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STEFAN PROBLEM WITH NONLINEAR COOLING*

By
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Abstract. A steady-state one-phase Stefan problem corresponding to the solidifi-
cation process of an ingot of pure metal by continuous casting with nonlinear lateral
cooling is considered via the weak formulation introduced in [5] for the dam problem.
Two existence results are obtained, for a general nonlinear flux and for a maximal mono-
tone flux. Comparison results and the regularity of the free boundary are discussed. An
uniqueness theorem is given for the monotone case.

0. Introduction. In this paper we study the one-phase model of the solidification of
a pure metal in continuous casting undergoing nonlinear lateral cooling.

In the liquid phase we assume that the metal is at the melting temperature, which is
zero after a normalization. In the solid phase the temperature 8 satisfies the heat equation.
The ingot is extracted with constant velocity b, and the liquid-solid interface (the free
boundary) is unknown but steady with respect to a fixed system of coordinates of R3 in
which our problem will be studied. Assuming that the free boundary <5 is representable by
a surface z = </>(x, y), the steady Stefan condition is

- Ox <t>x - 0y <t>y = *b, for z = 4>(x, y) (0.1)

where A is a positive constant representing the heat of melting.
In the lateral boundary one specifies a nonlinear flux condition

-dd/dn = G(0) (0.2)
which expresses the law of cooling, and may be quite general. Here we shall consider a
maximal monotone graph G, which may include a cooling process with climatization, as
in Chapter 1 of [9].

This model has been considered in a particular case by Rubinstein [16] and, with a
linear flux condition of Newtonian type, by Briere [6] and Rodrigues [15], via vari-
ational inequalities after a transformation of Baiocchi's type. However, this approach
doesn't work with nonlinear cooling.

Since this problem has some similarities with the dam problem, we formulate it in Sec.
1 using the method ofBrezis, Kinderlehrer and Stampacchia [5], In Sees. 2 and 3 we
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Research under Contract #AF-AFOSR 81-0198 and in part by the U. S. Army Research Office under contract
# A RO-DAAG-29-79-C-Q161.
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prove the existence theorems, first using compactness arguments and next combining
compactness and monotonicity techniques for the maximal monotone case.

In Sec. 4 we discuss comparison properties which show that when the extraction ve-
locity b is small the ingot solidifies immediately and there is no free boundary. For some
types of cooling and for a high enough velocity b one can show the existence of a free
boundary. In this case it is shown, in Sec. 5, that the free boundary is an analytic surface
and the weak solution is also a classic one, as in the linear case of [15].

To conclude this paper we give in Sec. 6 an uniqueness theorem for the monotone
case, using the technique of Carrillo and Chipot [8].

1. Mathematical formulation. Let Q denote a cylindric domain in R3, in the form
SI = T x ]0, //[, where T c R2is a bounded domain with Lipschitz boundary dY repre-
senting a section of the ingot and H > 0 its height. We denote by T, = T x {i}, for
i = 0, H, the bottom and the top of the ingot respectively, and by rx = dY x ]0, H[ its
lateral boundary. We have SQ = r0 UY^UYn.

Considering z the direction of extraction, we can formulate our problem in its classical
form:

Problem (C): Find a couple {9, </>), such that

6 > 0 in £2 and 0 = 0 for 0 < z < </>(x, y) < H, (1.1)

A9 = bOz for 0 < (fr(x, y) < z < H, (1.2)

0 = 0 on r0, 9 = h(x, y)>0onrB, (1.3)

— dO/dn = g(9) on Yu (1.4)

9Z - 9x(f)x- 9y (f)y = lb, if z = 4>(x, y) > 0, (1.5)
9Z > Xb, if z = 4>(x, y) = 0. (1-5')

In this formulation b and X are positive constants, h is a given function, and g will be
specified in the next two sections. The reader will note that the condition (1.5') is a
degeneration of the Stefan condition (1.5) in the case when the free boundary <]> can
touch the known boundary T0, where the melting condition 6 = 0 is assumed by (1.3).

Let us remark that by the maximum principle it must be 9 > 0 for z > <j)(x, y). De-
noting by x+ the characteristic function of the set Q+ = {0 > 0} and integrating formally
by parts, for every regular function £ such that £ = 0 on rB and £ > 0 on T0, from
Problem (C) one has -1(

Jn+
(V9 ■VC + b9z C - + Q = | (V9 ■ V( + b9zC - Wz)

a

ta-
(-A0 + b9z)C +

mm - oz) +

n u ® u r0 cn
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O u To
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gW +
Jn

gm,
r i

r0
Wx 4>x + 9„ (f>,, — 9Z + lb)
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where l~2 = (pi + (p* + 1. Therefore, following [5], we introduce the weak formulation
of Problem (C):

Problem (P): Find a couple (9, y) e H'(Cl) x L"{Q) such that

9 > 0 a.e. in Q, 9 = 0 on T0 and 9 = h on rH ; (1.6)

0 < ^ < 1 a.e. in Q and % = 1 where 9 > 0; (1.7)

(V0 • VC + b9z C - ibt Q + f g(9)C < 0, (1.8)
n Jri

for every £ 6 H1(Q) such that £ > 0 on r0 and C = 0 on rH.
If we consider a more restrictive class of test functions one can introduce a more

general formulation, which we call Problem (P'), if we replace (1.8) by

(Vfl-VC + b9zC - XbXQ + I gW = 0, e H\C1): C = 0 on T0 u rH. (1.9)
n Jri

It is clear that every solution of Problem (P) satisfies (1.9) but that Problem (P') has
more solutions than Problem (P). In particular, if

Problem (P t): Find 9 satisfying (1.6) and

(V0 • VC + b92 C) + f g(9)C = 0, VC e H\C1); C = 0 on T0 u TH (1.10)
i Jr i

has a solution 9 > 0, by the maximum principle, one has 9 > 0 in Q and (9, 1) is a
solution to Problem (P') which may not satisfy (1.5') (see Proposition 4).

2. Existence of a weak solution. In this section we assume the lateral cooling given
by

86
- — (X) = g(X, p(X), 0(Xj), XeT, (2.1)

where p > 0 is a given function representing the cooling temperature, and

g(X, p, 9) is a bounded Carathe'odory function, (2.2)

i.e., is continuous in 6 e R, a.e. (X, p) e Tj x R+, measurable in (X, p) for all 9, and
maps bounded sets of x jR+ x R in bounded sets of R.

Since the cooling process is determined by p, we shall assume that

g{X,p,9)< 0, a.e. {X, p, 9) e T t x R+ x R (2.3)

g(X, p,9) = 0 for \9\>p, a.e. X e Tj. (2.4)

Consider a parameterized family of functions & e C°°(/?) such that

Xe(t) = 0 for t < 0,

= 0 < xM <1 for 0 < t < e,
= 1 for t > e, (2.5)

and so it approaches the Heaviside function when e\0. Introduce now the following
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penalized problem, where for the sake of simplicity we denote g(X, p(X), 9{X)) by
g(oy.

Problem (P£): Find 0° e Hi(Q) n C°(fi) such that

0£ = Oonro, 0£ = /ionrH, (2.6)

g(e°)t = 0, V£ g : ( = 0on r0 u rH. (2.7)
ri

Assuming the functions h and p satisfy

0 < h{x, y) < M, a.e. (x, y) e , (2.8)

0 < p{X) < M, a.e. X e r„ (2.9)

one can prove the following "a priori" estimate:

Lemma 1. If 0£ is a solution to Problen^P J with assumptions (2.2-4) and (2.8-9), one
has

0 < 0°{X) < M, for all Xefl and 0 < e < M. (2.10)

Proof. Let £ = [0'] ~ in (2.7). One has

0 = 1{w'V[0C] + be°m ~ ̂ b^wy} + jr ~

< - f {|V[0£]-|2 + b[0e]z-[^]-}= - f |V[^]-|2
Jo Jn

from which it follows that [0£] ~ = 0 and 0£ > 0.
From (2.4), (2.9) and (2.5), one has respectively

<?(0£)[0£ -M^ + =0, yJ^W ~ M]z+ = [0£ - M]z+ for 0 < e < M.
Then ( = [0£ — M] + in (2.7) implies■1o = | {V0e • v[0£ -My + bei[d* -My - - My}

| V[0£ — M] * |2,

and therefore [0£ — M] + =0. The lemma is proved.
We shall need the L°° and Holder estimates due to Stampacchia [14] for the following

elliptic problem with mixed boundary conditions:

— Au + buz=finCl, du/dn = g on rls u = fionr0urH. (2.11)

Lemma 2 [14]. The unique solution of (2.11) satisfies

II u IIl»(0) ̂ C1( II / II w-i.p(O) + II 9 llt«(ri) + II ̂ llt®(r0 u rH))> (2.12)
II u llco-»(n) ^ ^2( II / II w-1.+ II 9 llt«(ri) + II ̂ llco. i<r0 u rH>) (2-13)

for all p > 3 and q > 2 and for some constants Cu C2 > 0 and 0 < a < 1 which are
independent off g, h and u.
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Proof. See the results of Sec. 5 of [14] or a more explicit result extended to vari-
ational inequalities in Sec. 2 of [13].

Now we can state an existence result for the penalized problem, from which we shall
construct a sequence of functions converging to a solution of Problem (P).

Proposition 1. Under the assumptions of Lemma 1 and if

heC°-\ r„) (2.14)
then there exists a solution 0* to Problem (Pe) for all 0 < e < M satisfying the estimate

II ̂ IIhmo, -t- II ̂ llco.«(£S, < c, (2.15)
where the constants C > 0 and 0 < a < 1 are independent of e.

Proof. For x e BR = {t e C°(Q): || x ||c0(n) < R} (R > 0), define

0 = Sc(x)
as the unique solution of the following mixed linear problem:

0 = 0 on r0, 9 = h on TH,

f (V0-VC + b0z0 = kb f - f g(xK,
Jfi Jn Jn

VC e Hl(Cl): C = 0 on T0 u TH.

Since, by definition, 0 < xe < 1 and g is bounded independently of x (for | x(X) | >
M > p(X) one has g(X, p(X), x(X)) = 0) by (2.4)), one can apply Stampacchia's estimate
(2.13). Therefore, there exists C > 0 and 0 < a < 1, independent of x and e, such that

II ̂  llco.«(S) ̂ C2(^b + || g ||teo + || h ||co.i) < C
and for R > C one has SC(BR) <= BR.

From the compactness of the imbedding C0, s,(fi) c; C°(n) one finds that Se is a con-
tinuous and compact mapping of BR into itself. By the Schauder fixed-point theorem there
exists a function 0* e BR satisfying 0* = Se(^), which is clearly a solution to Problem (PJ.

The estimate in Hl(Si) is classical, since xc and g{(?) are bounded independently of e.

Theorem 1. Assuming (2.2, 3, 4) and (2.8, 9, 14), there exists a solution (0, x) e [H!(Q) n
C0' a(f2)] x L°°(C1) to Problem (P).

Proof. By (2.15) one can consider a sequence of solutions 6* of Problem (Pe) such
that, when £ J 0,

0* -> 0 in HJ(Q) — weak (2.16)

tf{X)—» 0(X) uniformly in X = (x, y, z) e 0. (2.17)

XAF) - X in LX(S1) - weak *, (2.18)

where 6 is some function belonging to H'(Q) n C0, ""(H) satisfying (2.10) and 0 < / < 1.
Moreover, in the open set {0 > 0} one has 1 and therefore x — 1 a.e. in {0 > 0}.

Let C e C > 0 on T0 and ( = 0 on rH. By Green's formula and since dff/dn < 0
on r0, one has

[V^-VC + ^C-^e(^Kz] +

and in the limit we obtain (1.8). The proof is complete.

em =
ri ?C-°r0 dn
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3. The case of maximal monotone cooling. In this section we consider the existence of
a weak solution with lateral cooling:

-dO/dn e G(0) on rlf (3.1)

where G denotes a maximal monotone graph, that is, G is a multivalued function whose
graph is a continuous monotone increasing curve in R2 (see [4]). We shall assume

G(0)<r]-oo,0], (3.2)

[0, + qo[ c Dom(G) = {x e R \ G{x) * 0}. (3.3)

The weak formulation of the corresponding problem now takes the following form:

Problem (P): Find (6, x, g) e H1(Sl) x L®(Q) x L2(r\) such that

6 > 0 a.e. in Q, 6 = 0 on r0 and 0 = h on TH; (3.4)

0 < / < 1 a.e. in £), x = 1 if 0 > 0; (3.5)

f (V0-VC + W,C-«J+ f g£< 0,
Ja Jri

VC e C > 0 on r0, C = 0 on ; (3.6)

g(X) e G(0(X)) a.e. X e rv (3.7)
We shall obtain a solution to Problem (P) as the limit of a sequence of solutions to

Problem (P) with a nonlinear cooling given by a function g satisfying:

g is monotone increasing, Lipschitz and such that #(0) < 0. (3.8)

Theorem 2. Assume (3.8) and let h e Hll2(TH), h > 0. Then Problem (P) has a solution.
Proof. The proof follows the lines of that in Theorem 1, by considering the penalized

problem (Pc) with g satisfying (3.8). The fixed point is now constructed in l3(Q) by means
of the mapping

L2(Ci) s t i > £ = TJtt) e V,
where V = {v e u = 0on r0} and £ is the unique solution of the following prob-
lem:

[ (Vf • VC + b£z 0 + [ g(m = M
Jn Jri

{ e V, { = /i on

(3.9)

Xe(zKz, VCeK:C = 0onrH
n

which is a coercive and (strictly) monotone problem in V by assumption (3.8) (see [12]).
Denoting by h some function in V whose trace on TH is h, and letting £ = ^ — h in (3.9),
one easily finds

II i II.IW < c = ah
where C is a constant independent of x and e.

Since the imbedding H1^) ^ L2(fi) is compact, the Schauder fixed-point theorem as-
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sures the existence of a solution 0* to Problem (P£). As in Lemma 1, one finds that 6° > 0,
since g is monotone increasing and g(0) < 0, and therefore one has git?) ■ [#£] < 0.

The passage to the limit as e J, 0 is straightforward since 9e -»■ 9 in H1 (£2)-weak and g is
a Lipschitz function.

Remark 1. Since g is Lipschitz, by Sobolev imbeddings one has g(9) e Hi,2(rl) c;
L4(Fj) (see [1, p. 218]) and therefore by applying Lemma 2 it follows that

if h e L°°(rH), then 0 e LX(Q); (i)

if he C0, H^h), then 9 e C0,I(Q) for some 0 < a < 1. (ii)

Since G is a maximal monotone operator, one can introduce the Yosida regularization
defined by

gs = j (I - Jd) for S > 0,

where J„ = (/ + <5G)~X is the resolvent of G. Consider x = Jd(0), that is 0 e (I + <5G)(r).
From the monotonicity of I + 8G and using assumptions (3.2), one finds t > 0. Therefore
g5(0) = - Js(0)/S < 0, which means that, for each <5 > 0, the Yosida regularization gs sa-
tisfies the condition (3.8) (see [4]). So we may apply Theorem 2 to conclude the existence
of a solution {0s, xs) e Hl(Ci) x L°°(fi) to Problem (P) with lateral cooling given by gs. We
shall obtain a solution to Problem (P) by considering a subsequence d 10.

Theorem 3. Problem (P) with a maximal monotone graph G satisfying (3.2) and (3.3)
and with h e W1/2(rw) n Lx(rH) has a solution (6, g) 6 [//'(Q) n L°°(Q)] x L°(C1) x
L0O(r1). Moreover, if h e C0, l(PH) one has 9 e C0, '"(Q) for some 0 < a < 1.

Proof. Consider the (unique) solution 9° of the following mixed problem:

9°eHl{Q), 0° = Oonro, 9° = h onr„,

I(v0°-vc + i>0? 0 + 0°(O)C = o, (3.10)
ri

VCeH1^), c = 0onr0urH,

where g°(t) = ProjG(()0 is the smallest (in norm) number of G(t). Since g°(0) < 0, it is easy
to show that 0° > 0. Since h e La0(rH), one has 9° e L°°(Q) by (2.12), and we assume that
9° <M° = M°(h, g°(0)).

Then, for every solution 9d to Problem (P) with gs, we have

0 <9S <9° < M°. (3.11)

Indeed, (3.11) follows by a comparison argument: take £ = 19s — 0°]+ in (l-8)a and in
(3.10); one has

| Vtfl4 - 0°] +|2 + lb
a

X\9S - 0°]z+ + [ lgi(9>) - 0o(O)][0a - 0°] + < 0 (3.12)
n Jri

Since 9° > 0 and xd = 1 in {9' > 0}, the middle term in (3.12) vanishes; using gs(0) < 0,
together with

I g}(t) | < | g°(t) | (3.13)
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(see [4], p. 28) in order to deduce the chain

g>(es) > 0,(0°) > 3,(0) > g°(0),

one finds that the last term in (3.12) is non-negative, which proves (3.11).
Again using (3.13), by (3.11) one has

I gs(0*)I < 19°(es) | < max[ | g°(0)|, | g°(M°)|] = /. (3.14)

from which we easily conclude

II llffi(n) < C( = constant independent of (5).

It follows that there exists a subsequence S [ 0 such that

e5 - 9 in H\nyweak, and 0 < 9 < M°, (3.15)

Xs -* X L°°(fi)-weak * , 0 < ^ < 1 (3.16)

gsiO6) -> g in L°°(r t)-weak * , with || g ||L„ < /. (3.17)

Since one can also consider 96-*9 uniformly in each compact subset one has
X = 1 in the open set {9 > 0}.

Using the compactness of the trace mapping, one can consider 9s —* 9 in L2(r ̂ -strong
and from (3.3) Jd{9d)~* 6 in L2(F,). Since gs(6s) e G(Js{6d)), it follows, by a classical argu-
ment ([4], p. 27), that g e G(0).

If we assume h e C0, Hf,,). by Lemma 2 one easily concludes that 9 e C0, a(fi) for
some 0 < a < 1. The proof is complete.

Remark 2. Assuming that there exists some v > 0 such that 0 e G(v), one can find a
more simple estimate in L®(Q) for every solution 9 to Problem (P):

9 <M = max(v, || h ||/.„,!-„))■

Indeed, it is sufficient to consider £ = [0 — M]+ in (3.6) and to recall that the mono-
tonicity of G implies g > 0 if 9 > M.

Remark 3. The results of this section can be easily extended to the case of a lateral
boundary condition

86
- — (X) g G(z, 9(X)), for X = (x, >>, z) e I~,,

on

where, for each z e ]0, H[, G(z, •) denotes a maximal monotone graph satisfying (3.2), (3.3)
and / in (3.14) being uniformly bounded in z.

An interesting case could be a lateral boundary submitted to N differents cooling
zones, that is, when, for i = 1, ..., N,

G(z, ■)= G,(•), 0 = z0 < • • • < z(_j < z < z,- < ••• zN = H.

4. Comparison results. If the cooling is given by a monotone function one can adapt
the technique of [5] to prove

Proposition 2. Let 9° (resp. 0') a solution to Problem (P£) and corresponding to g and h
(resp. g and fi), where g and g are monotone functions satisfying (3.8). Then if fi > h and
g < g it follows that 9s > 9C.
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Proof. Set fd(t) = [1 — <5/t\ +,teR and (5 > 0.
From (2.7) and denoting rj = 9e — one has

S/r] ■ V£ = b {n + - 7jmcz - [g(9<) - g(frm

for every £ e C = 0on r0 u F,,. In particular, for £ = fd(t]), which is different from
zero if 9e > ()c where g{0e) > g(0e) > g(0c), it follows

IVri-Vm
1(2

< bL, MIL/MU, (4.1)
n

being Le the Lipschitz constant of t (-> t + kxe(t).
As in [5], (4.1) implies, for any S > 0,

1*|.+W < C( = constant independent of (5)

from which it follows 9e — ft = t] < 0.

Remark 4. This argument also proves the uniqueness of the solution of the Problem
(Pe) when g is monotone. Of course if 0(resp. 6) is a solution of (P) which is the limit of the
subsequence 9e' (resp. $*') the above proposition implies that & > 9.

Next we shall prove comparison results with respect to the extraction velocity b.

Proposition 3. Assume that there exists constants //, M such that

0 < < h(x, y) < M, a.a. (x, y) e rH. (4.2)

and that the function g satisfies (3.8) with

{l: g(t) = 0} c [Af, + oo[, (4.3)

or else that g verifies (2.2, 3, 4, 9). Then if b < \/H log(l + n/X) a solution 9 to Problem
(Pj) is also a solution to Problem (P) with % = I.

Proof. If g satisfies (3.8), then the Problem (P^ has a unique solution (let xe = 0 in
(3.9)). Moreover by (4.3) one has g(9) < 0 (see Lemma 1).

Under assumptions (2.2, 3, 4, 9) the existence of 9 may be shown essentially as in
Proposition 1, being also g(9) < 0, by hypothesis.

Consider now the function 9^z) = fi(ehz — 1 )(eh" — 1) '. Taking £ = (0(I — 0)+ in (1.10)
and since g(9) < 0 in both cases, one easily finds that 9 >9^. Therefore, it follows

|<^=-^"-l)-1on r0.

Using the Green's formula with a smooth function ( such that C > 0 on T0 and £ = 0 on
, one has

(V9-Vt: + bezC-M,) + m. = d9- + 1MCS0
Jr0

for Xb < nb(ebH — l)"1. This means that, for all bH < log (1 + n/k), (9, 1) is also a solu-
tion to Problem (P).

This proposition suggests that, for small velocities b, the whole region Q is occupied
by solid metal, since if the Problem (P) admits only one solution 9, one has 9 > 0 in for
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0 < b < \/H log (1 + n/X). Conversely the next proposition suggests that for big velocities
the free boundary exists, since we will show that the volume of the set {9 > 0} vanishes
when b | oo.

Proposition 4. Under assumptions of the Theorem 1 or Theorem 3 and denoting by
| n+ | the Lebesgue measure of the set = {X | 9(X) > 0}, one has

|n+i-£' (44)

where C is a positive constant independent of k and b. Moreover, for b big enough, one
has x # 1-

Proof. Let £ = H — z in (1.8) and in (3.6). One has

6, + b 9Z(H ~z) + kb
n Mn Jr

g(H - z) < 0, (4.5)

where g = g(9) and g e G(9), respectively. In the first case, g is a bounded function and
from 0 < 9 < M (see Theorem 1 and Lemma 1), we may assume — /j < g < 0, with /j
independent of b and X. In the second one, by (3.17) and (3.14) we have || g ||Lo<) < I and / is
also independent of b and A.

Denoting L = max(/, /t) from (4.5) it follows that

kb

since one has

[x< f h + L f (H-z),
Jo Jr« Jri

\ez = \ h and | 6Z{H - z) = | 6 > 0.Jii Jr« Ja Jn
Recalling that 0 < ^ < 1 and / = 1 in Q + , one has

\Q+\<^X<\r\(M + LH2/2)/kb,

which completes the proof of the proposition.
Now we assume the existence of d, 0 < d < H, such that

g(X,p,9) = 0 for 0 < z < d, V(X, p, 9) e Tl x R+ x R (4.6)

or, for the monotone case (see Remark 3),

G(z,-)s0 for 0 < z < d < H. (4.7)

Theorem 4. Let (9, x) (resp. (9, x, g)) a solution to Problem (P) (resp. (P)) under assump-
tions of Theorem 1 with (4.6) (resp. Theorem 3 with (4.7)). Then there exists 5, 0 < S < d,
such that

0(x, y, z) < Xb\_z — (5]+, V(x, y, z) e Cl (4.8)

9 = x = 0 for 0 < z < d, (4.9)
for all b > M/kd, where M > || 9 \\L„3 is a constant independent of b (see (2.10) and (3.15)).
The proof of this theorem uses the following lemma.
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Lemma 3. Under assumptions of Theorem 4, one has

yp-bx - 0Z) <
z»

(be + Xbx - 6z)<0 (4.10)
zs

for 0 < S < d and Zd = {(x, y, z) e Q\0 < z < S}.
Proof. Let £ = [<5 — z] + in (1.8) or in (3.6). One has

[-0Z + bdz(5 - z) + Xbx] < 0,
Zs

because (4.6) or (4.7) imply t/[<5 — z] + =0. Since

OAS - z) =
Zs

6 > 0 and 0 < x < 1
Zs

it follows
/% (% /%

(be + Xbx - 0z) < 0.xP-bx - ez) <
Zs

(Mx - ez) <
Zs JZ»

Proof of Theorem 4. Consider n = /i(z) = Xb[z — <5] + with 3 fixed such that 0 < S <
d — M/Xb. The function £ = [0 — /i]+ vanishes on z = 0 and for z > d. Therefore
g[0 — ̂ ] + = 0 and from (1.8) or from (3.6), one has

V0-V[0-/i]+ +b
n

ozie-fiT -xb
n

xie - /:]; < o
n

or

(|V0|2-xbxez) +
Zs

{V0 • v[e - ii]+ - Xb[_e - nV} + b
(tl\Za) n (9 > 0)

otf-nT < o.
n

X(Xbx -Qz)~b
Zs

Adding the quantity

X b

which is non-positive by Lemma 3, one obtains

r (o-n)zie-iiy <o.

Xb[6 - n]
(l\Zs

{o2x + ej + (0Z - xbX)2} +
Zs

iv[0-Mri2 + b
n\zs

Since the last term is zero, it follows that 0 < n in Sl\Zt — [z > <5} and 0X = ey = 0,
0Z = Xbx — {z < <5}- Since 0 = 0 for z = 0 and z = S, one has 0 = 0 for z < <5 and
consequently also x = 0 for z < S.

5. Regularity of the free boundary. The goal of Theorem 4 is to provide sufficient
conditions in order to assume the global existence of a free boundary. In this case we shall
prove that the free boundary is an analytic surface.

We begin with the following

Proposition 5. A solution (0, x) (resp. (0, g)) to Problem (P) (resp. (P)) satisfies

— A0 + f>02 + Xbxz = 0 in fF(fi), (5.1)

Xz > 0 in Q. (5.2)
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Proof. The equation (5.1) follows immediately by taking ( e ^(£1) in (1.8) or in (3.6)
Choosing as a test function in (1.8) or in (3.6) ( = min(0, erj), where e > 0 and tj e ®(fi),

rj> 0 one has

I = V0 • V min(0, erj) + b 6Z min(9, erj) — lb [min(0, ef/)]2 <, 0
Jn Jn Jn

since * = 1 in {0 > 0}. Since min (0, erj) = 0 on dQ, the last integral is zero and it follows

/ = | V012 + £ VO Wt] + b \ {erj9z + 9Z [min(0, erj) — et]~\}
J{0 < c»f} J{0 > eti) Jfl

>£ I V0-V>/ + eb 02ri — b \ 9z[eri — 9~\+,
j{9>ui) Jn Jn

from which one concludes

j\{0 > erj}V9-Vrj + b j< b ~ •

Passing to the limit e \ 0, one obtains

(V0 • Vrj + b0z rj) <0, Vj; e ®(Q): rj > 0

and using (5.1), one deduces (5.2).
From (5.1) it follows that the function 0 is locally Holder continuous. Therefore the set

fi+ is{Xefi|0(X)>O} (5.3)
is an open set. Since x is montonous increasing in the z-coordinate one can introduce

<t>(x, y) = inf{z: 9{x, y, z) > 0, (x, y, z) e £2} (5.4)

where 0 is an upper semi-continuous function, by the continuity of 9. Then we can state.

Theorem 5. For any solution of Problem (P) or (P) one has

tl+E{e>0} = {XeQ::> <£(x, y)} (5.5)

where </> is an upper semi-continuous function given by (5.4)

Corollary 1. Under conditions of Theorem 4, for all b > M/Xd, one has

H > 4>(x, y)>d — M/Xd > 0, for all (x, y) e T,
which, in particular, assures the existence of a free boundary.

Consider now the function

u(x, y, z) = | 9(x, y, t) dt, for (x, y, z) e fi, (5.6)

which is a Baiocchi type transformation (see [3] for instance).

Theorem 6. Let (6, x) (resp. (0, x, g)) be a solution to Problem (P) (resp. (P) under the
assumptions of Theorem 4. Then the function u defined by (5.6) satisfies the following
variational inequality in fi

u > 0, (— Au + buz + lb) > 0, u ■ (— Am + buz + lb) = 0, (5.7)
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and x is a characteristic function, being

X = X(0) = X(«) a.e. in Q (5.8)

where %(v) denotes the characteristic function of the set {i> > 0}.
Proof. From definition (5.6) and recalling d > 0 it is obvious that u > 0. Since 6 = uz

and 6 satisfies (5.1) one has

( —Au + buz + Xbx)z = — A 9 + b6z + Xbxz = 0

which, together with (4.9) and 0 < x < 1, imply

0 = — Au + bu, + Xbx < — Au + buz + Xb. (5.9)

Recalling (5.5) it is clear that

{0 > 0} = {u > 0} (5.10)

from which one deduces ^ = 1 if u > 0, and the third condition of (5.7) follows by (5.9).
From the classical regularity to solutions of variational inequalities one has

ueWt^Cl) (5.11)

(see [11], for instance) and (5.8) follows easily from (5.9) and (5.10).

Remark 5. If one considers a linear flux

g(X, p(X), 0(X)) = a(z)[0(X) - />(*)] (5-12)
with p > 0 and a(z) = 0 for 0 < z < d and a(z) = a = constant > 0 for d < z < H, then we
have that u is the unique solution of the following variational inequality with mixed
boundary conditions (see [6] and [15]):

u e K = {v e H^fl) | v > 0 in fl, v = 0 on r0}

Vu • V(v — u) + b u,(v — u) + a u(v — u)
n Jn Jri

> h(v — u) — Xb
th

(v — u) + a
n

p(v - u), Vve\K,

where p(z) = p(t) dt for z > d.
In particular, this implies the uniqueness of the solution of Problem (P) for a linear

cooling given by (5.12).
The transformation (5.6) and its consequence (5.8) allow us to include the study of the

free boundary

<I> = Q n 3£2+

in the known results of Caffarelli [7], Kinderlehrer and Nirenberg [10], In order to apply
these results we must show that <5 has not singular points. This may be done by using a
technique due to Alt [2] for the dam problem.

Lemma 4. Let X0 e O and Br(X0) a Q. Then there is a cone Ar <= (X e R31 z < 0}. Such
that

du
— (X) = Vu(AT) • r\ < 0 for X e Br/2(X0), whenever r] e Ar n S2. (5.13)
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Proof. Recalling (5.11) and that uz = 9 > 0 in the proof of this lemma is a simple
adaptation of Lemma 6.9 of [11], page 255, and therefore we omit it.

Theorem 7. Let (0, x) (resp. (6, x, g)) be a solution to Problem (P) (resp. (P)) under con-
ditions of Theorem 4. Then the free boundary <J> is an analytic surface given by

<D: z = <p(x, y) for (x,y)eT,
and 9 is also a classical solution of Problem (C).

Proof. By (5.13) the function <p defined by (5.4) is a Lipschitz function in T and we
can apply Theorem 3 of [7] to conclude that (5.14) (f) is C1 and u e C2(fl + u $). There-
fore from equation (5.1) and Green's formula one finds that condition (1.5) is verified in
every point of the free boundary z = <f)(x, y), for all (x, y) e F, by Corollary 1.

To conclude that <I> is an analytic surface it is sufficient to apply Theorem 1 of [10],
using (5.14) and recalling that the equation satisfied by u in Q + has constant coefficients.

6. Unicity in the monotone case. In Remark 5 we have already stated the uniqueness
of the solution of Problem (P) with a particular linear cooling.

Adapting to our problem the technique of Carrillo and Chipot [8] we shall prove an
uniqueness result for the maximal monotone case assuming that x is a characteristic func-
tion, that is, assuming

X = X(6), (6-1)
to which we have already stated sufficient conditions in Theorems 4 and 6.

Denote by (0;, Xj, g,), with Xi = X(@i) and gt e G(0,), for i = 1, 2, two solutions of the
Problem (P) and set

90 = min (0t, 02), Xo = min (Zl, x2l <Po = sup (<j)u <f>2).
Lemma 5. Assuming (6.1), one has

{V(0,. - 0O) ■ Vt! + b(9i - 90)zrj - lb{yA - x0)lz} dx dy dz

< kb t](x, y, 4>i(x, y)) dx dy (6.2)

for any rj e H (i2) n C (O), rj > 0, where

Dt = {(x, y)er\(j)i{x, y) < <p0(x, y)}, i = 1, 2.

Proof. Choosing the test functions ± C = + min(0,- — 0O, er]), e > 0, from (3.6) one ob-
tains for i ^ j (i, j = 1,2)

{V(0; - Oj) ■ VC + b(0i - 9j)z C - Ab(Xi - Xj)Q +

By the monotonicity of G, one has

(gt - gj) min(0; -90,et])> 0
r i

since it is sufficient to integrate in {0( > 0O} where 9j = 90.
Then it follows

(gt - 9jX = o.
ri

I{V(0; - 0O) • V min(0; - 0O, erj) + ft(0j - ^o)z min(0; - 0O, erj)

-WXi ~ Zo)[min(0i - 0O, e?/)]2} < 0
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or, using min(w, t;) = v — [t; — u] +,

Wi - 0o) ■ Vf| + b f (0, - e0)zr, + Ab(Xi - Xo)lz
J{#i-8o>«i) Jn

< b £ {(<>, - %), [, - - Hi, - X„) [, - J

Since the Xi are characteristic functions, integrating in z, one has

® Jz Jw>;<z<4>o) L e

< | i - ^ j (*, y, 4>i)

(Xi ~ Xo)

»/(*, y, 4>d
Di

and (6.2) follows by passing to the limit e \ 0 in

[(#; - 0o)z1 - Mli - Xo)lz]Wi-e0 )-Wrj + b
{0i - do > etj)

< b J (0,- - d0)z r] - ^ g°j + lb | r\(x, y, </>,).

Theorem 8. Assuming (6.1), the Problem (P) has at most one solution.
Proof. For e > 0, consider a smooth function ae, such that, 0 < a£ < 1, and

a£ = 1 in A0 = {0O > 0} u T, and aE(X) = 0 if d(X, A0) > e.

Since 1 — a£ = 0 on {0O > 0}, for all rj e one has

{V0O • V(1 - ccE)ri + bd0z( 1 - <xe)t] - Xbx0[(1 - oc£>/]z} = 0.
I

For rj e Hl(Q) n C°(fl), >7 > 0, £ = (1 — xjtj is a test function in (3.6), and it follows
(since 1 — a£ = 0 on Tt)

£{V(0, - e0) ■ V(1 - ae)r] + b(6i - O0)2(l - aE)r,

~ M(Xi - Zo)[(l - <0 (i = 1, 2).
Using (6.2), we obtain

{V(0, - 0O) ■ Vr, + b(0t - e0)2 r, - Ab(Xi - XoW

(<*t nix, y, 4>(x, y)) = o.
Di

< lim lb
E | 0

Choosing in this inequality t] = z and t] = H — z, after a simple calculation one ob-
tains

(o, -e0) +1
n

(Xi - Xo) = 0,
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from where one deduces 0, = 60 and Xi = X.o> f°r ' = 1> 2, which proves the uniqueness of
the solution.
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