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Summary. – Bell’s inequality is a necessary condition for the existence of a classical
probabilistic model for a given set of correlation functions. This condition is not satisfied
by the quantum–mechanical correlations of two–spin systems in a singlet state.

We give necessary and sufficient conditions, on the transition probabilities, for the
existence of a classical probabilistic model. We also give necessary and sufficient conditions
for the existence of a complex (respectively real) Hilbert space model.

Our results apply to individual–spin systems hence they need no “locality” assump-
tion. When applied to the quantum–mechanical transition probabilities, they prove not
only the necessity of a nonclassical probabilistic model, but also the necessity of using
complex rather than real Hilbert spaces.

Statement of the problem. – The problem of understanding the empirical basis of
the quantum–mechanical formalism has been studied by many authors, both physicists
and mathematicians (cf. the excellent survey(1) and the bibliography therein). Recently
a new approach to this problem has been proposed (cf.(2−4) ) in which one considers
the conditional (i.e. transition) probabilities as the basic empirical data from which the
mathematical model should be deduced. The main idea of this approach is to classify the
probabilistic models, both Kolmogorovian and non–Kolmogorovian, according to statistical
invariants, which are expressed in terms of the transition probabilities.

(1) A.S. Wightman: Hilbert’s sixth problem: mathematical treatment of the axioms of physics, in Math-

ematical Developments Arising from Hilbert Problems. Proceedings Symposia in Pure Mathematics, vol.

28 (Providence, 1976).
(2) L. Accardi: Topics in quantum probability, to appear Rep. Phys.
(3) L. Accardi: Non–Kolmogorovian probabilities, in Rendiconti del Seminario Matematico dell’Uni-

versità e del Politecnico di Torino.
(4) L. Accardi: Foundations of quantum probability, invited address to the III Vilnius Conference,

Probability and Mathematical Statistics, Vilnius, June 1981 (to appear).
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In the present work the statistical invariants for some simple systems are explicitly
computed and it is shown that they allow us to distinguish among Kolmogorovian, real–
Hilbert–space and complex–Hilbert–space models. These statistical invariants depend only
on the transition probabilities which can be considered as empirical data, and it is very
simple to produce examples of quantum systems such that the statistical invariants associ-
ated to their transition probabilities do not allow any Kolmogorovian or real–Hilbert–space
model, but obviously allow a complex–Hilbert–space model.

Therefore the method of statistical invariants allows us to solve the problem of “...
singling out in full generality the empirical basis for the choice of complex numbers in
quantum theory...” (cf.(5), § 8–5).

The problem of the meaning of the number field in quantum theory has been studied,
from different points of view, by several authors (cf.(6−9) ).

Let us now state the problem in a precise mathematical form. Let A,B,C, . . . denote
some (a finite or an infinite set) observable quantities with values (aα), (bβ), (cγ), respec-
tively. We will assume that α, β, γ, . . . = 1, 2, . . . , n for some n ≤ +∞, independent of
A,B,C, . . . and that aα, bβ, cγ, . . . ∈ R. Consider the transition probabilities

(1) P (A = aα|B = bβ) , P (B = bβ |C = cγ) , P (C = cγ|A = aα), . . . ,

where P (A = aα|B = bβ) denotes the probability that A takes the value aα conditioned by
the fact that B is known to assume the value bβ. Since we are interested in the comparison
between the classical and the quantum–mechanical situation, we will assume that the
transition probabilities satisfy the symmetry conditions

(2) P (A = aα|B = bβ) = P (B = bβ|A = aα), . . .

(where, here and in the following, the dots after a relation will stand for the same relation
written for all remaining obsevables). It will also be assumed, although this is not essential
for our goals, that for each α, β, . . .

(3) P (A = aα|B = bβ) > 0, . . . .

We will say that the transition probabilities (1) admit a Komogorovian model , if there
exist
1) a probability space (Ω,O, µ),
2) for each observable A,B,C, . . ., a measurable partition of Ω − (Aα), (Bβ), (Cγ), . . .

such that, for each α, β, γ, . . .

(4) P (A = aα|B = bβ) =
µ(Aα ∩Bβ)
µ(Bβ)

; . . . .

(5) J.M. Jauch: Foundations of Quantum Mechanics (Reading, Mass., 1968).
(6) G. Emch: Helv. Phys. Acta, 36, 739, 770 (1963).
(7) D. Finkelstein, J.M. Jauch, S. Shiminovich and D. Speiser: J. Math. Phys. (N.Y.), 3, 207 (1962).
(8) D. Filkestein, J.M. Jauch, S. Schiminovich and S. Speiser: J. Math. Phys. (N.Y.), 4, 788 (1963).
(9) E.C.G. Stueckelberg: Helv. Phys. Acta, 33, 727 (1960); E.C.G. Stueckelberg and M. Guenin:

Helv. Phys. Acta, 34, 621 (1961); E.C.G. Stueckelberg, M. Guenin, C. Piron and H. Ruegg: Helv. Phys.

Acta, 34, 675 (1961); E.C.G. Stueckelberg and M. Guenin: Helv. Phys–Acta, 35 (1962).
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We will say that the transition probabilities (1) admit a complex (respectively, real)
Hilbert space model , if there exist

1) a complex (respectively real) Hilbert space H of dimension n;
2) for each observable A,B,C, . . ., an orthonormal basis of H − (ϕα), (ψβ), (χγ ), . . .:

such that, for each α, β, γ, . . .

(5) P (A = aα|B = bβ) = |〈ϕα, ψβ〉|2, . . .

In this case we say that the given orthonormal bases realize the corresponding tran-
sition probabilities.
Thus, for a given set of transition probabilities P (A = aα|B = bβ), . . ., which we can

consider as “experimental data”, it is quite natural to ask the following questions:
Problem 1 . Do they always admit a Kolmogorovian model?

Problem 2 . Do they admit a Hilbert space model but not a Kolmogorovian one, or
conversely?

Problem 3 . Do they admit both a Kolmogorovian and a Hilbert space model?

Problem 4 . Do they admit a complex Hilbert space, but neither a real Hilbert space
nor a Kolmogorovian model?

An example of transition probabilities admitting a complex Hilbert space, but not a
Komogorovian model is implicit in Wigner’s proof of Bell’s inequality(10) (in Bell’s original
proof, correlations rather than conditional probabilities are considered(11)). In general
one can prove (cf.(2,4)) that if the conditional probabilities satisfy (2)—as is always the
case in quantum theory—there is always a Kolmogorovian model for two observables, but
generically not for three or more (for this reason, henceforth, we will always consider three
observables A,B,C). In the following it will be shown that the method of statistical
invariants, mentioned above, allows us to give a complete solution of Problems 1–4—-and
of similar questions—in the case of three observables A,B,C each of which assumes two
real values (cf.(12) for the extension to the case of an arbitrary finite number of values).

Kolmogorovian models. – Let A,B,C be three n–valued observables.

Propositin 1 (cf.(3)). In the notations and assumptions introduced above the three tran-
sition matrices with coefficients

P (A = aα|B = bβ) , P (B = bβ|C = cγ) , P (C = cγ|A = aα)

(α, β, γ = 1, . . . , n) admit a Kolmogorovian model if and only if there are n3 real numbers
(Γα,β,γ) such that

(6) Γα,β,γ ≥ 0 ,

(10) E.P. Wigner: Am. J. Phys., 38, 1005 (1970).
(11) J.S. Bell: Physics, 1, 195 (1964).
(12) L. Accardi and A. Fedullo: Statistical invariants for the probabilistic models of finite–valued observ-

ables (in preparation).
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(7)
∑

γ

Γα,β,γ = P (A = aα|B = bβ) ,

(8)
∑

β

Γα,β,γ = P (A = aα|C = cγ) ,

(9)
∑

α

Γα,β,γ = P (B = bβ|C =γ) .

Proof. Necessity. Let (Ω,O, µ), (Aα), (Bβ), (Cγ) be a Kolmogorovian model for the given
transition matrices. Then the symmetry condition (2) implies that (cf.(2))

µ(Aα) = µ(Bβ) = µ(Cγ) =
1
n
, ∀α, β, γ ,

hence
1
n
P (A = aα|B = bβ) = µ(Aα ∩Bβ) =

∑

γ

µ(Aα ∩Bβ ∩ Cγ) ,

which implies (6) and (7) with Γα,β,γ = n · µ(Aα ∩ Bβ ∩ Cγ). (8) and (9) are obtained in
a similar way.

Conversely, let (Γα,β,γ) be n3 numbers which satisfy (6)–(9). Then on the set Ω of all
triples (α, β, γ) (α, β, γ = 1, . . . , n) one can define the measure µ by

µ(α, β, γ) =
1
n

Γα,β,γ

and the partitions

Aα =
⋃

βγ

(α, β, γ) , Bβ =
⋃

αγ

(α, β, γ) , Cγ =
⋃

αβ

(α, β, γ)

and it is easy to check that they provide a Kolmogorovian model for the given transition
matrices.

From now on we will limit our discussion to the case in which the three observables
A, B, C take only two (arbitrary) values. The associated transition probability matrices
will be denoted

(10)





P (A/B) = P =
(

p 1 − p
1 − p p

)
=
(

cos2(α/2) sin2(α/2)
sin2(α/2) cos2(α/2)

)
,

P (B/C) = Q =
(

q 1 − q
1 − q q

)
=
(

cos2(β/2) sin2(β/2)
sin2(β/2) cos2(β/2)

)

P (C/A) = R =
(

r 1 − r
1 − r r

)
=
(

cos2(γ/2) sin2(γ/2)
sin2(γ/2) cos2(γ/2)

)
,
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where, because of the assumption (3), 0 < p, q, r < 1 and therefore the angles α, β, γ can
always be chosen to satisfy

(11) 0 < α, β, γ < π .

Theorem 2. The transition matrices P , Q, R defined by (10) admit a Kolmogorovian
model, if and only if

(12) |p+ q − 1| ≤ r ≤ 1 − |p− q| .

Remark . The asymmetry between the parameters r and p, q in condition (12) is only
apparent. The inequalities (12) provide a simple example of a statistical invariant for
Kolmogorovian models.

Proof .– We show that (12) is a necessary and sufficient condition for the solvability of
(6)–(9) with n = 2 and P (A/B), P (B/C), P (C/A) given by (10).

In our case (7), (8), (9) yield twelve equations in the eight unknowns Γα,β,γ (α, β, γ =
1, 2). Using this equations, we express seven of these unkwons as functions of Γ2,1,1 and
p, q, r obtaining

(13)





Γ1,1,1 = q − Γ2,1,1 , Γ1,2,1 = r − q + Γ2,1,1 ,
Γ1,1,2 = p− q + Γ2,1,1 , Γ2,1,2 = 1 − p− Γ2,1,1 ,
Γ1,2,2 = 1 − r − p+ q − Γ2,1,1 , Γ2,2,1 = 1 − r − Γ2,1,1 ,
Γ2,2,2 = Γ2,1,1 − 1 + p+ r .

The positivity conditions (6) are then equivalent to

(14)
{
q ≥ Γ2,1,1 ≥ 1 − p− r , 1 − p ≥ Γ2,1,1 ≥ q − r ,
1 − q + p− q ≥ Γ2,1,1 ≥ 0 , 1 − r ≥ Γ2,1,1 ≥ q − p .

Thus any number Γ2,1,1 satisfying (14) defines, through (13) and Proposition 1, a Kol-
mogorovian model for the given transition matrices. Since, as shown by elementary com-
putations, (12) is the necessary and sufficient condition for the solvability of the system of
inequalities (14), the theorem is proved.

Remark . Under our assumption 0 < p, q, r < 1, it is easy to verify that if a solution
for the system (14) exists, then there will be infinitely many solutions. In other terms,
the Kolmogorovian model, when existing, will not be unique up to stochastic equivalence.
This is intuitively obvious, since the transition probabilities provide information only on
the joint probabilities of pairs of the observables A, B, C, and it is well known that the
stochastic equivalence class of the process A, B, C is determined by the joint distribution
of the triple A, B, C.
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Spin models. – Our discussion of problem 4 will consist of three main steps: 1) first
we characterize those triples of transition probabilities which admit a complex–Hilbert–
space model such that the three orthonormal bases satisfying (5) can be chosen to be
eigenvectors of three spin matrices—these will be called “spin models”; 2) we then find a
necessary condition for a triple of transition matrices to admit a complex–Hilbert–space
realization and show that this condition is equivalent to the one characterizing the existence
of a spin model. From this we can easily deduce that all complex Hilbert space models
for the given transition matrices are spin models; 3) finally we characterize those triples
of transition matrices which admit a real Hilbert–space model and show that there are
many triples of transition matrices which admit a complex Hilbert space model, but do
not admit neither a real Hilbert space nor, a Kolmogorovian model.

Let P , Q, R be the transition matrices defined by (10), (11). In the following, whenever
we speak of a complex Hilbert space model for P , Q, R we shall always suppose that an
orthonormal basis has been singled out in H ∼= C2. With respect to this basis we define
the Pauli matrices

(15) σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and the spin operators
σ · a = σ1a1 + σ2a2 + σ3a3 ,

where

a = (a1, a2, a3) ∈ S(2) =

{
(a1, a2, a3) ∈ R3 :

2∑

1

a2
j = 1

}
.

We will always refer to this fixed “canonical” basis when speaking of “components” of a
vector in H without further specification. The eigenvector of σ · a corresponding to the
eigenvalue +1 (respectively, −1) will be denoted ψ1(a) (respectively, ψ2(a)). A complex
Hilbert space model for P , Q, R will be called a spin model if there exist three vectors
a, b, c ∈ S(2) such that the three orthonormal basis (ψα(a)), (ψβ(b)), (ψγ (c)) realize the
matrices P , Q, R in the sense of the equalities (5). Since for each α, β, γ

(16) |〈ψ1(a), ψ1(b)〉|2 = cos2(âb/2), . . .

(17) |〈ψ1(a), ψ2(b)〉|2 = sin2(âb/2), . . .

(where âb denotes the angle between a and b), one easily verifies that a spin model for P ,
Q, R exists if and only if there exist three vectors a, b, c ∈ S(2), such that

(18) cosα = cos âb , cosβ = cos b̂c , cos γ = cos ĉa .

Proposition 3. Three vectors a, b, c ∈ S(2) satisfying (18) exist if and only if

(19) cos2 α+ cos2 β + cos2 γ − 1 ≤ 2 cosα cosβ cos γ .
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Proof .– Two vectors a, b ∈ S(2) satisfying the first of the equalities (18) always exist, and
we can choose co–ordinates in R3 so that a = (1, 0, 0), b = (cosα, sinα, 0).

The existence of a c ∈ S(2) satisfying the first of the equalities (18) is therefore
equivalent to the existence of a vector (c1, c2, c3) ∈ R3, satisfying

(20) c1 = cos γ , c1 cosα+ c2 sinα = cosβ ,
3∑

1

c2j = 1

and (19) is the necessary and sufficient condition for this occurrence.

Proposition 4. i) If a triple of coplanar vectors satisfies (18), then all the triples with
this property are made of coplanar vectors. ii) If there is a triple of vectors a, b, c ∈ S(2)

which are not coplanar satisfy (18), then for aby other triple a′, b′, c′ ∈ S(2) satisfying (18)
one has

(21) âb = â′b′ , b̂c = b̂′c′ , ĉa = ĉ′a′ .

Proof .– Any three vectors a, b, c ∈ S(2) are such that

|âb − b̂c| ≤ ĉa ≤ âb + b̂c , (22)

(23) âb + b̂c+ ĉa ≤ 2π .

(cf.(13), § X–689, 690) and the equality in (23) holds if and only if a, b, c are coplanar. If
a, b, c satisfy (18), then for each of the angles we have only two possibilities:

(24) âb = α or b̂c = β or 2π − β , ĉa = γ or 2π − γ .

Because of (11), 2π−α, 2π−β, 2π−γ ≥ π therefore, because of (23), the second possibility
can take place at most for one of the angles. Let now a′, b′, c′ ∈ S(2) be another triple of
vectors satisfying (18). Put θ1 = âb, θ2 = b̂c, θ3 = ĉa and θ′j the corresponding angles for
a′, b′, c′. If (21) does not hold, then for the reasoning above there is at most an index—let
us call it i–such that θ′i = 2π− θi. Denoting j, k the remaining indices, one has, from (23)
and (22),

(25) 2π ≥ θ′i + θ′j + θ′k = 2π − θi + θj + θk ≥ 2π − θi + θi = 2π .

Thus a′, b′, c′ must be coplanar. But in this case from |θ′i − θ′j | ≤ θ′k we deduce 2π ≤
(θi + θj + θk) ≤ 2π, hence also a, b, c must be coplanar. If a′, b’, c′ are not coplanar the
first inequality in (25) is strict, and this contradicts the last inequality. Hence for no index
i we can have θi 6= θ′i and this proves (21).

(13) F. Enriquez and U. Amaldi: Elementi di geometira (Bologna, 1921).
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Complex Hilbert–space models for P , Q, R. – Assume that there exists a complex–
Hilbert–spce model for P , Q, R. Then, there are a Hilbert space H ∼= C2; three ortho–
normal basis (ϕα) (ψβ), (χβ) satisfying (5); and real numbers %αβ(A,B), %βγ(B,C),
%γα(C,A) such that

(26) 〈ϕα, ψβ〉 = exp[i%αβ(A,B)]
√
P (A = aα|B = bβ), . . . .

Therefore using the orthogonality relation

〈ϕα, χγ〉 =
∑

β

〈ϕα, ψβ〉〈ψβ , χγ〉

one immediately verifies the equality

(27) exp[−i%11(C,A)] cos γ/2 = exp[i[%11(A,B) + %11(B,C)]] cosα/2 cosβ/2+

· exp[i[%12(A,B) + %21(B,C)]] sinα/2 sinβ/2 .

Lemma 5. Let λ1, λ2, λ3 be positive real numbers. A necessary and sufficient condition
for the existence of real numbers x, y, z, which solve the equation

(28) λ1 exp[ix] + λ2 exp[iy] = λ3 exp[iz] ,

is that

(29) −1 ≤ λ2
3 − (λ2

1 + λ2
2)

2λ1λ2
≤ 1

or equivalently, that

(30) −1 ≤ λ2
1 + λ2

3 − λ2
2

2λ1λ3
≤ 1 .

Proof .– If a solution of (28) exists, then

(31) cos(x − y) =
λ2

3 − (λ2
1 + λ2

2)
2λ1λ2

and (29) is satisfied. Conversely, if (29) holds one can choose an arbitrary couple x, y such
that (31) is satisfied, and with this choice both sides of the equality (28) have the same
modulus, thus a solution of (28) exists. Finally, the solvability of (28) is equivalent to the
solvability of

(32) λ1 exp[ix] − λ3 exp[iz] = −λ2 exp[iy]
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and, writing condition (29)—with the appropriate coefficients—for eq. (32) one finds (30).

Remark . – One easily verifies that an equivalent condition for the existence of solutions
of eq. (28) is that the inequality λ1 ≤ λ2 + λ3 and those obtained from this by circular
permutation hold. This from of the condition, as we will show elsewhere, has a more general
character than (29) or (30), but in the present paper only this last type of inequalities will
be used.

Corollary 6 . The following equivalent inequalities are necessary conditions for the existence
of a complex–Hilbert–space model for the transition matrices P , Q, R:

(33) cos2 α+ cos2 β + cos2 γ − 1 ≤ 2 cosα cosβ cos γ ,

(34) −1 ≤ cos2 α/2 + cos2 β/2 + cos2 β/2 − 1
2 cosα/2 cos β/2 cosγ/2

≤ 1 ,

(35) [cosα/2 cosβ/2 − sinα/2 sinβ/2]2 ≤ cos2 γ/2 ≤

≤ [cosα/2 cosβ/2 + sinα/2 sinβ/2]2 .

Proof .– If a Hilbert space model for P , Q, R exists, then (27) holds and therefore eq. (28)
with th coefficients

λ3 = cos γ/2 , λ1 = cosα/2 cos β/2 , λ3 = sinα/2 sinβ/2

must be solvable. With this choice of the coefficients the solvability condition (29) becomes

(36) − sinα sinβ ≤ cos γ − cosα cosβ ≤ sinα sinβ

and this is an equivalent formulation of (35).
Because of (11) the sines are positive, hence (36) is equivalent to

| cos γ − cosα cosβ|2 ≤ sin2 α sin2 β ,

which is easily seen to be equivalent to (33). If, instead of the solvability condition (29),
the equivalent condition (30) is used with the same coefficients λ1, λ2, λ3, the results is
(34).

Theorem 7. The following assertions are equivalent:
i) the transition matrices P , Q, R admit a complex–Hilbert–space model
ii) the transition matrices P , Q, R admit a spin model;

(37) iii) cos2 α+ cos2 β + cos2 γ − 1 ≤ 2 cosα cosβ cos γ ;
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(38) iv) − 1 ≤ cos2 α/2 + cos2 β/2 + cos2 γ/2 − 1
2 cosα/2 cos β/2 cos γ/2

≤ 1 ;

(39) v) − 1 ≤ p+ q + r − 1
2
√
pqr

≤ 1 ;

(40) vi) [
√
pq −

√
(1 − p)(1 − q)]2 ≤ r ≤ [

√
pq +

√
(1 − p)(1 − q)]2 .

Proof .– The equivalence iii) ⇔ iv) has been shown in Corollary 6 and v) is just iv) in
different notations. That iii) ⇔ ii) is the content of Proposition 3. Clearly ii) ⇒ (i).
But, because of Corollary 6, i) ⇒ iii) and hence ii). The equivalence v) ⇔ vi) has been
established in Corollary 6.

Corollary 8 . i) Every complex–Hilbert–space model for P , Q, R is a spin model. ii) If a
spin model for P , Q, R is defined by three noncoplanar vectors a, b, c ∈ R3, then all spin
models are unitarily equivalent (in the sense that there exists a single unitary operator
which maps the three orthonormal basis of one model into chose of the other one).

Proof .– If (ϕα), (ψβ), (χγ) are any three orthonormal basis of H which realize a complex
Hilbert space model of P , Q, R, then by Theorem 7 there are in H three orthonormal
basis of spin type (ψα(a)), (ψβ(b)), (ψγ(c)) with the same property. If U1, U2, U3 are three
unitaries such that

(41) U1ψα(a) = ϕα, U2ψβ(b) = ψβ , U3ψγ(c) = χγ

they define three rotations R1, R2, R3 such that

ψα(R1a) = ϕα ; ψβ(R2b) = ψβ ; ψγ(R3c) = χγ

and this proves i). If a, b, c are not coplanar then, denoting a′ = R1a, b′ = R2b; c′ = R3c,
Proposition 4 implies that âb = â′b′, b̂c = b̂′c′, ĉa = ĉ′a′ hence there is a rotation R in R3

such that Ra = a′, Rb = b′, Rc = c′. Therefore in (39) the three unitaries can be taken
equal.

Remark . It is easy to verify that because of (11) condition (37) is equivalent to the following
couple of inequalities:

|α− β| ≤ γ ≤ α+ β , α+ β + γ ≤ 2π ,

which are necessary and sufficient conditions on α, β, γ to be adjacent angles of a trihedron
in R3. This provides a geometrical interpretation for condition (37).

Real–Hilbert–space models for P , Q, R.
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Theorem 9. The transition matrices P , Q, R admit a real–Hilbert–space model, if and
only if they admit a spin model defined by a coplanar triple of vectors a, b, c ∈ S(2).

Proof. Sufficiency. If the transition matrices P , Q, R admit a spin model defined by a
coplanar triple of vectors a, b, c ∈ S(2), then by Proposition 4 all triples are coplanar and
in appropriate co–ordinates in R3 the vectors a, b, c will have the form

(43) a = (a1, 0, a3) , b = (b1, 0, b3) , c = (c1, 0, c3) .

But in a basis of H in which the Pauli matrices have the usual from (15), the eigenvectors
of σ · x(x = (x1, x2, x3) ∈ R3) have components (defined up to a common phase)

ψ1(x) =

(√
(1 + x3)/2

x1+ix2√
2(1+x3)

)
, ψ2(x) =

(√
(1 − x3)/2

− x1+ix2√
2(1−x3)

)
,

hence for each vector of the form (43) the phase can be chosen so that it has real compo-
nents. With this choice of the phase the vectors of the two basis (ψβ(b)), (ψγ (c)) belong
to the real Hilbert space generated by the basis (ψα(a)), hence this space provides a model
for P , Q, R.

Necessity. Assume that the transition matrices P , Q, R admit a real–Hilbert–space model.
Then they admit a complex–Hilbert–space model and, by Corollary 8, a spin model. Let
(ψα(a)), (ψβ(b)), (ψγ (c)) be a triple of orthonormal basis which define this model (a, b, c ∈
S(2)). Then, because of our assumption, (27) must hold with the phasis which are integer
multiples of π. Using conditions (29) and (30) with the notations

(44) λ3 = cos γ/2 , λ1 = cosα/2 cosβ/2 , λ2 = sinα/2 sinβ/2 ,

one easily verifies that at least one of the following equalities must be satisfied:

(45) 1) λ1 + λ2 = λ3 , 2) − λ1 + λ2 = λ3 , 3) λ1 − λ2 = λ3

and, because of (44), the equalities (45) are, respectively, equivalent to

(46) 1) 2π − α+ β + γ = 2π , α+ β + γ = 2π , α + β + 2π − γ = 2π ,

Because of (24) any of the equalities (46) will yield

âb + b̂c+ ĉa = 2π .

Hence a, b, c are coplanar.

Proof of Theorem 9 . In the notations (44), the transition matrices P , Q, R admit a
real–Hilbert–space model if and only the equation

λ1 exp[ix] + λ2 exp[iy] = λ3 exp[iz]
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has a solution such that x, y, z are integer multiples of π. From the proof of Lemma 5 it
follows that such a solution exists, if and only if, for some integer k

cos(kπ) =
λ2

1 + λ2
3 − λ2

2

2λ1λ3

and this is equivalent to (42).

Concluusions.– Let us denote (Kolm), (C–Hilbert), (R–Hilbert) the family of triples P , Q,
R of bi–stochastic matrices of the form (10) which admit respectively a Kolmogorovian, a
complex–Hilbert–space, a real–Hilbert–space model. Clearly (R–Hilbert) ⊆ (C−Hilbert),
and Theorem 7 and 9 show that the inclusion is strict. The elementary inequalities

(47) [
√
pq −

√
(1 − p)(1 − q)]2 ≤ |p+ q − 1| ≤ 1 − |p− q| ≤ [

√
pq +

√
(1 − p)(1 − q)]2 ,

together with Theorems 2 and 7, show that also the inclusion (Kolm) ⊆ (C − Hilbert)
takes place. Since, in the first inequality the equality sign holds if and only if p+q = 1 and
in the third one if and only if p = q, also in this case the inclusion is strict. In particular,
if the three matrices P , Q, R correspond to a spin model defined by three noncoplanar
vectors a, b, c ∈ S(2) and are such that either

[
√
pq −

√
(1 − p)(1 − q)]2 < r < |p+ q − 1| or

1 − |p− q| < r < [
√
pq +

√
(1 − p)(1 − q)]2 ,

then they will not admit neither a Kolmogorovian nor a real–Hilbert–space model but, by
construction, they admit a complex–Hilbert–space model.

While the inclusion (R–Hilbert) ⊆ (C−Hilbert) is of general character, the inclusion
(Kolm) ⊆ (C − Hilbert) depends strongly on the fact that we are considering 2–valued
observables.

For three (or ≥ 3) valued observables this inclusion fails already at the level of pairs of
observables, i.e. in the case of a single bistochastic matrix. For example, it can be shown
(cf.(3)) that if 0 < δ < 1/26 the bistochastic matrix




1
2

(
1
2 + δ

)
1
24

11
24 − 1

2 δ
1
2

(
1
2

+ δ
)

1
2
− 1

24 + δ 1 − 2δ −
(

11
24 − 1

2
δ
)

1
2 − δ 1

2 − δ 2δ




(which, of course, admits infinitely many Kolmogorovian models)
does not admit a complex–Hilbert–space model.

Remark . Our Theorem 2 is equivalent to a result established by D. Gutkowski and G.
Masotto(14) (necessary condition) and by G. Corleo, G. Gutkowski, G. Masotto, M.V.

(14) D. Gutkowski and G. Masotto: Nuovo Cimento D , 22, 121 (1974).
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Valdes(15) (sufficient condition). Their result is expressed in terms of joint rather than
conditional probabilities, and our inequality (12) is obtained by their inequality (1) (in(15))
just dividing each term by 1

2
. The factor 1

2
is canonical since, due to the symmetry condition

(2), any Kolmogorovian model for the given set of transition probabilities must satisfy

µ(A = aα) = µ(B = bβ) = µ(C = cγ) =
1
2
, α, β, γ = 1, 2 .

The equivalence of our Theorem 2 with the mentioned results of Gutkowski et al . was
kindly pointed out to us by prof. R. Ascoli, to whom we want to express our gratidue for
this as well as for other interesting remarks. Let us also remark that a necessary condition
on the 2–dimensional joint probabilities of any finite number of 2–valued observables, for
the existence of a Kolmogorovian model, has been established by A. Garuccio and F.
Selleri(16).

(15) G. Corleo, D. Gutkowski, G. Masotto and M.V. Valdes: Nuovo Cimento B , 25, 413 (1975).
(16) A. Garuccio and F. Selleri: Found. Phys., 10, 209 (1980).
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