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The b field equations proposed by Yang and Mills are investigated from a classical 
point of view, and the general solution is obtained under the condition of the static and 
spherically symmetric field. It is found that the solution is reducible to the "canonical 
form" by means of the isotopic gauge transformation. From this canonical form it is very 
likely 'that the mass of the b quantum is zero in spite of the non-linearity of the field 
equations. 

§ l. Introduction 

It was pointed out by Yang and Mills1
l some years ago that the conven

tional formalism of charge independence hypothesis is not consistent with the 
concept of the localized field that underlies usual physical theories. They 
explored the possibility of admitting the arbitrary orientations of the isospin 
axes at all space-time points. Such an arbitrary way of choosing the orientation 
of the isospin axes is called isotopic gauge. 

The isotopic gauge bears a ·close analogy with the electromagnetic gauge 
which represents an arbitrary way of choosing the complex phase factor of a 
charged field at all space-time points. In electrodynamics the introduction of 
the electromagnetic field enables us to counteract the gauge transformation of 
charged fields. In quite a similar manner Yang and Mills introduced a physical 
field of a new kind to ensure the invariance of the theory under the isotopic 
gauge transformation. This new field is called a b (or B) field, which is 
represented by twelve components bw Here the index p. (p.=l, 2, 3, 4) refers to 
the space-time coordinates and the bold face letter b indicates that it is a 
vector-like quantity in an isospace. 

Since the proposal of Yang and Mills, various investigations have been 
made2

J-IO) concerning the isotopic gauge invariance and the properties of the b 
field from the standpoint of the classical as well as that of the quantized theory 
of fields. In spite of these studies, however, it is still difficult to draw any 
definite conclusion about their quantum properties on account of the non-linear 
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On the Static and Spherically Symrnmetric Solutions 475 

character of the b field equations. As to the mass of b quantum, for example, 
the two opposite possibilities are equal:ly probable: i) The rnass of the b quan
tum is zero because of the absence of the mass term /'-2b 2 in the Lagrangian, 
and ii) it is finite (not zero) because of the presen~e of self-interactions due 
to the non-linear character of the field equations. This problem is of special 
interest to the present authors, because it has a close connection with the pos
sibility of the experimental detection of the b quantum. From a theoretical 
point of view, it is also connected with a unified description of elementary 
particle interactions as proposed by Sakurai.7

> Indeed, if the mass of the b 
quantum is zero, it has nothing to do with strong interactions. 

In view of these circumstances it will be of physical importance to investi
gate the b field equations from a purely classical point of view. Along this line 
of thought the present authors made a brief mention of a static solution with 
spherical symmetry of the Yang-Mills equations in a paper previously published.4

> 

In the present paper we shall look for the most general forn1 of the static and 
spherically symmetric solutions and investigate their physical implications. The 
authors believe that such an approach will be useful in clarifying the physical 
properties of the b fields. We obtain the general form of a spherically sym

metric b'" in § 2, and the field equations of Yang and Mills are solved in § 3. 
In § 4 · we study the reduction of the solutions by means of isotopic gauge 
transformations. The final section is devoted to the discussions of the physical 
properties of the solutions. The transformation formula of the b field under 
isotopic gauge transformations is given in Appendix. 

§ 2. General form of the spherically symmetric b'" 

We shall determine in this section the general form of the spherically sym
metric bw 

The condition for b'" to be spherically symmetric is as follows: Let us 
consider a system of inertia and let the centre of symmetry be the spatial origin 
of that system. When we perform an arbitrary rotation around the ongm 

a/ a,./ = rJi kl ( i , j , k = 1, 2, 3) , 
(2 ·1) 

b'" (x) will be transformed into 'b'" ('x). ff the functional form of 'b'" (' x) remains 
the same as that of b'" (x), that is, if 

(2 ·2) 

b'" is said to be spherically symmetric. 
Now we can easily define the Lie derivative11

> of b'" with respect to the trans
formation (2 ·1). One way to formulate the spherical symmetry condition of b'" 
mentioned above is to put the Lie derivative equal to zero. The formula thus 
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476 M. Ikeda and Y. Miyachi 

obtained is a set of partial differential equations of the first order, and by solving 
it we shall be able to determine the general form of the spherically symmetric 
b~'. Practically, however, calculations are somewhat troublesome, so we here 
adopt an alternative method. This is an extension of the method used by 
Papapetrou12

J in finding static solutions with spherical symmetry in the relativistic 
theory of non-symmetric field. 

Consider the values of the components of b~' at the point (0, 0, r, ict) which 
lies on the x 3 -axis. When we perform the rotation 

(2. 3) 

b~' IS transformed into 'bf£ given by 

'bt=-b2, 'b2=bl, 'bs=b3, 'b4=b4. (2. 4) 

Since for the points on the x 3-axis we have 'x~'=x~' under (2 · 3), by using the 
assumption of spherical symmetry (2 · 2) we get 

(2. 5) 

From (2 · 4) and (2 · 5) we obtain 

at X~'= (0 0 r ict) 
' ' ' ' 

and the only non-vanishing components are b3 and b4. 

We next perform another rotation which transforms the point (0, 0, r, ict) 

into (x\ x 2
, x 3

, ict) with 

Then b ~' IS transformed into 

bi=(xi/r)f(r, t), b4=ig(r, t), (2 ·6) 

where f(r, t) and g(r, t) are functions of r and t. (2 · 6) with arbitrary f and 
g clearly satisfies the condition of spherical symmetry, hence it gives the general 
form of the spherically symmetric b ~'" 

Instead of expressing in Cartesian coordinates, we can express (2 · 6) in 
polar coordinates as 

(2. 7) 

This form of b~' seems simple. But the equations of Yang-Mills field take much 
simpler forms in a Cartesian than in a polar coordinate system, because b ~' are 
not scalar quantities and the first order derivatives of the Christoffel symbols 
appear in the equations. For this reason we shall not use (2 · 7) in the subse
quent sections. 

§ 3. Static Yang-Mills field with spherical symtnctry 

In this section we shall investigate the static and spherically symmetric 
solution of the free field equations proposed by Yang and Mills.1

l 
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On the .S~tatic and Spherically Symrnetric Solutions 

The equations to be solved are: 

afl-bJL=O, 

aVfJLv+2Ebv Xf~v=O, 

fJLv=av b~"-a"bv-2Eb"' X bv. 

Substituting (3 · 3) In (3 · 2) and making use of (3 ·1), we have 
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(3 ·1) 

(3 ·2) 

(3 ·3) 

(3· 4) 

From the results obtained in the preceding section, the general form of the 
static bJL with spherical symmetry is given by 

Equations (3 ·1) and (3 · 4) can now be written as 

f'+2f/r=O, (3·6) 

L1f-2f/r2 +2E[{Xf' + gX g' +2EgX (/X g) ]=0, (3 ·7) 

L1g+4Ej'X[g'+Ej'X'g]=0, (3·8) 

where a prime means the differentiation with respect to r. 
Integrating (3 · 6), we easily obtain 

f=a/r 2
, (a=integration constants). 

Then, from (3 · 7) and (3 · 8) we have the following equations for g: 

gX[g' +2EaXg/r 2]=0, 

(r 2 g') 1 +4Ea X [g' + Ea Xg/r 2]=0. 

(3. 9) 

(3 ·10) 

(3 ·11) 

g= 0 is a trivial solution of these two equations. In the following we shall 
proceed with the assumption g~~O. 

From (3 ·10) we can see that there is such a scalar function }. (r) that 

r 2g'=-2EaXg+}g. 

When we substitute (3 ·12) in (3 ·11) we get 

().'+}2/r2) g=O, 

which gives 

}. =k (1- k/r) -I, (/?=integration constant). 

When i. ~~ 0, Eq. (3 ·12) reduces to 

r 2 ()g)'=- 2u_~ X ()g). 

We can easily obtain the general solution of this equation, i.e. 

g= (1-k/r)[a+b cos(2E/a)/r) +csin(2E)a)/r)]. 

(3 ·12) 

(3 ·13) 

(3 ·14) 
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478 M. Ikeda and Y. Miyachi 

Here a, b and c are integration constants with the conditions 

aXa=O, jajc=aXb, jajb=-aXc. (3 ·15) 

This means that i) a is parallel to a, ii) a, b and c form a right-handed or
thogonal system and iii) jbj=\c\. When i.=O (i.e. k=O) the general solution 
of (3·12) is given by (3·14) with the proviso k=O. 

In case a X g~~O the solution (3 ·14) has the following property. When we 
travel from one point in space to another and investigate the vector g at each 
point, it seems as if g were "rotating" about the a axis, the angle ?Jf between 
a and g being constant everywhere. The "angular velocity" (I) of this rotation 
is obtained in the following manner: From (3 ·12) the "velocity " component 
of the point g in the direction of a X g is 

(a X g)· g' /Ia X g\ = -2E \a X g\ /r 2 = -2E \a!·lgl sin ?f!/r2
• 

If we divide this by the distance of the point g from the a axis (i.e. I g] sin ?Jf), 
we obtain 

(3 ·16) 

This is the expression of the required "angular velocity". 
Summarizing the above, we know that in the static and spherically sym

metric case the general solution of the free field equations is given by (3 · 5) 

with (3 · 9), (3 ·14) and (3 ·15). A particular solution 

bi=O, b4 =i(cl/r+c2) ; 
(3 ·17) 

1s important for later purposes, and we shall call it the " canonical'' solution. 
This may be interpreted as the neutral b field. 

§ 4. Reduction of the solutions 

As mentioned in the Introduction, the b'" is a vector with respect to Lorentz 
transformations, but it has a complicated transformation character with respect 
to isotopic gauge transformations. That Is, if we introduce a matrix field B'" 
through 

(4 ·1) 

T denoting 1sosp1n matrices, we have 

B 1=S-1 B S+(i/E) g-la S p p /... p ' 
(4·2) 

where S is the matrix of the isotopic gauge transformation. The manner of 
transformation of b'" is obtained from (4·2) and the explicit expression is given in 
the Appendix. In this section we proceed to show that · the general solution 
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On the Static and Spherically Symrnet·ric Solutions 479 

obtained in the preceding section is reducible to the canonical form (3 · 17) by 
means of the isotopic gauge transformation. 

Consider two (unprimed and primed) isotopic gauges and denote respectively 
by Bp, and B/ the B fields in the respective isotopic gauges. From ( 4 · 2), in order 
that they may be reducible to each other by means of the isotopic gauge trans
formation, there should exist an S which satisfies 

o#S=iE (Bp,S-SB/), (4·3) 

that is, the system of partial differential equations ( 4 · 3) must be integrable. 
Differentiating ( 4 · 3) with respect to xA. and anti symmetrizing the resulting 

expression with respect to A and p, we obtain 

(4· 4a) 

where 

(4·5) 

If we further differentiate ( 4 · 4a) with respect to x's repeatedly and use ( 4 · 3) 
and (4 · 4a), we have 

Sfiv' F]'.~=P)) Fl'.p, ·S' 

Sti/f1/ F;.;==flp f7" Fl'.p,·S, 

where the operators f7" and f1 / are defined respectively by 

flv=Ov-iE[Bv, ] and V/=ov-·iE[B/, ]. 

(4·4b) 

( 4 · 4c) 

(4·6) 

According to the theory of differential equations, the integrability condition 
of ( 4 · 3) is as follows : The necessary and sufficient condition is that there 
exists a positive integer N such that the first N equations of (4·4a), (4·4b), ··· 
are compatible and that the (N + 1) th equation is satisfied because of those 
equations. 

We now apply the above results to the reduction of the general solution 
obtained in the preceding section. For this purpose we first calculate B/s and 
F>-/s for the general and the canonical solution, and the results are as follows: 

Canonical: 

General: 

and 

Canonical: 

General: 

Fi4=2i (xi/r3
) C1 • T, 

Fi1= -2il. (xi/r3
) g·'r, 

B4=2i (cdr+c2) · T; 

B4=2ig·T; 

Fij=O; 

Fij=O, 

where g is given by (3 ·14) and (3 ·15). Then we have from ( 4 · 6) 

Canonical: 
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480 M. Ikeda and Y. Miyachi 

General: other f7 v FA.~-'= 0. 

The above results for the general solution are obtained by utilizing Eqs. (3 ·12) 
and (3 ·] 3) together with the relation [a· T, g· T] = i (a X g) · T. 

Now we consider that the canonical and the general solutions are given 1n 
a primed and in an unprimed isotopic gauge respectively. Then ( 4 · 4a) 1s 
equivalent to 

(4·7) 

c1· T and -J.g· T are isospin components in the directions of c1 and -}.g, each 
multiplied _by I c1 [ and I J.g[ respectively. Since I /g[ = const. ( ==k') from (3 ·13), 
(3 ·14) and (3 ·15), there always exists an isotopic gauge transformation which 
transforms -}.g into c1 (with [c1 [ =//). If we denote the corresponding repre
sentation matrix by S, it satisfies ( 4 · 7), hence ( 4 · 4a). It is clear that ( 4 · 4b) 
is also equivalent to ( 4 · 7), hence ( 4 · 4b) is satisfied in consequence of ( 4 · 4a). 
Thus the general solution is reducible to the canonical form (3 ·17) by means 
of the isotopic gauge transformation. 

§ 5. Discussions 

i) Among the solutions obtained in preceding sections, the present authors 
are most interested in the canonical solution which represents the neutral b field. 
In spite of the complicated non-linear character of the original b field equations, 
this solution is quite similar in form to the Coulomb potential in the classical 
theory of electromagnetic fields. From a classical point of view we may conclude 
that, like the photons, the b field quanta have the vanishing rest mass. If we 
hold the field quanta responsible to the strong interactions, as was suggested by 
Sakurai,7

) it must be massive enough to be compatible with the short-range 
character of strong interactions. From the results obtained in this paper, how
ever, the non-linearity of the field equations cannot be considered a sufficient 
reason to make the field quanta massive from a classical point of view. If there 
is any re~son to make the field quanta massive, it must be some quantum effects 
which are not considered throughout the present paper. Therefore, the quanti-. 
zation of the b field from a more fundamental point of view remains an urgent 
problem. 

ii) It should be noticed that the general solution obtained in this paper has a 
singularity only at the spatial origin, although we have solved the free field 
equations without regard to the singularity. This is in a striking contrast to 
the case of Einstein's gravitational equations, where the Schwarzschild solution 
has a singular spherical surface (at r=2m) in addition to a singularity at the 
spatial origin. 

iii) In the region where the source of the b field is present, tbe free field will 
have a singularity and Eq. (3 · 2) has to be modified as follows :1l 
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On the Static and Spherically Symmetric Solutions 481 

(5 ·1) 

(5·2) 

Here ]~" are the isospin and current densities of the system; the first term of 
(5 · 2) refers to the source, while the second does to the field. On the boundary 
of the source, the solution of (3 · 2) should be joined to some solution of (5 ·1) 
under an appropriate condition. 

If we derive the integral form of (3·2) and (5·1) with fl-=4 through the 
well-known method, we get at once the following interpretation of the inte
gration constants of the solutions : 

Canonical: 

{' 

General: 4nk (a+b) =i j ]4 d 3 x. 

The integration constants of the solution must satisfy these equations as well 
as the boundary condition at r= co. 

iv) We have found that the general solution is reducible to the canonical one 
by means of the isotopic gauge transformation. This does not mean, however, 
that the canonical solution is sufficient for physical considerations, for there is 
no reason at present to persist in a specific choice of the isotopic gauge. The 
situation reminds us of the case of the electromagnetic fields, where we have 
various ways of choosing the electromagnetic gauge in accordance with the 
problem under consideration. It will be of some interest, therefore, to put to 
a further examination the physical implications of the general solution. 

Appendix 

We shall g1ve the explicit transformation rule of the b field under the 
isotopic gauge transformation. 

The relation between the b and the B field is given by ( 4 ·1), and the 
transformation rule for the latter is (4 · 2). The transformation formula of the b 
field can now be derived from these two equations. Since the b field is inde
pendent of the representation of the isotopic gauge transformation, it is sufficient 
to consider the specific type of S, e.g. a 3 X 3 orthogonal matrix: 

S= (Sba), (S- 1)ba==Sab, (a, b, .. ·=1, 2, 3). 

In this case T or Ti (i = 1, 2, 3) are also 3 X 3 matrices whose elements are 
given by (Ti)ba= -iEiab· Writing b~" in terms of its components b~"i and substi
tuting (4·1) in (4·2), we' have 

Multiplying this equation by EJab and using the relation~ 
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482 M. Ikeda and Y. Miyachi 

we obtain 

(A·l) 

where c (S) is equal to + 1 or -1 according as the isotopic gauge transfor
mation in question is proper or improper respectively. (A ·1) is the transfor
mation formula of the b field. 
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