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Abstract. The steady-state propagation of a semi-infinite anti-plane shear crack is
considered for a general infinite homogeneous and isotropic linearly viscoelastic body.
Inertial terms are retained and the only restrictions placed on the shear modulus are that it
be positive, continuous, decreasing and convex. For a given integrable distribution of
shearing tractions travelling with the crack, a simple closed-form solution is obtained for
the stress intensity factor and for the entire stress field ahead of and in the plane of the
advancing crack. As was observed previously for the standard linear solid, the separate
considerations of two distinct cases, defined by parameters c and c*, arises naturally in the
analysis. Specifically, c and c* denote the elastic shear wave speeds corresponding to zero
and infinite time, and the two cases are (1) 0 < v < c* and (2) c* < v < c, where v is the
speed of propagation of the crack. For case (1) it is shown that the stress field is the same as
in the corresponding elastic problem and is hence independent of v and all material proper-
ties, whereas, for case (2) the stress field depends on both v and material properties. This
dependence is shown to be of a very elementary form even for a general viscoelastic shear
modulus.

1. Introduction. Very few exact closed-form solutions have appeared in the literature
to viscoelastic fracture problems for which the inertia terms in the equations of motion are
retained. Willis [5] considered the steady-state problem of a semi-infinite anti-plane shear
crack propagating through an infinite linearly viscoelastic body which was modelled as a
standard linear solid. The only loading assumed on the body was an arbitrary integrable
distribution of shearing tractions travelling with the crack. By use of the Wiener-Hopf
technique, Willis obtained a simple expression for the stress intensity factor. In the course of
the analysis, it became necessary to consider two separate cases defined by parameters c
and c*. In the notation of Willis, the shear modulus had the form G(t) = (n/(l + /))(1 +
/exp( —(1 + f)t/x)) and c and c* were defined bye2 = p/p and(c*)2 = p/p(l + /), where p is
the mass density of the material. It should be noted that c and c* are the elastic shear wave
speeds corresponding to G(0) and G(oo). If v denotes the speed of propagation of the crack,
then the two cases distinguished by Willis are (1) 0 < v < c* and (2) c* < v < c. For case (1)
it was observed that the stress intensity factor was the same as in the corresponding static
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elastic problem and hence independent of v and material properties, whereas, for case (2)
inertial effects occur and the stress intensity factor depends on material properties and v.

This paper addresses the same problem but assumes a general viscoelastic shear mod-
ulus. Moreover, the resulting boundary-value problem is not solved by the Wiener-Hopf
technique. The main obstacle to applying the Wiener-Hopf technique is the construction of
the required factorization of one or more functions of a real variable as a product of two
analytic functions whose domains of analyticity are the upper and lower half-planes re-
spectively. Even for the standard linear solid, clever insight was required by Willis to effect
the factorization, and separate factorizations were required for cases (1) and (2).

In the present work, the Wiener-Hopf problem is reformulated as a Riemann-Hilbert
boundary-value problem. It is then possible to construct the solution for both cases simul-
taneously in terms of singular integrals and Fourier transforms. What is somewhat sur-
prising is that the complicated-appearing integrals for the stress and displacement fields can
be reduced to extremely simple forms, even for a general viscoelastic shear modulus. From
these simplified expressions the differences between cases (1) and (2) become transparent. In
particular, from the consideration of a sample loading, the characteristics of the shear
modulus that determine the magnitude of the dynamic effects for case (2) become
illuminated.

The reader should compare the present paper with the analysis by Atkinson and
Popelar [3] of transient effects for an anti-plane shear crack in a viscoelastic layer. They
discuss the problem of a crack, initially at rest, which is forced to propagate at a constant
speed by the sudden action of a constant applied load or displacement on the upper and
lower faces of the layer. For much of their analysis, only very general restrictions are
imposed on the shear modulus (though more restrictive than here). By successive appli-
cation of the Laplace and Fourier transforms, the problem is reduced to a Wiener-Hopf
equation which is formally factored. Of course, for this problem it is not necessary to
consider special cases. The formal factorization produces a very complicated expression for
the Laplace transform of the stress intensity factor. Consequently, the Laplace inversion is
performed only for the steady state limit t—► oo. It is also appropriate to call the reader's
attention to the recent papers by Atkinson [1] and Atkinson and Coleman [2] which shed
additional light on the dynamic fracture of linear viscoelastic material.

The approach adopted here produces a formal solution in terms of Fourier transforms
and singular integrals to the problem considered by Atkinson and Popelar as well as to
many other physical scenarios. However, effecting a simplification of the formal solution to
a tractable form may prove to be difficult in general. The technique is currently being
adapted to an analysis of the steady-state propagation of a semi-infinite Mode I (plane
strain) crack in a general infinite linearly viscoelastic body. The analysis even allows for
non-constant Poisson's ratio. The results of that investigation will appear in a forthcoming
paper.

2. Formulation of the problem. The boundary-value problem considered here is ident-
ical to that treated by Willis [5], For the sake of completeness, this section begins with a
brief review of his derivation of the resulting Wiener-Hopf equation. It is at that point that
our analysis departs from his.

The governing field equations for the motion of a linearly viscoelastic solid are

= ("i,j + ui. 0/2, Tij = 2ju * dsu + Sijl * dekk,
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where , e(j- and u, denote the stress, strain and displacement fields respectively. The
summation convention is employed,/,; denotes partial differentiation of the function/and
p * de denotes the Riemann-Stieltjes convolution

p * de =
t

p(t — t) de(i).

Since the deformation of the body is assumed to be anti-plane strain, the only equation
of motion not identically satisfied is

H * dAu3 = p«3f„

where Au3 is the two-dimensional Laplacian, A = (d2/dx2) + (d2/dx2). A semi-infinite crack
is assumed to propagate along the xraxis with speed v, driven by loads a23(*i> 0, t) =
/(*! — vt) which follow it. Adoption of the Galilean variables x = xt — vt,y = x2 yields the
boundary value problem

H*dtM3 = pv2u3iXX, (2.1)
.0

<r23(x, 0) = — (p * du3) =/(x), x < 0, (2.2)dy
u3(x, 0) = 0, x > 0,

<tij (x, y) ^ 0, x2 + y2-* oo.

Eqs. (2.1) and (2.2) are solved by an application of the Fourier transform defined by

'•y)" 1f(p, y) = | e,pxf(x, y) dx = F+(p, y) + F_(p, y)

where

F+ = e,pxf(x, y) dx, F_ =
'o

eipxf (x, y) dx.

Under suitable restrictions on/(x, y), F+ and F_ are analytic functions of p for Im(p) > 0
and Im(p) < 0 respectively. Transforming Eq. (2.1) and solving the resulting ordinary differ-
ential equation in y yields

w3(p, y) = A(p)e~yy

where y2 - p2 + ipvp/p( — vp). To insure that the stresses and displacement vanish as
y—> oo, it is necessary to select a square root ofy2 with positive real part. This point will be
discussed later. Application of the boundary conditions (2.2) yields the relation on y = 0

vp(-vp)y(p)u^l = a^ + ff23 (2.3)

where 0^3 and a23 denote <t23 restricted to the positive and negative real axis respectively. It
is Eq. (2.3) that Willis solves by the Wiener-Hopf technique for the standard linear solid.
Here, Eq. (2.3) will be viewed as the Riemann-Hilbert problem

F+(p) = V(p)F-(p) + g(p) (2.4)
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where

F+(p) = °23, F~{p) = (recall that u£ t = 0), (2.5)

g(p) = -f, y{p) = Vfi( - vp)y(p).
We remark that it is reasonable to assume a priori (and may be verified a posteriori) that
tj^3(x, 0) and uj ^x, 0) are such that F+(x) = and F'(x) = u3 x define functions ana-
lytic for Im(z) ^ 0 respectively and satisfy lim,m(z)_00 F±(z) = 0. Moreover, the boundary
limits

F + {p) = lim F + (p + iq), F~(p) = lim F~(p + iq)
q-*0+ q-*0~

both exist and satisfy (2.4).
The remainder of this section is devoted to the solution of (2.4). The reader who is

unfamiliar with the theory of complex boundary-value problems of the Riemann-Hilbert
type may wish to consult one of the many treatises on the subject in the literature, such as
that by Gakov [4],

A formal solution to (2.4) may be readily constructed once the mapping properties of the
coefficient ^(p) have been determined. To this end it is convenient to rewrite ^(p) as

&(p) = v/M - vp)y(p) = -i sgn(p)ii(-vp)y1(p)

= sgn (p)^(p) (2.6)
where

iK — vp) = ipvfi(-vp) = p(0) + [ e ~ivp' dji(t) (2.7)

and
0

Ti(p) = [1 - pv2/v(-pv)V12. (2.8)
It is appropriate to specify now the hypotheses on the shear modulus, n(t). Henceforth, it

will be assumed that p(t) is positive, continuously differentiable, non-increasing, convex and
such that

p(°°) = lim yu(t) > 0.
t~* 00

The limiting case p(oo) = 0 will follow in an obvious way when the final results are pre-
sented.

It is easy to see that these hypotheses on n(t) are sufficient (but certainly not necessary)
to prove that

(i) (i{Q) = Moo) < Re(/I( — vp)) < M0) = /I(oo);
(ii) lm(fi(-vp)) = -]m(fi(vp));

>0, p> 0
<0, p < 0(iii) arg(n(-vp))

From (i), (ii) and (iii) it follows that

(iv) Im(yft-p)) = — Im(yi(/>)), Re(y?(~p)) = Re(yf(p)),
(v) Im(y?(p)) > 0, 0 < p < co,
(vi) 1 - (v/c*)2 = yf(0) < Re(yf(p)) < yf(ao) = 1 - (v/c)2,



STEADY-STATE PROPAGATION 41

where c* = M°°)/P and c = MO)/p are the elastic shear wave speeds corresponding to the
value of n{t) for infinite and zero time respectively. To take the square root of yf(p), it is
necessary to distinguish two cases: (1) 0 < v < c*, (2) c* < v < c.

Since yx(p) is required to have positive real part for all real p, the branch cut for the
square root of yl(p) is taken to be the negative axis. Hence for case (1), y^p) is
Holder-continuous for all real p and

(vii) Im(y1(p)) = -Imfy^-p)), Refy^p)) = Re(-,>,(-p)),
(viii) Im(y!</>)) >0, 0 < p < co,

(ix) (1 - (v/c*)2)1/2 = Vi(0) < 7l(oo) = (1 - (v/c)2)112,

whereas, for case (2), properties (vii) and (viii) still hold, butyx(p) is now discontinuous for
p = 0. In particular,

(x) yi(±oo) = (1 - (v/c)2)112, 7l(0±) = ±i((v/c*)2 - 1)1/2.

The image in the complex plane of the real p-axis under the transformation y^p) is il-
lustrated in Fig. 1 for both cases (1) and (2).

It is clear from properties (i)-(x) for fi( — vp) and yt(p) that the image in the complex
plane of the real p-axis under the transformation (p) is as depicted in Fig. 2. We remark
that in both cases (1) and (2), ̂ i(p) is Holder-continuous for all p (except p = 0 for case (2))
on the extended real line, that is, equating the points p = ± co. Consequently, log (^(p))
can be defined to be single-valued and Holder-continuous for all p, including p = ± oo
(except as noted above).

The solution of (2.4) is now straightforward. We consider first the homogeneous prob-
lem of finding functions X±(z) analytic for Im(z) ^ 0, respectively, and which satisfy the
homogeneous boundary relation

X+(p) = $(p)X-(p). (2.10)

(0+)

y, (°)V (°°)
y, (0-)

Fig. 1. Image in € of y^p), p real, for case(l)( ) and case (2) ( ).



42 JAY R. WALTON

 r
G, (0-) \

\

\
\
\
\

 r 
I 6,(0-1-)

(5,10) /

u
/
I
I

/
/

/

G, (oo)

Fig. 2. Image in C of (SX(p), p, real, for case (1) ( ) and case (2) ( ).

Auxiliary functions Xj^z) are defined by

X±(z) = <y±(z)X1±(z)

where co±(z) denotes branches of z1/2 whose branch cuts are the negative and positive
imaginary axes, respectively. Then a>+(z) is analytic for Im(z) > 0, oT(z) is analytic for
Im(z) < 0 and for real p,

(o+(p)/co~ip) = sgn(p).

The functions Xi(z) satisfy the boundary relation

xtiP) = ^,(p)^:(p). (in)
From the above discussion of ̂ (p), it is clear that the canonical solution (see Gakov [4] for
an explanation of the terminology) to (2.11) that is bounded at infinity is given by

X*(z) = exp(r1±(z)),

log(^i(t))rf(z) = ̂2m
dx. (2.12)

The integral in (2.12) is to be interpreted as a principal value for z—> ±co. Application of
the Plemelj formulas to (2.12) yields

rf(p) = ±i log(^!(p)) + r—2m
logt^iW) Jl

z-p

from which it follows that

Xi+(±oo) = e_*i/4|^1(oo)|1/2) X;(±oo) = enil4\^l(oo)\-1/2.
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We remark that for case (1), Xi(p) are both continuous on the extended real p-axis,
whereas, for case (2), Xi(p) have a discontinuity for p = 0. In particular, X*(p) is easily
shown to have the form

XHp) = exp(+i log(<Mp)))|p|-1/2X2(p) (2.13)

where X2(p) is continuous for p—> 0. Combining (2.10), (2.13) and the above observations,
we may deduce that

X±(p) = 0( | p |1/2), | p | —> oo, cases (1) and (2),

X±(p) = 0( | p |1/2), |p|-* 0, case (1),

limAr±(p)^0, case (2).
p-> 0

In view of these considerations, it is evident that the unique solution F±(z) to the
Riemann-Hilbert problem (2.4) for both cases (1) and (2) which vanishes as | z | —» oo is given
by

?±, , v±/-x 1 f°° 9^)/X+(r)F*(z) = X*(z) — — ^dz. (2.14)
2t"J-oo

This section concludes with a derivation of the stress intensity factor. It will prove to be
convenient to introduce notation for the inverse Fourier transform. The symbol [F] v
denotes the transform

[F]v(x) = ~ J ' e~ixpF(p) dp.

From (2.5), and (2.14) and the Plemelj formulas it follows that

^3(P) = F+(P) = hip) + X+(p) ̂ &^dz. (2.15)
z-p

Fourier inverse of (2.15) and the fact that g(p) = - show that for x > 0

023W = e~ixpX+(p) dp
2ni

°™X^dz. (2.16)
z-p

From the identity l/(t — p) = — (1/p) 4- (z/p)/(z — p) and the assumption zg(z) = 0(1),
111 —> 00 (this is merely a smoothness restriction on the applied tractions <rj3), it is clear that

g(z)/X+(z) = _ 1 f ' g{z)/x+(z) dz + G(p) (2.17)
=0 T - P

where G(p) = 0(|p|~3/2), |p|—> 00. (In fact, X+(p)G(p) e l}(R).) Consequently, from (2.16),
(2.17) it follows that for x near zero

^2+3(x) g(z)/X+(z) dz
2n J_m 2m

'<*> Y + fnl
-—— e~ixp dp. (2.18)

Noting that

X+(p) = oj+(p)Xt(p)

~|p|1/2|^1(oo)|1/2e-,-/4(1' P-^+co
(.!, p-y-cc
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we may conclude that

-X+(p)^\p\~i'2r_ P^+cc (2.19)
[K p—> — oo

where

K+ = - l»i(oo)| 1/2e-'v/4^-
27t(

0(t)/A-+(t) dr, K~ = -iK+.

From (2.18), (2.19) and the Abelian theorems for the Fourier transform, it follows that the
dominant term in the asymptotic expansion of f°r x near zero's given by

K e-ipxp-i/2 dp + K e~ipx\p\~112 dp

x ~ll2K+-
2k

e~'pp~ 1 dp — i\ elpp~ 1 dp
o Jo

= x"1/2
?iM|1/2 1

y/n 2n
g(z)/X+(z)dT. (2.20)

The expression for the stress intensity factor appearing in (2.20) is valid for both cases (1)
and (2). In the next section, a simplified form for the stress intensity factor is given from
which the fundamental difference in the stress field between cases (1) and (2) is illuminated.
Moreover, an elementary expression is presented for the entire stress distribution in front of
and in the plane of the advancing crack.

3. Stress analysis. In this section the stress intensity factor and entire in-plane stress
field are determined for both cases (1) and (2). From (2.20) we have<j£3(x) = Kx~1/2 where

I Coo) 11/2 1 f00
* = ' V1 — g(T)/X+(z)dz

'it 2n_L00

23XM*))M dl
i r co /'x

= -l^i(ao)

and where h(x) is defined by

11/2 1 (T23(x)h(x) dx

\/X+(x) = e ,lxh(x) dx. (3.1)

The program is to determine X+(z) for Im(z) > 0, then compute X+(t) for real t and finally
invert (3.1). It is in the calculation of X+(z) that the two cases must be considered
separately.

Case (1): From (2.6) and the stated hypotheses on fi(t), it is clear that^i(p) has a natural
extension ^(z), z = p + iq with q < 0. Moreover, for all q < 0,

(i) ^i(±oo + iq) = ^(co),
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(ii) i^i{iqi) < i^i(iq2), <Zi < <?2,
(iii) ^t(iq) = ^i(oo).

Fig. 3 depicts the mapping properties of ^i(z) for Im(z) < 0. We recall that
X^z) = exp(r1+ (z)) and define ^2(z) by

S2(z) = 9&WA oo). (3.2)
Then for q < 0, limtj>| _ „ ^2(p + i<gr) = 1 and

rf . r-
271! J_ ^ T-Z

Since log(^2(z)) is analytic for Im(z) < 0 and log(^2(oo)) = 0, it follows by Cauchy's theor-
em that Tt{z) = i log(^!(oo)) and

Xt(z) = expfr^z)) = exp(i log^oo)))

= |ar1(oo)|1/2e_'"/4. (3.3)

Taking the limit z—» t, Im(z) > 0 in (3.3) we conclude that

*,» = |^1(oo)|1/2e-i',/4. (3.4)

Case (2): It will prove to be convenient to compute Tf (t) and then appeal to the Plemelj
formula

Ti+(t) = rf(T) + log(^1(t)). (3.5)
For this case we observe that ^i(p) has a natural extension ^(z), z = p + iq, that is analytic
for q < 0 except for a branch cut along the negative q-axis from q = 0 to q - — q0 for some
q0 > 0. Moreover,

(iv) for 0 < q < q0, limI_0 + #i(t — iq) is a decreasing real valued function of q with
limt^0+ ^i(t - iq0) = 0;

Fig. 3. Image in C of 3?,(p + iq) for case(l) with q = 0( ) and q < 0(-
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(v) forO < q < g0,limt^0- ^(t - iq) = -limt^0+ - '<?);
(iv) for q < —q0, ^i(z) is analytic and satisfies properties (i)—(iii) listed above for case

(1).
The mapping properties of T^z) for case (2) are depicted in Fig. 4.

Since we require lim^_0- rf(p + iq), we consider Tf (p + iq) for 0 > q > — q0. In addi-
tion, for convenience we assume 0 < p. The case p < 0 follows similarly. I~Y(z) is defined by
integration along the real axis. By properties (iv)-(vi) and Cauchy's theorem, that integral
may be replaced by integrals along the segment on the negative imaginary axis from q = 0
to q = —q0 and along the horizontal line q—~q0 below which log(&i(p + iq)) is analytic.
Specifically, we have for z = p + iq

2ni
log(^i (t)) dT

T — Z

_1_
2 ni

00 - iqo A

log(^i(t))

J_
2ni

J_
+ 2ni

J_
2ni

'(0 - )- iqo
4"

(0 — ) + i0 J(0—) — iqo ^ ^
(0 +) - iqo

log(^i(T))  
(0 +) + iO 1 z.

log(^i(i))
0 T - Z_

(0 -)
+

— oo

(0 -) + i0

_ J( 0 - ) - iqo
*(0 +) - iqo n<> + ) + «0

+ +
oo - iqo J( 0 +) - iqo

(3.6)

(3.7)

(3.8)

=o-i«o dx
log(^i(T)) • (3.9)

- oo - iqo ^ ^

Line (3.6) equals zero since p > 0. Line (3.8) equals —log(^i(z)) since p> 0 and
0 > q > —q0- Line (3.9) equals ^log^^oo)), as in case (1). To compute (3.7) we note that
from property (v) it follows that for 0 <q<q0, log(^1((0 + ) — iq)) — log^^O —)
— iq)) = ni. Consequently, line (3.7) equals

1,0 dx
 = iPog(-i<7o - z) - log(-z)]. (3.10)

iO t — Z

G, (oo + iq)

Fig. 4. Image in C of^,(p + iq) (or case (2) withq = 0( ), q = +q0( ) and q < —q0( 1
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Combining (3.5)—(3.10) and letting <7 —>• 0 — we obtain

Ina I r I -4- <
(0, T < 0

ri+(T) = i log(^i(oo)) + j \og(-iq0 - t)-i log | t | + \n^2' T^j. (3.11)

From (3.11) it follows that for case (2)

I-1/2] U t > 0
T < 0

*i+(t) = exp(i log(-i<?o -

= i|^i(cx))|1/2e_"t/4 exp(i log(-ig0 - t))/w+(t). (3.12)

Finally, combining the fact that X+{z) = <x>+{z)Xf (t) with (3.3) and (3.12), we arrive at

X+(t) = w+(T)|^1(oo)|1/2e-i't/4, case (1)

= i\<gi(cx>)\llle~inl* exp(j log(-ig0 - *)), case (2). (3.13)

The computation of h(x) is completed by recalling the well-known integrals

1/2 dx = r(1 /2)e+inl*/< +(t), (3.14)
— 00

0
e~ixzeqx\x\~m dx = T(l/2)e'int\-iq - x)"1/2, q > 0. (3.15)

0

Lines (3.13H3.15) together with (3.1) yield

Hx) - 19,(co) |" "2 I x I - (3.16)

where H(x) denotes the Heaviside step function. The desired form for the stress intensity
factor follows directly from (3.16) as

1 0
K= — - | <t23(x)|x| 1/2 dx, case (1)

0

<rj3(x)|x|~ll2exqo dx, case (2). (3.17)

n J-c
r 0

It should be noted in (3.17) that even for general viscoelastic material, when dynamic
effects occur for case (2), the stress intensity factor is modified only by a simple exponential
damping factor, as was observed by Willis for the standard linear solid. Since the de-
pendence of K on material properties and the speed of propagation occurs only through q0,
it is worthwhile to investigate the relationship among v, fi(t) and q0. It is easy to see thatq0
is the unique value of q for which %^ — iq) = 0 which, from (2.6), must also be the unique
value of q for which yj( - iq) = 0. It will prove to be convenient to define a nondimensional
shear modulus n*{t) by

n*(t) = n(t)/fi(0).
From (2.8), the requirement yx( — iq0) = 0 is seen to be equivalent to

vio H*{t)e'qovt dt = (v/c)2. (3.18)

Eq. (3.18) is easily solved numerically for q0.
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The problem of determining a23(x, 0) for all x > 0 will now be addressed. Use will be
made of the following well-known identity relating the Fourier and Hilbert transforms:

H(/) = [isgn(r)/v]A (3.19)

where

H(f) = -71

fit) dt
i t T

Recall that

From (2.16) we have

where

and

where

Defining k(x) by

k(x) = * l+{*)

and making use of (3.22), (3.24H3.26) we arrive at

as the desired form for o%3(x).
If ffj3(x) is smooth for x < 0, then k{x) is smooth for all real x and

k'(x) = l+ * ctJ3'(x).

(3.20)

g(x)/X+(z) = - Ina^Jhtx)) = -<C3[/i(-x)] v(t). (3.21)

= Wp)] v = - £ Wip] v (3-22)

L(p) = X+(p)jiHlg(z)/X+( t)]. (3.23)

Lines (3.19), (3.21) and (3.23) together yield

Up) = -i^+(p)[sgn(T)(ff2-3(x) * /i(-x)Xt)]. (3.24)

Observe further that

X+(p)/ip = - '^((^1/2 /%) (3.25)

1/x+(p) = ~rw2) '/2 ̂  = ^ (126)

l+(x) = H(z)\x\~m.

^ ^ E'+(x) * (fc(x)sgn(x))] (3.27)
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Moreover, we may integrate by parts the convolution in (3.27) and perform the differ-
entiation to simplify (3.27) further to

aiAx) = ~x 1/2 -
71

<723MM 1/2 dx- (x-tyll2k'(t)sgn(t)dt. (3.28)

Line (3.28) exhibits again the stress intensity factor for case (1).
For case (2) a slightly different calculation is required. Since

X+(p) = 11 ̂itoo) |1/2c~*'*/4-( —i^ro - p)1'2,

we write

<x2+3(x) = [L(p)] v = - i'[(t?o - ip)L(p)/( - iq0 - p] v (3.29)

where L(p) is given by (3.23). Corresponding to (3.25) and (3.26) there are

l/X+(p) = - i I SMoo) | ■" meinl\ ~ iqo ~ p)'1/2

iwr"21+/,
= m/2) '(x)' (130)

X+(p)/(-iq0 ~P) = lVSY{7l2)2 1+(X)- (3>31)

where

l+(x) = H(x)exp{ — q0x)x~112). (3.32)

From (3.29) it is easily seen that

a2+3(x) = G'(x) + q0G(x) (3.33)

in which

G(x)= -ilL(p)/(-iq0-p)y. (3.34)
Combining (3.30)-(3.33) we obtain

G(x) = - ~ l*(x) * (Zc(x)sgn(x)) (3.35)
2n

where

k(x) = (J23M * l+(x).

Lines (3.32), (3.33) and (3.35) together provide the desired result for case (2) analogous to
(3.27) for case (1). The analogue to (3.28) for case (2) is easy to derive but somewhat messy
and will be omitted.

We remark that for the entire stress distribution ahead of the advancing crack, not
merely for the stress intensity factor, the dynamic effect occurring for case (2) is solely
through the exponential damping factor exp( — q0x), where q0 is a function of v and n(t)
through (3.18). It should also be noted that

lim q0(v, n) = 0
v-*c* +
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and

lim q0(v, n) = co.
v-*c -

Hence as v—>c*+, the stress distribution converges continuously to the corresponding
elastic distribution, while as v—> c —, the stress intensity factor tends to zero.

In principle it is easy to construct an expression for the displacement of the crack faces.
It is obtained by convolving CT23M with the creep compliance and then convolving that
result with the inverse Fourier transform of (p). However, there obviously is no simple
form for this multiple convolution which depends in a fundamental and complicated way
upon //(f) and v. Consequently, there will be no attempt here to analyze u3 (x, 0) further.

We remark also that the techniques employed in the analysis presented in Sees. 2 and 3
may be applied to many other dynamic fracture problems for general viscoelastic material.
In particular, the transient problem for a layer considered by Atkinson and Popelar is
amenable to such an analysis. Of perhaps a greater interest is the opening mode problem,
both transient and steady-state, for general material including those with non-constant
Poisson's ratio. An analysis of this latter problem is currently being completed and will be
the subject of a forthcoming paper.

It should be emphasized that the method employed here will, in general, produce only
formal solutions to dynamic fracture problems more complicated than the one considered
here. The factor X+(p) will be expressed in terms of Fourier transforms and singular
integrals. For many problems, effecting a simplification of the formal solution to a tractable
form may prove to be quite difficult.

The next section contains an example which illustrates the results of Sec. 3. In parti-
cular, the consideration of a sample loading illuminates the characteristics of the shear
modulus /x(t) that determine the magnitude of the dynamic effects appearing in case (2).

4. A11 example. Some insight into the properties of the shear modulus n(t) that affect the
magnitude of the dynamic effect for case (2) can be gained from the consideration of the
special case of a shear crack driven by tractions of constant magnitude on a finite interval
traveling with the crack tip. Specifically, we assume that

a23(x, 0) = -P(H(-x) -H(-a-x)) (4.1)

where a and P are positive constants. To study the viscoelastic effect of case (2), it is
appropriate to define a nondimensional stress intensity factor k by k = K2/K1. Here
and K2 are the stress intensity factors for cases (1) and (2), respectively. From (3.17), (4.1)
and an obvious change of variables, we have

k = exp( — q0 ax2) dx.
0

The magnitude of the viscoelastic effect is determined by the nondimensional parameter
q0a, where q0 is the unique solution to (3.18). Recall that in (3.18), n*(t) is the nondimen-
sional shear modulus defined by [i*(t) = n(t)/n(0). Hence, /i*(t) is positive, non-increasing
and convex. It will prove to be useful to introduce two parameters, /? and <5, by

/8=lim n*{t), -5 = jn*( 0).at
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Eq. (3.18) may be rewritten as
* 00

H*(t/vq0)e~' dt = s2 (4.2)
Jo

with s = v/c. The non-dimensional crack velocity satisfies ft < s2 < 1, and for s2 = 1,
(Jo = oo while for s2 = /?, q0 = 0.

For given s and n(t), Eq. (4.2) is easily solved numerically for vq0. However, some
general observations can be made about the solution to (4.2) whens2 is near or 1, that is,
for crack speeds near c* and c. Consider the function </>(A) given by

m = H*(tX)e ' dt.

For s2 near 1, an estimate of the solution to = s2 may be obtained from the asymptotic
expansion of <£(/) for k near zero, whereas for s2 near /?, what is required is an asymptotic
expansion for /—> oo.

As / —> 0, the desired expansion follows from the fact that^)'(O) = (d/dt)n*(0) = —6. The
asymptotic expansion for A—► oo will be considered below.

To illustrate the dependence of q0 on p and S, we define n2(t) by

1 - P)/S) - Ml - ID-
Then n2(0) = 1, n2(°o) = 0> n'2(0) = — 1 and /i2(t) = 0(n*(t)), t—> oo. Eq. (4.2) becomes

^2(fa/s(l - p))e~' dt = (s2 - y9)/(l - J?), (4.3)
Jo

with a defined by
aq0 = xd/a. (4.4)

and where x is a characteristic time parameter x = a/c. If (p2(A) is now defined by

4>2{k) = H2{tX)e ' dt

then ^>2(0) = U 2(0°) = 0» fizi0) = — 1 and

4>(X) ~ /? + <p2{A) as 2—> oo.

Consequently, for s—» 1 we have

a = s(l - /?)02 '((s2 - Ml - P)) ~ s( 1 - P)(l - s2).
We remark that in (4.4), the factor x5 is a nondimensional time parameter which is the

product of the minimum time required for a shearing disturbance to travel the length of the
interval on which the loading is applied and the instantaneous rate of stress relaxation at
zero time corresponding to the nondimensional modulus n*(t).

The asymptotic form for a when s2 — fi <| 1 depends on the rate of decay of n2(t) as
r—> oo. We distinguish two cases:

(a) n2(t) dt < co,

(b) jx2{t) dt = oo.
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For case (a), it is clear that

02(A) ~ j H2(t) dt as A—* oo.

H(t) dt = 0(n(N)) as N—> oo, (4.6)

From this it follows that

a ~ s(l — P)2\\h2\\i/(s2 - P) as s2->P, (4.5)

where 11 111 = Jo dt. It should be noted that from (4.5) it is apparent that for
s2 — P <1 1, the size of a, and hence the size of aq0, is essentially independent of the rate of
decay of n(t) as t—* oo, provided that ||^2||i < °0- 1° particular, the magnitude of the
viscoelastic effect in this case should be the same for exponential decay (as with the stan-
dard linear solid) and power-law decay with exponent greater than unity. Numerical calcu-
lations have shown this to indeed be the case.

For case (b) we observe that while there always exists a constant c1 such that
c1n2(A) < 02(A) as A—> oo, there need not exist a constant c2 with<£2(A) < c2 /*2(A). However,
given the additional restriction

N

then it can be shown that

02(A) = 0(^2(A)) as A—oo. (4.7)

Note that (4.6) is not a growth condition (given that 11 ̂21 |i = oo). In particular, (4.6) holds
for all power-law material with exponent less than or equal to unity. Indeed, logarithmic
decay or even /i(t) = no is permitted. Rather, (4.6) is a regularity condition which, from a
practical point of view, is no real restriction.

The paper concludes with the observation from (4.7) that the slower the rate of decay of
n(t) as t—► oo, then the smaller the magnitude of the viscoelastic effect for case (2) for given
s, p, S and x with s2 — p 1.
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