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Abstract

In this paper we will present a model for the �ow of a waxy crude oil in a test loop, taking
into account deposition mechanisms due to the high content of para/n. We will analyse the
�ow in a non-isothermal condition considering the main rheological parameters depending on
the radial coordinate of the pipe. We will formulate the related mathematical problem, which
will turn out to be a free boundary problem, and perform a quasi-steady approximation for some
of the equations involved. For such approximated problem well posedness is proved.
? 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Waxy crude oils are characterized by a high content of para/n, a mixture of heavy
hydrocarbons, called n-alkanes, usually ranging from C18H38 to C40H82. The presence
of para/n can cause severe troubles during all the working processes of these oils.
It is well known that, in special conditions of pressure and temperature, para/n

begins to crystallize and that, once the crystals are formed, they show a strong tendency
to aggregate.
The formed agglomerates can turn the oil into a highly viscous material which

can be hardly transported through pipelines. Since the temperatures at which para/n
crystallize are not extreme (usually between 10◦C and 30◦C), the problem of para/n
crystallization a;ects most part of waxy crude oils we can <nd in nature.
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The temperature at which para/n starts to crystallize is commonly known as Cloud
Point, whereas the temperature at which crystals begin to agglomerate is usually called
Pour Point. Pour Point is typically 10–15◦C lower than the Cloud Point. As showed
in [15], for temperatures higher than the Cloud Point, waxy crude oils behave like
Newtonian incompressible viscous �uids, while if the temperature is below the Pour
Point, their behaviour becomes distinctly non-Newtonian. In the presence of para/n
crystals the oil clearly shows a Bingham behaviour, meaning that there is a yield stress
which must be overcome in order to have the oil �owing.
The �ow properties of waxy crude oils are actually more complex. The viscosity

and the yield stress have a strong dependency on the “thermal history” and on the
“mechanical history” of the �uid, and viscosity can be greatly reduced by a contin-
ued shear, indicating a kind of “thixotropy”. Our analysis is focused on the �ow of
a waxy crude oil through an experimental loop. This is essentially a straight portion
of a closed cylindrical loop in which the oil is being circulated by a constant applied
pressure gradient. In this situation the oil circulating is always the same and no para/n
can be added or removed. Even though the loop system is di;erent from real plants
(where fresh oil is continuously supplied to the pipe), it actually provides a good tool
for analysing the rheological properties of waxy crude oils in dynamical conditions. In
the present paper we will study the dynamics of a waxy crude oil in a non-isothermal
situation, taking into account that part of the precipitated para/n is transported to the
pipe wall driven by thermal or mechanical e;ects. As a consequence, a solid paraf-
<n layer grows at the pipe wall, in�uencing the whole dynamics. We will formulate
a mathematical model for the entire process and, after performing a quasi-steady ap-
proximation, we will prove the well posedness of the corresponding free boundary
problem.
Di;erent from previous works on this subject (see [5–10]), we will suppose here

that the parameters describing the crystalline component in the oil depend also on the
radial coordinate of the pipe.

2. Physical description of the problem

Let us consider a portion of a straight cylindrical pipe of radius R and let us call ẽ z
the axial unit vector. We want to study the �ow of a waxy crude oil, considering that
temperature is below the Pour Point and that part of the precipitated para/n crystals
may adhere to the pipe wall, forming a layer of solid material. We will model the
�ow on the basis of the usual Bingham model for a laminar incompressible �uid and
we will assume that the Bingham viscosity and the yield stress both depend on the
fraction of crystallized para/n and on the fraction of agglomerated para/n.
The deposition rate of para/n on the pipe wall is due to two main mechanisms:

molecular di;usion and shear dispersion. The former is essentially a process due to
the presence of a concentration gradient (which is due to the presence of a thermal
gradient), while the second results from the “shearing” of the �uid, that basically means
that some particles of para/n tend to migrate towards the pipe wall because of the
presence of a velocity gradient.



L. Fusi / Nonlinear Analysis 53 (2003) 507–526 509

The model must include an equation for the evolution of the fraction of the agglom-
erated para/n and an equation for the evolution of the concentration of crystallized,
but not aggregated, para/n.

3. Physical assumptions

Let us <rst introduce the following para/n concentrations which will be useful for
describing the crystalline component in the �uid.

• C = C(r; t), total concentration,
• Cd = Cd(r; t), concentration of dissolved para/n,
• Cp = Cp(r; t), concentration of crystallized para/n,
• Ca = Ca(r; t), concentration of aggregated crystallized para/n,
• Cn = Cn(r; t), concentration of non-aggregated crystallized para/n,

where r is the radial coordinate and t is time. We assume that all the above concen-
trations are expressed in g=cm3. We introduce

�(r; t) =
Cp(r; t)
C(r; t)

; �(r; t) =
Ca(r; t)
Cp(r; t)

(1)

and we call � the crystallization degree and � the aggregation degree. Since

C(r; t) = Cp(r; t) + Cd(r; t); Cp(r; t) = Ca(r; t) + Cn(r; t) (2)

it follows immediately that � and � are two non-dimensional parameters taking values
between 0 and 1. We assume also that the �ow is laminar and incompressible, with a
velocity <eld of the form ṽ = v(r; t)̃ez. We assume that the temperature depends only
on (r; t), and that the crystallization degree � and the concentration Cd are two known
functions of temperature, which will always be supposed below the Pour Point. Thus
we write

� = �(T (r; t)); Cd = Cd(T (r; t)): (3)

As we said, below the Pour Point, the behaviour of the �uid is comparable to the one
of a Bingham �uid (see [4]). Roughly speaking, a Bingham �uid is a non-Newtonian
�uid which behaves like a rigid body when the shear stress � is below a certain
threshold value �0, called the yield stress. When � is greater than �0, the �uid behaves
like a viscous �uid. In a system of cylindrical polar coordinates (r; �; z), the constitutive
equation for an incompressible laminar Bingham �uid is given by

(�− �0)+ = �
∣∣∣∣@v@r
∣∣∣∣ ; (4)

where (:)+ stands for the positive part and � is usually referred to as the Bingham
viscosity. In what follows we will assume that

�= �(�; �); �0 = �0(�; �): (5)
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4. Crystalline component

In order to describe the evolution of the agglomerated para/n within the �uid, we
write the following evolution equation for �(r; t) as in [5]:

d�
dt

= K1(T )(1− �)− K2(T )�|W (r; t)|: (6)

Here d=dt is the material derivative (meaning we are di;erentiating w.r.t. time along
the path of a �uid particle), K1 and K2 are two positive functions of temperature to be
experimentally determined and W (r; t) is the power density dissipated by the viscous
forces. Recalling that ṽ= v(r; t)̃ez, (6) becomes

@�
@t

+
@�
@r

ẽ r · ṽe z = K1(T )(1− �)− K2(T )�|W (r; t)|; (7)

where ẽ r is the unit radial vector. It is known that

W (r; t) =
@v
@r

(
−�0 + �

@v
@r

)
: (8)

Thus Eq. (7) becomes

@�
@t

= K1(T )(1− �)− K2(T )�
∣∣∣∣@v@r

(
−�0 + �

@v
@r

)∣∣∣∣ (9)

which is the evolution equation for the aggregation degree �.

5. Thermal �eld

On the basis of the available data we assume that the thermal conductivity k, the
thermal capacity c and the density � are constant and that they assume the same value
in the �uid and in the solid layer (see [3]). Since the velocity <eld depends only on
r, no convection is occurring and temperature T will satisfy

@T
@t

− k
�c

(
@2T
@r2

+
1
r
@T
@r

)
= 0: (10)

T will always be below the Pour Point if the boundary and initial conditions are
speci<ed properly.

6. Deposition mechanisms

In this section we introduce the problem of para/n deposition on the pipe wall. The
two principal mechanisms for para/n deposition in pipelines are molecular di;usion
and shear dispersion (see [1–3,11,12,14,16]). The <rst involves dissolved para/n, while
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the second crystallized, but not aggregated, para/n. Molecular di;usion is due to the
concentration gradient induced by the temperature gradient. If we indicate with j̃d
the �ux of dissolved para/n, the mechanism of molecular di;usion can be written by
means of Fick’s di;usion equation

j̃d =−Dd
dCd

dT
@T
@r

ẽ r ; (11)

where Dd is the molecular di;usion coe/cient. Essentially, j̃d expresses the rate at
which dissolved para/n is transported to the wall per unit surface. For what concerns
the mechanism of shear dispersion, the usual assumption is that the �ux j̃s of crystal-
lized, but not aggregated, para/n is proportional to the concentration of non-aggregated
para/n Cn and to the strain rate @v=@r:

j̃s =−DsCn
@v
@r

ẽ r ; (12)

where Ds is the shear dispersion coe/cient. The dimensions of Dd are square length
over a time, whereas Ds is a length. Considering (11) and (12) it is easy to write the
evolution equation for the para/n layer. We assume that the deposit is uniform with
thickness �(t). We call �(t) = R− �(t) the reduced pipe radius. Since we are dealing
with a waxy crude oil circulating in a loop, no para/n will be added during the �ow
and, since all the concentrations do not depend on the axial coordinate z, we can take
a section of length one between, let us say, z0 and z0 + 1, and write the following
balance equation:

d
dt

[��(R2 − �2(t))] =
∫
�(t)

(̃jd + j̃s) · ñ d�; (13)

where ��(R2 − �2(t)) is the mass of a unit length portion of the deposition layer at
some time t, �(t) is the inner surface of the para/n layer

�(t) = {(r; �; z): r = �(t); �∈ [0; 2�]; z ∈ [z0; z0 + 1]} (14)

and ñ is the outward unit normal to �(t), that is ẽ r . Eq. (13) tells us that in any
portion of <xed length of the pipe the quantity of para/n must remain constant. Using
(11) and (12), Eq. (13) becomes

2���̇�=
∫
�(t)

(
Dd

dCd

dT
@T
@r

+ DsCn
@v
@r

)
r=�(t)

d�; (15)

��̇=
(
Dd

dCd

dT
@T
@r

+ DsCn
@v
@r

)
r=�(t)

; (16)

where �̇ stands for d�=dt. Eq. (16) represents the evolution equation of the para/n
layer due to molecular di;usion and shear dispersion.
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7. Evolution of Cn(r; t) (non-aggregated para(n)

If we take a volume � of the �uid, we can write

@Cp

@t
+∇ · (̃jp) = Sp in �; (17)

@Cd

@t
+∇ · (̃jd) = Sd in �; (18)

where ∇· is the divergence operator in Cartesian coordinates, j̃p is the �ux of precipi-
tated para/n, j̃d is given by (11), Sp is the rate of production of precipitated para/n
and Sd is the rate of production of dissolved para/n. Adding (17) and (18) we obtain

@C
@t

+∇ · (̃jd + j̃p) = Sp + Sd = 0 in �; (19)

where the last equality is due to the fact that no para/n is added or removed from
the �uid. Hence Sp =−Sd, and we have

Sp =−@Cd

@t
−∇ · (̃jd) =−@Cd

@t
+
[
1
r

@
@r

(
rDd

dCd

dT
@T
@r

)]

=−dCd

dT
@T
@t

+ Dd
dCd

dT

(
@2T
@r2

+
1
r
@T
@r

)
+ Dd

d2Cd

dT 2

(
@T
@r

)2
: (20)

Hence

Sp =−dCd

dT

[
@T
@t

− Dd!rT
]
+ Dd

d2Cd

dT 2

(
@T
@r

)2
; (21)

where

!r =
@2

@r2
+

1
r

@
@r

(22)

is the Laplacian operator in cylindrical polar coordinates. We assume that the production
rate of precipitated para/n can be split in the following way:

Sp = Sa + Sn ;

where

Sa =−�

{
dCd

dT

[
@T
@t

− Dd!rT
]
− Dd

d2Cd

dT 2

(
@T
@r

)2}
; (23)

Sn =−(1− �)

{
dCd

dT

[
@T
@t

− Dd!rT
]
− Dd

d2Cd

dT 2

(
@T
@r

)2}
: (24)
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Here Sa and Sn represent the rate of production of aggregated and non-aggregated
para/n, respectively. The concentration Cn must then satisfy the following equation:

@Cn

@t
+∇ ·

(
−DsCn

@v
@r

ẽ r

)
= Sn (25)

that is

@Cn

@t
− Ds

r
@
@r

[
rCn

@v
@r

]
= (�− 1)

{
dCd

dT

[
@T
@t

− DdOrT
]

− Dd
d2Cd

dT 2

(
@T
@r

)2}
(26)

which is the evolution equation for the concentration Cn.

8. Velocity �eld

Recalling that the velocity <eld has the form ṽ = v(r; t)̃ez, the balance of linear
momentum in the �uid phase of the Bingham �uid yields

�
@v
@t

= f0 +
1
r

@
@r

[
r
(
−�0 + �

@v
@r

)]
; (27)

where f0 ¿ 0 is the constant driving pressure gradient (see [6]). If we call r = s(t)
the surface separating the rigid core and the �uid part of the Bingham �uid, then, by
evaluating the momentum balance of a unit length portion of the rigid core (where
�¡�0), we get (see [6])

�
@v
@t

(s(t); t) =
[
f0 − 2�0

r

]∣∣∣∣
r=s(t)

: (28)

From (4) we also have that

@v
@r

(s(t); t) = 0: (29)

9. Mathematical problem

We are now ready to write all the equations that form the mathematical problem
including the boundary conditions. We have

�
@v
@t

= f0 +
1
r

@
@r

[
r
(
−�0 + �

@v
@r

)]
; s(t)¡r¡�(t); t ¿ 0; (30)

s(0) = s0; 0¡s0 ¡R; (31)
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v(r; 0) = v0(r); s0 ¡r¡R; (32)

v(�(t); t) = 0; t ¿ 0; (33)

@v
@r

(s(t); t) = 0; t ¿ 0; (34)

�
@v
@t

(s(t); t) =
[
f0 − 2�0

r

]∣∣∣∣
r=s(t)

; t ¿ 0; (35)

@T
@t

− k
�c

(
@2T
@r2

+
1
r
@T
@r

)
= 0; 0¡r¡R; t ¿ 0; (36)

T (R; t) = &(t); t ¿ 0; (37)

T (r; 0) = T0; 0¡r¡R; (38)

@T
@r

(0; t) = 0; t ¿ 0; (39)

@�
@t

= K1(T )(1− �)− K2(T )�
∣∣∣∣@v@r

(
−�0 + �

@v
@r

)∣∣∣∣ 0¡r¡�(t); t ¿ 0; (40)

�(r; 0) = �0(r); 0¡r¡R; (41)

@�
@r

(0; t) = 0; t ¿ 0; (42)

��̇=
(
Dd

dCd

dT
@T
@r

+ DsCn
@v
@r

)
r=�(t)

; t ¿ 0; (43)

�(0) = R; (44)

@Cn

@t
− Ds

r
@
@r

[
rCn

@v
@r

]
= (�− 1)

dCd

dT

[
@T
@t

− Dd!rT
]

+− (�− 1)Dd
d2Cd

dT 2

(
@T
@r

)2
;

0¡r¡�(t); t ¿ 0; (45)

Cn(r; 0) = Cn0(r); 0¡r¡R; (46)

@Cn

@r
(0; t) = 0; t ¿ 0: (47)

Eqs. (30)–(47) form the mathematical problem in its non-stationary formulation. v0(r)
and s0 indicate respectively the initial velocity of the �uid and the initial position of
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the surface r= s(t). Relation (33) expresses the no-slip condition at the layer r= �(t),
while (34) and (35) come from (29) and (28). Temperatures &(t) and T0 (where
T0 is supposed constant) represent the temperature at the pipe wall and the initial
temperature, both below the Pour Point. Conditions (41), (44) and (46) are the initial
data for the aggregation degree �, the reduced pipe radius � and the concentration
of non-aggregated para/n Cn. Relations (39), (42) and (47) express radial symmetry
of the functions T , � and Cn. Problems: (30)–(47) is a free boundary problem, in
the sense that part of the boundary of the domain for the parabolic equation (30) is
unknown. The unknowns are v(r; t), s(t), �(t), T (r; t), �(r; t) and Cn(r; t). The functions
r=s(t) and �(t) represent the free boundaries. On the basis of the experimental data we
will show that a quasi-stationary approximation for some of the equations is feasible.
We will perform and justify such an approximation and we will show, under some
assumptions on the data, the well posedness of the approximated problem.

10. Quasi-stationary approximation

Let us write problem (30)–(47) in a non-dimensional form. After introducing some
characteristic values taken from experimental measurements we will show that some
simpli<cations are possible. Let us rescale all variables as follows:

r = r̃R; t = t̃t∗; T = T̃ (r̃; t̃ )T ∗;

v= ṽ(r̃; t̃ )v∗; �̃(r̃; t̃ ) = �(r̃R; t̃t∗); �̃(T̃ ) = �(T̃T ∗);

�0 = �̃0(�̃; �̃)�∗0 ; �= �̃(�̃; �̃)�∗ Cn = C̃n(r̃; t̃ )C∗
n ;

Cd = C̃d(T̃ )C∗
d ; K1 = K̃1(T̃ )K∗

1 ; K2 = K̃2(T̃ )K∗
2 ;

s(t) = s̃(t̃ )R; �(t) = �̃(t̃ )R

and put

t∗ =
�cR2

k
; �∗0 = f0R; v∗ =

f0R2

�∗
; K̃ =

K∗
2f

2
0R

2

K∗
1 �∗

T ∗ = T0; C∗
n =

DdC∗
d

Dsv∗
;

where typical values for the rescaling factors are

�= 0:8 g=cm3; R= 25 cm; �∗ = 0:6 g=cm s; C∗
d = 0:16 g=cm3;

K∗
1 = 1:25× 10−4 s−1; K∗

2 = 10−6 Pa−1; k = 0:134× 10−3 WK=cm;

c = 1920× 10−3 J K=gr; Ds = 4:8× 10−3 cm; Dd = 0:4× 10−4 cm2=s;

T0 = 280 K; f0 = 2:5 g=cm2 s2:
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Here K∗
1 and K∗

2 are taken from [7]. Problem (30)–(47) becomes[
k
c�∗

]
@ṽ
@t̃

= 1 +
1
r̃

@
@r̃

[
r̃
(
−�̃0 + �̃

@ṽ
@r̃

)]
; s̃(t̃ )¡r̃¡ �̃(t̃ ); t̃ ¿ 0; (48)

s̃(0) =
s0
R

=: s̃0; 0¡s̃0 ¡ 1; (49)

ṽ(r̃; 0) =
v0(r̃R)
v∗

=: ṽ0(r̃); s̃0 ¡r̃¡ 1; (50)

ṽ(�̃(t̃ ); t̃ ) = 0; t̃ ¿ 0; (51)

@ṽ
@r̃

(s̃(t̃ ); t̃ ) = 0; t̃ ¿ 0; (52)

[
k
c�∗

]
@ṽ
@t̃

(s̃(t̃ ); t̃ ) =
[
1− 2�̃0

r̃

]∣∣∣∣
r̃=s̃(t̃ )

; t̃ ¿ 0; (53)

@T̃
@t̃

−
(
@2T̃
@r̃2

+
1
r̃
@T̃
@r̃

)
; 0¡r̃¡ 1; t̃ ¿ 0; (54)

T̃ (1; t̃ ) =
&(t̃t∗)
T0

=: &̃(t̃ ); t̃ ¿ 0; (55)

T̃ (r̃; 0) = 1; 0¡r̃¡ 1; (56)

@T̃
@r̃

(0; t̃ ) = 0; t̃ ¿ 0; (57)

[
k

�cR2K∗
1

]
@�̃
@t̃

= K̃1(T̃ )(1− �̃)− K̃K̃2(T̃ )�̃
∣∣∣∣@ṽ@r̃

(
−�̃0 + �̃

@ṽ
@r̃

)∣∣∣∣ t̃ ¿ 0; (58)

�̃(r̃; 0) = �0(r̃R) =: �̃0(r̃); 0¡r̃¡ 1; (59)

@�̃
@r̃

(0; t̃ ) = 0; t̃ ¿ 0; (60)

[
k

cDdC∗
d

]
d�̃
dt

=
(
dCd

dT̃

@T̃
@r̃

+ C̃n
@ṽ
@r̃

)
r̃=s̃(t̃ )

; t̃ ¿ 0; (61)

�̃(0) = 1; (62)
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[
k�∗

�cR2Dsf0

]
@C̃n

@t̃
=

1
r̃

@
@r̃

[
r̃C̃n

@ṽ
@r̃

]
+
[
(�̃− 1)

(
k

�cDd
− 1
)]

dC̃d

dT̃

@T̃
@t̃

+− (�− 1)
d2C̃d

dT̃ 2

(
@T̃
@r̃

)2
; 0¡r̃¡ �̃(t̃ ); t̃ ¿ 0; (63)

C̃n(r̃; 0) =
Cn0(r̃R)

C∗
n

=: C̃n0(r̃); 0¡r̃¡ �̃(t̃ ); (64)

@C̃n

@r̃
(0; t̃ ) = 0; t̃ ¿ 0: (65)

Using the rescaling factors we see that[
k
c�∗

]
= 1:16× 10−3�1;

[
k

�cR2K∗
1

]
= 1:11× 10−3�1; (66)

[
k�∗

�cR2Dsf0

]
= 6:9× 10−6�1;

[
k

�cDd

]
= 0:89× 10−3�1; (67)

K̃ = 5:20;
[

k
cDdC∗

d

]
= 10:90 (68)

which allows us, for instance, to write Eqs. (48) and (53) in the following way:

1 +
1
r̃

@
@r̃

[
r̃
(
−�̃0 + �̃

@ṽ
@r̃

)]
= 0; (69)

[
1− 2�̃0

r̃

]
r̃=s̃(t̃ )

= 0: (70)

If we integrate (69) between s̃(t̃ ) and r̃ then, taking into account (70), we have

@ṽ
@r̃

(r̃; t̃ ) =
1
�̃

[
�̃0 − r̃

2

]
: (71)

If we integrate (71) between r̃ and �̃(t̃ ), we obtain

ṽ(r̃; t̃ ) =
∫ �̃(t̃ )

r̃

1
�̃

[
'
2
− �̃0

]
d'; (72)

where we recall that �̃0 and �̃ depend on r̃ through �̃ and �̃(T̃ ). By means of (71) we
can also write the following relation:

@ṽ
@r̃

(
−�̃0 + �̃

@ṽ
@r̃

)
=

r̃
2�̃

(
r̃
2
− �̃0

)
(73)
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which has to be substituted in (58). Problem (48)–(65) reduces to

s̃(t̃ ) = [2�̃0]r̃=s̃(t̃ ); t̃ ¿ 0; (74)

@T̃
@t̃

−
(
@2T̃
@r̃2

+
1
r̃
@T̃
@r̃

)
; 0¡r̃¡ 1; t̃ ¿ 0; (75)

T̃ (1; t̃ ) = &̃(t̃ ); t̃ ¿ 0; (76)

T̃ (r̃; 0) = 1; 0¡r̃¡ 1; (77)

@T̃
@r̃

(0; t̃ ) = 0; t̃ ¿ 0; (78)

K̃1(T̃ )(1− �̃)− K̃K̃2(T̃ )
�̃r̃
2�̃

∣∣∣∣ r̃2 − �̃0

∣∣∣∣= 0; t̃ ¿ 0; (79)

(
k

cDdC∗
d

)
d�̃
dt̃

=
(
dC̃d

dT̃

@T̃
@r̃

+ C̃n
@ṽ
@r̃

)
r̃=s̃(t̃ )

; t̃ ¿ 0; (80)

�̃(0) = 1; (81)

1
r̃

@
@r̃

[
r̃C̃n

@ṽ
@r̃

]
+
[
(�̃− 1)

(
k

�cDd
− 1
)]

dC̃d

dT̃

@T̃
@t̃

+− (�̃− 1)
d2C̃d

dT̃ 2

(
@T̃
@r̃

)2
= 0; 0¡r̃¡ �̃(t̃ ); t̃ ¿ 0; (82)

C̃n(s̃) = 0: (83)

Condition (83) can be easily derived observing that, from (79), � = 1 on r̃ = s̃(t̃ ),
hence, from (1) and (2), C̃n(s̃) = 0.

11. Assumptions on the data

We denote by ‖:‖ the usual sup norm. We also de<ne the set

E = [0; 1]× [0; 1]:

We assume that the data of problem (74)–(83) have the following properties:

H1. K̃1 continuously di;erentiable in T̃ with 0¡K̃1m 6 K̃16 K̃1M ¡∞.
H2. K̃2 continuously di;erentiable in T̃ with 0¡K̃2m 6 K̃26 K̃2M ¡∞.
H3. �̃ continuously di;erentiable in T̃ with d�̃=dT̃6 0 and bounded.
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H4. �̃0 ∈C1(E) with 0¡�̃0m 6 �̃06 �̃0M ¡∞.
H5. �̃∈C1(E) with 0¡�̃m6 �̃6 �̃M ¡∞.
H6. @�̃0=@�̃¿ 0, @�̃0=@�̃¿ 0, @�̃=@�̃¿ 0, @�̃=@�̃¿ 0 in E.
H7. &̃∈C1[0;∞), 0¡ 1; &̃(t̃ )¡ (Tp=T0) and −&̃06 d&̃=dt̃6 0, &̃0 ¿ 0.
H8. &̃(0) = 1,

where Tp is the Pour Point. Let us de<ne∥∥∥∥@�̃0@�̃

∥∥∥∥= Ã1;
∥∥∥∥@�̃0@�̃

∥∥∥∥= B̃1;

∥∥∥∥∥ @�̃@T̃
∥∥∥∥∥= C̃1;

∥∥∥∥@�̃@�̃
∥∥∥∥= Ã2;

∥∥∥∥ @�̃@�̃
∥∥∥∥= B̃2;

where the Ãj, B̃j (j = 1; 2) and C̃1 are positive constants. We also assume the
following:

H9. 1¿max{2�̃0M ; B̃1C̃1&̃0}.
H10. Ã1 ¡ (2K̃1m �̃m)=(K̃2M K̃).
H11. Ã26 �̃m.
H12. C̃d twice continuously di;erentiable in T̃ with both derivatives bounded and such

that

dC̃d

dT̃
¿ 0; (84)

S̃d =: S̃d(T̃ ) =
(

k
�cDd

− 1
)

dC̃d

dT̃

@T̃
@t̃

− d2C̃d

dT̃ 2

(
@T̃
@r̃

)2
6 0; (85)

‖S̃d‖¡ 2�̃mK̃1m�

�̃M K̃K̃2MC∗
n

: (86)

Hypothesis H12 makes sense thanks to estimate (94) on @T̃ =@r̃ which we are going to
derive in the next section.

12. Estimates on the �rst derivatives of T̃

Let us consider problem (75)–(78). For such a problem standard theorems (see
[13]) guarantee the existence and uniqueness of a classical solution T̃ (r̃; t̃ ). We put
W̃ = @T̃ =@t̃ and observe that W̃ solves the following problem:

@W̃
@t̃

−
(
@2W̃
@r̃2

+
1
r̃
@W̃
@r̃

)
= 0; 0¡r̃¡ 1; t̃ ¿ 0; (87)

W̃ (1; t̃ ) = d&̃=dt̃; t̃ ¿ 0; (88)

W̃ (r̃; 0) = 0; 0¡r̃¡ 1; (89)

@W̃
@r̃

(0; t̃ ) = 0 t̃ ¿ 0: (90)
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By the maximum principle and hypothesis H7 we have that

@T̃ =@t̃6 0; ‖@T̃ =@t̃‖6 &̃0: (91)

Let us write Eq. (75) in the following form:

@
@r̃

[
r̃
@T̃
@r̃

]
= r̃

@T̃
@t̃

(92)

and integrate between 0 and r̃. We get

@T̃
@r̃

=
1
r̃

∫ r̃

0
'
@T̃
@t̃

('; t̃ ) d': (93)

From estimates (91) we get

@T̃ =@r̃6 0; ‖@T̃ =@r̃‖6 &̃0

2
: (94)

13. Free boundary r̃ = s̃(t̃ )

We recall, from (74) and (79), that �̃ = 1 on r̃ = s̃(t̃ ). This allows us to write Eq.
(74) in the following way:

s̃(t̃ )− 2�̃0(1; �̃(T̃ (s̃(t̃ ); t̃ ))) = 0: (95)

Under the assumptions we have made, (95) de<nes the free boundary r̃=s̃(t̃ ) implicitly.
In order to prove this we consider the function:

F̃(r̃; t̃ ) = r̃ − 2�̃0(1; �̃(T̃ (r̃; t̃ ))) (96)

together with

@F̃
@r̃

(r̃; t̃ ) = 1− 2
@�̃0
@�̃

d�̃

dT̃

@T̃
@r̃

; (97)

@F̃
@t̃

(r̃; t̃ ) =−2
@�̃0
@�̃

d�̃

dT̃

@T̃
@t̃

: (98)

From Hypothesis H9, from the <rst of (91) and from the <rst of (94), we have that

@F̃
@r̃

(s̃(t̃ ); t̃ )¿ 0;
@F̃
@t̃

(s̃(t̃ ); t̃ )6 0; (99)

thus, by the implicit function theorem, we conclude that, for every t̃ ¿ 0, there exists
a unique function s̃(t̃ ) such that

s̃(t̃ ) = 2�̃0(1; �̃(T̃ (s̃(t̃ ); t̃ ))): (100)
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Further, from H9 and �̃0 ¿ 0, we also have

0¡s̃(t̃ )¡ 1; ∀t̃ ¿ 0; (101)

ds̃(t̃ )
dt̃

=− F̃ t̃ (s̃(t̃ ); t̃ )

F̃ r̃(s̃(t̃ ); t̃ )
¿ 0; (102)

where F̃ t̃ = @F̃=@t̃ and F̃ r̃ = @F̃=@r̃.

14. Aggregation degree �̃

So far we have proved that Eq. (100) represents the free boundary r̃ = s̃(t̃ ). The
next step will be to prove that Eq. (79) de<nes a unique function �̃ = �̃(r̃; t̃ ) in the
domain:

DT = {s̃(t̃ )¡r̃¡ 1; 0¡t̃¡T}: (103)

Let us consider again the function F̃(r̃; t̃ ) de<ned in (96), which is non-negative in
SDT , because F̃(s̃(t̃ ); t̃ ) = 0 and F̃ t̃ (r̃; t̃ )6 0, F̃ r̃(r̃; t̃ )¿ 0 in SDT . Let us introduce the
function

H̃ (�̃; r̃; t̃ ) =: r̃ − 2�̃0(�̃; �̃(T̃ (r̃; t̃ ))) (104)

which is C1 in [0; 1]× SDT . Since @H̃ =@�̃6 0, then, for all �̃∈ [0; 1], we will have

H̃ (�̃; r̃; t̃ )¿ H̃ (1; r̃; t̃ ) = F̃(r̃; t̃ )¿ 0; (r̃; t̃ )∈ SDT : (105)

Notice that H̃ (�̃; r̃; t̃ ) = 0 if and only if (r̃; t̃ ) = (s̃(t̃ ); t̃ ). Inequality (105) tells us that
@ṽ=@r̃, given by (71), is non-positive, and allows us to write Eq. (79) in the following
manner:

G̃(�̃; r̃; t̃ ) =: K̃1(T̃ )(1− �̃)− K̃K̃2(T̃ )
�̃r̃
2�̃

[
r̃
2
− �̃0

]
= 0: (106)

Let us consider the functions

f̃ 1(�̃) =: K̃1(T̃ )(1− �̃); (107)

f̃ 2(�̃) =: K̃K̃2(T̃ )
�̃r̃
2�̃

[
r̃
2
− �̃0

]
(108)

(r̃; t̃ ) being <xed in SDT . Since f̃ 1, f̃ 2 are continuous in �̃ and since f̃ 1(0)¿ 0,
f̃ 1(1) = 0 and f̃ 2(0) = 0, f̃ 2(1)¿ 0 we have that there must exist at least one point
�̃1 ∈ (0; 1] such that f̃ 1(�̃1) = f̃ 2(�̃1). We want to prove that under the hypotheses we
have made that point is unique. Let us <x a point (r̃; t̃ )∈ SDT and let �̃1 ∈ (0; 1] be such
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that f̃ 1(�̃1) = f̃ 2(�̃1). If we show that

df̃ 2

d �̃
(�̃1)¿− K̃1(T̃ ) (109)

then �̃1 will be the only root of (109). The derivative of f̃ 2 w.r.t �̃ is given by

df̃ 2

d �̃
(�̃) = K̃

[
K̃2(T̃ )

r̃
2

(
r̃
2
− �̃0

)
@
@�̃

(
�̃
�̃

)
− K̃2(T̃ )

@�̃0
@�̃

�̃r̃
2�̃

]
: (110)

Since f̃ 1(�̃1) = f̃ 2(�̃1), we have

K̃K̃2(T̃ )
r̃
2

(
r̃
2
− �̃0

)∣∣∣∣
�̃=�̃1

= K̃1(T̃ )
(
(1− �̃)

�̃
�̃

)∣∣∣∣
�̃=�̃1

; (111)

where Eq. (111) makes sense because �̃1 ∈ (0; 1]. We get

df̃ 2

d�̃
(�̃1) =

[
K̃1(T̃ )(1− �̃)

@
@�̃

(
�̃
�̃

)
�̃
�̃
− K̃K̃2(T̃ )

@�̃0
@�̃

�̃r̃
2�̃

]∣∣∣∣
�̃=�̃1

: (112)

From assumption H11 we have that(
@�̃
@�̃

− �̃
�̃

)∣∣∣∣
�̃=�̃1

¡ 0; (113)

that is(
1− �̃

�̃
@�̃
@�̃

)∣∣∣∣
�̃=�̃1

=
(
�̃

@
@�̃

(
�̃
�̃

))∣∣∣∣
�̃=�̃1

¿ 0: (114)

From assumption H10 we also have[
@�̃0
@�̃

]∣∣∣∣
�̃=�̃1

¡
2K̃1(T̃ )�̃

K̃2(T̃ )K̃
(115)

thus

df̃ 2

d�̃
(�̃1) =

[
K̃1(T̃ )(1− �̃)

@
@�̃

(
�̃
�̃

)
�̃
�̃
− K̃K̃2(T̃ )

@�̃0
@�̃

�̃r̃
2�̃

]∣∣∣∣
�̃=�̃1

¿
[
−K̃K̃2(T̃ )

@�̃0
@�̃

�̃r̃
2�̃

]∣∣∣∣
�̃=�̃1

¿− 2K̃K̃1(T̃ )K̃2(T̃ )�̃�̃r̃

2�̃K̃K̃2(T̃ )
¿− K̃1(T̃ )

(116)

which proves inequality (109) for a generic �̃1 ∈ (0; 1] such that f̃ 1(�̃1)= f̃ 2(�̃1). This
implies that for every <xed (r̃; t̃ )∈ SDT there can be only one �̃1 ∈ (0; 1] such that

G̃(�̃1; r̃; t̃ ) = 0; (117)

@G̃
@�̃

(�̃1; r̃; t̃ )¡ 0: (118)
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Thus, by the implicit function theorem, we have that G̃(�̃; r̃; t̃ )= 0 de<nes implicitly a
function �̃(r̃; t̃ )∈C1( SDT ) such that 0¡�̃6 1 for all (r̃; t̃ )∈ SDT . Since

@�̃
@r̃

(s̃(t̃ ); t̃ ) =−
[
G̃r̃(�̃; r̃; t̃ )

G̃�̃(�̃; r̃; t̃ )

]∣∣∣∣
�̃=1; r̃=s̃(t̃ )

; (119)

where G̃�̃ = @G̃=@�̃ and G̃r̃ = @G̃=@r̃, and since[
@G̃
@r̃

]∣∣∣∣
�̃=1; r̃=s̃(t̃ )

=

[(
K̃K̃2(T̃ )

r̃
2�̃

)(
@�̃0
@�̃

@�̃

@T̃

@T̃
@r̃

− 1
2

)]∣∣∣∣∣
�̃=1; r̃=s̃(t̃ )

¡ 0 (120)

we conclude that

@�̃
@r̃

(s̃(t̃ ); t̃ )¡ 0: (121)

Even if we have formally found �̃(r̃; t̃ ) in the domain SDT , it is important to notice that
we are interested only in (r̃; t̃ ) belonging to the following set:

{(r̃; t̃ ): s̃(t̃ )¡r̃¡ �̃(t̃ ); 0¡t̃¡T}:

15. Problem for C̃n(r̃; t̃ )

Eq. (82) can be written in the following way:

@
@r̃

[
r̃C̃n

@ṽ
@r̃

]
= r̃(1− �̃)S̃d(T̃ ): (122)

If we integrate Eq. (122) between s̃(t̃ ) and r̃ we get

r̃C̃n
@ṽ
@r̃

=
∫ r̃

s̃(t̃ )
'(1− �̃)S̃d(T̃ ) d': (123)

For any r̃ ¿ s̃(t̃ ) we have that @ṽ=@r̃ ¡ 0, thus for any r̃ ¿ s̃(t̃ ) we can write

C̃n(r̃; t̃ ) =
1
r̃ṽr̃

∫ r̃

s̃(t̃ )
'(1− �̃)S̃d(T̃ ) d': (124)

If we show that

lim
r̃→s̃(t̃ )+

C̃n(r̃; t̃ ) = 0 (125)

then (124) gives the explicit representation of the solution of problem (82)–(83).
Di;erentiating (71) w.r.t. r̃ we get

@2ṽ
@r̃2

=
@
@r̃

(
1
�̃

)[
�̃0 − r̃

2

]
+

1
�̃

[
@�̃0
@r̃

− 1
2

]
(126)
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and

@2ṽ
@r̃2

(s̃(t̃ ); t̃ ) =

{
1
�̃

[
@�̃0
@�̃

@�̃
@r̃

+
@�̃0
@�̃

@�̃

@T̃

@T̃
@r̃

− 1
2

]}∣∣∣∣∣
(s̃(t̃ ); t̃ )

¡ 0; (127)

where the inequality above comes from H6, (121) and the <rst of (99). Applying
L’Hopital’s rule in order to compute the limit (125) we <nally get

lim
r̃→s̃(t̃ )+

C̃n(r̃; t̃ ) =
[
(1− �̃)S̃d(T̃ )
r̃−1ṽr̃ + ṽr̃r̃

]∣∣∣∣
(s̃(t̃ ); t̃ )

= 0 (128)

which proves the validity of (125) and entails that (124) is the correct representation
for the solution of Cauchy problem (82)–(83). From (79) we have

r̃(1− �̃) =
K̃K̃2(T̃ )�̃r̃2

4K̃1(T̃ )�̃
[r̃ − 2�̃0]; (129)

where (r̃− 2�̃0) is a non-decreasing function in r̃. Recalling (86) we get the following
inequality:

C̃n(r̃; t̃ )¡
2K̃K̃2M (r̃ − 2�̃0)r̃2�̃M
4K̃1m �̃mr̃(r̃ − 2�̃0)

∫ r̃

s̃(t̃ )
S̃d(T̃ ) d'

¡
K̃K̃2M �̃M‖S̃d‖

2K̃1m �̃m
¡

�
C∗
n

(130)

which guarantees that the concentration Cn is always below the density �:

16. Problem for �̃(t̃ )

The last problem we need to solve is the Cauchy problem (80) and (81). We write
it as

d�̃
dt̃

= h̃(�̃; t̃ ); �̃(0) = 1; (131)

where h̃, given by

h̃(�̃; t̃ ) =
cDdC∗

d

k

{[
dC̃d

dT̃

@T̃
@r̃

]∣∣∣∣
(�̃(t̃ ); t̃ )

+
1

�̃(t̃ )

∫ �̃(t̃ )

s̃(t̃ )
'(1− �̃)S̃d(T̃ ) d'

}
(132)

is non-positive. Lipschitz continuous and uniformly bounded in �̃. Standard theory for
ODE guarantees global existence and uniqueness for the solution of (131). A bound
for |d�̃=dt̃| is given considering the estimates on the <rst derivatives of T̃ and the
expression of S̃d(T̃ ) de<ned in (85):∣∣∣∣∣d�̃dt̃ (t̃ )

∣∣∣∣∣6 cDdC∗
d

k

{∥∥∥∥dC̃d

dT̃

∥∥∥∥ &̃0

2
+
∣∣∣∣ k
�cDd

− 1
∣∣∣∣
∥∥∥∥dC̃d

dT̃

∥∥∥∥ &̃0 +
∥∥∥∥d2C̃d

dT̃ 2

∥∥∥∥ &̃2
0

4

}

= C̃&̃0; (133)
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where C̃ depends only on the data. By means of (133) we see that �̃(t̃ ) lies above the
line:

r̃ =−C̃&̃0 t̃ + 1; (134)

which intersects the line r̃ = 2�̃0M , i.e. the sup of r̃ = s̃(t̃ ); in

t̃ =
1− 2�̃0M
C̃&̃0

: (135)

Therefore, choosing &̃0 su/ciently small, we can have any interval [0; t̃0] such that the
two boundaries s̃(t̃ ) and �̃(t̃ ) will never touch each other. Physically this means that
the pipe wall must be cooled su/ciently slowly if we want the system not to come to
a stop. Eq. (135) tells us how to choose the cooling rate of the pipe wall in order to
have a certain time interval in which we are sure that the rigid core will not obstruct
the �ow of the oil in the pipeline.

17. Conclusions

In this paper we have analysed the �ow of a waxy crude oil in a laboratory ex-
perimental loop. We have modelled the system on the basis of the Bingham model
with rheological parameters depending on the fraction of crystallized and aggregated
para/n. We have considered the deposition mechanisms of shear dispersion and molec-
ular di;usion all in a non-isothermal condition. We have written an equation for the
evolution of the aggregated para/n fraction, for the non-aggregated para/n concen-
tration and for the thermal <eld. All has been studied in cylindrical geometry and has
led to a complex free boundary problem. After having introduced some rescaling fac-
tors, we have performed a quasi-stationary approximation for some of the equations
involved, remarkably simplifying the problem. Under some hypotheses on the data we
have shown that the approximated problem is well posed.
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