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On the Statistical Modeling and Analysis
of Repairable Systems
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Abstract. We review basic modeling approaches for failure and mainte-
nance data from repairable systems. In particular we consider imperfect re-
pair models, defined in terms of virtual age processes, and the trend-renewal
process which extends the nonhomogeneous Poisson process and the renewal
process. In the case where several systems of the same kind are observed, we
show how observed covariates and unobserved heterogeneity can be included
in the models. We also consider various approaches to trend testing. Modern
reliability data bases usually contain information on the type of failure, the
type of maintenance and so forth in addition to the failure times themselves.
Basing our work on recent literature we present a framework where the ob-
served events are modeled as marked point processes, with marks labeling
the types of events. Throughout the paper the emphasis is more on modeling
than on statistical inference.
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1. INTRODUCTION

According to a commonly used definition of a re-
pairable system [5], this is a system which, after failing
to perform one or more of its functions satisfacto-
rily, can be restored to fully satisfactory performance
by a method other than replacement of the entire
system. For the present paper and following recent
literature on the subject, we suggest extending this
definition to include the possibility of additional main-
tenance actions which aim at servicing the system
for better performance. We shall refer to this as pre-
ventive maintenance (PM), where one may further
distinguish between condition-based PM and planned
PM. The former type of maintenance is due when the
system exhibits inferior performance, while the lat-
ter is performed at predetermined points in time. In
this presentation we will consider some aspects of
condition-based PM, while the planned PM will be
briefly touched on in the concluding remarks.

Bo H. Lindqvist is Professor, Department of Mathematical
Sciences, Norwegian University of Science and Technology,
Trondheim, Norway (e-mail: bo@math.ntnu.no).

Traditionally, the literature on repairable systems
is concerned with modeling failure times, with point
process theory being the main tool. The most com-
monly used models for the failure process of a re-
pairable system are renewal processes (RP), including
the homogeneous Poisson processes (HPP) and non-
homogeneous Poisson processes (NHPP). While such
models often are sufficient for simple reliability stud-
ies, the need for more complex models has of course
emerged.

There is currently a rapidly increasing literature con-
cerning modeling and analysis of recurrent events,
with a wide range of applications, including reliabil-
ity analysis of repairable systems, which is the present
topic. In a recent review paper, Cook and Lawless
[14] presented several examples from medical stud-
ies where models and methods for recurrent events are
appropriate. The review paper by Peña [55] gave ex-
amples from both medical and reliability studies. The
scope of our paper is biased toward reliability appli-
cations, although most of the models considered have
a wider applicability. We will, in particular, consider
models which incorporate effects of different kinds of
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repair and maintenance, and with the possibility of
handling several failure causes, for example.

In a review paper like this, it is of course impossible
to cover all models or methods which have been sug-
gested in the literature. Our aim is rather to emphasize
some important ideas, and in this respect there will be
a clear bias toward work in the direction of our own
interests and in work by ourselves and collaborators.
Throughout the paper the emphasis will be more on
modeling than on statistical inference. In addition we
will try to give some historical perspectives on the the-
ory and practice related to repairable systems, again not
necessarily complete and possibly biased by our own
views.

One of the first comprehensive treatments of statisti-
cal methods for recurrent events with reliability em-
phasis is the talk by David R. Cox, read before the
Royal Statistical Society in London in March 1955 and
published in [17]. Cox touched a large number of top-
ics, most of them motivated from the clothing indus-
try. Topics of particular importance for reliability ap-
plications were trend testing, testing whether a failure
process is a Poisson process, autocorrelated time gaps,
doubly stochastic Poisson processes, heterogeneity be-
tween systems, correlations between different types of
events, mean repair times, availability of service and so
forth. Many results from the paper are contained in the
subsequent book by Cox and Lewis [19], which still is
a very useful and much cited source on the subject.

Another early contribution to the study of repairable
systems is the heavily cited 1963 paper by Proschan
[58], “Theoretical explanation of observed decreasing
failure rate.” This paper is particularly important since
it led to the awareness that proper analysis of recurrent
events is an important part of reliability theory. In par-
ticular it is one of the first treatments of heterogeneity
in the theory of repairable systems.

What seems to be the first book devoted solely to re-
pairable systems reliability was published by Ascher
and Feingold [5] in 1984. For a long time this was the
main reference for repairable systems and it is still a
major source. The subtitle of the book is Modeling,
Inference, Misconceptions and Their Causes. The au-
thors were complaining that reliability researchers and
practitioners did not recognize the crucial difference
between the statistical treatment of repairable systems
and nonrepairable components. They demonstrated by
simple examples how conclusions from data may be
very wrong if times between failures are treated as i.i.d.
if there is a trend in them.

Data from repairable systems are usually given as or-
dered failure times T1, T2, . . . with data coming from a
single system or from several systems of the same kind.
The implicit assumption is usually that the system is
repaired and put into new operation immediately after
the failure. This restriction, disregarding repair times,
is not serious if one is interested in modeling and es-
timation of the probability mechanisms behind failure
occurrences. It is, moreover, justified if the time scale
is taken to be operation time, number of cycles, num-
ber of kilometers run and so forth. We will impose this
restriction in this paper, and we will therefore not cover
important topics such as availability and unavailability
of systems, where the standard tool is to use alternat-
ing renewal processes with operation periods alternat-
ing with repair periods (see, e.g., [59], Chapter 7).

A common recipe for analysis of data from a re-
pairable system is as follows. First, apply a test for
trend in the interfailure times Xi = Ti − Ti−1. If no
significant trend is found, then use a RP as a model,
in which case the well established statistical tools for
analysis of i.i.d. observations can be used. Otherwise,
use a NHPP model, which handles trend through spec-
ification of an intensity function λ(t). For example,
a deteriorating system will then correspond to an in-
creasing function λ(t), while an improving system will
correspond to a decreasing λ(t). A homogeneous Pois-
son process, HPP(λ), corresponds to a constant inten-
sity λ(t) ≡ λ and is at the same time a renewal process
with exponentially distributed interfailure times.

A RP model is also called a perfect repair model,
since the system is as good as new after a failure. On
the other hand, a NHPP model corresponds to what is
called minimal repairs, meaning that the system after
repair is only as good as it was immediately before the
failure. Lindqvist, Elvebakk and Heggland [48] rep-
resent the problem of distinguishing between the two
“extreme” kinds of repair as corresponding to the first
“dimension” of a repairable system description in the
form of a so-called model cube (Figure 3). The sec-
ond dimension is the appearance of trend or no trend
in interfailure times. This particular aspect of system
behavior has traditionally received much attention in
reliability theory and is resolved by considering trend
tests. Finally, the third dimension corresponds to the
existence of unobserved heterogeneity between sys-
tems. This problem is of course relevant only when
several systems of the same kind are observed. There
is currently a large and increasing interest in the mod-
eling of heterogeneity, usually known as frailties in
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the survival analysis literature. To some extent, hetero-
geneity may have been much overlooked in reliability
studies, but there are important exceptions in the liter-
ature.

Several classes of models have in turn been sug-
gested for cases not covered by the “extreme” models
RP and NHPP. These include the so-called imperfect
repair models. The idea is that after a repair the “vir-
tual” age of the unit is not necessarily reduced to 0,
such as for a perfect repair, nor is it the same as before
the repair, such as for a minimal repair. Instead, the
virtual age is reduced by a certain amount that depends
on the type of repair. We review the basic properties of
such models and we will see how the concept of virtual
age can be generalized to more than one dimension.

Another class of alternatives to NHPP and RP mod-
els, which includes these models, is the so-called trend-
renewal process (TRP). This model is a generalization
of Berman’s modulated gamma process [9] and has
been extensively studied in [48]. In the present paper
we will use TRP models and their extensions as our ba-
sic framework to illustrate some main issues on model-
ing and statistical analysis of data from repairable sys-
tems. The TRP is particularly suitable to illustrate the
already mentioned three dimensions of repairable sys-
tems.

Modern reliability data bases usually contain more
information than just the failure times. For example,
there may be information on the times of preventive
maintenance (PM), identity of a failed component, type
of failure, type of repair, cost of replacement and so
forth. Thus we shall more generally assume that ob-
servations from repairable systems are represented as
marked point processes where the marks label the types
of events. For example, the marks may be of two kinds,
corresponding to the type of maintenance, repair or
PM. We review some recent literature in this direction
with the aim of extending the theory of repairable sys-
tems to a competing risks setting.

In addition to information on types of events, the
data bases may contain covariates that represent en-
vironmental conditions, measures of various forms of
load and usage stress, and so forth. Such covariates
could be constant or are possibly varying with time.
Regression models for repairable systems are useful for
obtaining better understanding of the underlying fail-
ure and PM mechanisms, or for predicting the behavior
of new items.

The outline of the paper is as follows. The basic no-
tation and definitions used are given in Section 2, in-
cluding the introduction of the marked point process

setup. Section 3 reviews models for the case of failure
data with a single type of events, with emphasis on vir-
tual age models and trend-renewal processes. Section 4
is devoted to a discussion of unobserved heterogeneity
in repairable systems data. The model cube for hetero-
geneous trend-renewal processes is considered in par-
ticular. In Section 5 we consider various approaches to
trend testing, both for data coming from single systems
and from several similar systems. The possible exten-
sion of virtual age models to the marked process case is
considered in Section 6. This section is based on some
recent papers on the subject. Some concluding remarks
are given in Section 7, in particular concerning topics
not covered in the main text.

2. NOTATION AND BASIC DEFINITIONS

We consider a repairable system where time usually
runs from t = 0 and where events occur at ordered
times T1, T2, . . . . Here time is not necessarily calen-
dar time, but can in principle be any suitable measure-
ment which is nondecreasing with calendar time, such
as operation time, number of cycles, number of kilo-
meters run, length of a crack and so forth. As already
mentioned in the Introduction, we shall disregard time
durations of repair and maintenance, so we assume that
the system is always restarted immediately after fail-
ure or a maintenance action. Types of events (type of
maintenance, type of failure, etc.) are, when applica-
ble, recorded as J1, J2, . . . with Ji ∈ J for some mark
space J which will depend on the current application.
For simplicity we will here always assume that J is a
finite set. The observable process (T1, J1), (T2, J2), . . .

will be called the marked event process or occasion-
ally the failure process. The interevent, or interfail-
ure, times will be denoted X1,X2, . . . . Here Xi =
Ti − Ti−1, i = 1,2, . . . , where for convenience we de-
fine T0 ≡ 0. Figure 1 illustrates the notation. We also
make use of the counting process representation Nj(t)

equal to the number of events of type j in (0, t], which
counts the number of events of type j ∈ J, and N(t) =∑

j∈J Nj(t), which counts the number of events irre-
spective of their types.

To describe probability models for repairable sys-
tems we use some notation from the theory of point
processes. A key reference is Andersen, Borgan, Gill
and Keiding [4]. Let Ft− denote the history of the
marked event process up to, but not including, time t .
In models without covariates we assume that Ft− in-
cludes all information on event times and event types
before time t . Formally, Ft− is generated by the set
{Nj(s) : 0 ≤ s < t, j ∈ J}.
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FIG. 1. Event times (Ti), event types (Ji) and sojourn times (Xi) of a maintained system.

Suppose then that a possibly time-dependent covari-
ate vector Z(t) is observed for the system. In this case
the covariate history {Z(s) : 0 ≤ s ≤ t} should be added
to the history Ft− for each t > 0. This will imply
that just before any time t we have the complete in-
formation on the previous events, as well as the com-
plete covariate history including the value of the co-
variate at time t . In the case of a time-constant covari-
ate vector Z, the information in Z is added to each his-
tory Ft−.

The conditional intensity of the process with respect
to events of type j ∈ J is now defined as

γj (t)

= lim
�t↓0

Pr(event of type j in [t, t + �t)|Ft−)

�t
,(1)

which we call the type-specific intensity for j . Thus,
γj (t)�t is approximately the probability of an event of
type j in the time interval [t, t + �t) given the history
before time t . Further, we let γ (t) = ∑

j∈J γj (t) so that
γ (t)�t is approximately the conditional probability of
an event of any type in the time interval [t, t + �t),
where it has been tacitly assumed that the probability of
more than one event in an interval [t, t + �t) is o(�t).
Note that the γj (·) and hence the γ (·) may be func-
tions of the covariate vector Z(·) when appropriate. In
typical applications, γj (t) may depend on the covariate
history only through the value Z(t) at time t . Further,
it is common to assume that γj (t) = γ 0

j (t)g(Z(t)),

with γ 0
j (t) depending only on the pure event history

{Nj(s) : 0 ≤ s < t, j ∈ J}, and with g(·) being some
parametric function of the covariate vector such as the
exponential one, g(z) = exp(β ′z), where β is a para-
meter vector.

For statistical inference we need an expression for
the likelihood function. Suppose that a single system
with a marked event process as described above is ob-
served from time 0 to time τ , resulting in observations
(T1, J1), (T2, J2), . . . , (TN(τ), JN(τ)), in addition to the
covariate vector Z(s) for 0 ≤ s ≤ τ if applicable. The
likelihood function is then given by ([4], Section II.7)

L =
{

N(τ)∏
i=1

γJi
(Ti)

}
exp

{
−

∫ τ

0
γ (u)du

}
.(2)

A rough verification of (2) can be given as follows.
First, partition the interval (0, τ ] into s equal pieces,
each of length h = τ/s. Assume that s is so large
that at most one event can happen in an interval of
length h. Then the conditional probability of an event
of type j in the interval [(k − 1)h, kh), k = 1, . . . , s,
given the history before (k − 1)h, is roughly γj (kh)h,
while the conditional probability of no event in this in-
terval is roughly 1 − γ (kh)h. The probability of a re-
alization of the process from 0 to τ will therefore in-
clude a product of N(τ) terms of the type γj (kh)h,
corresponding to the observed events, and which in
the limit as h → 0 (after dividing by the normaliza-
tion hN(τ)) gives the product term on the right-hand
side of (2). The exponential part of (2) comes from tak-
ing the limit of the product of the terms 1 − γ (kh)h ≈
exp{− ∫ kh

(k−1)h γ (t) dt} for the intervals that contain no
event, assuming continuity of γ (·).

The likelihood function (2) is valid under the as-
sumption that τ is a stopping time, which means that
its value depends stochastically only on the past his-
tory. This property holds for the standard censoring
schemes used in practice and in particular when τ is in-
dependent of the event process. There is, however, an
increasing awareness of the need to allow for depen-
dent censoring in many applications (see, e.g., [33]).

In typical applications, data will be available for sev-
eral similar systems, with stopping times τ usually
varying from system to system. Under the assump-
tion of stochastic independence and identical proba-
bility mechanisms for the systems, the total likelihood
will be the product of expressions (2) computed for all
systems. For both parametric and nonparametric mod-
els of this kind there is a well developed theory for
estimation based on the martingale approach to point
processes ([4] gives a comprehensive account). Rel-
evant references for statistical inference in reliability
models are, among others, Ascher and Feingold [5],
Rausand and Høyland [59], Crowder, Kimber, Smith
and Sweeting [21] and Meeker and Escobar [52].
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3. MODELS FOR REPAIRABLE SYSTEMS WITH A
SINGLE TYPE OF EVENT

In the present section we assume that the observa-
tions are just the failure times T1, T2, . . . . Thus the
mark space J will be ignored.

A large number of models can be obtained in terms
of a given hazard function z(t), which we think of as
being the hazard function of the time to first failure of
a new system. The corresponding density and cumu-
lative distribution function are denoted, respectively,
f (t) and F(t), so z(t) = f (t)/(1 − F(t)). The idea
is to use the function z(t) together with a specification
of the repair strategy to define the conditional intensity
function γ (t) of the failure process. Models of this type
are considered in Sections 3.1 and 3.2. The correspond-
ing models may be extended to the case with observed
covariates, although this will not be made explicit. As
described in Section 2, the conditional intensities of the
form γ (t) as considered below may be multiplied with
a factor g(Z(t)) that defines the dependence of the co-
variate value at time t .

3.1 Perfect and Minimal Repair Models

Suppose first that after each failure, the system is re-
paired to a condition as good as new. In this case the
failure process is modeled by a renewal process with
interevent time distribution F , denoted RP(F ). Clearly

γ (t) = z
(
t − TN(t−)

)
,

where t − TN(t−) is the time since the last failure
strictly before time t .

Suppose instead that after a failure, the system is re-
paired only to the state it had immediately before the
failure, called a minimal repair. This means that the
conditional intensity of the failure process immediately
after the failure is the same as it was immediately be-
fore the failure, and hence is exactly as it would be if
no failure had ever occurred. Thus we must have

γ (t) = z(t),

so that the process is a NHPP with intensity z(t), de-
noted NHPP(z(·)). In practice a minimal repair usually
corresponds to repairing or replacing only a minor part
of the system.

3.2 Imperfect Repair Models and the Virtual Age of
a System

A classical model, suggested by Brown and Proschan
[13], assumes that at the time of each failure a perfect
repair occurs with probability p and a minimal repair

occurs with probability 1 − p, independently of the
previous failure history. This model is a simple exam-
ple of what has been called an imperfect repair model,
and was later generalized in several directions.

Kijima [34] suggested two imperfect repair models,
both involving what is called the virtual age (or effec-
tive age) of the system. The idea is to distinguish be-
tween the system’s age, which is the time elapsed since
the system was new, usually at time t = 0, and the
virtual age of the system, which describes its present
condition when compared to a new system. The vir-
tual age is redefined at failures according to the type of
repair performed and it runs along with the true time
between repairs. More precisely, a system with virtual
age v ≥ 0 is assumed to behave exactly like a new sys-
tem which has reached age v without having failed.
The hazard rate of a system with virtual age v is thus
zv(t) = z(v + t) for t > 0, where z(·) is the hazard rate
of the time to first failure of the system.

It should be clear at this stage that models based on
virtual ages make sense only if the underlying hazard
functions z(·) are nonconstant. In fact, if z(·) is con-
stant, then a reduction of virtual age would not influ-
ence the rate of failures.

A variety of imperfect repair models can be obtained
by specifying properties of the virtual age process in
addition to the hazard function z(t) of a new system.
For this, suppose v(i) is the virtual age of the sys-
tem immediately after the ith event, i = 1,2 . . . . The
virtual age at time t > 0 is then defined by A(t) =
v(N(t−))+ t − TN(t−), which is the sum of the virtual
age after the last event before t and the time elapsed
since the last event. The process A(t), called the vir-
tual age process by Last and Szekli [40], thus increases
linearly between events and may jump only at events.
It follows that

γ (t) = zv(N(t−))

(
t − TN(t−)

) = z(A(t)),(3)

assuming that A(t) is included in Ft− for all t . This
means in turn that v(i) is contained in FTi

for each t so
that v(i) depends on the history up to and including Ti .
The likelihood then becomes

L =
{

N(τ)∏
i=1

z
(
v(i − 1) + Xi

)}

· exp

{
−

N(τ)∑
i=1

∫ Xi

0
z
(
v(i − 1) + u

)
du

−
∫ τ−TN(τ)

0
z
(
v(N(τ)) + u

)
du

}
.
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This can be recognized as being the same as{
N(τ)∏
i=1

fv(i−1)(Xi)

}{
1 − Fv(N(τ))

(
τ − TN(τ)

)}
,

where fv(t) = f (v + t)/(1 − F(v)) and Fv(t) =
(F (v + t) − F(v))/(1 − F(v)) are, respectively, the
density and the cumulative distribution function of
time to next failure for a system with virtual age v and
hence with hazard rate zv(·).

It is clear that the perfect repair and minimal re-
pair models are the special cases where, respectively,
v(i) = 0 and v(i) = Ti , i = 1,2, . . . . In Kijima’s
[34] model I, the virtual age v(i) equals

∑i
k=1 DkXk ,

where D1,D2, . . . is a sequence of random vari-
ables on the interval [0,1] such that Dk is indepen-
dent of FTk− for each k. Note that FTk− includes
D1,D2, . . . ,Dk−1 so that in particular the Dk are in-
dependent. In Kijima’s model II the virtual age v(i)

is set to
∑i

k=1(
∏i

j=k Dj )Xk with the same conditions
for the Dk . This means that the virtual age after the
ith failure equals Di multiplied by the virtual age of
the system just prior to the ith failure. The model of
Brown and Proschan [13] is obtained when Di is 1
with probability 1 − p and 0 with probability p for all
i.

Dorado, Hollander and Sethuraman [22] studied
nonparametric statistical inference in a model slightly
more general than Kijima’s models described above.
Nonparametric statistical inference in the Brown–
Proschan model was first studied by Whitaker and
Samaniego [63] and later by Hollander, Presnell and
Sethuraman [31].

Recall that for the above models, the Di need to be
observed for likelihood inference using (2) to be valid.
This means in effect that the type of repair (minimal or
perfect) must be reported for each repair action. In real
applications, however, exact information on the type
of repair is rarely available. The estimation problem
in the case of unobserved Di has been considered by,
for example, Lim [45] (suggesting an EM algorithm
approach) and Langseth and Lindqvist [38, 39].

Doyen and Gaudoin [23] studied classes of virtual
age models based on deterministic reduction of virtual
age due to repairs, and hence not requiring the observa-
tion of repair characteristics. The basic models of this
type can be obtained simply by letting the Di in Ki-
jima’s models above be replaced by parametric func-
tions. A simple example of [23] is to use 1 − ρ for Di ,
where 0 < ρ < 1 is a so-called age reduction factor.

There is a large literature on reliability modeling us-
ing the virtual age process. For a review we refer to

Pham and Wang [57] and Lindqvist [46]. Section 6
presents an attempt to define a multivariate virtual age
process and corresponding repairable system models
with several types of events.

3.3 Generalized Linear Model Types

Berman and Turner [10] considered estimation in
parametric models with the conditional intensity being
of the generalized linear model type

γ (t) = g

{ p∑
i=0

βizi(t)

}
,(4)

where g is a known monotonic continuous function,
the zi(t) are known functions of t and the history Ft−,
and the βi are unknown parameters. Note that the func-
tions zi(t) may be functions of the covariates if avail-
able. One aim of the paper was to demonstrate how
to use software for generalized linear models to ana-
lyze repairable systems data. The model (4) is closely
related to the modulated renewal process introduced
in [18] for which Cox suggested a semiparametric ap-
proach for inference using a partial likelihood.

The special case of (4) obtained when g(y) = ey

was applied to repairable systems by Lawless and
Thiagarajah [43]. In particular, they considered the
model

γ (t) = eβ0+β1g1(t)+β2g2(t−TN(t−)),(5)

where g1 and g2 are known functions. This conditional
intensity is a function of both the calendar time and the
time since last failure. Note that β1 = 0 gives a RP and
β2 = 0 gives a NHPP, while β1 = β2 = 0 gives a HPP.

3.4 The Trend-Renewal Process

A class of processes called inhomogeneous gamma
processes was suggested by Berman [9]. Berman moti-
vated the inhomogeneous gamma process by first con-
sidering the process T1, T2, . . . obtained by observing
every κ th event of a NHPP, where κ is a positive in-
teger. He then showed how to generalize to the case
when κ is any positive number.

We present now a generalization of Berman’s idea,
called the trend-renewal process, which was exten-
sively studied by Lindqvist, Elvebakk and Heggland
[48]. We will use this process in particular to describe
the three dimensions related to the properties of re-
pairable systems.

The idea behind the trend-renewal process is to
generalize the following well-known property of the
NHPP. First let the cumulative intensity function that
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corresponds to an intensity λ(·) be defined by �(t) =∫ t
0 λ(u)du. Then if T1, T2, . . . is a NHPP(λ(·)), the

time-transformed stochastic process �(T1),�(T2), . . .

is HPP(1).
The trend-renewal process (TRP) is defined sim-

ply by allowing the above HPP(1) to be any renewal
process RP(F ). Thus, in addition to the intensity func-
tion λ(t), for a TRP we need to specify a distribu-
tion function F of the interarrival times of this re-
newal process. Formally we can define the process
TRP(F,λ(·)) as follows:

Let λ(t) be a nonnegative function defined for t ≥ 0,
and let �(t) = ∫ t

0 λ(u)du. The process T1, T2, . . .

is called TRP(F,λ(·)) if the transformed process
�(T1),�(T2), . . . is RP(F ), that is, if the �(Ti) −
�(Ti−1), i = 1,2, . . . , are i.i.d. with distribution func-
tion F . The function λ(·) is called the trend function,
while F is called the renewal distribution. To have
uniqueness of the model, it is usually assumed that F

has expected value 1.
Figure 2 illustrates the definition. For a NHPP(λ(·)),

the RP(F ) would be HPP(1). Thus TRP(1 − e−x,

λ(·)) = NHPP(λ(·)). Also, TRP(F,1) = RP(F ), which
shows that the TRP class includes both the RP and
NHPP classes.

As a motivation for the TRP model, suppose that fail-
ures of a particular system correspond to replacement
of a major part, for example, the engine of a tractor
(as in the data given by Barlow and Davis [6]), while
the rest of the system is not maintained. Then if the
rest of the system is not subjected to wear, a renewal
process would be a plausible model for the observed
failure process. In the presence of wear, on the other
hand, an increased replacement frequency is to be ex-
pected. This is achieved in a TRP model by accelerat-
ing the internal time of the renewal process according
to a time transformation �(t) = ∫ t

0 λ(u)du which rep-
resents the cumulative wear. The TRP model thus has
some similarities to accelerated failure time models.

It can be shown [48] that the conditional intensity
function for the TRP(F,λ(·)) is

γ (t) = z
(
�(t) − �

(
TN(t−)

))
λ(t),(6)

where z(·) is the hazard rate that corresponds to F .
This is a product of one factor, λ(t), which depends
on the age t of the system and one factor which de-
pends on a transformed time from the last previous fail-
ure. However, time since last failure is measured on a
scale that depends on the cumulative intensity of fail-
ures. This shows that the TRP class does not contain,
nor is contained in, the classes of processes considered
in the previous subsection.

Suppose now that a single system has been ob-
served in [0, τ ], with failures at T1, T2, . . . , TN(τ). If
a TRP(F,λ(·)) is used as a model, then substitution of
(6) into (2) gives the likelihood

L =
{

N(τ)∏
i=1

z[�(Ti) − �(Ti−1)]λ(Ti)

}

(7)

· exp
{
−

∫ τ

0
z
[
�(u) − �

(
TN(u−)

)]
λ(u)du

}
.

Equivalently, if f is the density function that corre-
sponds to F , we can write this likelihood as

L =
{

N(τ)∏
i=1

f [�(Ti) − �(Ti−1)]λ(Ti)

}

(8)
· {

1 − F
[
�(τ) − �

(
TN(τ)

)]}
.

The latter form of the likelihood follows directly from
the definition of the TRP, since the conditional den-
sity of Ti given T1 = t1, . . . , Ti−1 = ti−1 is f [�(ti) −
�(ti−1)]λ(ti), and the probability of no failures in the
time interval (TN(τ), τ ], given T1, . . . , TN(τ), is 1 −
F [�(τ) − �(TN(τ))].

A possible extension of the TRP to include covari-
ates would be to multiply the trend function λ(t) by a
factor g(Z(t)), for example, of the form exp(β ′Z(t))

as suggested in Section 2. The λ(t) would then play
the role of a baseline trend function. This definition
generalizes in a natural way the commonly used NHPP
model with covariates; see, for example, [41].

FIG. 2. The defining property of the trend-renewal process.
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4. UNOBSERVED HETEROGENEITY IN
REPAIRABLE SYSTEMS

Analyses of reliability data often lead to an appar-
ent decreasing failure rate which could be counterintu-
itive in view of wear and aging effects. Proschan [58]
pointed out that such observed decreasing rates could
be caused by unobserved heterogeneity. Proschan pre-
sented failure data from 17 air conditioner systems on
Boeing 720 airplanes. Applying Mann’s [51] nonpara-
metric trend test to each system and then combining to
a global test statistic, he argued that there is no signif-
icant trend in the failure times for each separate plane.
He then concluded by a similar test that “it seems safe
to accept the exponential distribution as describing the
failure interval, although to each plane may correspond
a different failure rate.” He demonstrated this last fact
statistically by using a result from Barlow, Marshall
and Proschan [7] which implies that a mixture of ex-
ponential distributions has a decreasing failure rate.
More precisely, he applied again the Mann test, which
is sensitive to a decreasing failure rate, on the pooled
interfailure times from all the planes. In this way he
obtained a p-value of 0.007 for the null hypothesis
of identical exponential distributions of the interfailure
times.

Heterogeneity in connection with Poisson processes
was in fact studied as early as 1920 by Greenwood and
Yule [27], who used a compound Poisson distribution.
Later, Maguire, Pearson and Wynn [50], studying oc-
currences of industrial accidents, showed how Laplace
transforms enter general expressions for resulting dis-
tributions of intervals and counts. Cox [17] consid-
ered the possibility of heterogeneity, which he called
variance components, between homogeneous Poisson
processes and listed several reasons for the interest in
such models for repairable systems data.

It has similarly long been known in biostatistics that
neglecting individual heterogeneity may lead to severe
bias in estimates of lifetime distributions. The idea is
that individuals or components have different “frail-
ties” and that those who are most “frail” will die or fail
earlier than the others. This in turn leads to a decreas-
ing population hazard, which has often been misinter-
preted. Important references on heterogeneity in the
biostatistics literature are [62], [32] and [2]. It should
be noted that heterogeneity is, in general, unidentifi-
able if it is considered as an individual quantity. For
identifiability it is necessary that frailty be common
to several individuals, for example, in family studies
in biostatistics, or if several events are observed for

each individual, such as for the repairable systems con-
sidered in this paper and more generally for recurrent
events data. The presence of heterogeneity is often ap-
parent for data from repairable systems if there is a
large variation in the number of events per system.
However, it is not really possible to distinguish be-
tween heterogeneity and dependence of the intensity
on past events for a single process. It is a fact, though,
that ignorance of an existing heterogeneity may lead to
suboptimal or even wrong decisions.

4.1 Modeling Heterogeneity for Repairable
Systems

The common way to model heterogeneity is to in-
clude an unobservable multiplicative constant in the
conditional intensity of the process; see, for example,
[62]. For systems with a single type of event this is
done by first replacing the conditional intensities γ (t)

in (1) by aγ (t), where a is a random variable that rep-
resents the frailty of the system and such that a is in-
cluded in Ft− for each t . Note that γ (t) as described
in Section 2 may well be a function of covariates. Now
a can be viewed as being the effect of an unobserved
covariate. Systems with a large value of a will have a
larger failure proneness than systems with a low value
of a. Intuitively, the variation in the a between sys-
tems implies that the variation in observed number of
failures among the systems is larger than would be ex-
pected if the failure processes were identically distrib-
uted. Now, since a is unobservable, one needs to take
the expectation of the likelihood that results from (2)
with respect to the distribution of a in order to have a
likelihood function for the observed data.

In the marked point process formulation of Section 2
we may more generally assume that there are differ-
ent frailty variables for each event type j ∈ J. More
precisely, we assume that there is a random vector
a = (aj , j ∈ J) such that the type-specific intensities
for given a are ajγj (t), respectively, where γj (t) cor-
responds to the type-specific conditional intensity de-
fined in Section 2. The resulting likelihood including
heterogeneity is thus

L = Ea

[(
N(τ)∏
i=1

aJi
γJi

(Ti)

)

(9)

· exp

{
− ∑

j∈J

aj

∫ τ

0
γj (u) du

}]
,

where the expected value is taken with respect to the
joint distribution of a. Multivariate frailty distributions
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are considered by, for example, Hougaard [32] and
Aalen [1].

In the case of several independent systems, it is as-
sumed that the a’s that correspond to the systems are
i.i.d. from the given joint distribution. The total like-
lihood is then the product of factors (9), one for each
system. Note that for identifiability it may be neces-
sary to introduce a normalization of a, for example, to
assume that E(‖a‖) = 1. This is because otherwise a
scale factor may be moved from aj to γj (·) or vice
versa without changing the value of (9). Alternatively
one may let the aj act as free random scale parame-
ters in the model if the γj (·) themselves do not include
scale parameters.

For the special case of a single type of event one ob-
tains simplification of the likelihood function in (9),

L = Ea

[
aN(τ)

(
N(τ)∏
i=1

γ (Ti)

)

(10)

· exp
{
−a

∫ τ

0
γ (u)du

}]
,

where the expectation is with respect to the distribution
of the random variable a and where for normalization
one will usually assume E(a) = 1.

Expression (10) suggests that a gamma distribution
for a is mathematically convenient, since a closed form
expression of the likelihood is obtained. More gener-
ally, for the version (9), a multivariate gamma distribu-
tion for a leads to a simplified expression (see, e.g., [1]
and [32] regarding multivariate gamma distributions).

Consider now the likelihood (10) and suppose that a

is gamma distributed with E(a) = 1,Var(a) = δ. Then
a straightforward computation gives

L =
{

N(τ)∏
i=1

γ (Ti)

}

· 
(N(τ) + 1/δ)

δ1/δ
(1/δ)[1/δ + ∫ τ
0 γ (u)du]N(τ)+1/δ

(11)

=
{

N(τ)∏
i=1

γ (Ti)

}

· [δ(N(τ) − 1) + 1][δ(N(τ) − 2) + 1] · · ·1

[δ ∫ τ
0 γ (u)du + 1]N(τ)+1/δ

,

where we have used the fact that 
(r +1) = r
(r). Re-
call that γ (Ti) may well include covariates. This like-
lihood expression is applicable, for example, together
with the virtual age model (3) and the generalized lin-
ear model types (4) and (5). It is also the likelihood

function for NHPPs with heterogeneity and possibly
covariates, as studied in Lawless [41], and results in the
likelihood of the so-called compound power law model
studied by Engelhardt and Bain [26].

We remark that (11) converges to (2) (assuming a
single type of event) as δ → 0.

4.2 Heterogeneity in the TRP Model, the HTRP
Model

Lindqvist, Elvebakk and Heggland [48] introduced
heterogeneity into the TRP model by including an
unobservable random multiplicative constant a in the
trend function λ(t), thus considering the conditional
model TRP(F, aλ(·)) with a renewal distribution F

that does not depend on a. This definition is consis-
tent with the regression version of TRP as suggested at
the end of Section 3.4. Now the a replaces the func-
tion g(Z(t)) used there. Note that in practice one may
want to include both the frailty a and a covariate factor
g(Z(t)). To simplify the discussion, we will, however,
not consider covariates in our presentation.

Considering (6), it is seen that the conditional inten-
sity function given a is no longer of the simple multi-
plicative form aγ (t) which was assumed in the previ-
ous subsection. This is because the �(·) in (6) is also
multiplied by a. Instead of the expression (10), the rel-
evant likelihood from one system becomes, using (7),

L = Ea

[{
N(τ)∏
i=1

z
[
a
(
�(Ti) − �(Ti−1)

)]
aλ(Ti)

}

· exp
{
−a

∫ τ

0
z
[
a
(
�(u) − �

(
TN(u−)

))]
(12)

· λ(u)du

}]

or, using (8),

L = Ea

{
N(τ)∏
i=1

f
[
a
(
�(Ti) − �(Ti−1)

)]
aλ(Ti)

}

(13)
· {

1 − F
[
a
(
�(τ) − �

(
TN(τ)

))]}
.

Here f and z are, respectively, as before, the density
and hazard function of the distribution F .

The expressions (12) and (13) appear to be less
tractable than the expression (10). Lindqvist, Elvebakk
and Heggland [48] obtained, however, a rather simple
expression for the likelihood in the case of an inhomo-
geneous gamma process with gamma distributed het-
erogeneity factor a, under the further assumption that
the stopping times τ coincide with failure times. In this
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case the last factor of (13) disappears, and letting F be
the gamma distribution with unit expectation and vari-
ance γ , while a is gamma distributed with unit expec-
tation and variance δ, one obtains

L =
{

N(τ)∏
i=1

(
�(Ti) − �(Ti−1)

)1/γ−1
λ(Ti)

}

· (



(
N(τ)/γ + 1/δ

))
·
{
γ N(τ)/γ [
(1/γ )]N(τ)δ1/δ

· 
(1/δ)
[
1/δ + (1/γ )�

(
TN(τ)

)]N(τ)/γ+1/δ
}−1

.

Note that for γ = 1 this is of the same form as in (11).
We use the notation HTRP(F,λ(·),H) for the model

with likelihood (12) or, equivalently, (13). The “H” in
HTRP here stands for heterogeneity, and the H which
is added to (F,λ(·)) in the notation is the distribution
of the variable a, which can be any positive distribution
with expected value 1.

4.3 The Three Dimensions of a Repairable System
Description: The Model Cube and the
Log-Likelihood Cube

A useful feature of the HTRP model is that sev-
eral models for repairable systems can be represented

FIG. 3. The model cube illustrating the HTRP(F,λ(·),H) and
the submodels obtained by restricting one or more of F,λ(·),H
to their basic versions, respectively, F being standard exponential
(using the notation - in the figure), λ(t) ≡ λ being constant in time
and H being the distribution deterministic at 1 (- in the figure).

as submodels. With the notation HPP, NHPP, RP and
TRP used as before, and with an H in front mean-
ing the model which includes heterogeneity, Figure 3
shows how the HTRP and the seven sub-models can
be represented in a cube [25]. Each vertex of the cube
represents a model, and the lines that connect them
correspond to changing one of the three “coordinates”
(F,λ(·),H) in the HTRP notation. Going to the right
corresponds to introducing a time trend, going upward
corresponds to entering a non-Poisson (renewal) case
and going backward (inward) corresponds to introduc-
ing heterogeneity.

In analyzing data by parametric HTRP models we
may use the cube to facilitate the presentation of max-
imum log-likelihood values and parameter estimates
for the different models in a convenient, visual man-
ner which may guide model choice (see [48]). Figures
4 and 5 show maximum likelihood values computed
from the data of Proschan [58] and Aalen and Huse-
bye [3], respectively. The latter data set is taken from
a medical study and is included here to demonstrate
results for data which are clearly non-Poisson distrib-
uted.

FIG. 4. The log-likelihood cube for the data of Proschan [58]
concerning failures of air conditioner systems on airplanes, fit-
ted with a parametric HTRP(F,λ(·),H) model and its submod-
els. Here F is a Weibull distribution with expected value 1 and
shape parameter s, λ(t) = cbtb−1 is a power function of t and H

is a gamma distribution with expected value 1 and variance v. The
maximum value of the log-likelihood is denoted l.
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FIG. 5. The log-likelihood cube for the data of Aalen and
Husebye [3] concerning migratory motor complex periods, fitted
with a parametric HTRP(F,λ(·),H) model and its submodels.
Here F is a Weibull distribution with expected value 1 and shape
parameter s, λ(t) = cbtb−1 is a power function of t and H is a
gamma distribution with expected value 1 and variance v. The max-
imum value of the log-likelihood is denoted l.

For the Proschan data we conclude that the renewal
distribution can be taken to be exponential, leaving us
with the bottom face of the cube. Further, when com-
paring the front face to the back face there is clear
reason to conclude that there is heterogeneity between
the systems, with Var(a) being estimated to approx-
imately 0.11. The conclusions so far are thus in ac-
cordance with the conclusions of Proschan [58]. How-
ever, a comparison of the left and right faces of the
cube reveals a slight time trend. In fact, twice the log-
likelihood difference from HHPP to HNHPP amounts
to 5.28, giving a p-value of 0.022 assuming a chi-
squared distribution with one degree of freedom of the
corresponding likelihood ratio test statistic. The power
parameter b of the trend function is, furthermore, esti-
mated as 1.16.

The most obvious conclusion for the Aalen and
Husebye [3] data is that the renewal distribution is
not exponential, implying that the upper face of the
cube applies. Further, the differences in log-likelihood
obtained by introducing heterogeneity are seen to be
small enough to conclude there is no significant het-
erogeneity. However, as for the Proschan data, there

seems to be a slight time trend. Here, twice the log-
likelihood difference from RP to TRP amounts to 4.18,
giving a p-value of 0.041, while the power parameter b

is estimated as 1.14 for the TRP model. Note the large
difference in log-likelihood value between, for exam-
ple, the TRP and NHPP models. As shown by the para-
meter estimates (Figure 5), the NHPP estimates seem
to compensate for the large estimated shape parame-
ter for the renewal distribution of the TRP by increas-
ing the power parameter b of the trend function (from
1.14 to 1.45). It is also seen that for the Poisson models
(bottom face) there is no gain in log-likelihood by in-
troducing heterogeneity. Thus the maximum likelihood
estimates of the heterogeneity variance v are given by
the border value 0. This is so since the profile likeli-
hood of v can be shown to be a decreasing function of
v > 0 near 0 (see [48] for a further discussion of this
effect).

5. TREND TESTING

In many applications involving repairable systems,
the main aim is to detect trends in the pattern of failures
that occur over time. These may often be revealed as
monotonic trends in the interfailure times, correspond-
ing to either improving or deteriorating systems. Vari-
ous types of nonmonotonic trends may also be present,
for example, a cyclic trend or a bathtub shaped trend.

5.1 Graphical methods

A simple but informative way to check for a possi-
ble trend in the pattern of failures is to study plots like
Figure 6, which is a plot of cumulative failure number
versus failure time for a single system. The underlying
data are failures of the air conditioner system of air-
plane 7913 of the Proschan [58] data. A convex plot
would be indicative of a deteriorating system, while
a concave plot would indicate an improving system.
In Figure 6 there seems to be no significant deviation
from a straight line, however, thus indicating no trend
in interfailure times.

5.1.1 Nelson–Aalen plot. The plot of Figure 6 is a
special case of the Nelson–Aalen plot to be described
next. Assume that m systems are observed, with the in-
dividual failure processes being independent and iden-
tically distributed. Suppose further that the ith process
is observed on the time interval (0, τi] and let y(t)

denote the number of processes under observation at
time t . Note that y(t) is a function of the τi and
not of the failure times. Let Tk denote the kth arrival
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FIG. 6. Plot of cumulative number of failures, N(t), for air conditioner failures of plane 7913 in the Proschan [58] data.

time in the superposed process, that is, Ti is a fail-
ure time in one of the processes and 0 < T1 ≤ T2 ≤
· · · ≤ TN ≤ τ , where τ = max{τi : i = 1, . . . ,m}. De-
fine the cumulative mean function of a single process
to be M(t) = E(N(t)). The Nelson–Aalen estimator of
M(t) is given by

M̂(t) = ∑
Tk≤t

1

y(Tk)
,

where the sum is taken over all failure times Tk before
or at time t . Figure 7 shows the plot of M̂(t) for the
data on times of valve-seat replacements in a fleet of

m = 41 diesel engines, taken from [53]. The plot indi-
cates that the replacement frequency is fairly constant
up to 550 days and then increases as revealed from the
convex shape of the curve at the right end.

The plot as defined here is studied, for example, in
[53] and [42]. These papers also derive robust nonpara-
metric estimates of the variance of M̂(t), valid under
any distributional properties of the individual processes
N(t).

5.1.2 TTT plot. Consider the special case of the
above where the m processes are independent NHPPs
with a common intensity function λ(t). The super-

FIG. 7. Nelson–Aalen plot of the estimated cumulative mean function M̂(t) for the valve-seat replacement data as given by Nelson [53].
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posed process is now a NHPP with intensity func-
tion φ(t) = λ(t)y(t), and hence (see Section 3.4)
the process

∫ T1
0 φ(u)du,

∫ T2
0 φ(u)du, . . . is HPP(1) on

(0, τ ). Define the total time on test (TTT) at time t by

r(t) =
∫ t

0
y(u)du.

Barlow and Davis [6] introduced the TTT plot for re-
pairable systems data as a plot of the points(

i

N
,
r(Ti)

r(τ )

)
, i = 1, . . . ,N.

The idea is that if λ(t) is a constant, so that the
processes are HPP, then the r(Ti)/r(τ ), i = 1, . . . ,N ,
form a HPP(1) on [0,1]. In this case the TTT plot is by
its definition expected to be located near the main di-
agonal of the unit square. Under the alternatives of de-
creasing, increasing and bathtub-shaped intensity λ(t),
on the other hand, the TTT plots appear to be, respec-
tively, convex, concave and S-shaped. Figure 8 shows
the TTT plot of the valve-seat replacement data of
Nelson [53]. The plot appears to be fairly straight, but
with a slightly concave shape near the end correspond-
ing to the increasing intensity here as revealed by the
Nelson–Aalen plot in Figure 7.

5.2 Statistical Trend Tests

Statistical trend tests for repairable systems data
were extensively discussed by Ascher and Feingold
[5], Chapter 5B. A trend test is a statistical test for the
null hypothesis that the failure process is stationary, in
some sense to be made precise, versus alternatives that

depend on the kind of trend one would like to detect.
Here we give main attention to the null hypothesis that
the process is a HPP or more generally a RP. However,
as will be discussed below, some care should be taken
when determining the relevant null hypothesis.

The null hypothesis of HPP is the most common
and often the most useful in reliability applications.
The corresponding null property, under the name “ran-
domness,” was studied in several papers in the 1950s,
and various tests for randomness in time were de-
vised. Here randomness pertained to the property that
counts in given time intervals are Poisson-distributed.
Maguire, Pearson and Wynn [50], however, discussed
the advantages of using interevent times rather than
counts to test for changes with time of the occurrence
rate of events. Cox [17] stated eight different kinds of
possible alternatives to randomness, one of them be-
ing trend in the sense that the conditional intensity is a
smooth function of time.

5.2.1 Tests of the null hypothesis of HPP. Single
process. Suppose first that the null hypothesis is “the
process is a HPP,” with the alternative being a NHPP
with monotone intensity. Two classical trend tests for
this case are the Laplace test and the Military Hand-
book test (see, e.g., [5], page 79). To see how they are
obtained, consider a single system observed on [0, τ ].
If the failure process is a HPP, then given N(τ) = n,
the failure times T1, T2, . . . , Tn are distributed as the
ordering of n i.i.d. uniform random variables on [0, τ ].
Equivalently, the Ti/τ (i = 1, . . . , n) are distributed
as ordered i.i.d. uniforms on [0,1] conditionally given

FIG. 8. TTT plot of valve-seat data as given in [53].
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N(τ) = n. From this we can in principle obtain trend
tests from any test for detecting deviations from a uni-
form sample. The Laplace test statistic is simply a nor-
malization of

∑n
i=1 Ti , while the Military Handbook

test statistic is similarly a normalization of
∑n

i=1 logTi .
The Laplace test and the Military Handbook test are
optimal tests against the alternatives of NHPPs with,
respectively, log linear intensity and power intensity
functions ([5], page 79).

Several processes. As in Section 5.1.2, assume that
m independent NHPPs with a common intensity func-
tion λ(t) are observed, where the ith process is ob-
served on the time interval (0, τi]. Recall that, un-
der the null hypothesis that λ(t) is a constant, the
r(Ti)/r(τ ), i = 1, . . . ,N , form a HPP(1) on [0,1].
Kvaløy and Lindqvist [35] suggested from this that for-
mal trend tests could be defined by substituting the
r(Ti)/r(τ ) into the Laplace and Military Handbook
test statistics. While these TTT-based tests are pow-
erful against monotone alternatives, the authors sug-
gested using a test statistic based on the Anderson–
Darling statistic as a general test with power against
several kinds of trend.

For many applications, the null hypothesis needs
to be weakened to state that each process is a HPP,
but that intensities may differ from system to sys-
tem. For example, in the data of Proschan [58], one
may be interested in a simultaneous trend test for
the systems, allowing there to be heterogeneities be-
tween them. Kvaløy and Lindqvist [35] suggested tests
for this case called combined tests. A precise setting
for these tests was recently defined by Kvist, Ander-
sen and Kessing [37], who considered a model where
the conditional intensity function for a particular sys-
tem is given by ag(Z)λ(t), where a is an unobserv-
able frailty variable as considered in Section 4.1, Z is
a fixed-time covariate vector observed for each sys-
tem, g is a parametric regression function and λ(t)

is a baseline intensity function. Suppose that such a
process is observed on the time interval [0, τ ] with
events at times T1, T2, . . . , TN(τ). Then, conditional on
(a,Z, τ,N(τ)), the T1/τ, T2/τ, . . . , TN(τ)/τ are dis-
tributed as N(τ) ordered standard uniform variables on
[0,1] if λ(t) is constant. We are hence back to the set-
ting of the beginning of this subsection. In practice one
observes m independent processes of this kind, with a
common λ(t), with the a being i.i.d. unobservable ran-
dom variables and the Z being observed covariate vec-
tors for each system. The above-mentioned combined
tests by Kvaløy and Lindqvist [35] can thus be used to
test the null hypothesis that λ(t) does not depend on t .

Kvist, Andersen and Kessing [37] applied the Laplace
type test of this kind on data from the Danish register
on psychiatric hospital admissions.

5.2.2 Tests of the null hypothesis of RP. The Laplace
test and the Military Handbook test are tests for the
null hypothesis that the data come from HPPs. Thus
rejection of the null hypothesis means merely that the
process is not a HPP. It could still, however, be a RP
and thus still have “no trend.” Lawless and Thiagara-
jah [43] and Elvebakk [25] concluded from simulations
that the Laplace and Military Handbook tests in fact
may be seriously misleading when used to detect trend
departures from general renewal processes. Similarly,
Lewis and Robinson [44] noted that these tests are not
able to discriminate properly between trends in the data
and the appearance of sequences of very long intervals.

To test the null hypothesis of RP, Lewis and
Robinson [44] suggested modifying the Laplace test
by dividing the test statistic by an estimate of the co-
efficient of variation of the interfailure times under the
null hypothesis of a RP. This test, called the Lewis–
Robinson test, is thus a simple modification of the
Laplace test. Another classical trend test for the null
hypothesis of RP is the rank test developed by Mann
[51] and used by Proschan [58] (see Section 4).

Kvaløy and Lindqvist [36] presented a general class
of tests for renewal process versus both monotonic and
nonmonotonic trend for which the Lewis–Robinson
and a useful Anderson–Darling type test are special
cases.

Elvebakk [25] demonstrated how tests for the null
hypothesis of RP can be obtained from tests for the
Poisson case by adjusting their critical values by re-
sampling failure data under the RP hypothesis. The
general conclusion of Elvebakk [25] was to recom-
mend the use of such resampled trend tests whenever
it is not clear that the failure processes are of Poisson
type. In particular he showed in a simulation study that
the resampled tests are usually favorable to the Lewis–
Robinson test, and that they do not lose much power
under NHPP alternatives when compared to the stan-
dard tests.

5.2.3 Tests of the null hypothesis of stationary in-
terfailure times. Lewis and Robinson [44] presented a
test for distinguishing between a general stationary se-
quence of interfailure times Xi and a monotonic trend
in interfailure times. Elvebakk [25] extended the re-
sampling trend testing approach described in the pre-
vious subsection, to cover the case when “no trend”
corresponds to stationary interfailure times. The idea
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is to resample data under this new null hypothesis as-
sumption. Elvebakk did this both by a parametric ap-
proach assuming an underlying autoregressive model
and by employing a block bootstrap technique adapted
from Hall [28]. Simulations indicated rather satisfac-
tory performance of the method.

5.2.4 Trend tests obtained as likelihood ratio tests.
In parametric models which include separate parame-
ters for trend, trend tests may be performed as likeli-
hood ratio tests that involve these parameters. An ex-
ample is to test the null hypothesis β1 = 0 in (5) which
was suggested in [43]. Trend tests can also be obtained
in models of the form HTRP(F,λ(·),H) by testing
the null hypothesis that λ(·) ≡ λ using likelihood ratio
tests. Note that this leads to tests of the null hypothe-
sis that the processes are all renewal processes with a
possibility of heterogeneity.

A nonparametric likelihood ratio test for the null hy-
pothesis of a HPP versus the alternative of a NHPP
with monotone intensity λ(·) was derived by Boswell
[11]. A generalization to the null hypothesis of RP can
be obtained using the nonparametric monotone estima-
tor of λ(·) in the TRP model derived by Heggland and
Lindqvist [29].

6. REPAIRABLE SYSTEMS WITH SEVERAL TYPES
OF EVENTS

In this section we consider the general marked event
process described in Section 2. The purpose is to show
how new classes of maintenance and repair models can
be obtained by generalizing the approach of the imper-
fect repair models for single type events considered in
Section 3.2. To simplify the presentation we shall not
allow covariates or heterogeneity in the models consid-
ered here.

As in Section 3.2, we consider first a nonrepairable
unit. Assume that this unit may fail due to one of sev-
eral causes or may be stopped for PM before it fails, in
which case failure is prevented.

We can formally think of this as having a system
with, say, n components, denoted {C1,C2, . . . ,Cn},
where a unique failing component can be identified at
failures of the system and where PM, if applicable, is
represented by one of these components so as to sim-
plify notation. Let Wj be the potential failure time due
to failure of component Cj , j = 1,2, . . . , n. What is
observed is the failure time T = min(W1, . . . ,Wn) and
the identity of the failing component, say J = j if the
component Cj fails. This determines a competing risks
situation with n competing risks and with the observed

outcome (T , J ) ([20], Chapter 3). The joint distribu-
tion of (T , J ) is thus identifiable from data, as are the
so-called type-specific hazards defined by

hj (t) = lim
�t↓0

Pr(t < T ≤ t + �t,J = j |T > t)

�t
.(14)

However, neither the joint nor the marginal distribu-
tions of the individual potential failure times W1, . . . ,

Wn are identifiable in general from observation of
(T , J ) only. This follows from the so-called Cox–
Tsiatis impasse; see [20], Chapter 7. On the other hand,
these marginal and joint distributions are indeed of in-
terest in reliability applications, for example, in con-
nection with maintenance optimization. An example is
given in the next paragraph.

Consider the setup of Cooke [15, 16] that involves
a competing risks situation with a potential failure
of a unit at some time W1 and a potential action of
preventive maintenance to be performed at time W2.
Thus n = 2, while C1 corresponds to failure of the
unit (J = 1) and C2 (J = 2) corresponds to the ac-
tion of PM. Knowing the marginal distribution of W1
would be particularly important since it is the basic
failure time distribution of the unit when there is no
PM. However, as noted above, the marginal distribu-
tions of W1 and W2 are not identifiable unless specific
assumptions are made on the dependence between W1
and W2. The most common assumption of this kind is
that W1 and W2 are independent, in which case identi-
fiability follows ([61]; [20], Chapter 7). However, this
assumption is unreasonable in the present application,
since the maintenance crew is likely to have some in-
formation regarding the unit’s state during operation.
This insight is used to perform maintenance so as to
avoid a failure. Thus we are in practice faced with a sit-
uation of dependent competing risks between W1 and
W2, and hence identifiability of marginal distributions
requires additional assumptions.

Lindqvist, Støve and Langseth [49] suggested a
model called the repair alert model to describe the joint
behavior of the failure time W1 and time W2 of PM.
This model is a special case of random signs censoring
[15, 16] under which the marginal distribution of W1 is
always identifiable. Recall that W2 is said to be a ran-
dom signs censoring of W1 if the event {W2 < W1} is
stochastically independent of W1, that is, if the event of
having a PM before failure is not influenced by the time
W1 at which the system fails or would have failed with-
out PM. The idea is that the system emits some kind of
signal before failure and that this signal is discovered
with a probability which does not depend on the age
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of the system. The repair alert model extends this idea
by introducing a so-called repair alert function which
describes the “alertness” of the maintenance crew as a
function of time.

Another possibility to obtain identifiability of the
distributions of W1 and W2 would be to use the result
of Zheng and Klein [64], which shows identifiability of
marginal distributions when the dependence is given by
a known copula.

Return now to the general case. Suppose that the sys-
tem is repaired after failure and then put into operation,
then may fail again and so on. This leads to a marked
event process as described in Section 2 with marks in
J = {1,2, . . . , n}, so that the mark at each event time
is the number of the failing component (or more gen-
erally the type of event).

The properties of this process depend on the repair
strategy. Several classes of interesting models can be
described in terms of a generalization of the virtual age
concept introduced in Section 3.2, as discussed in the
next subsection.

6.1 Virtual Age Models with Several Types of
Events

Recall from Section 3.2 that the class of virtual age
models generalizes the perfect repair and minimal re-
pair models, and that the approach more generally
leads to a large class of models. The main inputs are
a hazard function z(·), which is thought of as the haz-
ard function of a new unit, and a virtual age process
which is a stochastic process which depends on the ac-
tual repair actions performed.

Several generalizations of the standard imperfect re-
pair models are found in the literature. Shaked and
Shanthikumar [60] suggested a multicomponent im-
perfect repair model with components that have de-
pendent life-lengths. Langseth and Lindqvist [38] sug-
gested a model which involves imperfect maintenance
and repair in the case of several components and sev-
eral failure causes. In a recent paper, Doyen and Gau-
doin [24] developed the ideas further by presenting a
general point process framework for modeling imper-
fect repair by a competing risks situation between fail-
ure and PM. Bedford and Lindqvist [8] considered a
series system of n repairable components where only
the failing component is repaired at failures.

Inspired by the mentioned approaches, we suggest
in this section a generalization of the imperfect repair
models to the case where there is more than one type
of event and where the virtual age process is multidi-
mensional.

We let the first part of a virtual age model for
n components be given by a vector process A(t) =
(A1(t), . . . ,An(t)) that contains the virtual ages of the
n components at time t . The crucial assumption is that
A(t) = (A1(t), . . . ,An(t)) ∈ Ft−, which means that
the component ages are functions of the history up to
time t .

As for the case with n = 1 in Section 3.2, it is as-
sumed that the Aj(t) increase linearly with time be-
tween events, and may jump only at event times. We
define vj (i) to be the virtual age of component j im-
mediately after the ith event. The virtual age process
for component j is therefore defined by

Aj(t) = vj (N(t−)) + t − TN(t−).

The second part of a virtual age model in the case
n = 1 consists of the hazard function z(·). For gen-
eral n we replace this by functions νj (v1, . . . , vn) for
v1, v2, . . . , vn ≥ 0, such that the conditional intensity
of type j events, given the history Ft−, is

γj (t) = νj

(
A1(t), . . . ,An(t)

)
.

Thus νj (v1, . . . , vn) is the intensity of an event of type
j when the component ages are v1, . . . , vn, respec-
tively. The conditional intensity thus depends on the
history only through the virtual ages of the compo-
nents.

The family {νj (v1, . . . , vn) :v1, v2, . . . , vn ≥ 0} de-
scribes the failure mechanisms of the components and
the dependence between them in terms of the ages
of all the components. The basic statistical inference
problem therefore consists of estimating these func-
tions from field data. The case n = 1 has already been
discussed in Section 3.2, but we shall see that identifi-
ability problems can occur when n > 1.

6.2 Repair Models and their Virtual Age Processes

Most of the virtual age processes considered for the
case n = 1 can be generalized to the present case of
several event types. There are, however, often several
ways to do this. Some examples are given below. Ad-
ditional examples include generalizations of Kijima’s
[34] models, which may be plausible in applications.

6.2.1 Perfect repair of complete system. Suppose
that all the components are repaired to as good as new
at each failure of the system. In this case we have
vj (i) = 0 for all j and i, and hence Aj(t) = t −TN(t−)

for all j . It follows that we can only identify the “diag-
onal” values νj (t, . . . , t) of the functions νj . As noted
in Section 6.3, these are given by the type-specific haz-
ards defined in (14) for the nonrepairable competing
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risks case. This is not surprising in view of the fact
that the present case of perfect repair essentially corre-
sponds to observation of i.i.d. realizations of the non-
repairable competing risks situation.

6.2.2 Minimal repair of complete system. In the
given setting a minimal repair will mean that follow-
ing an event, the process is restarted in the same state
as was experienced immediately before the event. In
mathematical terms, this implies that vj (i) = Ti for all
i, j and hence that Aj(t) = t for all j . Note that the
complete set of functions νj is again not identifiable.
Moreover, for a single component it is well known that
minimal repair results in a failure time process which
is a NHPP. In the present case of several components
which are minimally repaired, it follows similarly that
the failure processes of the individual components are
independent NHPPs with the intensity for component
j given by νj (t, . . . , t), which as already noted equals
the type-specific hazard (14).

6.2.3 A partial repair model. Bedford and Lindqvist
[8] suggested a partial repair model for the n compo-
nent case. The virtual age process is defined by letting
Aj(t) = time since last event of type j . Equivalently,
the process could be defined by

vj (i) =
{

0, if Ji = j ,
vj (i − 1) + Xi, if Ji 
= j .

Thus, the age of the failing component is reset to 0
at failures, whereas the ages of the other components
are unchanged. The authors considered a single realiza-
tion of the process, with the main result being that un-
der reasonable conditions pertaining to ergodicity, the
functions νj (v1, . . . , vn) are identifiable. The intuitive
idea of their proof is that the ages v1, . . . , vn will mix in
such a manner that the complete set of νj (v1, . . . , vn)

can be identified.

6.2.4 Age reduction models. Doyen and Gaudoin
[24] considered a single component or system and two
types of events: C1 = failure, C2 = PM. In their basic
model the virtual ages of the two types of events are
equal: A1(t) = A2(t) = A(t). They indicated, however,
that this restriction is not necessary. Various choices
of virtual age processes were considered. In particular
they considered age reduction models that generalize
these mentioned at the end of Section 3.2. More pre-
cisely, assume that there are given age reduction factors
0 < ρ1, ρ2 < 1 for the two types of events. The virtual
age immediately after the ith repair is then

v(i) = (
1 − ρJi

)(
v(i − 1) + Xi

)
,

which means that the virtual age immediately before
the ith failure, v(i−1)+Xi , is reduced due to repair by
the factor 1 − ρJi

. Alternatively, if only the additional
age Xi is reduced by the repair, it could be assumed
that v(i) = v(i − 1) + (1 − ρJi

)Xi .

6.3 Modeling the Intensity Functions νj

In principle the functions νj (v1, . . . , vn) could be
any functions of the component ages. Bedford and
Lindqvist [8] motivated these functions by writing, for
j = 1, . . . , n,

νj (v1, . . . , vn) = λj (vj ) + λj∗(v1, . . . , vn)(15)

with the convention that λj∗(v1, . . . , vn) = 0 when all
the component ages except the j th are 0, so as to have
uniqueness. Then λj (vj ) is thought of as the inten-
sity of component j when working alone or together
with only new components, while λj∗(v1, . . . , vn) is
the additional failure intensity imposed on component
j caused by the other components when they are not all
new. Note that any functions of v1, . . . , vn can be rep-
resented this way, by allowing the λj∗ to be negative as
well as positive.

Langseth and Lindqvist [38] and Doyen and Gaudoin
[24] extended the competing risks situation between
failure and PM, as described at the beginning of the
present section, and suggested how to define suitable
functions νj . The main ideas of these approaches can
be described for general n as follows. Starting from
a state where the component ages are, respectively,
v1, . . . , vn, let the time to next event be governed by
the competing risks situation between the random vari-
ables W ∗

1 , . . . ,W ∗
n with distribution equal to the con-

ditional distribution of W1 − v1, . . . ,Wn − vn given
W1 > v1, . . . ,Wn > vn, where the Wi are defined in
the nonrepairable case described at the beginning of
the section. It is then rather straightforward to show
that this implies

νj (v1, . . . , vn) = −∂jR(v1, . . . , vn)

R(v1, . . . , vn)
,(16)

where R(v1, . . . , vn) = P(W1 > v1, . . . ,Wn > vn) is
the joint survival function of the Wi , and ∂j means the
partial derivative with respect to the j th entry in R.
Note that this generalizes the usual hazard rate in the
case n = 1 considered in Section 3.2. Further, we have
νj (t, t, . . . , t) = hj (t), where the latter is the type-
specific hazard rate given in (14).

A final remark on the suggested construction of the
functions νj is due. It was demonstrated by Bedford
and Lindqvist [8] that, even in the case with n = 2, it is
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not always possible to derive a general set of functions
νj (v1, . . . , vn) from a single joint survival distribution
as in (16). A simple counterexample was given in [8].
Thus for generality one should stick to completely gen-
eral representations like (15).

7. CONCLUDING REMARKS

In the present paper we have reviewed some main
approaches for the analysis of data from repairable
systems. To a large extent the emphasis has been on
describing the underlying principles and structures of
common models. Essential features of such models
correspond to the three dimensions of the model cube
in Figure 3: renewal property, time trend and hetero-
geneity. The presentation places less emphasis on sta-
tistical inference than on modeling. However, it has
been an intention to show how likelihood functions are
obtained for the different models. It is also indicated
how covariates can be included in the models and the
corresponding likelihood functions. While the derived
likelihood functions can be used in a rather straightfor-
ward manner in parametric statistical inference, there
turn out to be several challenging problems connected
to nonparametric estimation in some of the models.

Two main types of models with rather simple and
transparent basic structures have been considered.
These are the virtual age type models and the TRP type
models. The former type combines two basic ingredi-
ents: a hazard rate z(·) of a new system together with a
particular repair strategy which governs the virtual age
process A(t). The renewal dimension is taken care of
by the virtual age process, while trend is determined by
the distribution of a new system. For the TRP(F,λ(·)),
the renewal dimension corresponds to the renewal dis-
tribution F , while the trend is explicitly given by the
trend function λ(·). For both types of processes, hetero-
geneity can be included by multiplicative factors work-
ing on the intensities. A noticeable difference between
the two types of models as regards statistical inference
is that the virtual age type model usually requires that
the virtual age process be observable. Such observa-
tions may, however, often be lacking in real data.

Many processes show some degree of clustering of
failures. This may be due to various causes; see, for ex-
ample, [17]. Several models have been suggested in the
literature, a classical one being the Neyman and Scott
[54] model. As pointed out by a referee, even the TRP
model can pick up the clustering effect by allowing the
renewal distribution to be a mixture with a substantial
amount of probability near zero.

Peña [55] has reviewed a class of models suggested
in [56]. These are virtual age models which include
the possibility of heterogeneity between systems, time-
dependent covariates, and for which in addition the
conditional intensities may depend on the number of
previous events. This last feature adds an interesting
flexibility to the model. In particular it enables model-
ing of certain load sharing processes and software fail-
ure processes.

Certain systems, for example, alarm systems, are
tested only at fixed times which are usually periodic.
If the system is found in a failed state, then it is re-
paired or replaced. Thus repair is not done at the same
time as the failure, and the situation is not covered by
the methods considered in the paper. A simple model
of this situation was suggested by Hokstad and Frøvig
[30] and further studied and extended by Lindqvist
and Amundrustad [47]. Consider a system which starts
operation at time t = 0 and is tested at time epochs
τ,2τ,3τ, . . . . When time is running between testing
epochs, the state of the system is modeled by an ab-
sorbing Markov chain. Having thus defined the prob-
abilistic behavior of the system state between testing,
one needs to add to the model a specification of the
repair policy. In [47] this is modeled in the form of
a transition matrix on the state space of the Markov
chain, which defines the possible changes of state and
their probabilities following the repair actions.

In a given study there is usually a choice between
several types of models. It is thus important to have
tools for model checking and goodness-of-fit proce-
dures. For model checking in parametric estimation of
the HTRP model, we refer to [48], which used a type
of Cox–Snell residuals together with plots using the
TTT technique. The general underlying idea, which in
principle can be used with all estimation methods con-
sidered in this paper, is that the process of integrated
conditional intensities,

∫ T1
0 γ (t) dt,

∫ T2
0 γ (t) dt, . . . , is

HPP(1) [12]. In turn this gives rise to computable resid-
ual processes when estimates are inserted for parame-
ters and distributions. The use of these processes in
model checking is demonstrated for three different data
sets in [48]. Typically, one would check (i) the distri-
bution of the residuals with respect to departures from
the unit exponential distribution, (ii) the possible pres-
ence of time trends in residuals within each system and
(iii) the possible presence of autocorrelation in times
between events in the residual processes.
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