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ABSTRACT. Let k be any imaginary abelian field, R the integral group ring 
of G == Gal(k/Q), and S the Stickelberger ideal of k. Roughly speaking, 
the relative class number h - of k is expressed as the index of S in a certain 
ideal A of R described by means of G and the complex conjugation of kj 
c-h- == [A : S), with a rational number c- in ~N == {n/2;n EN}, which 
can be described without h- and is of lower than h- if the conductor of k 
is sufficiently large (cf. [6, 9, 10); see also [5]). We shall prove that 2c-, a 
natural number, divides 2([k: Q)/2)lk: Q1/2. In particular, if k varies through 
a sequence of imaginary abelian fields of degrees bounded, then c- takes only 
a finite number of values. On the other hand, it will be shown that c- can 
take any value in ~N when k ranges over all imaginary abelian fields. In 
this connection, we shall also make a simple remark on the divisibility for the 
relative class number of cyclotomic fields. 

Let l, Q, IR, and C denote the rational integer ring, the rational number field, 
the real number field, and the complex number field, respectively. A finite abelian 
extension over Q contained in C will be called an abelian field. Let k be an imagi-
nary abelian field, namely, an abelian field not contained in IR. We denote by R(k) 
the group ring of the Galois group G = Gal(k/Q) over l and by s(H), for any 
subgroup H of G, the sum in R(k) of all elements in H. Put 

A(k) = {a E R(k); (1 + jk)a = as(G) for some a E l}, 
where jk denotes the complex conjugation of k. Let h"k denote the relative class 
number of k (Le., the so-called first factor of the class number of k), Qk the unit 
index of k, gk the number of distinct prime numbers ramified in k, and S(k) the 
Stickelberger ideal of k in the sense of Iwasawa-Sinnott, which is an additive sub-
group of A(k) with finite index (for the definition of the Stickelberger ideal, see [6, 
10]). We define c"k as the ratio of the index [A(k) : S(k)] to h"k: 

c"k h"k = [A(k) : S(k)]. 
The product QkC"k is known to be a natural number and is determined by Sinnott 
in various cases, for example, in the case gk = lor 2 (cf. [10]). He has also shown in 
[9] that, if k is a cyclotomic field, then c"k = 2b where b = 0 or 2gk - 1 - 1 according 
as gk = 1 or gk ~ 2 (for the case gk= 1, see [6]). 

In this paper, we shall give an additional result concerning the range of c"k. 
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THEOREM. In general, 2ck is a natural number dividing 2([k Q]j2)[k QJl2, 

and the following assertions hold. 
(i) If gk = 1, then ck = 1. 
(ii) If gk = 2, then ck = ~ or 1; and, for either c E {~, I}, there exist infinitely 

many imaginary abelian fields K with gK = 2 and c"K = c. 
(iii) If gk = 3, then ck = 2t for some rational integer t ::::: -1. On the other 

hand, for any given rational integer t ::::: -1, there exist infinitely many imaginary 
abelian fields K with gK = 3 and c"K = 2t. 

(iv) For any given pair (m, n) of natural numbers with m ::::: 4, there exist in-
finitely many imaginary abelian fields K satisfying gK = m and c"K = n/2. 

This is verified as a consequence of basic results in [4 and 10]. It might be of 
some interest that the proof of the Theorem also leads us to the following: 

COROLLARY. Let n be any natural number. For each x> 0, let c(x) denote the 
number of cyclotomic fields with conductor S; x and c (x) the number of cyclotomic 
fields K with conductor S; x such that h"K is divisible by n. Then the ratio c(x)/c(x) 
coverges to 1 as x goes to infinity: 

. c(x) 
hm -( ) = l. x--->oo c x 

We note here that the above corollary is a simple analogue of Gerth's asymptotic 
result for class number divisibility in cyclotomic fields and in their maximal real 
subfields (cf. Theorem 1 of [3]), which follows from the results of Cornell and 
Washington [2]. 

In conclusion, the second author wishes to thank Professor K. Iimura for intro-
ducing him to the study in this paper and is also grateful to his teacher, Professor 
M. Ishida, for valuable advice. 

1. For each natural number m, let Km denote the cyclotomic field of mth roots 
of unity. Let k be an abelian field. Let 6(k) denote the group ring of Gal(k/Q) 
over Q, so that the group ring R(k) of Gal(k/Q) over 7L is a lattice in the Q-vector 
space 6(k). We write !k and Jb respectively, for the conductor of k and for the 
product of all prime numbers ramified in k. Let p be any prime number and t the 
rational integer::::: 0 such that pt is the highest power dividing !k. Then there exists 
a unique prime ideal p of Kpt dividing p, which is unramified in K ik. We define 
(~) to be the restriction to k of the Frobenius automorphism of p for the extension 
Kik/Kpt. Let T(p, k) denote the inertia group of p for k/Q and let, in 6(k), 

(p, k)* = s(T(p, k)) (~)-1 
IT(p, k)1 p 

Here, for any finite set H, IHI denotes the cardinality of H. We note that, if 
pis unramified in k, then (p,k)* = (~)-1 and (~) is nothing but the Frobenius 
automorphism of p for k/Q. Let n be any natural number dividing Jk and let T(n, k) 
denote the compositum in Gal(k/Q) of the inertia groups T(q, k) as q varies through 
the prime numbers dividing n. We then also put 

(n,k)* = II(q,k)*, 
q 

(~) = II (t) 
q 
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STICKELBERGER IDEAL AND RELATIVE CLASS NUMBER 729 

in 6(k). Regarding 6(k) as an R(k)-module in the obvious manner, we define 
U(n, k) to be the R(k)-submodule in 6(k) generated by the elements 

s(T(u, k)) IT (1 - (v, k)*) 
v In/u 

for all natural numbers u dividing n, with v in the above product ranging over the 
prime numbers that divide n/u. It is known that U(n, k) becomes a lattice in 6(k). 
In particular, U(1, k) = R(k). 

In general, let X and Y be any lattices in a finite dimensional vector space V 
over Q. Then there exists a Q-linear automorphism r of V such that r(X) = Y. 
We denote by (X: Y) the absolute value of the determinant of r, which does not 
depend on the choice ofT. Note that, if X ;;2 Y, then (X: Y) is equal to the index 
[X:Y]. 

Let a be any element in 6(k) and m a natural number dividing n, so that 
aU(m, k) and aU(n, k) are lattices in a6(k). It follows from [10] that (aU(m, k): 
aU(n, k)) is a natural number. Now, let k be imaginary and let 

ek = ~(1 - ik), U(k) = U(/k, k). 
Theorem 2.1 of [10] then states that 

ck = (1/Qk)(ek R(k) : ekU(k)). 
Moreover we have the following 

PROPOSITION 1. For any imaginary abelian field k, (ek R(k) : ekU(k)) tS a 
divisor of ([k: Q]/2)[k:QJl2. 

PROOF. We start the proof with the identity 

L(u,k)* IT (1-(v,k)*)=1 
ulfk vlfk/U 

in 6(k), where the sum is taken over the natural numbers u dividing lk, with v 
ranging over the prime divisors of lk/u. Note, in the above, that 

(u k)* _ s(T(u, k)) (~)-1 
, - IT(u, k)1 u 

Further, if [k : Ql/IT(u, k)1 is odd, then ik E T(u, k) and so ek s(T(u, k)) = O. 
Consequently, we obtain the following element in ek U(k): 

[k: Q] - "'" [k: Q] (k)-1 - ( ( k)) IT ( (k)*) -2-ek = ~ 2IT(u,k)l:;:;: ek sTu, _ 1- v, . 
u I ik v I ik/u 

Since U(k) is an R(k)-module, it follows that 

[k ~ Q]ekR(k) ~ ekU(k). 

On the other hand, 

(ek R(k) : ekU(k)) (ekU(k) : [k ~ Q] ek R(k)) 

= (ek R(k) : [k ~ Q] ek R(k)) = (lk ~ Q] yk:QJ/2 
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Hence we have 

( 
[ ] ) [k:Ql/2 

(e;; R(k) : e;;U(k))1 k ~ Q 

REMARK 1. Let k be an abelian field, a any element in 6(k), n a natural 
number dividing !k, and m a natural number dividing n. Then an argument similar 
to the above shows that (aU(m, k): aU(n, k)) IIT(n/m, kW, where r is the rank 
of aR(k) over 1.. 

2. We shall show some lemmas for the proof of the Theorem. 

LEMMA 1 (CF. [4, 10]). Let k be an imaginary abelian field in which only one 
prime number is ramified. Then Qk = 1, (e;; R(k) : e;;U(k)) = 1, and so c;; = 1. 

By a character of a finite abelian group H, we mean a homomorphism of H 
into the multiplicative group ex of C. For an abelian field k, each character 'Ij; of 
Gal(k/Q) can be extended to a Q-algebra homomorphism 6(k) --+ e in the usual 
way. Then'lj; induces a primitive Dirichlet character X satisfying x(n) = 'Ij;((n, k)*) 
for every prime number n. We call such a character X a (primitive Dirichlet) 
character associated with k. Let Xk denote the (group of) primitive Dirichlet 
characters associated with k and X;; the odd characters in Xk: 

x;; = {X E Xk; X( -1) = -I}. 

By definition, X;; is not empty if and only if k is imaginary. When this is the 
case, Xk is the disjoint union of X;; and Xk+, where k+ denotes the maximal real 
subfield of k. 

LEMMA 2. Let k be an imaginary abelian field such that exactly two prime 
numbers p and q (> p) are ramified in k. Then the following assertions hold. 

(i) (e;; R(k) : e;;U(k)) = 1 or 2; and further, if (e;; R(k) : e;;U(k)) = 2, then 
Qk =2. 

(ii) c;; = 1 if jk is not contained in T(2, k) (e.g., if p > 2). 
(iii) c;; = ! if jk is contained in T(2, k) (so that p = 2) but not in T(q, k) and if 

the highest power of 2 dividing IT(q, k)1 is equal to that dividing q - 1. 

PROOF. Theorem 5.1 of [10] implies the first part of (i), and also states that 
(e;; R(k) : e;;U(k)) = 2 if and only if jk is neither in T(p, k) nor in T(q, k). Let 
K be the cyclotomic field of /kth roots of unity: K = Kfk' Since Gal(K/Q) = 
T(p, K) x T(q, K), jK is uniquely decomposed as 

J~ E T(p, K), jq E T(q, K). 

Taking the restriction map p: Gal(K/Q) --+ Gal(k/Q), we then have 

p(J~) E T(p, k), p(jq) E T(q, k). 

Now, assume that (e;; R(k) : e;;U(k)) = 2 and p > 2. Then jk i T(q, k), i.e., 
p(jp) =F 1; T(p, K) is a cyclic group, and it follows that jp, the only element of 
order 2 in T(p, K), is not in the kernel of the surjective homomorphism pi T(p, K) : 
T(p, K) --+ T(p, k). Hence the ratio IT(p, K)I/IT(p, k)1 is an odd integer. A similar 
argument shows that IT(q, K)I/IT(q, k)1 is also an odd integer. On the other hand, 
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jk ~ T(p, k) UT(q, k) implies p(J~) ~ T(p, k) nT(q, k) and pUq) ~ T(p, k) nT(q, k). 
Since p(J~), pUq), and jk are the elements in Gal(k/Q) of order 2, it follows that 
IT(p, k) n T(q, k)1 is odd, and consequently that the integer 

~\f~) = I~~,~!III~~~,~!IIIT(P' k) n T(q, k)1 

is odd, where <p denotes the Euler function. The assumption of Satz 26 in [4J is thus 
satisfied for k, so that we have Qk = 2. Assume next that (ek R(k) : ekU(k)) = 2 
and p = 2. Let t be the natural number such that 2t II fk. As in the above case, we 
can see that the ratio 

<p(fk) IT(q, K)I 
=.:.,......:'"""'-...,:.,:. 

[kK 2.: QJ IT(q, k)1 
is an odd integer. Furthermore, since jk ~ T(q, k), the inertia field of q for k/Q 
is imaginary and, hence, there exists a character in Xk with conductor a power 
of 2. We then obtain Qk = 2 again from Satz 26 of [4J. The proof of (i) is now 
completed. 

Because of (i), ck = 1 if (ek R(k): ekU(k)) = 2. Hence, for the proof of (ii), we 
may assume that (ek R(k) : ekU(k)) = 1 or, equivalently, Jk E T(p, k) U T(q, k) as 
well as that jk ~ T(2, k). In such a case, there exists a prime of k+ ramified in k 
and lying above an odd prime E {p, q}. Note that k does not contain A since 
any prime of k+ above an odd prime is unramified in k+ ( A). Then Satz 22 of 
[4) shows Qk = 1, so that ck = 1 (see also Satz 19 of [4]). 

To prove (iii), let u be the natural number such that 2u II (q-1), i.e., 2U IIIT(q, K)I. 
Assume that jk E T(2, k)\T(q, k) and 2U IIIT(q, k)l. Then (ek R(k) : ekU(k)) = 1 
and, as in the proof of (i), <p(fk)/[kK2• : Q) becomes an odd integer, where t is 
the natural number such that 2t II /k. Furthermore, it follows that there exists a 
character in Xk with conductor a power of 2. The assumption of Satz 26 of [4J is 
now satisfied for k. Therefore we can conclude that Qk = 2 and ck = ~. 

Thus we have proved all assertions of the lemma. 
REMARK 2. As Iwasawa has shown, ck = 1 for every cyclotomic field k 

with gk = 2 (cf. [9, 10], (ii) of the above lemma). On the other hand, if k = 
Q(A,J=2q) or Q(H,v'-2q) with q a prime number == -1 (mod 4), then 
ck = ~ by (iii) of Lemma 2. 

LEMMA 3. Let k be an imaginary abelian field in which only a prime number 
p is ramified, and k' a real abelian field with conductor prime to p. Then, for the 
compositum K = kk', QK = 1. 

PROOF. Rewriting the assumption in terms of Dirichlet characters, we can 
deduce the lemma from Satz 22 of [4J. 

LEMMA 4. Let k be an imaginary abelian field, p a prime number ramified in 
k, and r a natural number dividing lk/p. Suppose that jk lies in T(p,k). Then 
ekU(r, k) = ekU(rp, k), so that (ekU(r, k) : ekU(rp, k)) = 1. 

PROOF. As jk E T(p, k) implies ek s(T(p, k)) = 0, this lemma follows immedi-
ately from the definitions of U(r, k) and U(rp, k). 
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LEMMA 5. Let k be an imaginary abelian field such that Gal(k/Q) is the direct 
product of inertia groups, for k/Q, of all prime numbers ramified in k. Then 

(i) For a natural number r dividing A, (ek R(k) : ekU(r, k)) = 1 unless jk lies 
in T(r, k). 

(ii) If jk lies in T(p, k) for some prime number p, then (ek R(k) : ekU(k)) = 
1, Qk = 1. 

PROOF. The arguments in [9, §§5, 6] provide the proof of (i). Assume now 
that there exists a prime number p for which jk E T(p, k). Since jk fj. T(/k/p, k), 
it follows from (i) that (ek R(k) : ekU(/k/p, k)) = 1. Furthermore, by Lemma 4, 
(ekU(/k/p, k) : ekU(k)) = 1. Therefore 

(ek R(k) : ekU(k)) = (ek R(k) : ekU(A/p, k))(ekU(/k/p, k) : ekU(k)) = 1. 

It is easy to see Qk = 1 from Lemma 3. Thus (ii) of the lemma is proved. 
REMARK 3. Let k be as in Lemma 5. The proof of the Theorem in [9] implies 

that, if jk is not in T(r, k) for any natural number r dividing Jk and less than Jk, 
then (ek R(k) : ekU(k)) = 2a , where a = 0 or 2gk - 2 according as gk = 1 or > 1. 

LEMMA 6. Let k be an imaginary abelian field in which exactly three distinct 
prime numbers are ramified. Then (ek R(k) : ekU(k)) = 2t for some rational 
integer t with 0 ~ t ~ [k : Ql/2. 

PROOF. Let I be any odd prime, L the highest power of I dividing (ek R(k) : 
ekU(k)), and k' the maximal subfield in k of I-power degree. Theorem 5.2 of [10] 
then states that 

L = IT (R(k') : U(mx' k')) 
x 

where the product is taken over the characters X in Xk of order prime to 1 and, for 
each such X, mx denotes the product of prime numbers P ramified in k' such that 
X(p) = 1. However, in the above, each X is not principal, so that the number of 
prime numbers dividing mx is less than 3. Therefore L = 1 by Proposition 5.2 of 
[10]. This means that (ek R(k) : ekU(k)) = 2t for some rational integer t ~ o. 

Now, let P1,P2,P3 be the prime numbers ramified in k. For simplicity, we put 
G = Gal(k/Q), T = T(P2' k), and 

d1 = (ek U(P1,k): ek U(P1P2,k)), 
d2 = (ek U(P1P2, k) : ekU(k)). 

Then, again by Proposition 5.2 of [10], (ek R(k) : ekU(k)) = d1d2. Lemma 4 
says that, if jk E T, then d1 = 1; while we see easily that, even if jk fj. T, d1 
divides ITI[G:T]/2 = (ITI1/ITI)[k: Q]/2 (d. [10, 5]). Since d1 is a power of 2, it follows 
that d1 = 1 also when ITI is odd. Furthermore, note that ITI1/ITI ~ 21/2 if ITI 
is even. We have therefore d1 ~ 2[k:Q]/4. Similarly, we also have d2 ~ 2[k:Q]/4. 
Consequently 

2t = (ek R(k) : ekU(k)) ~ 2[k:Q]/2. 

This completes the proof of Lemma 6. 
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LEMMA 7. Let k and K be imaginary abelian fields, with k contained in K. 
Then Qk divides QK if the 2-power degree roots of unity in K are also contained 
in k. Furthermore, Qk = QK if [K: k] is odd. 

PROOF. See [10, §7] as well as [4]. 
For any natural number n and any abelian field k, we let Z(n, k) denote the com-

positum in Gal(k/Q) of the decomposition groups, for k/Q, of all prime numbers 
dividing n. 

LEMMA 8. Let k be an imaginary abelian field, r a natural number dividing 
lk> and p a prime number dividing lk/r. Suppose that T(p, k) is disjoint from the 
compositum of {l,jk} and Z(r, k) in Gal(k/Q). Then (ekU(r, k) : ekU(rp, k)) = 1. 

PROOF. The assumption implies that the R(k)-module ekU(r,k) is free over 
T(p, k). Then the arguments in [9, §5]lead us to the conclusion of this lemma. 

LEMMA 9. Let t be any natural number. Let p be a prime number == 1 
(mod 2(t + 1)); let ql and q2 be distinct prime numbers == 1 (mod p). Further-
more let k be a compsitum of the real cyclic field l of degree t + 1 with conductor 
p, an imaginary cyclic field with conductor ql, and an imaginary cyclic field with 
conductor q2. Then (ek R(k): ekU(k)) = 2t+ l , Qk = 2, so that ck = 2t. 

PROOF. Let k' be the (real) cyclic field of degree t + 1 with conductor p and 
k" the maximal subfield of k with conductor qlq2; k = k'k". It then follows from 
Lemma 7 that Qk = 2, since k ~ A and since Qkll = 2 by Satz 26 of [4]. It also 
follows that 

jk E T(qlq2, k) = Z(qlq2, k), jk ¢. T(qI, k) U T(q2, k), 
T(p, k) n Z(QlQ2, k) = 1. 

Hence, by Proposition 5.2 of [10] and Lemma 8, 

(ek R(k) : ekU(k)) = (ek R(k) : ek U(QlQ2, k))(ek U(QlQ2, k) : ekU(k)) 
= 2[Gal(k/Q):Z(QIQ2,k)] = 2[k':Q] = 2t+l. 

Thus Lemma 9 is proved. 

3. Let us now begin to prove our Theorem. 
PROOF OF THEOREM. Let k be an imaginary abelian field. Since Qk = 1 or 2, 

Proposition 1 shows that 2ck is a natural number dividing 2([k : Ql!2)[k:Q]/2. The 
assertion (i) of the Theorem is an immediate consequence of Theorem 5.1 in [10] and 
Satz 23 in [4] (see Lemma 1). The assertion (ii) follows from Lemma 2 and Remark 
2. The first part of (iii) follows from Lemma 6. Now, let K = Q( J-2p, ..;q), where 
p and q are distinct prime numbers == -1 (mod 4). Then Satz 26 of [4] shows 
QK = 2. Since jK E T(2, K)nT(p, K), (ej(R(K) : ej(U(K)) = 1 by Proposition 5.2 
of [10] and Lemma 4, so that cj( = ~. This fact, Lemma 5, and Lemma 9 verify the 
second part of (iii). The assertion (iv) will be obtained from the following lemmas 
(in particular, Lemmas 11, 12), Proposition 2, and above-mentioned Remark 2. 

1 An abelian field k will be called a cyclic field if Gal(k/Q) is a cyclic group. 
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LEMMA 10. Let K be an imaginary abelian field. Assume that K is a com-
positum of its subfield k and k'; K = kk', and that all prime numbers ramified in 
k are completely decomposed in k'. If furthermore k is real, then 

(eKR(K) : eKU(A, K)) = (R(k) : U(k))fK:kJ/2. 

PROOF. It follows from the assumption that ik is prime to ik'. Hence Gal (K / Q) 
is the direct product of TUk' K) ~ Gal(k/Q) and TUkl, K) ~ Gal(k' /Q), so that 
we have a canonical Q-linear isomorphism rJ: 6(K) ~ 6(k) ®Q 6(k'). Since 
ZUk,K) = TUk,K), rJ induces UUk,K) ~ U(k) ®z R(k') as well as R(K) ~ 
R(k) ®z R(k'). Therefore, if k is real, then rJ also induces 

eKR(K) ~ R(k) ®z ekIR(k'), 

The lemma now follows from these isomorphisms. 

LEMMA 11. Let n be any natural number and Pb P2, P3 three distinct prime 
numbers == 1 (mod 4n). For each i E {I, 2, 3}, let ki be a real cyclic field of degree 
divisible by n with conductor a power of Pi and take an element ai of order n in 
T(pi' klk2k3). Furthermore let K = k( A), where k is the abelian field consisting 
of all elements in klk2k3 fixed byala2a3. Then QK = 1, (eKR(K) : eKU(K)) = n, 
so that cK = n. 

PROOF. Note that all prime numbers ramified in k (i.e., Pl,P2, and P3) are de-
composed in Q(A). It then follows from Lemma 10 that (eKR(K) : eKU(K)) = 
(R(k) : U(k)). On the other hand, Gal(klk2k3/k) n T(r, klk2k3) = {I} for all 
natural numbers r dividing PlP2P3 and less than PlP2P3. Hence, by Theorem 5.4 
of[IOJ, (R(k) : U(k)) = [klk2k3 : kJ = n. Thus we have (eKR(K) : eKU(K)) = n. 
We also have QK = 1 by Lemma 3. 

LEMMA 12. Let n be any odd integer ~ 3; let Pl, P2, P3 be three distinct prime 
numbers such that Pl == 3 (mod 8), (-2/P2) = (-2/P3) = 1, Pl == P2 == P3 == 1, 
(mod n). For each i E {I, 2, 3}, let ki be the cyclic field of degree n with conductor 
Pi and let ai be a generator ofT(pi,klk2k3). Put K = k(A,y'Pl), where k is 
the subfield of klk2k3 consisting of all elements in klk2k3 fixed byala2a3. Then 
QK = 2, (eKR(K) : eKU(K)) = n, and hence cK = n/2. 

PROOF. Let F = Q( A, y'Pl), so that QF = 2 and (eFR(F) : eFU(F)) = 1 
(cf. Remark 2). Theorem 5.2 of [IOJ then shows that (eKR(K) : eKU(K)) is odd. 
Let 1 be any prime number dividing (eKR(K) : eKU(K)) and k' the maximal 
subfield in K of l-power degree. Obviously, k' is also the maximal subfield of k 
of l-power degree. The choice of Pl , P2, P3 implies that the odd Dirichlet character 
associated with Q( A) is a unique element X in XK satisfying X(Pt} = X(P2) = 
X(P3) = 1. Hence, by Proposition 5.2 and Theorem 5.2 of [10], the highest power of 1 
dividing (eKR(K) : eKU(K)) is equal to that dividing (R(k) : U(k)). Consequently 
(eKR(K) : eKU(K)) = (R(k) : U(k)). It also follows from Theorem 5.4 of [IOJ 
that (R(k) : U(k)) = n. Thus we have (eKR(K) : eKU(K)) = n. It remains to see 
QK = 2, but this follows from QF = 2 and Lemma 7. 

LEMMA 13. Let k be an imaginary abelian field, l a prime number such that 
the l-primary part of Gal(k/Q) is cyclic, and P a prime number ramified in k such 
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that IT(p, k)1 is a power of I. Then (ekU(r, k) : ekU(rp, k)) = 1 for every natural 
number r dividing fk/p. 

PROOF. This follows from Lemma 5.1 and Theorem 5.3 of [10]. 

PROPOSITION 2. Let k be an imaginary abelian field, m a natural number, and 
I a prime number not dividing [k : Q]. Then there exist infinitely many imaginary 
abelian fields K containing k such that [K : k] = I, gK = gk + m, QK = Qk, 

(eKR(K) : eKU(K)) = (ek R(k) : ekU(k)), 

and hence cK = ck . 

PROOF. By the Tschebotareff density theorem, there exist infinitely many m-
tuples (qil ... , qm) of distinct prime numbers == 1 (mod I) for which no prime 
number ramified in k is an Ith power residue (mod ql ... qm). Take such a m-
tuple (ql, ... , qm). Let K be a compositum of k and a cyclic field of degree I with 
conductor ql··· qm. Then [K: k] = I, fK = fkql ... qm, gK = gk + m. Since the 1-
primary part of Gal(K/Q) is of order I and since IT(ql' K)I = ... = IT(qm, K)I = I, 
it follows from Lemma 13 that 

m 

= II(eKU(/kql·· ·qi-l,K) : eKU(/kql·· ·qi,K)) = l. 
i=l 

Next, let X be any character in XK but not in Xk , so that the conductor of X is 
divisible by ql ... qm. As [k : Q] is prime to I, the choice of qil ... ,qm then implies 
that x(p) "I 1 for any prime number p ramified in k. Hence we have, by Theorem 
5.2 of [10], (eKR(K) : eKU(/k,K)) = (ek R(k) : ekU(k)). This and (1) induce 
(eKR(K) : eKU(K)) = (ek R(k) : ekU(k)). Further, noting that [K: k] = I is odd, 
we obtain QK = Qk from Lemma 7. Consequently cK = ck ' and the proposition 
is proved. 

4. To prove the corollary, we prepare the following lemma. 

LEMMA 14. Let K / F be an extension of imaginary abelian fields, with F con-
taining an imaginary root of unity. Then [A(F) : S(F)lI[A(K) : S(K)]. 

PROOF. For any imaginary abelian field k, let 

R(k)- = {a E R(k);jka = -a} = (1- jk)R(k), 
S(k)- = S(k) n R(k)-, et = !(1 + jk). 

Since R(k)- ~ A(k) and et A(k) = !s(Gal(k/Q))l, it follows from Lemma 6.1 of 
[9] that 

[A(k) : S(k)] = [A(k) n R(k)- : S(k)-][et A(k) : et S(k)] 
= [R(k)- : S(k)-][!s(Gal(k/Q))l : et S(k)]. 

Hence [A(k) : S(k)] = [R(k)- : S(k)-] if and only if there exists a E S(k) such 
that eta = !s(Gal(k/Q)). 
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Now, let F' be an imaginary cyclotomic field contained in F. Then Theorem 3.1 
of [9] and Theorem 2.1 of [10] imply that [A(F') : S(F')] = [R(F')- : S(F')-], so 
that 

et,(3 = ~s(Gal(F' /Q)) 

for some (3 E S(F'). Applying to both sides the corestriction map t: R(F') ---. R(F), 
we have 

4£((3) = ~s(Gal(F/Q)), £((3) E S(F). 

Therefore [A(F) : S(F)] = [R(F)- : S(F)-]. We have similarly [A(K) : S(K)] = 
[R(K)- : S(K)-]. Furthermore the restriction map R(K) ---. R(F) induces a sur-
jective homomorphism R(K)- /S(K)- ---. R(F)- /S(F)-. In particular, [R(F)- : 
S(F)-] is a divisor of [R(K)- : S(K)-], namely, [A(F) : S(F)] is that of [A(K) : 
S(K)]. 

REMARK 4. For any extension K / F of imaginary abelian fields, we can see at 
least that [A(F) : S(F)] I 2[A(K) : S(K)]. 

PROOF OF COROLLARY. As in the statement of the Corollary, let n be any 
natural number; for each x > 0, let c(x) denote the number of cyclotomic fields 
with conductor::; x and c(x) the number of cyclotomic fields K with fK ::; x such 
that hI( is divisible by n. We note that 

c(x) = ~x + 0(1), as x ---. 00. 

Let p be any prime number and let Cp denote the set of cyclotomic fields with 
conductor divisible by p and by three distinct prime numbers == 1 (mod 16np). 
Take a cyclotomic field kin Cp such that lk/p is a product of three distinct prime 
numbers == 1 (mod 16np). Theorem 5.4 of [10] and Lemmas 3, 10 then show, as 
in the proof of Lemma 11, that there exists an imaginary subfield k' of k for which 
k' ;;2 K 2p , Qk' = 1, 8n I (e;,R(k') : e;,U(k')), and hence 8n I [A(k') : S(k')]. On 
the other hand, by [9, 10], [A(k) : S(k)] = 8h;. It therefore follows from Lemma 
14 that nih;. Furthermore, for any cyclotomic field K containing k, h; I hI( 
by Lemma 5 of [8], so that n I hI(. Consequently, nlhl( always holds whenever 
K is a cyclotomic field in Cpo For each x > 0, let dp(x) denote the number of 
cyclotomic fields, not lying in Cp , with conductor divisible by p and not larger 
than X. Obviously dp(x) does not exceed the number of natural numbers::; x/p 
divisible by at most two distinct rational primes == 1 (mod 16np). Hence, by means 
of asymptotic formulae in analytic number theory, we can see that 

(2) d x - a ( x(log logx)2 ) 
p( ) - (logx)1/cp(16np) 

as x ---. 00 (see, e.g., [3]). 
Now, for any x > 0 and any y > 0, let c(x, y) denote the number of cyclotomic 

fields K with fK ::; x such that q I fK for some prime number q ::; y; let c(x, y) 
denote the number of cyclotomic fields K such that n I hI(, fK ::; x, and q I fK for 
some prime number q ::; y. According to the above argument, 

c(x, y) - c(x, y) ::; L dp(x), 
p~y 
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where p ranges over the rational primes::; y; so that 

Since 

c(x) - c(x) ::; c(x) - c(x, y) ::; c(x) - c(x, y) + L dp(x). 
p:::,y 

c(x) - c(x,.) = 0 (C(X)!l (1-D ), lou> 0 and y> 0, 

it then follows from (2) that 

lim sup c(x) - c(x) = 0 (II (1- ~)) = 0 (_1 ), for y > O. 
x~oo c(x) < p logy 

p-y 

This completes the proof. 

737 

REMARK 5. The above proof is essentially based upon the analytic class number 
formula for abelian fields. 

We have used, in the proof of the Corollary, a simple fact on the divisibility for 
the relative class number of a cyclotomic field. Let us add in passing a similar but 
somewhat stronger fact as follows: 

PROPOSITION 3. Let K be a cyclotomic field with conductor divisible by distinct 
prime numbers p and q. Suppose that q > 2 and that the order a of q (mod pu) is 
odd, where u = 1 or 2 according as p > 2 or p = 2 (so that 2a divides u(p - 1)). 
Then ph"K is divisible by {(q - 1)/2}u(p-l)/2a. If, furthermore, q"t 1 (mod p) or 
q == 1 (mod p2u), then h"K is divisible by {(q _1)/2}u(p-l)/2a. 

PROOF. Indeed class field theory (together with genus theory and the ambiguous 
class number formula) provides an algebraic proof of the proposition (see, e.g., [1]) 
but, in the following, we deduce the proposition from some consequences, in [4, 8, 
9], of the analytic class number formula. 

Again by Lemma 5 of [8], we may assume that K = lKupq. Let I be any prime 
number dividing (q - 1)/2, and e the natural number such that Ie II (q - 1)/2. It 
suffices to show that 

(3) 
where 

leu(p-l)/2a-ol h"K 

8 = 1, if I = p, e = 1, and hence a = 1, 
= 0, otherwise. 

For each character X in X K, we let 

8(X) = 2-1 L X(x)x, 
upq x 

the sum taken over the natural numbers x ::; upq prime to pq. Let X be the set 
of odd primitive Dirichlet characters with conductor upq. Then the analytic class 
number formula implies 

(4) h"K = hKUphKq II 8(X)· 
xEX 
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Each 8(X) in the above is known to be an algebraic integer (cf. [4, §28]). Let <P 
be the set of odd primitive Dirichlet characters of order dividing u(p - 1) / a with 
conductor up. We note that ¢(q) = 1 for every ¢ in <P. Let 'lit denote, for each 
natural number t ~ e, the set of even primitive Dirichlet characters of order 1t with 
conductor q. Take any ¢ in <P and any 1/J in 'lit so that ¢1/J belongs to X. As in [4, 
§28j, simple calculations show that 

8(¢1/J) = L ¢(qx)1/J(upy), 
(x,y) 

8(¢) = L ¢(qx) - q - 1 B(¢). 
(x,y) up 

Here, in both sums, (x,y) ranges over the pairs of natural numbers such that 
x < up/2, y < q/2, and y/q < x/up; and further 

B(¢) = L ¢(x')x', 
x' 

the sum taken over all natural numbers x' < up/2. On the other hand, 8(¢) = 0 
since ¢(q) = 1 (cf. Lemma 2.1 of [9]). Therefore 

8(¢1/J) = L ¢(qx)(1/J(upy) - 1) + q -1 B(¢), 
(x,y) up 

with ((q - 1)/up)B(¢) an algebraic integer in Kp - 1 . If follows from this that 

(5) 8(¢1/J) = q - 1 B(¢) (mod I), 
up 

where I is a unique prime ideal of Kit dividing 1. Hence, if 

(6) q-l B(¢) =0 (mod 1) 
up 

holds, then 9(¢1/J) = 0 (mod I) so that 

(7) II 8(¢1/J') = 0 (mod 1). 
'I/J'Eiflt 

Now, assume that ¢ is of order less than \O(up) = u(p -1). In such a case, p > 2 
and, by [4, §31j, B(¢) = 0 (mod p), which implies (6) and therefore (7). Thus we 
obtain that 

(8) II ( II 8(¢'1/J')) = 0 (mod 1u(p-l)/2a), 

cf>' 'I/J'Eiflt 

if a> 1, 

= 0 (mod lU(P-l)/2-c,o(P-l)), if a = 1, 

where ¢' ranges over all characters in <P of order less than u(p - 1). 
Assume next that ¢ is of order u(p - 1), so that a = 1. In the case where 1 =f:. p 

or e ~ 2, (6) is easily verified and so is (7). Thus we have 

(9) II ( II 8(¢II1/J')) = 0 (mod lc,o(P-l)), 
cf>" 'I/J'Eiflt 
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where rI/' ranges over the characters in q, of order p - 1. In the case wher l = p, 
e = 1, and hence t = 1; it follows from [4, §31] that B(¢) == 0 (mod pjP,) for some 
prime ideal P, of Kp - l dividing p. Therefore, by (5), 8(¢t/J) == 0 (mod pjP,*), 
where p = ( and fJ3* is a unique prime ideal of Kp(p-l) dividing fJ3. Taking the 
norm for Kp(p-l)jQ of the above, we have 

(10) II II 8(¢"'1//) == 0 (mod p'P(P-I)-I), 

</>" ""EW, 

with ¢" running over the characters in q, of order p - 1. 
Since the disjoint union U!= I { ¢' '1//; ¢' E q" '1// E 'Ill tl is contained in X, (3) 

follows from (4), (8), (9), and (10). The proposition is thus proved. 
REMARK 6. Class field theory also shows that there exists a subgroup 

H of the ideal class group of K such that H is isomorphic as a group to 
(lj((q - l)j2)l)u(p-I)/2a-1 and such that a iK = a-I for all a in H. 
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