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1. Summary. In their interesting and pioneering paper Robbins and Monro
[1] give a method for “solving stochastically” the equation in z: M(x) = o
where M (x) is the (unknown) expected value at level = of the response to a certain
experiment. They raise the question whether their results, which are -contained
in their Theorems 1 and 2, are valid under a condition (their condition (4’),
our condition (1) below) which is statistically plausible and is weaker than the
condition which they require to prove their results. In the present paper this
question is answered in the affirmative. They also ask whether their conditions
(33), (34), and (35) (our conditions (25), (26) and (27) below) can be replaced
by their condition (5”) (our condition (28) below). A counterexample shows
that this is impossible. However, it is possible to weaken conditions (25), (26)
and (27) by replacing them by condition (3) (abc) below. Thus our results
generalize those of [1]. The statistical significance of these results is described

in [1].

2. Statement of the problem. Let H(y | z) be a family of distribution func-
tions which correspond to real values of the parameter z. Write

M(z) = _[:de(ylx).
We postulate that
W (ME[sC<w, [ G-M HG|D)S "<,

and that either
@ M) £a—24, forz < 0,
M(zx) = a + 3, for z > 9,

for some 6 > 0, or else
-l M) < aforz < 0,
(3a) M) = o
M(z) > aforz > 6,

and, for some positive §,

(3b) M (z) is strictly increasing if |z — 0| < &
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and

30) |z—1:l|fg6 | M(x) — a| > 0.

Let {a.} be a sequence of positiye numbers such that

(4) gan = o,
(5) éaﬁ < o,

Let z; be an arbitrary number. The Robbins-Monro convergence scheme is
defined recursively for all n by

Tnpt = Tn + Gl = Yn), .

where y, is a chance variable with distribution function H(y |.). We shall

prove the following
TueoreM. If (1), (4), (5), and either (2) or (3) (abc) hold, then x. converges
stochastically to 6.

3. Proof of the Theorem. Let
bs = E(xn - 0)2:
dy, = E[(IB» - 0)(M($”) - a)],

0= [ - araHo 2 |-

Then, from (1),
(6) 0<en=<o+ (C+|a|))="~r (say).

An examination of the proof of [1] shows that, since (6) is valid, the fol-
lowing results of [1] hold under our assumptions:

™ b, — a limit, say b, asn — ©;

® da = 0;

)] z; Undp < 0}

(10) bat1 = b1 + ; a?ej -2 ; a;dj.

From (4) and (9) we obtain

(11) lim inf d,, = 0.

Let ny < mz < -+ be an infinite sequence of positive integers such that

(12) lim d,; = 0.
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We assert that x.; converges stochastically to 6. If this were not so, there
would exist an infinite subsequence &y < &, < --- of the sequence of n;, and
positive numbers ¢ and 5 such that, for all j,

(13) P{ldy— 60> 1) > e
But then for all ¢; we would have

di; = El(ny — 0(M(w) — o)]
Ellz,; — 0| | M(2t;) — ]
2 e inf |M@) — af

|z~ 21

(14)

From either (2) or (3) (abe) it follows that the last.member of (14) is positive.
This contradicts (12) and proves the assertion.

Let e and # be arbitrary positive numbers. Our theorem is proved if we can
demonstrate the existence of an integer N(», €¢) such that, if n > N(n, ¢),

(15) P{la, — 0|>9} S e
Let s be a positive number such that .

s 4+ 8 _e€
(16) - < 5

Since z.; converges stochastically to 6 there exists an integer N, such that

(17) P{|xy, — 0] = s} <;_,
and

0 2 s
(18) ,.=EN', (129 < 2—ho

Define, for n > N,,
b)) = E{(xn — 0)*| 2w, = 2}.
From (6) and (10) we obtain
(19  NESeE-0'+h X ase-0+:.
Jj=No

Consequently, when n > N,

2
(20) P{|x,,—o|gn IxNo—0|<‘s}<—s-;-|;—s<§

by (19) and (16). From (17) and (20) we conclude that (15) holds with N(», ¢) =
" N,. Thus our proof is complete.
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4. Two counterexamples.

4.1. We show that (1) ((4) in [1]) cannot be completely removed. Suppose
that 8 = @ = 0, and define H(y | z) for + < 1 in any way whatever provided

only that )
M(x) = =z, -1 =z <1,
M(x) = —1, r < -1
For all z such that
k 1 k+1 1
e Sise< i
define H(y | x) as follows:
(22) ) H(y|=z) =0,
(23) Hy|= =1~ 7}2,
(24) Hy|2) =1,
We have M(z) = 1 for x = 1. Thus M(z) satisfies
(25) M(z) is nondecreasing,
(26) M) = o,
dM (x)
@ T |, >0

(These are the conditions (33), (34), and (35) of [1].)
Now let a, = 1/n and z; > 2. We have

Ploan D> 2| lth=ta= s =¢o=—-1} 21— =

for allm > 1, and
‘Ploy > m} 2 34.

Hence there is a positive probability that z, — .
4.2. We show that the condition

M) < a,
M) > a,

r <49,

28
(28) z >0,

yS—l,
—-l<ys2% -1,

y> 2%k - 1.

1
nt

(which is condition (5”) of [1]), and the condition (1) (or even the stronger con-
dition (4) of [1], i.e., that there exist a positive constant C’ such that

(29) [ anw)a =1
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identically in x) are not sufficient for the theorem to hold. Let a, = 1/(4n),
9§ = a = 0. For all x we define
(30) Hy|z) =0, y=M@),

(31) Hylz) =1, y> M)
We define M(0) = 0, M(1) = 1. Letz; = 1. Thenx, = 3. If x, = y, forn = 2
we define M (y,) = (4n)~". Since >_n-21/(16n%) < %, we have

for all n. We can define M (x) at points z not included in our construction above
in any manner compatible with (28).

The author is obliged to his colleague Professor.J. C. Kiefer for helpful dis-
cussions while this paper was being written.
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