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Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The concept of a purely static deformation of an Earth model, although 
strictly a highly artificial physical situation, nevertheless provides a 
useful idealization in certain problems. We derive a computational 
algorithm which allows one to determine any geophysically observable 
aspect of the purely static deformation of a non-rotating, spherically 
symmetric Earth model which has an elastic mantle and a compressible 
fluid core. In particular, we show how to compute the static perturba- 
tion to the density, the gravitational potential, and the fluid pressure at 
every point within the core, as well as every aspect of the deformation in 
the solid elastic mantle. Because of the artificiality of the concept of a 
purely static deformation, the static Lagrangian particle displacement 
in the fluid core is indeterminate. 

1. Introduction 

There has been considerable discussion and controversy recently (Longman 1963; 
Jeffreys zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Vicente 1966; Smylie & Mansinha 1971; Dahlen 1971, 1973; Israel, 
Ben-Menahem & Singh 1973; Pekeris & Accad 1972) concerning the static deformation 
of an Earth model which has a fluid core. Contradictory claims have appeared 
concerning various aspects of this problem: the nature of the boundary conditions 
to be imposed at the core-mantle boundary, the determinacy or indeterminacy of 
the motion in the core, etc. This paper will attempt to clarify this presently confused 
situation. We will show that most of the confusion has arisen from an insistence 
on the part of all of the above authors on utilizing linearized equations involving the 
Lagrangian particle displacement to describe the deformation in the fluid core. 
Since, in the limit of a purely static (zero frequency) deformation, the Lagrangian 
displacements of the fluid particles in the core may become arbitrarily large, a 
linearized Lagrangian description of the core motion will in general be inadequate. 
The more natural description of possible core motions is in terms of an Eulerian 
formulation of the equations of motion. We will show that the use of an Eulerian 
description of the motion in the fluid core leads naturally to a complete solution 
of the problem of static deformation. This solution is characterized by a complete 
indeterminacy of the Lagrangian particle displacement in the fluid core. 

2. Formulation of the problem 

We restrict discussion to models of the Earth which are non-rotating, spherically 
symmetric, and everywhere in hydrostatic equilibrium. In fact, for simplicity, we 
only consider models which have a single spherical shell or ' mantle ' surrounding a 
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462 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. A. Dahlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
spherical fluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' core '. The discussion may however be readily extended to the con- 
sideration of models having several alternating fluid and solid spherical shells (and 
in particular to the case of a model having a solid inner core). 

Consider then a spherically symmetric self-gravitating equilibrium configuration 
of radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa which has a fluid core of radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb. The core fluid, 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr < b, is assumed 
to be inviscid, but compressible and inhomogeneous; the mantle material, 
b < r < a, is assumed to be a perfectly elastic aiid isotropic, but inhomogeneous, 
solid. Let po(r), +o(r), and po(r)  denote, respectively, the density, gravitational 
potential, and hydrostatic pressure in this equilibrium configuration; the gravitational 
field is -go(r)?,  where go(r)  = d,+O(r) .  These quantities are related to each other 
by Poisson's equation 

(ar+2r-')gO(r) = 4nGp0(r) ,  (1) 

arPo(r)+Po(r)go(r) = 0. (2) 

and by the momentum equation describing the hydrostatic equilibrium 

In equation ( l) ,  G is Newton's gravitational constant. The density po(r) will be 
assumed to be piecewise continuously differentiable in 0 < r < a; i.e. jump discon- 
tinuities in po(r)  are allowed in both the core and the mantle, as well as at the core- 
mantle boundary r = b. Both +o(r) and go(r) are continuous for all r in 0 < r < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco 
and vanish at r = co; in addition, go(r)  vanishes at r = 0. The static pressure po(r)  
is continuous for all r in 0 < r < a, and vanishes at the free surface, r = a. 

Choose an origin of co-ordinates at the centre of this spherical mass, and let r 
denote the position vector of points in an inertial reference frame fixed to this origin. 
We label material particles in both the mantle and the core by their positions x in 
the equilibrium configuration. The subscript or superscript E will be used to denote 
Eulerian field variables, while the subscript or superscript L will denote the corres- 
ponding Lagrangian field variables. We wish to consider the infinitesimal deforma- 
tions of this Earth model which result, say, from the application of an external body 
force. Let fE(r, t )  be the net externally applied body force per unit volume acting at 
the location r at time t .  We are primarily interested in the static response to a time- 
independent imposed force fE(r), but it is instructive to consider the more general 
case. 

The response of the Earth model to an arbitrary applied body force fE(r, t )  will 
in general include a change in the shapes of both the core-mantle boundary and the 
outer free surface. Say that at time t ,  the core-mantle boundary and the outer free 
surface have the form, respectively 

r = b[l +P(P, t ) ]  

r = a[l +a(@, t ) ]  

Thus, at time t, the solid mantle fills the volume 

(3) 

611 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(@, t)l < r < all +cl(P, t)l 

and, in order to prevent either cavitation or inter-penetration, the core fluid must 
occupy 0 < r < b[l +P(?, t ) ] ;  we assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIP(?, t)l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 1 and la(@, t)l < 1. 

3. The equations of motion in the mantle 

In the mantle, the natural description of the deformation is a Lagrangian 
description. The discussion will follow that in Dahlen (1972, 1973). Let r(x, t )  
denote the position vector at time t of the material particle x, and define the Lagran- 
gian particle displacement sL(x, t )  of particle x at time t by 

r(x, t )  = x+sL(x, t ) .  (4) 
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Static deformation of an Earth model 463 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Let TL(x, t) denote the non-symmetric Piola-Kirchoff stress tensor (Malvern 1969; 
Dahlen 1973) and define its incremental part TL(x, t) by 

T L ( x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -~o (x )  I+ TL(x, t ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  

It is more natural to utilize in the mantle a fully Lagrangian description of both the 
perturbation in the density and the perturbation in the gravitational potential, but 
it is customary to utilize instead an Eulerian description of these quantities. Let 
pL(x, t) and 4L(x, t) denote, respectively, the net mass density and the net gravita- 
tional potential at the particle x at time t. We introduce also the Eulerian descrip- 
tions of these quantities, defined by 

1 .  (6)  
PE(r(X, 21, t )  = P L b ,  t )  

+E(r(x, t ) ,  t>  = 4 L ( x ,  t )  

w e  decompose pL(x, t), 4L(x, t), pE(r, t), and &(r, t) into an equilibrium part plus 
an incremental part 

P L k  t )  = P0(X)+P lL (X9  t )  

4 L k  t )  = 4 0 ( X > + 4 l L C X ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  

PE(r, t )  = pO(r)+plE(r, t )  

4E(r ,  t ,  = 40(r)+41E(r, t )*  

We similarly define the Lagrangian description of the externally applied body force 
density fL(x, t) in the usual way by 

fL@, t )  = f& 0, t ) .  (6 .5 )  

The exact form of the momentum conservation law in the Lagrangian formulation is 

and the exact form of the continuity equation is 

P L k  t>lJr(x, t>l = PO(X), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8) 

where Jr(x, t) denotes, for fixed t, the Jacobian of the transformation r(x, t). 
We are interested only in infinitesimal deformations. Neglecting terms of second 

order in sL(x, t), equations (6) and (6.5) relating the Eulerian and Lagrangian 
descriptions of the density, gravitational potential, and external force become 1 (9) 

PiL@, t )  = PIE(X, t)+SL(X, t) 'VPO(X) 

41L(X, t )  = +lE(X, t)+SL(X, t>-V4o(x) 
fL(X9 t )  = fE(x, t )*  

We will follow the established convention and utilize the incremental Eulerian 
quantities plE(x, t) and 41E(~,  t)  as the first-order field variables, although plL(x, t) 
and $lL(x, t) are the more natural pair to use in conjunction with the Lagrangian 
particle displacement sL(x, t). 

We obtain the appropriate linearized versions of the conservation laws (7) and 
(8) by neglecting terms of second order in sL(x, t), and making use of (9) 

Note that D, in (10) denotes a simple partial differentiation with respect to time of 
the Lagrangian quantity sL(x, t). 
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464 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Dahlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The Eulerian first-order perturbation in the gravitational potential $ l E ( ~ ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  is 

related to sL(x, t )  through the linearized Poisson's equation, 

Vz + l E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4nGpIE. (1 1) 

The equations (10) and (1 1) must be supplemented by an appropriate constitutive 
relation relating the incremental Piola-Kirchoff stress TL(x, t )  to the Lagrangian 
displacement sL(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt). We assume that the mantle material is an isotropic, perfectly 
elastic solid, and furthermore that the infinitesimal deformation sL(x, t )  occurs 
isentropically. The appropriate linearized constitutive relation is (Dahlen 1972, 1973) 

TL = K ( V *  sL) I + 2y [VS, + (vs,)~] -p0(v sL) I + po (vs,)~, (12) 

where the superscript T denotes the transpose, and where ~ ( x )  and p(x) are the in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
situ isentropic bulk modulus and the rigidity of the mantle material. The assumption 
of spherical symmetry implies that ~ ( x )  and p(x) are functions only of radius r ;  we 
assume also that the rigidity p ( r )  > 0 for all r in b < r < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. 

It is convenient to introduce another incremental stress tensor TL(x, t )  defined by 

T, = K(V.S,) 1+2y[Vs,+(Vs,)T]. (13) 

To first order in the small displacement sL(x, t ) ,  TL(x, t )  represents the Lagrangian 
description of the incremental Cauchy stress; note that TL(x, t )  is symmetric whereas 
the incremental Piola-Kirchoff stress 'i?,(x, t )  is not. Written in terms of TL(x, f), 
the complete system of linearized mantle equations is 

POD~'SL = -PoV$iE-PiEV#o-V(SL'PoV$O)+V.TL+fL } (14) 
PIE = - V*(PO SL) 

vz = 4nGplE 
T L  = K( V * sL) I + 2p [ VS, + ( VSL)~]. 

We will refer to this system of equations (14) as the linearized Lagrangian equations 
in the mantle, even though they are written in terms of the Eulerian field variables 
plE(x, t )  and + l E ( ~ ,  t ) .  The corresponding Lagrangian field variables plL(x, t )  and 
IplL(x, t )  can of course always be found, using (9). 

The equations (14) apply for all times t and at all points x throughout the 
undeformed mantle volume u < r < b. In the event that there are jump discontinuities 
in any of the mantle properties po(r),  Ic(r), p(r) ,  the differential equations of motion 
(14) must be supplemented by certain appropriately linearized continuity relations 
at the undeformed level of the discontinuity. These conditions are: 

sL(x, t )  continuous 

3.T,(x, t )  continuous 
$ l E ( ~ ,  t )  continuous 

P. [V$lE(x, t)+4zrGp0(x) sL(x, t ) ]  continuous I 
In particular at the outer free surface r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa of the mantle, we have the linearized 
boundary conditions: 

P'TL(a- 3, t )  = 0 

#IE@- 3, t )  = #JIE@+ p, 2) 

f * V $ 1 " ( U -  f ,  t)+471Gp0(a)f'S~(a- P, f)  = f * V $ l E ( U +  f ,  f) 

where for any field q(x, t ) ,  the symbols q(u, P, t )  denote the limits as E > 0 tends 
to zero of the quantities q((u+&) P, t ) .  

We will also require a mathematical statement of the fact that the boundaries 
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Static deformation of an Earth model 465 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa[l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+a(@, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ) ]  and r = b[l + p(P: t ) ]  of the solid mantle must always consist of 
the same material particles, Consider the outer boundary; simple geometrical 
considerations make it clear that this condition takes the form 

aa(fi(P, t ) ,  t )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP.sL(n- P, t ) ,  (17) 
where the unit vector fi(?, t )  is defined by 

The linearized version of this condition is, neglecting terms of second order in 
S L k  t ) ,  

ax(?, I )  = P.s,(a- ?, t ) .  (19) 
Likewise, at the core-mantle boundary we must have 

bP(?, t )  = ? . S L ( b +  ?, t ) .  

Equations (19) and (20) serve to define a(P, t )  and p(?, t )  in terms of the Lagrangian 
description of the mantle deformation. 

4. The equations of motion in the core 

The natural description of the motion in the fluid core is an Eulerian description. 
We consider the fluid motion at a point r which is truly within the deformed core 
volume 0 < r < b[l +/l(P, t ) ]  for all times t. Let uE(r, t )  denote the fluid velocity 
at the point r at time t, let PE(r, t )  denote the density of the fluid at the point r at 
time t ,  and let 4E(r, t )  denote the net gravitational potential at the point r at time t .  
Since the fluid is assumed to be inviscid, the Eulerian or Cauchy stress tensor 
TE(r, t )  at a point r in the core is always isotropic, i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Tdr, t )  = -PE@, #)I, (21) 

where PE(r, t )  is the Eulerian pressure at the point r at time t .  We decompose 
PE(r, t ) ,  &(r, t )  and pE(r, t )  into an equilibrium part plus an incremental part 

PE(r, t )  = PO(r)+PIE(r, t )  J 
The quantity PIE(', t )  will be called the incremental Eulerian pressure. 

The exact form of the momentum equation in an inviscid fluid is 

PE(r, t ,  Dt uE(r, t ,  = -PE(r,  t )  v4E(r, t > -  vpE(r, t)+fE(r, t ) ,  

D ~ P E ( ~ ,  f )+~E(r ,  t)V.oE(r, t )  = 0. 

(23) 

(24) 

and the exact form of the continuity equation is 

The appropriate linearized versions of the Eulerian conservation laws are obtained 
by neglecting terms of second order in the Eulerian velocity uE(r, t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(25) 1 P O a ,  uE = -VplE-PO V41E-plE v 4 0 + f E  

4 P l E  = -V* (Po  UE) 

Notice that in the course of this linearization, we have made no possibly unjustified 
assumptions about the magnitude of the accompanying Lagrangian particle dis- 
placements in the fluid core. Poisson's equation in the fluid core is 

V2 = 4nGpIE. (26) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/3
6
/2

/4
6
1
/6

1
8
8
8
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



466 F. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Dahlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The linearized equations (25) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(26) must be supplemented by an equation of 

state for the inviscid fluid. We shall assume that the deformation is isentropic, i.e. 
that 

Dr SE(~,  r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 07 (27) 
where SE(r, t )  is the fluid entropy at the point r at time t .  It is well known (see, e.g. 
Eckart 1960) that the linearized version of this condition may be written in the form 

PO(atPIEfUE.VPO) = K(at  plE+ uE'vPO), (28) 

where K(r) is the isentropic bulk modulus of the fluid, and where terms of second 
order in uE(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 )  have been neglected. The assumption of spherical symmetry implies 
that K(r) is a function only of radius r in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 < r < b. 

Summarizing, the linearized Eulerian equations describing the deformation at 
any time r and at any point r in the core 0 < r < b [1+ p(2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf)] are: 

P O a ,  uE = -VPIE-pO VrblE-plE v 4 0 + f E  

at PIE = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-v'(pO uE) 
(29) V2 $lE = 4nGplE 

a r P I E + U E * V P O  = - K V ' U E .  

The equation of state (28) has here been rewritten in a more convenient form by an 
application of the linearized continuity equation. 

In the event that there are jump discontinuities in either of po(r) or K ( r ) ,  the 
equations of motion (29) must be supplemented by the appropriate linearized 
continuity conditions at the undeformed level of the discontinuity. These conditions 
are: 

P.u,(r, t )  continuous 

P -  [at PIE@, t)+po(r)go(r) uE(r, t ) ]  continuous 
41E(r, r) continuous 

f .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[a, V$,"(r, t)+4.nGp0(r) uE(r, t ) ]  continuous 

(30) 

Note that continuity of the tangential component of the velocity uE(r, t )  is not 
required, and in fact at any discontinuity in the density po(r), the tangential velocity 
will in general be discontinuous. 

Consider now the appropriate continuity conditions to be imposed at the core- 
mantle boundary. We have thus far developed a Lagrangian description of the 
deformation in the solid mantle and an Eulerian description in the fluid core. In 
order to connect the two descriptions at the core-mantle boundary, we must at least 
temporarily employ either a linearized Lagrangian description of the core motion or, 
alternatively, a linearized Eulerian description of the mantle motion. We choose 
the latter alternative, since it will be shown that in a static deformation the Lagrangian 
particle displacements in the fluid core may become arbitrarily large, thus invali- 
dating any linearized Lagrangian treatment. The introduction of fist-order or 
incremental Eulerian field variables uE(r, t ) ,  plE(r7 r), $lE(r, t ) ,  and TE(r, t )  into the 
mantle is, on the other hand, straightforward. To conform to convention, we are 
already utilizing plE(r, t )  and rblE(r, r )  as field variables in the mantle. We also 
have, correct to first-order in sL(x, t )  

(31) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI uE(r~ t )  = a t  sL(r, t )  

TE(r~ r, = TL(r, t )+SL(r~ t>'VPO(r)l* 

The linearized continuity conditiom on the first-order Eulerian field variables at 
the undeformed core-mantle boundary r = b may be readily expressed in terms of 
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Static deformation of an Earth model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the deformed shape P(P, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  of the boundary 

P'uE(b-f, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f'uE(b+ f, t )  '1 

467 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-pplE(b- p, t)+PPO(b-)gO(b) bP(P, t )  = P*TE(b+ p, t>+fpO(b+)gO(b)bP(P, t )  

(32) i (alE(b- p, t3 = 41E(b+ p, d 
P*V41E(b- P, t)+47tGp0(b-)bb(P, t )  = P*V41E(b+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, t ) + 4 ~ C p , ( b + )  b/l(?, 1 ) .  

We also require a mathematical expression of the condition that the deformed 
boundary surface r = b[ l  -I- p(P, t ) ]  always consists of the same fluid particles. This 
condition is familiar from the theory of surface ocean gravity waves (Lamb 1945; 
Phillips 1966). Correct to first order in the Eulerian fluid velocity uE(r, t )  in the 
core, it may be written as 

P*u,(b- P, t )  = bd, P(P, t ) .  (33) 

Now equations (20), (31) and (33) may be used to convert the strictly Eulerian 
continuity conditions (32) into the appropriate conditions which connect the Eulerian 
description of the motion in the core to the Lagrangian description in the mantle. 
We obtain 

f*uE(b- P, t )  = P'a,sL(b+ P, t )  

P*V(alE(b- P, t )  = P*V41E(b+ P, t )  +47tC[po(b+)-p0(b-)]P.s,(b, P, t ) .  

We now have a complete linearized, spherically symmetric mathematical specifica- 
cation of the problem we have posed; namely, the determination of the infinitesimal 
elastic-gravitational response of a simple Earth model to an arbitrary externally 
applied body force. We utilize the Eulerian differential equations (29) and the 
associated continuity conditions (30) at all points r in the core 0 < r < by and we 
utilize the Lagrangian differential equations (14) and the associated continuity 
conditions (15) at all points (i.e. material particles) x in the mantle b < r < a. We 
use the continuity conditions (34) to connect these two systems of equations at the 
core-mantle boundary r = b, and we must satisfy the free surface boundary 
conditions (1  6) on the outer free surface r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. 

J 

5. Principal applications 

We list briefly the most important possible applications of the formalism 
developed above. 

An important application is the determination of the free oscillation eigen- 
frequencies and eigenfunctions of the Earth model under consideration. If we 
consider oscillations of angular frequency w, then the relevant equations are obtained 
by setting fE(r, t )  = fL(x, t )  = 0, and making the substitution a, = io in the core 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, = iw in the mantle. 

Another problem of interest is the response to a harmonic imposed body force 
fE(r, t )  = fE(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw )  eiw' of a fixed angular frequency w. In this case, we again simply 
make the substitution d, = iw in the core and D, = iw in the mantle. The most 
important practical application is the determination of the response to the harmcnic 
luni-solar tidal forces. These forces may be derived from a potential, fE(r, w) = 

-po(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw), called the tidal potential; the tidal potential q5tida,(r, w) may be 
expressed throughout 0 < r < a as an expansion in spherical harmonics Y;n(P)>, 
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468 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Dahlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The response at the surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa of a spherically symmetric Earth model is tradi- 
tionally and conveniently characterized in terms of the dynamic Love numbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h,(w), k,(w), Zl(w), 2 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 < 03 (Munk & MacDonald 1960). The usual method of 
treating this problem is to take advantage of the fact that Vz w) = 0 through- 
out 0 < r < a. We can thus simply incorporate c$tidal(r, w) into the definition of 
@lE(r, w) throughout 0 < r < a, and appropriately alter the boundary conditions 
involving 41E(u, P, w)  at the free surface r = Q (see, e.g. Takeuchi 1950). 

A related problem is the response to a harmonic surface mass loading o(P, t )  = 
o(P, w) eiot of a fixed angular frequency w (here o(P, t )  is the variable mass load per 
unit area which loads the outer surface r = a). If the load o(P, w) is expanded in a 
spherical harmonic expansion 

then the response, again at the surface r = a, is conveniently characterized in terms 
of the dynamic load Love numbers h,’(w), k,’(w), Zlf(w), 0 6 1 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco (Munk & 
MacDonald 1960). 

A surface mass load o(P, w) acts on the Earth model in two distinct ways; it 
produces a variable gravitational potential c$load(r, w) throughout the volume 
0 < r < a of the model, as well as a variable normal traction Pload(af f ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) = 
-go@) o(P, 0) on the outer surface r = a. Since V2 c$load(r, 0) = 0 throughout 
0 < r < a, the simplest way to treat this problem is again to incorporate the imposed 
potential (bload(r, o) into the definition of (blE(r, w) throughout 0 < r < a, and to 
then appropriately alter the boundary conditions at the outer boundary r = a; in 
this case the surface r = a is no longer a free surface because of the normal traction 
pload(a+ P, w), and the surface stress boundary condition P.T,(a- P, w) = 0 must be 
replaced by P.T,(a- f ,  w)  = fpload(a+ P, w); see Longman (1963) and Farrell (1972). 

Another problem which could be posed is the response of the Earth model to a 
transient applied body force, say fE(r, t )  = 0 for t < 0. In this case the most important 
practical application is the study of the excitation of the free oscillations of the 
Earth model by a kinematically prescribed dislocation source; the applied body force 
fE(r, t )  is then taken to be the equivalent body force of the dislocation (Burridge & 
Knopoff 1964; Dahlen 1972). The solution to this problem is customarily obtained 
by assuming that the eigenfunctions of the Earth model form a complete set in terms 
of which the Laplace transform f& p )  of the applied force may be expanded, for a 
fixed value of p ,  the Laplace transform variable. Gilbert (1970) has thus obtained a 
particularly simple and elegant result for the case of a point dislocation source 
with a step function time dependence. 

The final class of interesting problems concern the static deformation of the 
Earth model. There are three applications, corresponding to the three above- 
mentioned dynamical response problems. We may consider the response of the 
Earth model to a time-independent tidal potential @fidal(r), in which case we would 
characterize the response by the static Love numbers h,, k,, I , ,  2 < 1 < co. We may 
also consider the response of the Earth model to a time-independent surface mass 
load o(l), in which case we would characterize the response by the static load Love 
numbers hl’, k l f ,  l I f ,  0 < Z < 00. Finally, we may consider the static deformation of 
the Earth model produced by a static elastic dislocation; it is usually convenient to 
consider instead the response produced by the time-independent equivalent body 
force fE(r). Since earthquakes occur only in the upper few hundred kilometres of the 
Earth, we are here dealing with a problem in which the applied body force fE(r) is 
zero inside the core, 0 < r < b (in fact, in most applications concerned with the 
large scale or far field static deformation, it is sufficient to utilize a point dislocation 
model, in which case fE(r) = 0 except at a single point ro, the earthquake epicentre). 
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Static deformation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan Earth model 469 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We now consider in more detail two of the above possible applications. In 

Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6,  we show how the formalism which has been developed above reduces to 
the familiar equations which govern the free oscillations of the Earth model. In 
Section 7 we consider the static deformation of an Earth model by a time-independent 
external body force fE(r) which is confined to the mantle (i.e. fE(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 for 0 < r < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb). 
The consideration of these two examples should make it clear how to treat all of 
the above list of possible applications. 

6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe free oscillations 

Consider a free oscillation of the Earth model with a fixed angular frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw.  
The equations of motion appropriate to this case are obtained by setting fE(r, t )  = 
fL(x, t )  = 0, and by substituting d, = io in the core and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, = iw in the mantle. 
Thus, in the core, 0 < r < by the Eulerian variables uE(r, o), plE(r, o), 41E(r, o), 
and plE(r, o) are required to satisfy 

In the mantle, b < r < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, the Lagrangian variables sL(x, o), TL(x, o) and the 
Eulerian variables plE(x, o), 41E(~ ,  w )  are required to satisfy 

-W'POSL = -PO V41E-p1E V+o-V(sL.po V$o)+V.TL 

v' 41E PIE = = 4nGp -v.(PosL) lE ] ( 3 8 )  

1 (39) 

&"(a- f, 0) = dlE@+ f?  4 ] (401 

TL = K(V * sL) I + 2~ [VSL + ( VSL)~] 

The continuity conditions at the core-mantle boundary r = b take the form 

P-u,(b- P, 0) = ioP*s,(b+ f ,  0) 

41E@- fY  w )  = 41E(b+ f? w) 

-PpiE(b- P, a) = P.TL(b+P, o)-Ppo(b-)go(b)[?.sL(b+ f, 011 

P*V4lE(b- f ,  W )  = f.V41E(b+ f ,  0 ) + 4 ~ G [ p o ( b + ) - p , ( b - ) ] P * ~ L ( b +  P, 0). 

The free surface boundary conditions at the outer boundary r = a are 

P*TL(a- P, O) = 0 

P-V41E(a- P, ~ ) + 4 n G p ~ ( a _ ) P * s ~ ( ~ -  P, W) = P*V41E(a+ P, W )  

These differential equations (37) and (38) and the associated boundary conditions 
(39) and (40) are all that is required for a complete description of the possible normal 
mode eigenfrequencies and eigenfunctions of the Earth model. They could be solved 
in the above form, retaining the full Eulerian formulation in the core, but it is not 
customary to do so. Instead of proceeding directly to solve the above system of 
equations, we make use of the observation that, as long as we restrict attention to 
those normal modes with a non-zero squared eigenfrequency o2 > 0, it is not incon- 
sistent with the approximations which have already been made to utilize a linearized 
Lagrangian formulation in the core as well as in the mantle. This can be shown in 
the following way. The Lagrangian particle displacement sL(x, t )  is defined in the 
core by 

DtSL(X, t )  = uE(x+sL(x, t ) ,  t ) *  (41) 
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470 F. A. Dableo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Expanding equation (41), we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Dt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsL(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= uE(x, t)+sL(x, t)*VuE(x, 11, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(42) 
where the higher order terms have been omitted. Now whenever uE(r, t )  is of the 
form u&, t )  = UE(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw )  elwt with o2 > 0, the Lagrangian particle displacement 
sL(x, t )  is of the same order as uE(x, t ) ,  and hence sL(x, t ) .  VU,(X, t )  is of second order 
and may be neglected. Thus, correct to first order in either u,(x, w )  or sL(x, w), we 
have 

iwsL(x, W )  = uE(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa), (43) 
and we may use a linearized Lagrangian description throughout the fluid core. We 
continue, as in the mantle equations (40) to use the Eulerian density and gravitational 
potential perturbations plE(x, t )  and $ l E ( ~ ,  t )  in these otherwise Lagrangian equa- 
tions. We do however introduce the incremental Lagrangian pressure prL(x, t )  which 
is defined, correct to first order in sL(x, t ) ,  by 

PIL(X, t )  = PIE@, t)+SL(X, t)‘VPO(X). (44) 
The linearized Lagrangian equations valid at all points (fluid particles) x in the 
undeformed core 0 < r < b are obtained by substituting (43) and (44) into (37) 

The continuity conditions (39) at the core-mantle boundary may be written in terms 
of the Lagrangian description in the core as 

f-s,(b- P, 0) = P.SL(b+ P, W )  

91E(b- f, 4 = 41E(b+ P, 4 i ( 4 6 )  

-PplL(b- P, W )  = P*TL(b+ P, W )  

f*V4lE(b- f ,  CO)+47CCpo(b-) P * s ~ ( b -  f, W )  

= P*V$lE(b+ P, W)+4KGpo(b+) f * S ~ ( b +  P, W).  

The linearized Lagrangian differential equations (45) in the core and (38) in 
the mantle, taken together with the linearized conditions (46) at the core-mantle 
boundary r = b and (40) at the free surface r = a constitute the familiar equations 
which are conventionally used in treatments of the free oscillations of spherically 
symmetric Earth models. The field variables in these conventional equations are 
partly Lagrangian quantities (the Lagrangian particle displacement sL(x, t )  and 
the Lagrangian description of the incremental Cauchy stress tensor TL(x, t ) )  and 
partly Eulerian (the Eulerian descriptions of the perturbations in density ple(x, t )  
and gravitational potential $ l E ( ~ ,  t)). These equations may be readily used for the 
determination of the eigenfunctions associated with any normal mode which has a 
non-zero squared eigenfrequency, a2 > 0. Precisely these same linearized Lagrangian 
equations in both the core and the mantle may be used to determine the dynamic 
Love numbers h,(o), k,(o) ,  l,(w) and the dynamic load Love numbers h,’(o), k,’(w), 
I,’(w) of any Earth model, provided that the free surface boundary conditions (40) 
are appropriately altered, and provided that we restrict consideration to angular 
frequencies w > 0. The essential point is that the assumption of a harmonic time 
dependence of the first-order field variables allows the consistent introduction of a 
linearized Lagrangian description into the fluid core. 

The nature of the normal mode solutions to the equations (49, (38), (46) and 
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Static deformation of an Earth model 47 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(40) is well known. They are of two types. There are toroidal mode multiplets, 
denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,, characterized by a vanishing perturbation in the density and the gravita- 
tional potential, and having Lagrangian particle displacement fields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsL(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo) of the 
form 

sL(x, o) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, ,W,(r)[-Px V, y;"(3)], - I  < m < I ,  (47) 
where V, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI%,+ (sin 0)-' $8,. Provided that the associated 21 + 1-degenerate 
toroidal eigenfrequency ,,a: is non-zero, the Lagrangian particle displacement (47) 
of any member of the toroidal mode multiplet ,,T, vanishes in the fluid core, i.e. 
,,WZ(r) = 0 for all r in 0 < r < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb. For every value of 1 > 0, there are an infinite 
number of toroidal multiplets ,,T, (n 2 0 unless 1 = 1 in which case n 2 1); the 
associated 21 + 1-degenerate eigenfrequencies ,,a: become arbitrarily large as 
n -, 00. 

There are also poloidal mode multiplets, denoted ,,SZ, characterized by a non-zero 
perturbation in both the density and the gravitational potential, and having a 
Lagrangian particle displacement of the form 

The poloidal mode multiplets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.St of Earth models which have a fluid core may be 
conveniently divided further into two classes. One class consists of all those poloidal 
mode multiplets whose features are controlled primarily by the elasticity of the Earth 
model, with buoyancy forces and gravitational restoring forces playing a relatively 
minor role. These normal modes, which we will call the elastic-gravitational (eg) 
type poloidal modes, have received much attention and are well understood. For 
every value of 12 0, there are an infinite number of poloidal multiplets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,,SL of this 
type (n 2 0 unless 1 = 1, in which case n 2 1); the associated 21-t I-degenerate 
eigenfrequencies become arbitrarily large as n -, 00. The gravest eg type poloidal 
multiplet is in general the ,S2 multiplet, whose associated eigenfrequency for any 
realistic Earth model is on the order of 2 7 ~ / ~ 0 , ~  % 54 minutes. 

The second class of poloidal modes consists of all those whose features are 
controlled primarily by buoyancy forces and by gravitational restoring forces in the 
fluid core, with the elasticity playing a relatively minor role. These normal modes, 
which we will call the gravitational-elastic (ge) type modes, have received corres- 
pondingly little attention, the reason being that any ge type poloidal mode is charac- 
terized by having a Lagrangian particle displacement (48) which is essentially confined 
to the fluid core; the existence of any such motion is thus virtually impossible to 
detect at the free surface r =a. Since we will have occasion to allude to these ge type 
poloidal normal modes later (in Section 7), we take this opportunity to discuss 
briefly and qualitatively a few of their properties. 

The ge type poloidal modes of an Earth model with a fluid core are closely 
analogous to the internal gravity waves which are known to propagate in inviscid 
stratified fluids. The propagation of internal gravity waves in plane stratified fluids 
has been studied a great deal, because the phenomenon is important in the dynamics 
of the oceans and the atmosphere (see, e.g. Eckart 1960; Tolstoy 1963; Phillips 
1966; Turner 1973). The complete set of equations (45), (38), (46), and (40) which 
govern the ge type poloidal modes of an Earth model with a fluid core are more 
complicated than are the equations which govern internal gravity wave propagation 
in plane stratified fluids, both because of the spherical symmetry and because of the 
effects of self-gravitation; the analogy is however sufficiently close that the principal 
qualitative features of the ge modes may be predicted with some confidence. 

We introduce the local Brunt-Vaisala frequency N(r )  of the fluid core, defined 
for all r in 0 < r < b by 
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472 F. A. Dahlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Most of the ge type dynamical characteristics of an Earth model with a fluid core 
may be conveniently summarized in terms of the local Brunt-Vaisala frequency. In 
particular, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 2 ( r )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 for all 0 < r < b, then the fluid core will be everywhere 
dynamically stable. Any Earth model with such an everywhere dynamically stable 
core will have, for every fixed value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 > 0, an infinite number of ge type poloidal 
mode multiplets ,Sl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n < -1) with positive squared eigenfrequencies (,o:)’. If 
N 2 ( r )  < 0 in any finite region of the core, then the core will be dynamically unstable; 
this dynamical instability will be pointed up by the fact that any Earth model with 
such an anywhere unstable core will possess ge type poloidal mode solutions to 
equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(45), (38), (46) and (40) with associated squared eigenfrequencies o2 which 
are negative. If in fact N 2 ( r )  < 0 for all r in 0 < r < b, then all of the ge type solutions 
will be characterized by negative squared eigenfrequencies. If N2(r)  = 0 for all I’ in 
0 < r < 6, then the core is in a state of neutral equilibrium. Such a core model has 
often been called an Adams-Williamson core model, since in the fluid core the 
Adams-Williamson equation, familiar in seismology, may be written simply 
N2(r )  = 0. Any Earth model which has an Adams-Williamson core will have no ge 
type normal modes with a non-zero squared eigenfrequency 02. 

Earth models with everywhere dynamically stable cores may possibly be those of 
the most geophysical interest, especially in view of the recent suggestions of Higgins 
& Kennedy (1971). For every fixed value of 1 > 0, such Earth models will have an 
infinite number of ge type poloidal modes ,,St (n < - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1); the associated 21+ 1- 
degenerate eigenfrequencies become arbitrarily small as n -+ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco. The highest 
frequency (n = - 1) ge type poloidal multiplet, for any fixed value of 1 > 0 will in 
general be on the order of N,,,, where N,,, is the maximum value obtained by N ( r )  
in the core, 0 d r < b. The ge type normal mode eigenfrequency spectrum becomes 
dense near zero frequency (n < -1) for every value of 1 > 0. The Lagrangian 
particle displacement eigenfuiictions sL(x, o) of the high overtone (n < - 1) ge type 
normal modes become increasingly confined to the core as n --f - co; the number of 
spherical nodal surfaces of both ,,Ul(r) and ,,V(r) within the core, 0 < r < b, tends 
meanwhile to increase like n. The ratio , ,q(r)/, ,Ul(r) of the tangential to the radial 
component of the Lagrangian particle displacement associated with a particular ge 
type mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,,SI will in general be on the order of Nmax/,oIS, which also will become 
arbitrarily large as n -+ - co. Thus, as n -+ - co for a fixed value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, the ge type 
poloidal modes of an Earth model with a stably stratified core assume increasingly 
the character of slow (,OF < N,,,), almost steady, purely tangential flows in the 
fluid core of the Earth model. 

This brief description of the main properties of the ge type poloidal normal 
modes of an Earth model with a fluid core has been given here, because there is some 
interest in the relation of the very low frequency (,w: < N,,,) modes to the problem 
of static deformation to be treated in the next section. Some of the remarks made 
above are strictly unproved, but they can be made with some confidence because of 
the close analogy with the simpler problem of internal gravity wave propagation in a 
plane, stratified fluid. A more quantitative discussion is planned for the future. The 
existence of ge type poloidal modes in the case of a dynamically stable core model, 
and the analogy with the propagation of internal gravity waves was first pointed out 
to me by Freeman Gilbert (private communication, ca. 1967). 

7. Static deformation 

We now consider the static deformation of a spherically symmetric Earth model 
with a fluid core; in particular we will treat the case of the static deformation produced 
by an applied body force f,(r) which is confined to the mantle. The real Earth is 
never in fact deformed by the action of purely static imposed forces, but the concept 
of a static deformation is a useful approximation in treating certain phenomena. 
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The most important application is probably the determination of the permanent 
deformation which is associated with the slip on a seismic fault during an earthquake; 
this is most conveniently idealized as a purely static problem. It is in this context 
that much of the confusion and controversy has arisen. 

We will show that the Lagrangian particle displacements in the fluid core may 
become arbitrarily large and are in fact indeterminate in the limit of a purely static 
(zero-frequency) deformation. This fact limits the usefulness and even the validity 
of a linearized Lagrangian formulation of the equations of motion in the fluid core; 
for that reason, we maintain the Eulerian formulation in the core. 

The relevant equatiGns governing this case are obtained by setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 in the 
mantle, and by setting fE(r) = 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, = 0 in the core. Thus, in the core, 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI' < 6, 
the static Eulerian variables uE(r), plE(r), dlE(r), and plE(r) are required to satisfy 

In the mantle, b < r < a, the static Lagrangian variables sL(x), TL(x) and the static 
Eulerian variables plE(x), & E ( ~ )  are required to satisfy 

The continuity conditions at the core-mantle boundary r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb become 

f .V$lE(b- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP) = P.V+IE(b+ P)+47~G[po(b+)-po(b-)] P.sL(b+ P). J 
The free surface boundary conditions at the outer boundary r = a are in this case 

P*TL(a- P) = 0 

41E(a- f>  = +lE(a+ 3) 1 (53) 

P . V # , E ( ~ -  P)+4nGp0(a-) P*sL(a- P) = P*V#lE(a+ P). 

The differential equations (50) and (51) and the associated boundary conditions 
(52) and (53) are the complete set of equations governing the static response of the 
Earth model to the imposed body force fL(x). Notice that we have not required that 
the Eulerian velocity uE(r) vanish in the core; we allow for the possibility that steady 
fluid flows with infinitesimally small velocities but arbitrarily large particle displace- 
ments might be occurring in the core. Only the last two of the core equations (50) 
involve the Eulerian velocity uE(r)'); these two equations may be conveniently 
rewritten in the form 
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474 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Dahlen 

or even more succinctly in terms of the local Brunt-Vaisala frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ( r )  defined by 
(49) 

where u?(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= P*uE(r). The velocity uE(r) appears in these equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(55)  only in 
terms of the scalar quantities u/(r) and V.u,(r). 

In the mantle we introduce, following closely the notation of Backus (1967), the 
scalar potential functions U(x), V(x), W(x), P(x), Q(x), R(x), X(x), Y(x), Z(x), 
defined by 

SL(X) = PU(x)+ v, V(x)-P x v1 W(x) 

fL(X) = PX(X) + v, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY (x) - f  x v, Z(X) 

?.T,(x) = fP(X)+Vi Q(x)-Px V1 R(x) 1 (56) 

We also introduce, again following Backus (1967), the scalar field glE(x), defined by 

glE(x) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. V$lE(~)+4nGpO(x) U(x). (57) 

We make use of a spherical1harmonic expansion of each of the scalar fields plE(r), 
(PiE(r), piE(r), U?(r), V*UE(~) in the core, and u(x>, v(x), W(x>, P(x). Q<x>, R(x), 
X(x), Y(x), Z(x), (blE(x), and glE(x) in the mantle. Thus if q(r) (or q(x)) is used 
to denote any of the listed scalar field variables, we write 

where xm(P) denotes the complex normalized surface spherical harmonic. To achieve 
a unique potential representation (56), we require that Voo(r), Woo(r), Qoo(r), 
Roo(r), Yoo(r), Zoo(r) all vanish. In what follows we will for brevity omit the subscript 
E and superscript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm in writing the scalar radial variables U;l(r), etc. No confusion 
should arise, since these variables are functions only of radius r ,  and not of position 
vector r or particle label x; we will always indicate the radial functional dependence 
explicitly when utilizing any of the spherical harmonic expansion coefficients. 

We first dispose of the toroidal part of the static deformation. The toroidal part 
of the deformation depends only on the toroidal part Z(r) of the scalar potential 
representation of the imposed force fL(x). The fluid core is not affected by any 
toroidal deformation; such a deformation is characterized by the vanishing of all the 
scalar field variables except for W ( r )  and T(r)  in the mantle b < r < a. The boundary 
conditions (52) and (53) require that both T(b+) and T(a-)  vanish. For every value 
of 1 > 0, the second order static (o = 0) scalar differential equations, given for 
example by Backus (1967), are easily altered to include a non-homogeneous term 
Z(r) ,  and the toroidal part of the static deformation may be without difficulty 
computed. 

The confusion in the past has arisen in the determination of the poloidal part 
of the deformation. It is in this connection that the utilization of an Eulerian 
formulation of the equations of motion in the fluid core will prove useful. This 
formulation leads to a treatment of the fluid core which is very similar in spirit to, 
and which was in fact suggested by, Backus' (1967) construction of a catalogue of 
all possible static equilibrium stress fields in a slightly aspherical Earth model. 

The first of the core equations (50) gives rise to two conditions which must be 
satisfied, for all r in 0 < r < b, by the spherical harmonic expansion coefficients 
plE(r), (PIE(r) and plE(r). First, for all values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 > 0, we must have 

8, P1 E(r) + Po (r)  & $ 1  E(r) + P1 E(r) g o w  = 0. (59) 
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Second, for all values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0, but not necessarily for 1 = 0, we must have 

PlE@) = -Po(r)41E(r). (60) 

The case 1 = 0 emerges as a special case, which we will consider separately in Section 
8. For 1 > 0, by differentiation of (60) and substitution into (59) we obtain another 
relation 

P I E W  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgo-l(r)a,P0(')4lE(r) .  (61) 
Now upon substitution of (61) into the second of the core equations (50) we obtain, 
for every value of 1 > 0, a second order, homogeneous, differential equation for the 
spherical harmonic coefficients 41E(r), valid throughout 0 < r < b 

arz(b lE~r )+2r - ia r~ lE( r ) -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[i(i+ 1) r -~+4.n~g, -~( r )a ,p , ( r ) ] (b ,~( r )  = 0. (62) 

Equation (62) may be integrated from F = 0 to r = b- for any specified piecewise 
continuously differentiable density structure p,(r) in the core, although a preliminary 
numerical differentiation of po(r) is required. If po(r) suffers a jump discontinuity 
at some radius, say r = c, 0 6 c 6 b,  then the continuity conditions 

) (63) 
4 1 E ( C + )  = (blE(C-) 

a r  4 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"(c + = a r 4  1 E ( ~  - ) -47670 - (c) [Po (c+ - PO (C - )I 4 1 E ( ~ -  1 
must be applied at that point. In any case, equation (62) will in general allow a 
complete specification of the ratio d,41E(b-)/41E(b-) at the base r = b-  of the core- 
mantle boundary; since (62) is a homogeneous equation, the actual value of 41E(b-) 
itself is not determined. 

We now consider the specification of the various poloidal spherical harmonic 
expansion coefficients on the mantle side r = b+ of the core-mantle boundary. 
Notice that the continuity conditions (52) impose no restrictions on either V ( r )  or 
V(r ) ;  they may be chosen arbitrarily. For any value of 1 > 0, the continuity condi- 
tions (52), together with (57) and (60), yield the conditions 

g I E ( b + )  = [ a r  4 iE(b -)/4 lE(b -11 C +47@,(b- A,  I 
where A, B, C are arbitrary constants. The equations (63) specify, for any value of 
I > 0, the six poloidal spherical harmonic expansion coefficients VCr), V(r ) ,  P(r), 

Q(r), glE(r) at the base r = b ,  of the mantle, in terms of three arbitrary 
constants A, B and C. The usual static (o = 0), inhomogeneous (modified to 
include X(r) and Y(r))  sixth order poloidal system of differential equations (see, 
e.g. Backus 1967) may now be integrated from r = b+ to the free surface r = a- ;  
the three arbitrary constants A, B, C may then be determined by means of the three 
relevant free surface boundary conditions obtained from (53) 

P(a-) = 0 

g1"(a_)+(I+l)u-'q5,E(a_) = 0. 

Q(cz-)  = 0 

The above procedure allows a complete and unique determination, for all values 
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476 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Dahlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0, of the entire poloidal deformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(r),  V ( r ) ,  P(r) ,  Q(r), 41E(r), gIE(r) of 
the mantle, and of the perturbation in the Eulerian gravitational potential cbIE(r) 
in the fluid core. The perturbations in both fluid pressure piE(r) and density plE(r) 
in the core may be subsequently determined, again for 1 > 0, throughout the fluid 
core by means of (60) and (61). All these aspects of the static deformation can 
always be uniquely determined, regardless of the nature of the stratification in the 
fluid core. We note that the procedure may be readily extended to the computation, 
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI > 0, of the static Love numbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh,, k,, lI and the static load Love numbers 
hI', kr', ZI'. Only the free surface boundary conditions (64) need alteration. 

We now consider the restrictions on the Eulerian velocity field uE(r) which are 
imposed by the two remaining core equations (55).  We assume for the moment 
that the local Brunt-Vaisala frequency N(r)  is non-zero throughout the core; the 
case where N ( r )  = 0 in some finite region of the core constitutes a slightly special 
case, and will be discussed in Section 8. The case of either an Adams-Williamson 
core or a uniformly stable core, N2(r )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 for all r in 0 < r < b, is perhaps of the 
most geophysical interest. Provided N ( r )  # 0 throughout the core, equations (55 )  
lead to 

The general solution to the pair of equations (65) is any purely toroidal flow uE(r), 
i.e. any u&) of the form 

uE(r) = - f  x v, p(r). (66) 

Here F(r) is an arbitrary, continuously differentiable scalar field, which may of course 
be expanded in a series of spherical harmonics y;"(P). Thus we may say that for 
the case N ( r )  # 0, and for any value of 1 > 0, there can be an arbitrary, steady, 
incompressible, purely toroidal Eulerian fluid flow occurring throughout the fluid 
core, without in any way affecting the various aspects of the deformation which have 
already been uniquely determined. Since there are no toroidal fields of degree I = 0, 
the 1 = 0 or purely radial part of the flow must be identically zero. For any value of 
1 > 0, the steady Eulerian velocity field uE(r) in the core is however completely 
unrestricted by the inviscid equations of infinitesimal motion, apart from being 
required to be purely toroidal. This circumstance clearly renders the static Lagrangian 
particle displacement in the core quite indeterminate; in fact any purely toroidal 
Lagrangian particle displacement of arbitrarily large magnitude may occur. 

This conclusion may be stated somewhat differently by a consideration of the 
density change pL(x, t )  which is experienced by some given fluid particle x which is 
participating in a steady toroidal flow of the form (66). We restrict attention, for 
the moment, to the case where the body force f,(r) giving rise to the deformation 
does not have an 1 = 0 spherical harmonic part; there is thus no I = 0 deformation. 
The additional complications introduced by a non-zero term of degree 1 = 0 will be 
considered in Section 8. Since the flow uE(r) is incompressible, V*u,(r) = 0 correct 
to first order in uE(r), the exact (not linearized) Eulerian form of the continuity 
equation (24) requires that, again correct to first order in uE(f), 

where sL(x, t )  is the toroidal Lagrangian displacement of the particle x. Hence, 
correct to first order in a&), the statement that a steady flow of the compressible 
core fluid is purely toroidal is equivalent to the statement that the fluid is flowing in 
such a way that the density of every particle x remains constant. The surfaces of 
equal density in the fluid core are spherical surfaces before the deformation, but they 
become distorted by the static deformation. Provided the deformation does not 
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Static deformation of an Earth model 477 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
have an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 part, the fluid particles are constrained to move in such a way that every 
distorted equal density surface still consists of the same fluid particles after the 
deformation, but the Lagrangian fluid particle displacements produced by the imposed 
body force in the mantle are otherwise unrestricted. The fluid particles which com- 
prise any given surface of constant density before the static deformation behave 
essentially indistinguishably during the deformation. 

It is well known that in any hydrostatic situation (e.g. both before and after the 
static deformation), the surfaces of constant density, constant gravitational potential, 
and constant fluid pressure all coincide. Denote the net static radial displacement of 
the equipotential surface initially at the radius r by {(rP), and consider its expansion 
into a series of spherical harmonics y;"(P). For any value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 > 0, the scalar radial 
expansion coefficient { ( r )  may be determined uniquely throughout the core 
0 < r < b since is known, and we have, correct to first order in 41E(r ) ,  

Hr) = -go- l (MIE( r ) .  (68) 

If, for all values of 1 > 0, the fluid particles in the core really do remain on the equi- 
potential surfaces on which they originate, then the perturbations in the Eulerian 
density plE(r) and pressure plE(r)  should arise only from advection, i.e. for I > 0 

Equations (69) are in full agreement with (60) and (61). 
We have thus, at least for the case where N ( r )  # 0 and for every value of 1 

except 1 = 0, obtained a complete picture of the role played by the fluid core in 
any static deformation. The Lagrangian particle displacement in the fluid core is 
indeterminate, except for the fact that every particle must remain on the equipotential 
surface on which it originates. The perturbations in density plE(r), pressure plE(r) ,  
and gravitational potential rblE(r), as well as the net static vertical displacement { ( r )  
of the core equipotential surfaces may, on the other hand, be completely and uniquely 
determined. The static deformation of the fluid core may be said to be determined to 
within an arbitrary toroidal Lagrangian displacement. Every aspect of the deforma- 
tion in the mantle may be uniquely determined. 

The complete indeterminacy of the Lagrangian particle displacement in the core 
produced by a static imposed body force may be more fully understood in the follow- 
ing terms. Note that. for the case where N(r )  # 0 throughout the core, an arbitrary 
steady toroidal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow of the form (66) is in fact a perfectly valid solution to the 
full set of zero-frequency normal mode equations (37), (38), (39), and (40) (set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o = 0 and set all other field variables other than uE(f) to zero). There is then, for 
any value of 1 > 0, an infinitely large class of zero-frequency normal modes of any 
Earth model with a fluid core. In the case where N ( r )  # 0, this infinitely large class 
of zero-frequency normal modes consists precisely of the class of all steady toroidal 
flows in the core. A static force f&) confined to the mantle may be thought of as a 
resonant excitation at a node of these steady toroidal flow modes (a static gravita- 
tional potential such as 4tiaa,(r) or q5,0ad(r) may be similarly thought of, in a generalized 
sense, as acting at a node of the steady toroidal flow modes). The idealized purely 
harmonic resonant excitation at the node of a normal mode of an arbitrary mechanical 
system leads in general to an indeterminate response; an arbitrary amount of the 
resonant mode may be superposed on the otherwise determinate response. 

Viewed in this way, it is clear that the indeterminacy of the Lagrangian particle 
displacement in the fluid core is a consequence of the somewhat idealized concept of 
a purely static deformation. Any real geophysical process does not occur statically, 
and in general real geophysical problems are initial value problems. In principle, 
one could of course compute every detail of the response of the Earth to any 
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realistic geophysical process; for example, one could in principle solve the initial value 
problem which determines the complete response to a kinematically prescribed 
dislocation on a fault surface somewhere within the Earth. To compute the 
permanent deformation after all the faulting has ceased and all the free oscillations 
of the Earth excited by the faulting process have decayed, it would be necessary to 
make further assumptions about the constitutive nature of the Earth model. In 
particular, it would be necessary to make some assumptions regarding the nature of 
the anelasticity (e.g. the viscosity of the fluid core) which gives rise to the dissipation 
of the free oscillations excited by the faulting. We have seen that such a procedure 
may be avoided, as long as one does not wish to know the precise permanent Lagran- 
gian particle displacement in the core. Any aspect of the permanent deformation 
which is conceivably measurable at the surface of the Earth may be uniquely deter- 
mined by idealizing the faulting process as a static phenomenon. 

We mention finally, for completeness, the existence of the other zero-frequency 
normal modes of any Earth model, namely the rigid body translations and rotations. 
The complete catalogue of normal modes of any non-rotating, spherically symmetric 
Earth model which has a fluid core consists in general of the zero-frequency rigid 
body translation and rotations, the zero-frequency steady toroidal flows in the core, 
the toroidal modes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"T,  and the eg and ge type poloidal modes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"Sl.  It is of interest to 
note the way in which the overall characteristics of the ge type poloidal modes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"S1, 
for a fixed I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0, of an Earth model with an everywhere stable core assume increasingly 
the characteristics of the toroidal steady flow modes as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 3 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco and ,,o: becomes 
arbitrarily small. 

8. Some special cases 

We will now point out and consider briefly the special cases which must be treated 
separately in any computation of the static deformation of an Earth model with a 
fluid core. The most important such special case is the case of the contribution from 
the terms of spherical harmonic degree 1 = 0. There are no purely toroidal fields of 
degree 1 = 0, so we need only consider the poloidal type deformation characterized 
by I = 0. The case 1 = 0 arises naturally as a special case in the poloidal analysis, 
because of the fact that equation (50) leads directly to equation (60) only for 1 =- 0. 
We will show that the 1 = 0 portion of the poloidal deformation produced by an 
arbitrary body force fE(r) in the mantle may, contrary to the situation for all values 
of I > 0, be completely determined throughout the entire Earth model. In particular 
the 1 = 0 part of the Lagrangian particle displacement may be determined even in 
the fluid core. This is not unreasonable, since we observed in Section 7 that the 
indeterminacy for 1 > 0 was associated with the nodal resonance excitation of the 
zero-frequency toroidal flow normal modes. There are no such steady toroidal flow 
normal modes for 1 = 0, since purely toroidal fields of degree I = 0 do not exist. 

We will consider first the case of a purely 1 = 0 poloidal deformation; i.e. a 
deformation produced by a body force f,(r) containing only an I = 0 part ( X ( r )  = 0 
for 1 > 0, Y ( r )  = 0 for I 2 0). The more general case of a body force f,(r) con- 
taining spherical harmonic terms of all degrees I > 0 may then be treated by super- 
position. The Lagrangian particle displacement associated with a purely 1 = 0 
deformation is purely radial, even in the fluid core. A purely radial Lagrangian 
particle displacement can never become arbitrarily large, and this allows the use of a 
linearized Lagrangian formulation of the 1 = 0 equations of motion even in the core. 
We may use the I = 0 scalar radial variables U(r) ,  P(r),  41E(r), and glE(r) throughout 
the entire Earth model, in the core as well as in the mantle ( V ( r )  and Q(r) are 
identically zero everywhere, and P ( r )  = -plL(r) = -plE(r) +p, (r )  g,(r) U(r )  in 
the core. For I = 0, we may also show that glE(r) = 0, and it is well known that the 
usual sixth order poloidal system degenerates to a second order system involving 
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U(r),  P(r )  and the inhomogeneous term X ( r ) ,  together with a quadrature for +lE(r). 
These equations allow a complete determination of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 part of any static 
deformation. Such a complete determination of an I = 0 static deformation was 
first obtained by Longman (1963); Longman's particular application was to the 
computation of the degree 1 = 0 load Love numbers. 

A purely 1 = 0 static deformation does not in general share the common property 
of all I > 0 deformations that the fluid particles in the core remain on the equipotential 
surface on which they originate. That is, the purely radial Lagrangian particle displace- 
ment U(r ) ,  0 < r < b is not in general equal to the purely radial displacement of the 
core equipotential surfaces t ( r )  = -go-'(r)41E(r), 0 < r < b. This is of course 
entirely consistent with the fact any purely radial deformation must in general cause 
either a net increase or a net decrease in core volume; the associated perturbation in 
the Lagrangian density at any fluid particle x must under such circumstances be 
non-zero. The fluid particles thus cannot remain on the equal density surface on 
which they originate. 

It is now easy to describe the static deformation produced by an arbitrary imposed 
body force f&). We consider the deformation to be a two-stage process. We compute 
first the 1 = 0 part of the deformation. During this part of the deformation every 
fluid particle in the core (as well as every particle in the mantle) is displaced purely 
radially to some new level in the Earth model. The equipotential surfaces in the fluid 
core (as well as in the mantle) also suffer a purely radial deformation. The 1 = 0 
part of the deformation thus uniquely associates every fluid particle in the core with 
a new spherical equipotential surface. Now we allow the remainder (i.e. all terms of 
spherical harmonic degree 1 > 0) of the imposed body force to act. Every fluid 
particle in the core must now remain on the equipotential surface on which it resides 
as a result of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = 0 part of the deformation. The Lagrangian particle displacement 
in the fluid core is indeterminate to within an arbitrary toroidal displacement. Every 
other aspect of the deformation is uniquely determined. 

The spherical harmonic terms of degree 1 = 1 also constitute a slightly special 
case, although it was not explicitly pointed out in Section 7. The reason is that in the 
special case I = 1, a purely static deformation corresponds in general not only to a 
nodal resonance excitation of the toroidal steady flow modes in the core, but also to 
a resonance excitation of the I = 1 zero-frequency normal modes corresponding to 
rigid body translation and rotation. The resolution of this difficulty has been amply 
discussed in the geophysical literature. In the case of the static response to an arbitrary 
body force fE(r), it is clear that static equilibrium cannot be expected unless the 
imposed body force exerts neither a net force nor a net torque on the Earth model 
(the body forces equivalent to a static elastic dislocation satisfy this criterion). Such 
a body force cannot give rise to either a net translation or rotation; this extra 
information can be used to determine the I = 1 response (see, e.g. Ben-Menahem & 
Singh 1968). In the case of the static response to an 1 = 1 surface mass load, the 
extra information required for a complete solution is the fact that the centre of mass 
of the Earth model plus the mass load must not move in space (see, e.g. Farrell 1972). 
The reason that the case I = 1 is a special case has nothing to do with the existence 
of a fluid core. The treatment of the fluid core is essentially unaltered, and, in general, 
one can determine the I = 1 response to within an arbitrary I = 1 Lagrangian particle 
displacement within the core. 

One further special case arose in the treatment in Section 7, and that is the case 
where the fluid core is neutrally stratified ( N ( r )  = 0) throughout some finite region 
of the core 0 < r c b. This affects only the determination of the possible steady 
Eulerian flow fields uE(r) which can occur in that region. If N(r )  = 0, then the set 
of equations (55) together with the core-mantle boundary conditions (52) lead only 
to the condition that 
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(70) 

instead of to the condition (65) that both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,"(r) and V*u,(r) vanish simultaneously 
throughout 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< r < b. Equations (70) place even fewer restrictions on the class of 
compatible flows uE(r) than do the equations (65). In particular, a steady flow with 
a non-zero vertical component u:(r) is not prohibited in any neutrally stable region 
of the core. The fluid particles in any such region of the core are thus not even required 
to remain on the equipotential surface on which they originate. This is of course not 
unexpected; it is essentially what is meant by neutral stability. 

Note that the treatment of an everywhere neutrally stratified core (N(r) = 0 
for all r in 0 d r < b) is, from a numerical point of view, slightly more convenient 
than the more general case. This is because numerical differentiation of the core 
density profile zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,(r) is not required prior to the solution of (62). The second order 
homogeneous equation for q51E(r) in the core is, in this case 

u:a,po+po v * u ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 0 < Y < b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u,"=O, r = b ,  

a,2 41E(r)+2r-1 a,41E(r)+ [4n~p ,~ ( r )  rc-'(r)-l(Z+ 1)r-2]+1E(r) = 0. (71) 

Equation (71) follows from (62) upon substitution of the Adams-Williamson condi- 
tion that N(r) = 0. The treatment of an Adams-Williamson core, for the case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 > 0, 
thus involves the numerical integration of (71) throughout the core, followed by the 
imposition of the continuity conditions (63) at the core-mantle boundary r = b. 

9. Comparison with previous treatments 

In  an attempt to truly clarify the confusion which prevails in this subject, we will 
now discuss the relation of the above static treatment of the fluid core to a few of the 
earlier treatments of this problem. We have shown in Section 7 that the use of a 
linearized Eulerian formulation of the equations of motion in the fluid core enables 
one to obtain a complete and consistent picture of the role played by the core in any 
static deformation. The chief difficulty with all (to my knowledge) previous treat- 
ments of this problem has stemmed ultimately from the fact that they have all 
employed, without any justification, a linearized Lagrangian formulation of the 
equations of motion in the fluid core. 

We will compare briefly the methods used to treat the fluid core in the work of 
Takeuchi (1950), Longman (1963), Jeffreys & Vicente (1966), Smylie & Mansinha 
(1971), Dahlen (1971), Farrell (1972), Dahlen (1973), Pekeris & Accad (1972), and 
Israel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1973). Most of these papers are not concerned primarily with the rather 
academic question of how to treat the fluid core in static problems; instead they are 
for the most part examining some geophysically interesting problem whose solution 
requires a method of treating the core. The main goal of most of these papers is thus 
the computation of some geophysical quantity which is observable at the surface of 
the Earth. It turns out that, even though most of these papers employ an inadequate 
or an internally inconsistent treatment of the fluid core, they almost without excep- 
tion do compute the desired geophysical observable correctly. In almost all cases, 
the physics is faulty or perhaps a bit unclear, but the computational algorithm turns 
out to be correct. We will concentrate our discussion of the individual papers primarily 
on the extent to which there is mathematical agreement with the treatment in Section 
7, rather than dwell heavily on the sometimes peculiar physical interpretations. 

First we make some general comments which apply to all of the earlier treat- 
ments. Typically, the equations of motion employed in the core were obtained by 
simply setting the rigidity p ( r )  = 0 in the linearized Lagrangian equations of motion 
(51). When the scalar potential variables (56) are introduced and the spherical 
harmonic resolution performed, one obtains certain scalar equations in the core; 
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one of these equations takes the form, for every value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0, 

[J,U(r)+2r-’ U(r)-Z(/+l)r-’ V(r)]N2(r) = 0. (72) 
Equation (72) plays a leading role in all of the earlier treatments. If the Earth model 
under consideration has an Adams-Williamson core, then equation (72) would be 
satisfied identically. If on the other hand N(r) # 0 throughout the core, then 
equation (72) seems to imply that the Lagrangian dilation is required (for 1 > 0) 
to vanish. 

The first paper which deals with the static deformation of a reasonably realistic 
Earth model with a fluid core is that of Takeuchi (1950); Takeuchi was interested 
in the determination of the static zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = 2 Love numbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk,, 1,. He utiiized a 
Lagrangian formulation in the core and arrived at equation (72), although he did 
not express it in exactly the same notation. He states that equation (72) is in fact an 
identity; he seems to have been under the impression that the condition N(r) = 0 
is a necessary condition for the static equilibrium of a fluid (since the 1936 Bullen 
core density model he utilized for numerical calculations was obtained by employing 
the Adams-Williamson equation, it turns out that equation (72) was in fact satisfied 
identically in his case). Takeuchi showed that the rest of the relevant Lagrangian 
equations in the core led to the homogeneous second order equation (62), and it 
was this equation which he integrated throughout the core. The boundary condi- 
tions which he employed at the core-mantle boundary were equivalent to the condi- 
tions (63). Takeuchi (1950) thus utilizes a computational procedure which, for an 
Adams-Williamson core, is mathematically equivalent to that in Section 7, in so far 
as any aspect of the deformation in the solid mantle is concerned. In particular, his 
algorithm for computing the surface expression of the static tidal deformation, 
namely the Love numbers h,, k,, l,, is valid. 

Longman (1963) was interested in the determination of the static load Love 
numbers hl’, kl’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZl’ for all values of the spherical harmonic degree 1 < 40. His treat- 
ment of the case 1 = 0 is exactly the same as that given in Section 8. In the case 
1 = 0, a Lagrangian formulation may be employed in the core, and the purely radial 
1 = 0 Lagrangian particle displacement may be uniquely determined. He did not 
treat the case Z = 1, seemingly assuming it to be of no interest, or to lead to no 
observable effects. For the case 12 2, he too arrived at equation (72), and he too 
states that the condition N ( r )  = 0 ‘ is really implicit in our assumption of elastic 
equilibrium under gravity ’. He accordingly modified the bulk modulus K(r) in the 
Gutenberg Earth model he used for numerical computations, so that the Adams- 
Williamson equation was satisfied throughout the core. He used the same second 
order differential equation for 41E(r) in the core as did Takeuchi (1950), except that 
he wrote it in the form (71) instead of (62). He too thus utilized a computational 
algorithm which leads to a correct computation of all aspects of the deformation in 
the solid mantle. 

Jeffreys & Vicente (1966) seem to have been the first to point out explicitly that 
equation (72) can only be considered an identity for a very particular class of core 
models, namely those in uniform neutral equilibrium. They offer the opinion that 
Longman’s (1963) treatment is correct for that special case, and that for any other 
case, no solution may be obtained. The reason for this, from a mathematical point 
of view, is that in the case N(r) # 0, equation (72) provides an additional relation 
between the scalars U(r )  and V ( r )  in the core, and this has the undesirable effect of 
eliminating one of the three necessary arbitrary constants in the core-mantle 
boundary conditions (63). 

The next important development was made by Smylie & Mansinha (1971). They 
wished to determine the change in the inertia tensor of the Earth produced by the 
action of a point static elastic dislocation situated in the mantle. The motivation 
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behind such a computation was their desire to subject to a test their hypothesis that 
seismic activity was responsible for the observed excitation of the Chandler wobble. 
Smylie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Mansinha point out quite correctly that the fluid core of the real Earth is 
unlikely to be exactly in a state of neutral equilibrium at all points, and that it would 
be desirable to be able to treat the problem of static deformation for an arbitrary 
core model. Their physical picture of the role played by the core in a static deforma- 
tion is in many respects similar to the one presented in Section 7, but their derivation 
of the relevant core equations seems somewhat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAad zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhoc. They simply assume, without 
any apparent justification, that one can employ the linearized Lagrangian equations 
in the core, with the proviso that, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI > 0, the scalar radial variable U ( r )  is to be 
interpreted not as the radial Lagrangian particle displacement, but rather as the 
radial displacement c(r )  of the equipotential surface of radius r.  This argument 
leads, it turns out, to exactly the second order differential equation (62) in the core 
and the boundary conditions (63) at the core-mantle boundary. Thus, the procedure 
of Smylie & Mansinha (1971) leads to a correct computational algorithm for +lE(r) 
in the core and for all aspects of the deformation in the mantle, regardless of the 
nature of the core stratification. The limitations of their argument do not become 
apparent until the next step in the computation, namely the evaluation of the volume 
integrals which define the change in the inertia tensor. Both the mantle and the 
core contribute to the change in the inertia tensor. Smylie & Mansinha utilize a 
certain expression (their equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(44)) to compute the contribution of the core to 
the change in the inertia tensor. Their expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(44) is obtained by making use of 
a purely Lagrangian description of the core deformation, but then arbitrarily setting 
the tangential displacement equal to zero, and taking the vertical displacement to 
be that suffered by equipotential surfaces in the core (Smylie 1973, private com- 
munication). This somewhat ad hoc argument yields an expression which is not 
consistent with the treatment described here. 

Dahlen (1971) criticized the ad hoe nature of Smylie & Mansinha’s (1971) 
arguments, and agreed with the view of Jeffreys & Vicente (1966) that the static 
deformation problem was indeterminate, except for the case of a core in uniformly 
neutral equilibrium. He conjectured that, in the case of a stably stratified core 
model, a physical explanation of this could perhaps be in some way connected with 
the near resonance excitation of the very low frequency ge type poloidal modes. It 
has been shown above that this is not the case at all. The situation may be more 
properly viewed as an exactly resonance nodal excitation of the zero-frequency 
toroidal flow modes, and it is only to within such an arbitrary steady toroidal flow 
that the problem is at all indeterminate. 

Farrell (1972) has computed the load Love numbers of a realistic Earth model 
with a fluid core, up to values of spherical harmonic degree 1 = 10000, and has 
used these to form the Green function for a point mass load. He simply avoided 
most of the problems associated with the static deformation by computing not the 
static load Love numbers hi’, kl‘, Z i ’ ,  but rather the dynamic load Love numbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hif(w), k,’(w), l l f (m),  choosing w to be the semi-diurnal tidal frequency. The special 
case I = 1, however, he treated statically, using an Adams-Williamson core model. 
Farrell’s procedure for treating the special case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = 1 is readily extended to allow 
for an arbitrary core model by simply utilizing (62) instead of (71) in the core. 

Dahlen (1973), in a correction to a previously published numerically inaccurate 
calculation, was concerned with the same geophysical application as Smylie & Man- 
sinha (1971). Dahlen (1973) used an Earth model with an Adams-Williamson core, 
since he did not know how to perform the calculation for any other type of Earth 
model. He used equation (71) in the core and the boundary conditions (63) at the 
core-mantle boundary. In evaluating the volume integrals to compute the change 
in the inertia tensor, he took advantage of the Lagrangian formulation in the mantle, 
and computed the mantle contribution by means of an integration over the un- 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/3
6
/2

/4
6
1
/6

1
8
8
8
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Static zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdeformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof an Earth model 483 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
deformed mantle volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< r < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. In the fluid core he utilized the Eulerian 
description of the perturbation in the density plE(r) (given in terms of #lE(r) by 
equation (61)) and performed an integration over the deformed core volume. This 
procedure is entirely consistent with the treatment in Section 7, and it could now 
easily be extended to deal with any arbitrary core model. From a purely mathe- 
matical point of view, the only difference (apart from the different Earth models 
employed) between the treatments of Smylie & Mansinha (1971) and Dahlen (1973) 
is in this final step, i.e. the form of the expression which gives the core contribution 
to the change in the inertia tensor (compare equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(44) of Smylie & Mansinha 
(1971) with equation (23) of Dahlen (1973)). Dahlen (1973) actually performed this 
step of the calculation using both procedures, and found that the final answer was 
affected by less than 10 per cent. 

Pekeris & Accad (1973) have made a lengthy analysis of the general problem of the 
low frequency and the zero frequency response of spherically symmetric Earth 
models which have a fluid core. They take as the starting point of their analysis the 
linearized Lagrangian formulation of the equations of motion throughout the entire 
Earth model, in the fluid core as well as in the mantle. They define throughout the 
core a dimensionless stability parameter /3(r), which is related to the local Brunt- 
Viiisala frequency N ( r )  by P(r) = - ~ ( r )  po-1 ( r )go -Z(r )N2(r ) ,  and they restrict 
consideration to core models characterized by a constant value of p(r). They 
obtain, as did Smylie & Mansinha (19711, the second order homogeneous equation 
(62) for the perturbation in the gravitational potential 41E(r) in the core; they express 
this equation in terms of the constant parameter fi(r) = /I. For the case of a uni- 
formly unstable core model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p  > 0), they utilize a complicated asymptotic boundary 
layer theory to obtain the proper form of the boundary conditions to be employed 
at the core-mantle boundary in the case of a purely static deformation. For that 
case ( p  > 0), this procedure does, it turns out, yield boundary conditions which are 
equivalent to the conditions (63). Their procedure thus leads to a correct compu- 
tational algorithm for $lE(r) in the core and for all parameters of the deformation 
in the mantle. If the core model is uniformly stable ( p  < 0), the existence of the ge 
type poloidal modes of the Earth model prevents them from utilizing asymptotic 
boundary layer arguments, and they are unable to suggest a static computational 
procedure for such models. For the other case however (/I > 0), Pekeris & Accad 
(1971) do seem to have devised a method whereby the linearized Lagrangian 
equations of motion, although not strictly valid in the static limit, may be employed 
to obtain a computational algorithm which is valid in that limit. Their method, 
besides being rather complicated and only applicable in the case of an unstable core 
model, seems also to have other limitations, since Pekeris and Accad claim that it 
provides a unique determination of the static Lagrangian particle displacement 
throughout the core. It is clear from the analysis in Section 7 that in fact the dis- 
placement field which they obtain is only one of an infinitely large class of possible 
displacement fields, each of which is completely compatible with the more properly 
formulated Eulerian equations of motion. 

Israel et al. (1973) discuss in some detail the static response of a spherically sym- 
metric Earth model to a point static elastic dislocation in the mantle. They perform 
numerical computations only for the case I = 2, since they are primarily interested 
in the change in the inertia tensor, Following Pekeris & Accad (1973), they consider 
two Earth models, one with an Adams-Williamson core ( p  = 0) and one with a 
highly unstable core ( f i  = 0.2). In both cases, their computational algorithm is 
completely consistent with that developed in Section 7, and in the first case identical 
to that employed by Dahlen (1973). Unlike Smylie & Mansinha (1971), they compute 
the change in the inertia tensor in a way which is entirely consistent with the treatment 
in Section 7, employing a Lagrangian integration over the undeformed mantle volume 
and an Eulerian integration over the deformed core volume. They find that the two 
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Earth models, one with an Adams-Williamson core and one with a highly unstable 
core, have changes in the inertia tensor which agree to within 0.1 per cent. Dahlen 
(1973) has shown that his corrected numerical results agree very well with those of 
Israel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1973). 
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