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On the stiffness of surfaces 
with non‑Gaussian height 
distribution
Francesc Pérez‑R�fols1,2* & Andreas Almqvist1,2

In this work, the stiffness, i.e., the derivative of the load‑separation curve, is studied for self‑affine 
fractal surfaces with non‑Gaussian height distribution. In particular, the heights of the surfaces are 
assumed to follow a Weibull distribution. We find that a linear relation between stiffness and load, 
well established for Gaussian surfaces, is not obtained in this case. Instead, a power law, which can 
be motivated by dimensionality analysis, is a better descriptor. Also unlike Gaussian surfaces, we find 
that the stiffness curve is no longer independent of the Hurst exponent in this case. We carefully asses 
the possible convergence errors to ensure that our conclusions are not affected by them.

In the �eld of contact mechanics, the sti�ness, i.e., the derivative of the load-separation curve, is one of the most 
relevant functional parameters used to characterize the contact between two rough bodies. Besides the relevance 
of sti�ness on its own, it has also been directly linked to the contact thermal or electrical  conductance1. Given 
its importance, it has been studied extensively in various contexts. Unexpectedly, the most thorough studies 
concern the normal contact of elastic bodies with friction- and adhesion-free  interfaces2–9. In these studies, the 
contact of bodies with self-a�ne Gaussian surfaces against rigid �at bodies (which can be made equivalent to 
the contact of two bodies with rough  surfaces10) has been fully characterized both numerically and theoretically. 
To favour repeatability, computer generated surfaces tend to be used instead of measured ones, as they provide 
for controllable, fault-free cases. By Gaussian surfaces it is here meant that their heights follow a Gaussian prob-
ability distribution. �e self-a�nity is given by their power spectrum which, for isotropic surfaces, is given as

where q =

√

q2x + q2y  is the modulus of the wave-number, C0 is a constant that determines the rms height of the 

surface, q1 and q0 are lower and upper wave-numbers and H is the Hurst exponent, which characterizes the decay 
of the power spectrum and can be related to the fractal dimension of the surface through Df = 3 − H . For clarity, 
it is easier to de�ne wave-numbers in terms of cut-o� wavelength as qi = 2π/�i . In this manner, �0 ( �1 ) represents 
the longest (shortest) wavelength present in the surface. In a real nominally �at surface, �0 may be much smaller 
than the size of the surface and �1 goes down to the atomic size. When performing numerical studies, however, 
one is o�en constrained in the values one may pick due to computational limitations and must thus compromise 
and try to reduce convergence errors as much as possible. Once these values are �xed and the height lateral 
dimension are appropriately normalized (see Methods), H is the only parameter needed to characterize these 
surfaces. �is is certainly a reason why the study of self-a�ne Gaussian surfaces is so appealing to researchers. 
Moreover, there have for long existed several readily available and easy to implement algorithms to generate 
these surfaces, see e.g.5,11–13. �e simplicity to generate and characterize Gaussian, self-a�ne surfaces, together 
with the fact that they are an adequate representation for many natural and engineering  surfaces2, has make their 
study very popular, leading to a well established characterization of their sti�ness.

Without diminishing the relevance of the aforementioned self-a�ne Gaussian surfaces, some studies have 
pointed out that there are also other relevant applications in which non-Gaussian surfaces (i.e., surfaces with 
heights which do not follow a Gaussian distribution) are present and that the contact mechanics behaviour of 
these can di�er signi�cantly from that of Gaussian  surfaces14–19. Despite that, very few studies have been dedi-
cated to characterize the sti�ness of such  surfaces19 and it is thus much less understood. �e lesser amount of 
studies on this area can probably be attributed to two di�culties one has traditionally encountered. �e �rst 
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one is that an e�cient method to generate this type of surface with the desired degree of control (i.e., specifying 
well de�ned power spectrum and height distribution at the same time) has been  unavailable20. To overcome 
this di�culty, a recent method presented by the authors can be  used21. As outlined in the Methods, this allows 
full control of the power-spectrum and the height distribution. �erefore, it is possible to generate, and there-
fore study, well-controlled surfaces with arbitrary non-Gaussian height distributions. �e second di�culty is 
that the characterization of this type of surfaces is far more complex than the Gaussian ones, as the label ’non-
Gaussian’ encompasses an in�nite number of very di�erent distributions. To cope with this added complexity, 
most authors have used skewness and kurtosis to characterize the non-Gaussian height  distribution16,22,23, which 
is not su�cient to fully specify (and thus control) them. As a result, the in�uence of a single parameter cannot 
be isolated. �is di�culty is, unfortunately, unavoidable. �erefore, we will not attempt to study non-Gaussian 
surfaces in general but we will focus only on surfaces with heights following a Weibull probability distribution.

For the purpose of this work, the Weibull distribution is de�ned as

where b > 0 is the shape parameter, a > 0 is the scale parameter, which can be �xed by setting a unitary value 
for the rms heights, and z0 is the location parameter, which can be �xed by setting a zero mean of the heights. 
Note that the function is reversed in terms of (z − z0) with respect to the usual formulation. With this restric-
tions, the distribution introduces only one new parameter, b, which leads to a manageable study. �e shape of 
this distribution is shown for three chosen parameters in Fig. 1 (insert), together with the Gaussian distribu-
tion. �e relevance of this distribution is that it can be used to model surfaces that have su�ered mild wear or 
plastic deformation, be it during operation or manufacturing. Indeed, a su�ciently low value of b suppresses 
the probability of the occurrence of high values of height (in fact, it is zero above a certain value). �is results 
in the formation of a plateau with much shallower slopes and less prominent summits on the upper part of the 
surface, which would be expected in the aforementioned situations. Note that this approach gives a much more 
realistically looking surface than simply removing all the material above a certain threshold, as it does not create 
an unrealistic, totally �at plateau. Instead, the plateau formed, although capable of bearing a large load, is still 
rough. For the range of b studied here, an increase of b (e.g., between b = 2 and b = 2.5 ), leads to a distribution 
similar in nature but closer to the Gaussian one and thus the behaviour of the resulting surface can be expected 
to be closer to that of a Gaussian surface. Note, however, that it is not true that the Weibull distribution tends 
to a Gaussian one as b → ∞ . Instead, this distribution has a skewness of 0 and a kurtosis close to 3 (i.e., it is 
close to a Gaussian distribution) when b ≈ 3.6 but then continues towards a negative skewness and a kurtosis 
larger than  324.

�e e�ect of b in the range considered is depicted in Fig. 1 (le�). As expected, having �atter tops (smaller b 
for b < 3.6 ) reduces the average separation at in�nitesimally small loads (i.e., when the surfaces barely touch) 
thus making the response much sti�er at low loads. At higher loads, however, the similarity of the valleys make 
the response converge towards the Gaussian surface for all values of b.

Besides the previously given trivial description, a detailed analysis of the sti�ness of surfaces with heights 
following a Weibull probability distribution has not been presented in the literature. �erefore, in this work we 
attempt to characterize in more detail the sti�ness of these surfaces and how it evolves with increasing load. 
Moreover, we aim at comparing the sti�ness of these surfaces with that of Gaussian surfaces, which has been 
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e−(−(z−z0)/a)b if (z − z0) ≤ 0;
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Figure 1.  Le�: Separation vs. contact pressure for a Gaussian surface and three Weibull surfaces with b = 1.5 , 
b = 2 and b = 2.5 . On the insert, the corresponding height distributions. Right: Examples of surface realizations 
corresponding to a Gaussian surface (bottom) and a Weibull surface with b = 1.5 (top).
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studied in much greater detail. By that, we also expect to uncover which behaviours are common to all rough 
surfaces and which are speci�c to those with Gaussian height distribution.

Results and discussion
�e characterization of sti�ness of self-a�ne fractal surfaces is not without di�cultly, as the convergence with 
respect to the numerical parameters characterizing the fractal surface is rather slow. Following earlier  works25–27, 
three non-dimensional parameters must be considered, i.e., L/�0 , �0/�1 and �1/�x , all of which must go to 
in�nity in order to obtain a well resolved representative self-a�ne Gaussian surface. �e �rst parameter relates 
the longer wavelengths to the size of the studied domain. If it is too small, the random �uctuations due to the 
stochastic nature of surface roughness cannot average out and the surface considered is not representative of 
all surfaces nominally equal. �e second parameter, �0/�1 , speci�es the breath of the self-a�ne region. It it is 
too small, the self-similarity of the surface is lost. Finally, �1/�x compares the grid size, �x , with the smallest 
wavelengths present in the roughness, �1 . �e ratio must be small enough for these to be well resolved. Clearly, 
increasing all three parameters at the same time is computationally challenging, since �0 and �1 can be found 
both at their numerator and denominator. Moreover, insu�ciently large values can lead to spurious e�ects, as 
described below. �erefore, before studying the surfaces with Weibull height distributions, the stage is set by 
reviewing the sti�ness of Gaussian surfaces and characterizing the e�ect of not having su�ciently large values 
on them.

Gaussian surfaces. �e sti�ness of self-a�ne surfaces with Gaussian height distribution has been theoreti-
cally predicted to increase linearly with load, in a fashion independent of the Hurst  exponent4. As expressed by 
Müser and  Wang28, this result derives from the observation that, when load increases, one �nds “more of the 
same”, i.e., that the contact stress distribution and the size distribution of the contact patches remain unchanged, 
and the contact only evolves by adding more contact patches. As also argued by Müser and  Wang28, however, this 
cannot possibly hold exactly, as the larger contact patches are severely suppressed at low loads. Moreover, when 
the contact is very small (following Müser and  Wang28, the threshold can be roughly estimated to be at a value 
of π(2 − H)�2s /(16(1 − H)) ), the patches behave independently instead of as contacts pertaining to a self-a�ne 
surface. �erefore, the Hertzian  theory29 would be more suitable to study them. �ese limits, however, leave a 
su�ciently broad range of contact sizes in which this “more-of-the-same” assumption is a good approximation 
and a linear relation is usually found between sti�ness and  load3,6. �e need for the aforementioned assumption 
is highlighted when studying cases where the linear relation is not observed. For example, Pohrt and  Popov7 
observed that, as load decreased, the linear relation turned into a power law relation with an exponent smaller 
than one, dependent on the Hurst exponent. �is was later related by Pastewka et  al.6 to a size e�ect, i.e., a 
small value of L/�0 . In particular, they could show that the transition from the linear to the power law relation 
occurred at ever lower loads with increasing L/�0 . One can therefore infer that, on the limit L/�0 → ∞ , the 
linear relation should hold for all loads. A theoretical discussion supporting this reasoning was also presented 
by Pastewka et al.6. One can also attain an intuitive explanation for the failure of the linear relation at low loads 
and why it is enhanced for small domains by connecting it with the number of contact patches. When the load 
is su�ciently small for the linear relation not to hold (the reader is referred to the discussion around Fig. 2 for a 
numerical estimate), the waves with wavelength close to �0 , which typically have an amplitude larger than waves 
with smaller wavelengths, will dominate the location of the initial contact points. �erefore, the initial contact 
spots will appear separated by a distance of the order of �0 . If L/�0 is small, very few of this contacts will be 
present. With so few contacts, the “more-of-the-same” assumption discussed by Müser and  Wang28 cannot hold 
and the linear relation is lost. As load increases, however, more and more contact will appear and these will start 
to interact with each other. Eventually, there is enough contacts of various sizes so that the “more-of-the-same” 
assumption holds and the linear relation is recovered. �e linear relation can also be recovered by increasing the 

(a) (b) (c)

Figure 2.  E�ect of varying the di�erent fractal non-dimensional parameters on the sti�ness curve of a Gaussian 
surface; L/�0 (a), �0/�1 (b) and �1/�x (c). In all cases the reference case is characterized by L/�0 = 4 , �0/�1 = 8 
and �1/�x = 16 and only the speci�ed parameter is changed. �e black dotted line indicates a linear relation 
while the red one marks a power law with exponent 0.9.
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ratio L/�0 . Indeed, as this ration increases, more contact patches are present at the initial stage of the loading 
and the linear relation can be recovered at a lower load. One can also note that, following a similar reasoning, 
one a too low breath of the fractal region, �0/�1 should also be expected to cause the linear relation to disappear. 
Finally, having a too low resolution ( �1/�x ) can be expected to lead to errors in the computation of the sti�-
ness, which should be expected to be larger at smaller loads. It is thus clear that a good characterization of the 
sti�ness requires su�ciently large values for the three parameters characterizing the numerical representation 
of the self-a�ne surface.

In Fig. 2, the sti�ness of self-a�ne surfaces with Gaussian height distribution for various values of H, L/�0 , 
�0/�1 and �1/�x is depicted. A reference case (depicted as a solid line in the three sub-�gures) is �rst considered. 
�is case is given by L/�0 = 4 , �0/�1 = 8 and �1/�x = 16 , which leads to a grid-size of 512 × 512 points, and 
three values of the Hurst exponent are considered. �e sti�ness of this reference case behaves in a manner similar 
to what should be expected according to the previous discussion. At su�ciently large loads, the sti�ness is close 
to a linear relation independent of H, while at low loads a power law with exponent smaller than one appears. It 
is apparent, however, that the curve deviates slightly from the linear trend even at large loads. Indeed, the best �t 
to a power law obtained when considering load larger than 5 × 10

−3 , depicted in red in Fig. 2, gives an exponent 
of 0.90 instead of 1. �is value is, nevertheless, (almost) independent of H. �e exponent depends, however, on 
the range of loads used, as it increases if only larger loads are considered. For instance, it becomes 0.95 if one only 
considers loads larger than 5 × 10

−2 ( ≈ 0.5 % real contact area) and 0.99 if the cut-o� is set at a load of 5 × 10
−1 

( ≈ 5 % real contact area). As a �nal comment, one can observe that, as expected from the discussion above, the 
sti�ness at low loads does depend on the Hurst exponent.

Let us now focus of the e�ect of increasing domain size, i.e., increasing L/�0 while keeping everything else 
unchanged. In Fig. 2a it is apparent that the sti�ness approaches the linear relation when L/�0 is increased. �is 
is particularly noticeable at low loads, since the departure from the power law occurs at a lower load. �is occurs, 
indeed, as discussed in the opening of this section. In some results available in the literature (see, e.g., Fig. 1 by 
Pastewka et al.6), an almost perfect linear relation is observed until the curves with di�erent L/�0 deviate from 
each other. �is behaviour, which follows the expectations given by the discussion above, is not observed here. 
Instead, the curves split at a load of 5 × 10

−3 and the trend considering loads larger than this value is best �tted 
by a power law with exponent 0.90. An explanation for this discrepancy between the results presented here and 
those by Pastewka et al.6 is probably related with the breath of the fractal spectrum, given by �0/�1 . As seen in 
Fig. 2b, increasing this value also leads to the curves approaching the linear relation. Moreover, this also explains 
why the exponent of the �tted power law tends to 1 as load increases. At higher loads, the longer wavelengths 
dominate the sti�ness by being �attened and adding smaller wavelengths do not change it substantially. At lower 
loads, however, the longer wavelengths cannot be �attened as severely and thus the detail of the contact at their 
tops become more relevant. �erefore, one can anticipate that the expected behavior, similar to that presented 
by Pastewka et al.6, should be recovered as �0/�1 increases. It should be noticed, however, that the convergence 
towards a linear relation between sti�ness and load as L/�0 → ∞ and �0/�1 → ∞ has been shown to be rather 
 slow3,9. In fact, �0/�1 = 512 was used by Pastewka et al.6 to obtain their results. Incidentally, a power law similar 
to the one presented here has been found elsewhere in the literature (see e.g. Paggi and  Barber5) using a similar 
range of parameters controlling the numerical representation of the surface. Looking �nally at the e�ect of �1/�x , 
a much smaller e�ect can be observed in Fig. 2c, which indicates that the reference value of �1/�x = 16 was 
already su�cient and maybe even larger than necessary.

Weibull surfaces. Having reviewed the convergence of Gaussian surface, the attention is now directed to 
the Weibull surfaces. �e convergence of their sti�ness with L/�0 , �0/�1 and �1/�x is depicted in Fig. 3 for 
H = 0.8 and three values of b. Placing �rst the attention to L/�0 (Fig.  3a), the behaviour is not as expected 
given the results for Gaussian surfaces. Unlike in that case, the major di�erences with increasing L/�0 do not 
occur solely at low loads but are rather spread throughout the whole load range studied. �is could hint at an 

(a) (b) (c)

Figure 3.  E�ect of varying the di�erent fractal non-dimensional parameters on the sti�ness curve of a surface 
with Weibull height distribution; L/�0 (a), �0/�1 (b) and �1/�x (c). �e value of the parameters not varied are 
indicated in each sub-�gure. �e black dotted line indicates a linear relation.
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intrinsic di�erence between Weibull and Gaussian surfaces. However, it is more likely related to a shortcom-
ing of the method to generate fractal surfaces with non-Gaussian distribution which, as discussed in Methods, 
might introduce errors in surfaces with a too low value of L/�0 . At a value of L/�0 = 8 , however, the surface 
can be expected to be generated with su�cient accuracy. �e study is therefore followed with L/�0 = 8 . Given 
the results in the previous section and in order to restrict the grid size while keeping L/�0 = 8 , the parameter 
�1/�x is considered. �e convergence of the sti�ness curve with this parameter is depicted in Fig. 3c. It is clear 
that halving its value to �1/�x = 8 with respect to the reference value does not a�ect signi�cantly the results. 
Keeping this value of �1/�x , and still having L/�0 = 8 , the fractal breath, �0/�1 is �nally considered. In this 
case, the expectations are met and the errors are concentrated at low loads. At high loads, the low wavelengths 
have a smaller impact and thus their absence is felt to a lesser extent. Importantly for the comparison made in 
the following section, the sti�ness deviates further away from the linear relation. Moreover, the e�ect of the 
breath is smaller than that of the domain size at higher loads. Because of this, it seems reasonable to choose the 
case characterized by L/�0 = 8 , �0/�1 = 8 and �1/�x = 16 to compare these surfaces with the Gaussian ones.

Comparison between Gaussian and Weibull surfaces. Based on previous discussion, L/�0 = 8 , 
�0/�1 = 8 and �1/�x = 16 are chosen to compare the surfaces with Gaussian height distribution with those 
with Weibull height distribution. �eir sti�ness, for three di�erent values of the Hurst exponent, is depicted in 
Fig. 4.

If one �rst looks at the lower loads, the behaviour of the Weibull surfaces seem to be completely di�erent 
from that of the Gaussian surfaces. Given the convergence errors shown in Fig. 3b, however, it would be risky to 
venture describing these di�erences here. It is clear, however, that much broader fractal breath is needed to obtain 
a consistent result as compared to what is needed for Gaussian surfaces. Possibly, this need could be related to 
the �atness of the tops. Indeed, by decreasing the breath, the tops might become arti�cially too �at. �erefore, 
one might conjecture that, with a larger breath, these tops turn rougher and the curves tend towards a behaviour 
similar to that of Gaussian surfaces, as it might be insinuated by the case H = 0.8.

At su�ciently large loads, i.e., around p > 5 × 10
−2 , the sti�ness can be described by a power law with respect 

to the contact pressure. Unlike the case of Gaussian surfaces, where the exponent tends to one, the exponent 
of Weibull surfaces decreases with decreasing b, as depicted in Fig. 5. �is trend can be related to the shape of 
the surface tops. �e smaller b is, the �atter these tops are. Since a �atter top is also sti�er, the overall sti�ness 
of the surface decreases to a lesser extent when load is reduced. It is also apparent that the di�erences between 
di�erent Hurst exponents become more acute as b decreases. Moreover, a linear relation seems to hold between 
the exponent and b for a given Hurst exponent. Noting that the Weibull distribution becomes rather close to 
a Gaussian one when b ≈ 3.6 , the obtained exponents for the Gaussian distribution are placed at this point in 
Fig. 5. Extending the lines corresponding to the Weibull cases, it seems apparent that the linear relation can be 
extended towards values of b larger than what has been studied.

Discussion
�e results presented here are consistent with the linear relation already indicated in the literature for the case of 
surfaces with Gaussian height  distribution3,4,6. One should bear in mind, however, that convergence with increas-
ing fractal parameters, specially L/�0 and �0/�1 is notoriously di�cult to achieve. Indeed, the deviation from the 
linear relation in several works in the  literature5,7,9, as well as the ones presented here, can be linked to insu�cient 
values of L/�0 and/or �0/�1 . �is result can probably be generalized by noting that, at the loads studied, only 
the higher peaks engage in contact. �erefore, it can be hypothesized that any surface with a height distribution 
with an upper tail similar to a Gaussian distribution will behave similarly as a Gaussian one. An example of such 
surfaces could be a surface with a Weibull height distribution reversed in comparison to the ones studied here. 
�e height distribution of the surfaces considered here, however, have an upper tail signi�cantly di�erent than a 
Gaussian distribution and thus their higher peaks look completely di�erent. Because of that, the sti�ness is quite 

Figure 4.  �e sti�ness of surfaces with Gaussian or Weibull height distributions, for three values of the Hurst 
exponent H. �e black dotted line indicates a linear relation.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1863  | https://doi.org/10.1038/s41598-021-81259-8

www.nature.com/scientificreports/

di�erent from that observed in Gaussian surfaces, to the point where the linear relation is no longer observed. 
Instead a power law relation, with exponents within the range 0.7–0.8 seem to �t the observations.

To make sense of the observed di�erence, it is interesting to recall the derivation presented by Paggi and 
 Barber5. �ey established a power law relation between sti�ness and load based on arguments of dimensional 
analysis and incomplete self-similarity. �is result was shown to be consistent with other (more speci�c) theoreti-
cal ones. �is, of course, also includes the linear relation valid for Gaussian  surfaces4, which is simply a power 
law with exponent 1. Based on the results presented here, it is apparent that a power law relation should be used 
to describe the sti�ness curve of a general surface. In the particular case of a Gaussian surface, the exponent 
becomes one and thus a linear relation is observed (provided that the values of L/�0 and �0/�1 are su�ciently 
large). In other cases, such as the Weibull surfaces studied here, however, it seems that the exponent can di�er 
from unity even when convergence issues are addressed. One can therefore conclude that a power law is valid 
for a fairly general type of surface, with the linear relation being an important speci�c case.

Methods
Computation of stiffness. �e boundary element based model for friction-less elastic contact presented 
by Sahlin et al.30 is used in this work to solve the contact mechanics problem needed to compute the separation at 
a given load. �is model reduces the dimensionality of the problem so that only a two-dimensional (rectangular) 
grid is used to solve for the three-dimensional problem. To achieve this, Love’s  solution31 for the deformation 
caused at the surface by a uniform pressure distribution over a rectangular element is used. �en, the DC-FFT 
 approach32, which uses fast Fourier transform to accelerate the computation, is used to e�ciently compute the 
deformation caused by a given pressure distribution. �en, the pressure is solved for by minimizing the com-
plementary potential energy. At each relaxation step, the load is balanced by shi�ing the pressure distribution 
upwards or downwards, until a relative tolerance of 10−3 is reached with respect to the target value. �e relaxa-
tion is terminated when all points in contact, i.e., those points under positive pressure, are in the contact plane. 
�e tolerance used here is 10−6

hrms , where hrms is the rms-height of the surface roughness. In order to compute 
the sti�ness, the separation is computed at a number of target loads and at loads 1% larger. �e sti�ness, which 
is the derivative of the separation-load curve, is then estimated using �rst order �nite di�erences between these 
two values of pressure. �e results are computed and presented in a non-dimensional form. For this, the follow-
ing reference parameters for pressure, pr , height, hr , and lateral dimension, xr , are used,

where L is the length of the contact and E∗
= E/(1 − ν2) , with E and ν being the elastic modulus and Poisson 

ratio.

Fractal surface generation. To generate self-a�ne fractal surfaces with Gaussian height distribution, the 
classical method presented by Hu and  Tonder11 is used. In order to generate the surfaces with a Weibull height 
distribution, a method newly proposed by the authors have been  employed21. �e method to generate Gauss-
ian surfaces is the simplest of the two. Following Hu and  Tonder11, one starts with white noise with a Gaussian 
height distribution, which can be obtained by sampling uncorrelated values from a Gaussian distribution. �en, 
one applies a �lter in the Fourier space so that the desired power spectrum (Eq. 1) is obtained. Since the Gauss-
ian distribution is preserved under such �lter, the resulting surfaces have the desired power spectrum and a 
Gaussian height distribution. When a sample with a non-Gaussian height distribution is �ltered in this manner, 

(3)pr =

πE∗hrms

L
, xr = L, hr = hrms ,

Figure 5.  Best �t exponent for the curves in Fig. 4, considering loads above 5 × 10
−2 . �e results 

corresponding to the Gaussian surfaces are placed at b = 3.6 , since at this value the Weibull distribution is at its 
closest to the Gaussian one.
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however, its height distribution is not preserved. To allow for keeping the speci�ed height distribution, Pérez-
Ràfols and  Almqvist21 implemented a two-step method. Starting from a sample of white noise with the desired 
height distribution, the two steps applied iteratively are (i) a �lter is used in the Fourier space to obtain the 
correct power spectrum, and (ii) the height distribution is corrected via rank ordering. Under right conditions, 
discussed in detail by Pérez-Ràfols and  Almqvist21, this method readily converges and a surface is obtained with 
the desired power spectrum and height distribution.

A limitation relevant to this work is that the resulting surface might not be accurate if the value of L/�0 is 
too small. �e cause of this error is that the height distribution is achieved too exactly. To understand why this 
is a problem, one may �rst look at the generation of Gaussian surfaces with a small value of L/�0 . In this case, 
the height distribution obtained for a given realization should be expected to deviate quite signi�cantly form 
the desired Gaussian distribution, see e.g. Yastrebov et al.33. �is is because the surface is too small for a good 
average to be obtained. Only when several realizations are considered together do the heights approach closely 
to the Gaussian distribution. �is behaviour should also be expected when the surface is characterized by any 
non-Gaussian height distribution. With the algorithm used here, however, the heights are forced to conform to 
the given distribution much better than they would otherwise. Indeed, the heights can be made to follow closely 
the desired distribution even for L/�0 = 1 . �is changes the nature of the surface in ways that have not yet been 
studied. For su�ciently large values of L/�0 , however, the aforementioned issue does not pose any problem. A 
value of L/�0 = 8 should be su�cient to obtain trust-worthy  results21.
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