

0
η1

sdBs, t ≤ T . Then the triples

(Y i, Zi + η1,Ki), i = 1, 2 satisfy: for any t ≤ T ,



−dY 1

t = ψ1(t,Xt)dt− dK1
t − (Z1

t + η1
t )dBt, Y 1

T = 0

Y 1
t ≥ −D + Y 2

t , (Y 1
t + D − Y 2

t )dK1
t = 0

and 


−dY 2

t = ψ2(t,Xt)dt− dK2
t − (Z2

t + η1
t )dBt, Y 2

T = 0

Y 2
t ≥ −a + Y 1

t , (Y 2
t + a− Y 1

t )dK2
t = 0.

Finally the characterization (8) implies that the pair of processes (Y 1, Y 2) satisfies (3)-(4). The proof

is now complete ¦

3 Properties of the optimal strategy. Examples and numerical re-

sults.

Now let us set Y := Y 1 − Y 2 and Z := Z1 − Z2 then the quadruple of processes (Y, Z, K1,K2) is

solution of the following BSDE with two reflecting barriers:




−dYt = (ψ1(t,Xt)− ψ2(t,Xt))dt− dK1
t + dK2

t − ZtdBt, t ≤ T ; YT = 0

−D ≤ Yt ≤ a, ∀t ≤ T∫ T

0
(Yt − a)dK2

t =
∫ T

0
(Yt + D)dK1

t = 0

(15)

In addition the solution is unique since −a < D (see e.g. [CK], [HL]). On the other hand, it is easily

seen that the stopping times τ∗n are the ones where the process Y reaches successively the barriers a

and −D, i.e,

∀n ≥ 1, τ∗2n−1 = inf{s ≥ τ∗2n−2, Ys = −D} ∧ T (τ∗0 = 0) and τ∗2n = inf{s ≥ τ∗2n−1, Ys = a} ∧ T.

Now suppose the process X is the unique solution of the following standard differential equation :

dXt = b(t,Xt)dt + σ(t,Xt)dBt, t ≤ T ; X0 = x ∈ IRk

where the function b and σ, with appropriate dimensions, satisfy :

|b(t, x)|+ |σ(t, x)| ≤ k(1 + |x|) and |σ(t, x)− σ(t, x′)|+ |b(t, x)− b(t, x′)| ≤ k|x− x′|

for any t ≤ T and x, x′ ∈ IRk.
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In [HH], it has been shown the existence of a function u(t, x), (t, x) ∈ [0, T ] × IRk, such that

Yt = u(t,Xt), for any t ≤ T . Moreover the function u is solution, in viscosity sense, of the following

double obstacle partial differential inequality :




min{u(t, x) + D,max[−∂u
∂t (t, x)− Ltu(t, x)− (ψ(t, x)− c), u(t, x)− a]} = 0,

u(T, x) = 0

where the operator L is the one associated with X, i.e.,

Lt =
1
2

k∑

i,j=1

(σσ∗(t, x))i,j
∂2

∂xi∂xj
+

k∑

i=1

bi(t, x)
∂

∂xi
.

Therefore the optimal strategy can be expressed via the beginnings of some deterministic sets. Actually

we have: (τ∗0 = 0),

∀n ≥ 1, τ∗2n−1 = inf{s ≥ τ∗2n−2, u(s,Xs) = −D} ∧ T and τ∗2n = inf{s ≥ τ∗2n−1, u(s,Xs) = a} ∧ T ¦

3.1. Examples.

Assume we have ψ1 ≥ ψ2 then Y ≥ 0. Indeed let (Ỹ , Z̃, K̃+, K̃−) be the solution of the following

BSDE (which exists and is unique see e.g. [HL] or [CK]):




−dỸt = dK̃+
t − dK̃−

t − Z̃tdBt, t ≤ T ; ỸT = 0

−D ≤ Ỹt ≤ a

(Ỹt + D)dK̃+
t = (Ỹt − a)dK̃−

t = 0.

Now the comparison theorem of solutions of BSDEs with two reflecting barriers (see e.g. [HH]) implies

that Y ≥ Ỹ . But uniqueness implies also that (Ỹ , Z̃, K̃+, K̃−) ≡ (0, 0, 0, 0) therefore Y ≥ 0. It implies

that Y never reaches D and the production should be kept open all time up to T . In that case the

optimal profit is E[
∫ T

0
ψ1(s,Xs)ds].

In a symmetric way if ψ1 ≤ ψ2, the process Y is negative and does not reach the barrier a.

Therefore when Y reaches −D at τ∗1 , the production should be suspended and kept in that state up

to T . The optimal profit is given by E[
∫ τ∗1

0
ψ1(s,Xs)ds−D +

∫ T

τ∗1
ψ2(s,Xs)ds] ¦

3.2. Numerical results.

For n,m ≥ 0, let (Y n,m
t , Zn,m

t )t≤T be the process solution of the following standard BSDE:

−dY n,m
t = {(ψ1(t,Xt)− ψ2(t,Xt))− n(Y n,m

t − a)+ + m(Y n,m
t + D)−}dt− Zn,m

t dBt; Y n,m
T = 0.

The process (Y n,m)n,m≥0 is decreasing (resp. increasing) in n (resp. m) for a fixed m (resp. n).

Moreover the uniform limit of that sequence when n → ∞ and then m → ∞ is Y (see e.g. [HH]
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for more details on this subject). On the other hand, there exists a continuous function un,m(t, x),

(t, x) ∈ [0, T ] × Rk, such that Y n,m
t = un,m(t,Xt), t ≤ T where un,m is a viscosity solution of the

following PDE:




∂un,m

∂t (t, x) + Ltu
n,m(t, x) + (ψ1(t, x)− ψ2(t, x))− n(un,m(t, x)− a)+ + m(un,m(t, x) + D)− = 0

u(T, x) = 0.

(16)

Now when the functions b, σ and ψ are smooth enough then un,m is also smooth and becomes a

classical solution for the PDE (16) (see e.g. [PP]). Therefore we can simulate un,m. Now if k, p are

large enough then Yt ∼ up,k(t,Xt). Therefore we can expect that, since the convergence is uniform,

for n ≥ 1, τ∗n is not far from τ∗k,p
n where (τ∗k,p

0 = 0)

τ∗k,p
2n−1 = inf{s ≥ τ∗k,p

2n−2, u
k,p(s,Xs) = −D} ∧ T and τ∗k,p

2n = inf{s ≥ τ∗k,p
2n−1, u

k,p(s,Xs) = a} ∧ T.

On the ground of those considerations, in Appendix are some simulations obtained with X a

geometric Brownian motion, i.e., dXt = αXtdt + σXtdBt, t ≤ 1;X0 = 1.

3.3. Final remark: Let us point out that, in the resolution of the problem, there is no particular

difficulty to replace D (resp. a) by a cost which depends on the state of the system, i.e., g(Xτ2n−1)

(resp. ḡ(Xτ2n)) where g (resp. ḡ) is a positive function bonded by below by a positive constant γ ¦

Appendix

As it is pointed out previously Fig.1 shows that when ψ1 ≥ ψ2 then one should keep the production

in its working mode. As for Fig.2, it shows that production must be stopped when Y reaches −D.

Finally, Fig.3 and Fig.4 are related to the case where the sign of ψ1 − ψ2 is whatever.
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Fig.1: X0 = 1,α = 1, σ=-3, a=1, D=0.5, (ψ1 − ψ2)(x)=0.1x.
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Fig.2: X0 = 1,α=1, σ=1, a=1, D=2, (ψ1 − ψ2)(x) = −0.01x− 0.5.
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Fig.3: X0 = 1,α=1, σ=2, a=1, D=0.3, (ψ1 − ψ2)(x) = 0.1x− 6.
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Fig.4: X0 = 1,α=0.5, σ=-3, a=1, D=0.4, (ψ1 − ψ2)(x) = 0.7x− 11.
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