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ON THE STOCHASTIC DYNAMIC PROGRAMMING IN A 

  STOCHASTIC SYSTEM AND THE MEASUREMENT 

     OF A UTILITY FUNCTION OF AMOUNT 

         OF MONEY IN THE SYSTEM

       By 

Yasuo KUGIMIYA* 

(Received. Nov. 30.  1968)

    An analytic decision rule is developed for a problem of multi-stage stochastic 

 strategy-making in a stochastic system. The problem of multi-stage stochastic 

 strategy-making is characterized as making of an optimal sequence of strategic 

 functions which is so called "stochastic dynamic programming." 

    On the basis of the stochastic dynamic programming, a theoretical survey will 

 be conducted from a new angle of the measurement of a reasonable utility function 

 of amount of money in the stochastic system. Furthermore, one of the reasons why 

 the strategy maximizing expectation of amount of money produces contradiction will 

 be illustrated. And it will be also illustrated that " Bernoulli's utility function"  is 

 not always applicable but it is applicable only through some modifications in the 

 system. 

   The author wishes to express his hearty thanks to Professor T. Kitagawa for his 

continuous encouragement and guidance throughout this work.

   § 1. Introduction 

   Let us call employment of a strategy on a stochastic scheme " stochastic 

strategy-making." In multi-stage stochastic strategy-making, a decision is made at 

each stage on the basis of the information available at that stage. That information 

typically consists of realized values pertaining to the previous and current stages 

and expectations pertaining to the ensuing stages. Optimal strategy to such problem 

consists of (i) an optimal first stage decision, and (ii) an optimal decision rule for the 

additional stages. A decision rule may be denoted as a sequence of functions of 

certain variables on those stages. And a first stage decision also may be denoted by 

functions of the certain variables in combination with the realized values of the 

variables at that stage. 

   In this paper, a sequence of functions of amount of money which denotes a de-

cision rule and each function of the sequence are called " strategic functions." And 

making of an optimal sequence of strategic functions (i. e. an optimal strategic func-

tion) from an initial time through an assigned last time in a stochastic system, on the 

basis of a criterion, is called " stochastic dynamic programming."
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   The problem of dynamic programming and the problem of stochastic dynamic 

programming have been studied extensively in recent years [2, 3, 5, 7, 10, 14, 17, etc.]. 

It may be generally agreed that the stochastic dynamic programming is conducted 

by (i) building a stochastic dynamic system, (ii) defining a feasible strategic func-

tion and determining the set of all feasible strategic functions in the system, and 

(iii) defining a reasonable criterion which measures degrees of effectiveness of any 

feasible strategic function in the system. 

   The problem of stochastic dynamic programming which we shall develop in this 

paper is characterized from the following points of view. 

   (1) In the stochastic dynamic system, a decision maker employs a sequence of 

 functions of amount of money as his strategy. He chooses his actual strategy at 

each time as the value of strategic function on the amount of his money at that time, 

and obtains (positive or negative) money at the next time. 

   (2) In the system, the decision maker adds the obtained (positive or negative) 

money to the amount of his money. If the amount of his money reaches a lower 

bound at a time by means of the sequence of strategic functions, he cannot set his 

strategies at the ensuing times, and he is bankrupted. 

   (3) If (i) a lower bound of amount of money is assigned, and (ii) a decision 

maker has an amount of money at the initial time and he chooses a sequence of 

strategic functions, the amount of his money at each ensuing time can be forecast 

by the Markov process. 

   (4) A definition of feasible strategic function is given in connection with the 

bankruptcy. 

   (5) A reasonable criterion which measures degrees of effectiveness of a sequence 
of feasible strategic functions is made objectively from an economic point of view , 
by pursuing the Markov process produced by the sequence of strategic functions and 

the lower bound of amount of money. 

   Especially, in making a reasonable criterion, the following situations are noticed. 

   In many economic situations, a realistic formulation of the problem of stochastic 

dynamic programming frequently involves a large, possibly infinite, number of stages. 

And it may be safe to remember that the real last time of programming may be infinite 

future. However, in many cases, the need arises to truncate the many-stages or 

infinite stages after a " manageable " number of stages. The original problem is then 

replaced by a "proximate " problem involving finite stages. And no generally appli-

cable criterion to such a " proximate " problem has yet been developed to the best 

of our knowledge. 

   Charnes, Dreze and Miller" state the following on the general theoretical manners 

in order to replace the original problem of a multi-stage stochastic strategy-making 

by a proximate problem. 

   The terminal conditions of the proximate problem somehow reflect the relevance 

of the future (beyond the truncation point) for immediate decisions. These conditions 

may, for instance, prescribe the terminal levels of certain variables of the system, or 

  1) See [5] p. 308.
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more generally assign  "  values" or " utilities" to such levels. Terminal conditions can 

be specified in various ways, namely, 

   (1st approach) by invoking constraints or value judgments external to the immediate 

context of the problem ; 

   (2nd approach) by establishing " convergence properties" and truncating the pro-

blem at a sufficiently remote point in time, so that solutions to the proximate problem 

will be " arbitrarily close to optimal" ; 

   (3rd approach) by deducing from an analysis of the original problem the proper-

ties that terminal conditions for the proximate problem must have, if an optimal 

solution to the proximate problem is to be consistent, under appropriate continuation, 

with an optimal solution to the original problem. 

   Now, there are many studies [1, 6, 8, 11, 14, 16 etc.] which define criterions for 

the stochastic strategy-making by means of a mathematical expectation of " utility 

of amount of money " (which is a value judgment) made from external of the imme-

diate context of the problem. And, in recent years, for the purpose of stochastic 

strategy making, the problem of measurement of an actual utility function of amount 

of money has been studied extensively [1, 6, 8, 11, 13, 16 etc.]. 

   However, even if a decision maker intends to employ a utility function of amount 

of money from external to the immediate context of the problem in making an optimal 

stochastic strategy, he must not employ the utility function only on the basis of his 

subjectivity. For instance, if a linear utility function is employed only on the basis 

of certain subjectivity, the strategy which maximizes mathematical expectation of 

utility of amount of money is equal to the strategy which maximizes mathematical 

expectation of amount of money. And it is agreed that the strategy which maximizes 

expectation of amount of money cannot always be optimal for the purpose of obtain-

ing the maximal amount of money, such as the strategies in " Petersbrug's problem " 

and " problem of portfolio selection." Therefore, if a decision maker employs a linear 

utility function only on the basis of his subjectivity, in many cases, the utility func-

tion is not applicable. 

   In a multi-stage stochastic strategy making on the basis of a stochastic dynamic 

system, one must choose his utility function so that it may not contradict any 

objective reasonable conditions in the system. And some objective reasonable condi-

tions for a utility function in a stochastic dynamic system are made from the points 

of view of the 3rd approach above. This paper intends to provide a modest con-

tribution to a utility function which does not contradict some conditions which seem 

reasonable from the points of view of the 3rd approach above. Furthermore , it will 
be shown that the utility function has an important meaning also from the point of 

view of the 2nd approach. 

   We will begin by defining some fundamental notations (in Section 2). Then we 

will build a simple stochastic dynamic system which is a base of our arguments (in 

Section 3). And we define a feasible strategic function and develop a fundamental 

manner of the stochastic dynamic programming in the system (in Section 4) . 

   Now, generally, the fundamental manner of the stochastic dynamic programming 

meets with serious difficulties. It is necessary to introduce some manners in order
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to evade the difficulties. The manners to evade the difficulties will be illustrated 

(in Sections 5 and 6). 

   Next, it is necessary to define a criterion which measures degree of effectiveness 

of each feasible strategic function , for the stochastic dynamic programming in the 
system defined in Section 3. It may seem reasonable that the criterion is defined on 

the basis of a utility function, from the point of view of the 1st approach above. 

However, we propose some assumptions concerning the utility function, which seems 

reasonable from the point of view of the 3rd approach in actual economic situations . 

And we will produce an analytic utility function which satisfies the proposed assump-

tions (in Section 7). 

   Furthermore, we see that the analytic utility function produced in Section 7 is 

really reasonable from the point of view of the 2nd approach , in the multi-stage 
stochastic strategy-making in the system defined in Section 3 (in Section 8). The 

theory in Section 8 will serve to point out many misuses of the " law of large numbers ." 

And we see that the linear utility function and the Bernoulli's utility function [4] 

are not applicable in the system defined in Section 3, from some theoretical points of 

view in the stochastic dynamic programming (in Section 9).

   § 2. Notation 

   (i) et (t =0, 1, 2, ••-) denotes a variable noticed at a time t. 

   (ii) kit and Ct (t = 0, 1, 2, ••.) denote certain stochastic variables realize themselves 
as bt and ct, respectively. Probability density functions of the stochastic variables 

Bt and Ct are denoted by nt and cbt, respectively. And, the mathematical expectation 

of the stochastic variable G(Bt) with density function rit is denoted by E(G(Bt)), and 

that of the stochastic variable G(C t) with density function Ot is denoted by E(G(C)). 

   (iii) D(Bt) denotes the domain on which the probability density function of the 
stochastic variable Bt is positive. 

   (iv) If there are no confusions by omitting the suffix which assigns a time t, 
the suffix may be neglected, so that Ct may be denoted by simple C. 

   (v) DC denotes the complement domain of a domain D. 

   (vi) Vector (cm, ••• , cN) is denoted by ,Tc or simple C. If we have j3 < ct < r 

(t= n, n+1, ••• , N) with respect to two constants 13 and r, for short, all inequalities 
are denoted by p<x<r. 

   (vii) A sequence of functions {Men), fn+i(en+), ••• , fN(eN)} are denoted by F(n, N), 
and so on. If each component function f t(et) (t = n, n+1, ••• , N) of F(n, N) satisfies 

the relation T (e t) ft(et) (or T(e t) = ft(e ,)) on a domain D with respect to a function 

T(e), for short, all relations are denoted by T(e)-< F(n, N) (or F(n, N)) on the 

domain D, and so on. 

   (viii) F(n, N; P(n, 00)) denotes the initial sub-sequence of P(n, co) composed of 

N—n-F1 component functions. And F(n, co; P(n, N)) is an infinite sequence of func-

tions in which the initial sub-sequence through the N—n+1-th function f N(e N) coincides 

with P(n, N).
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   § 3. System Building 

   Let us build a system which is a foundation for our following argument. In the 

 system, bt denotes a capital money, and xt and y, denote activity levels. A system 

is defined by the following conditions. 

   CONDITION 3.1. (i) A sequence of independent stochastic real variables {Co, C1, C2, 

---} is given . Each stochastic variable Ct realizes itself as c, at the time t+1 (t = 0, 1, 2, 

 •••}. 

   (ii) All stochastic variables Ct's (t = 0, 1, 2, •••) have a common bounded probability 

density function cbt. And we have 0 < EICtI =m < 1. 
                                           Cbt 

   (iii) There are constants 13(0 < i3 < 1) and To r < 1) which are independent of t, 
.and for which (i) we have 

(3.1)P{ n(- -13 <ct<r)} =1 (t- = 0, 1, 2, ...), 

.and (ii) we have Ot(et)> 0 on the domain (-13, r); that is, we have 

(3.2)P{-13-1-s> 5> 0 (t = 0, 1, 2, 

with respect to any assigned positive number e, in combination with a suitable chosen 

positive number 3. 
   CONDITION 3.2. (i) Constants K, M and r and the initial amount of capital money 

bo are known by a decision maker at the initial time 0, where 0 < r < m <1 and 

M < min (—K/r, bo).1) 

   (ii) The decision maker chooses a sequence of single valued non-negative functions 

{ fo(e0, Mei), ••• fN(eN)} (for short F(0, N), which is defined on the direct product 

space 11 {et; et> M}. Each function ft(et) is a continuous function on the domain 
             t=-0 

 et ; et > MI except finite discontinuous points. 

   ft(et) and F(n, N) are called "strategic function." 

   (iii) The decision maker sets his strategic value as xo=fo(bo) and y0=bo—xo at 

the initial time 0, and he earns an amount of money (which may be negative) 

<3.3)go = co • xo-Fr • yo+K 

.at the time 1. 

    CONDITION 3.3. (i) At the time t (t = 1, 2, 3, --.), the decision maker knows the 

amount of capital money at that time, b,. 

   (ii) If b, is greater than Al, the decision maker sets his strategic values as xt 
=f,(bt) and yt=bt—xt at the time t, and he earns an amount of money (which may be 

negative) 

<3.4)g, ct- xt-Fr (t =1, 2, 3, ...) 

,at the time t+1. However, if bt is smaller than or equal to M, he cannot set his 

strategic value. That is, the decision maker suffers an exact loss bt—bo (< M—b0)

   1) This value —K/r will play an important role in the following arguments. A practical 

xi-leaning of this value will be illustrated in Section 5.



20Yasuo KUGIMIYA

which cannot recover forever, and he is bankrupted. 

   CONDITION 3.4. If the amount of money gt is earned, the amount of money is 

added to  bt at the time t±1, i. e. we have 

(3.5) (t = 0, 1, 2, --) . 

   In what follows, let us call the system defined by Conditions 3.1 through 3.4 
" first type of stochastic dynamic management system

," and denote the system by 
" S . D. M. S.-I." 

   In S. D. M. S.-I, we have the following fundamental stochastic relation 

(3.6) 13,,1=bt+C, •f t(1)0+r • (b1—ft(bt))+K= (1+r) • bt±(Ct—r) • ft(bt)+K 

                                        (bt> M ; t = 0, 1, 2, -..) - 

   Now, if (i) a decision maker has an amount of capital money bn and he chooses 

a strategic function F(n, N) at a time n, and (ii) a sequence of realizations {c,„ 

en-2, • • • CN} realizes from a sequence of stochastic variables {Cn, Cn4-1, • • • , CN}, then 

the amount of capital money at a time s (n+1 �_ s N+1), b8, is uniquely determined 

through successive application of the stochastic relation (3.6). Therefore, in what 

follows, let Mb, F(n, N)) (n+1 s N+1) denote such a stochastic variable as may 

produce b, as its realization being subject to stochastic variables Ct's (t = n, n+1, 
••• , s-1), on the basis of the capital money bn and the strategic function F(n, N).

   § 4. Fundamental Stochastic Dynamic Programming in S. D. M. S.-I. 

   In order to carry out the stochastic dynamic programming in S. D. M. S.-I, first 

of all, let us define a feasible strategic function in S. D. M. S.-I. 

   DEFINITION 4.1. Such strategic function F(n, 00) as the relations 

(4.1)P{ U (Bt 111)1 bn, F(n, 00)1 0 , F(n, 00) 0 

hold true is called " bn-feasible."" 

   A bn-feasible strategic function is denoted by F(n, co ; If,i(en, f.÷i(e.+1; 

bn), fn+2(en 2 ; b.), • • • } and the set of all bn-feasible strategic functions is denoted by 

    co ; b7i)• 

   DEFINITION 4.2. An element of the set n B:(n, co ; bn) is called " D- feasible." 
                                                      bn D 

   A D-feasible strategic function is denoted by F(n, cc {Me.; D), fn÷i(en÷i; D), 

• • 1, and the set (1 (n, oo ; bn) is denoted by (n, co;D). 
                      bThED 

   DEFINITION 4.3. Let cb denote the empty set. If a strategic function F(n, N) 

satisfies the following two conditions

   1) In actual economic situations, such an attitude with respect to a feasible strategic func-

tion seems to be too strict, since any entrepreneur cannot carry out his own management activity 

without a certain amount of probability of going bankrupt. However, such an assumed attitude 

in making strategic function does not restrict the generality of argument in order to apply 

the attitude to an actual stochastic strately-making. If a decision maker admits the risk of 

going bankrupt to a certain amount of probability, our following argument can be modified 
according to the amount of risk he admits.
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(4.2)P{  U (Bt .�- M) I bn, F(n, N)} =0 , F(n, N) 0 
          n -1 

and 

(4.3)(NH- 1, co ; D(BN+1(12„, F(n, N)))) # , 

then the strategic function F(n, N) is called " bn-feasible." 

   A ba-feasible strategic function is denoted by F(n, N; b.) If Jen ; bn), f n+i(en+i ; bn), 
-•• f .v(eN; bn)} and the set of all ba-feasible strategic functions is denoted by 

   N ; bn). 

   DEFINITION 4.4. An element of the set r) N; bn) is called " D-feasible." 
                                                                   bri,7=1) 

   A D-feasible strategic function is denoted by F(n, N; D) {Men , ; D), f n÷i(e ; D), 
 • ,fN(eN; D)} , and the set fl N; bn) is denoted by N; D). 

                                    bflED 

   DEFINITION 4.5. If a steategic function is D(Bn)-feasible with respect to a stochas-

tic variable Bn, the strategic function is also called " Bn-feasible ." 

   A Bn-feasible strategic function is denoted by F(n, co ;If n(en ; Bn), f n±i(en+i ; 
BO, .in+2(e.+2 ; Bn),•or F(n, N; Bn)-=-{Men ; Bn),in+i(en+1; Bn), ,fN(eN; Bn)}. And 

the set of all Bn-feasible strategic functions is denoted by Do, Bn) or 1)'(n, N;

                                       f2(e2;b0 

                                be) 

              fo(ea; be) 
                                                       e2 

      e,D(13
2) 

                                                                     N 
N        D(4411iBi) 

                                                    2 

          AA 
   b,1 

                       0 

                                          Fig. 4.1.

   Next, let us define a criterion which measures the degree of effectiveness of any 

ha-feasible strategic function in S. D. M. 5.-1. According to the point of view of the 

first approach in Section 1, let us employ the following :
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   DEFINITION 4.6. At a time n, if (i) a decision maker has an amount of capital 

money  b,,, (ii) he assigns the last time of programming N, and (iii) he chooses a 

utility function of amount of money e(e), then the functional 

(4.4) U(F(n, N; b„);n1                              + 1 • CE{N4-1)bn, F(n, N; b.)} —e(bn)1 
                                                                  72N-1 

defined on N; b„) is called a " (b., e)-criterion functional," and a functional 

lim U(F(n, N; F(n, co ; b.)); b., e) defined on a"(n, co ; b.) is also called a " e)-criterion 
N- cc 

functional." 

   DEFINITION 4.7. In S. D. M. S.-I, if (i) the (b., e)-criterion functional U(F(n, N; b.); 

b,,, e) (or U(F(n, co ; b.); b., e)) defined on N; bn) (or 00 ; b.)) is finite or nega-

tive infinite, and (ii) a strategic function F(n, N; b„) (or P(n, co ; b„)) maximizes the 

(b„, e)-criterion functional U(F(n, N; b.); b., e) (or U(F(n, co ; b„); bn, e)) in N; 

(or co ; b„)), then the strategic function t(n, N; bn) (or F(n, CO ; bn)) is called " (b., e)- 

optimal."') 

   In what follows, a (b,,, )-optimal strategic function is denoted by F*(n, N; b„, ) 

(or F*(n, co ; bn, c)), and the set of all (b., e)-optimal strategic functions is denoted by 
 *(n , N; bn, e) (or 'tc*(n, co ; bn, e))• 

   As we saw in Section 1, the original problem of the stochastic dynamic program-

ming in S. D. M. S.-I may be making of a (1)0, )-optimal strategic function F*(0, co ; 

bo, e). However, the need arises to truncate the infinite stages after a " manageable 

number of stages, and to make a (bo, e)-optimal strategic function F*(0, N; bo, 

   Now, if a Bn-feasible strategic function F(n, N; BO and a utility function e(e) 

are assinged, U(F(n, N; B.); en, e) may be a function of en on the domain D(B.)- 

We can define a stochastic variable U(F(n, N; B.); B., e) which will realizes itself 

as U(F(n, N; B„); b„, e). Hence, we can calculate the mathematical expectation 

E {U(F(n, N; B.) ; Bn, e)} if a stochastic variable B„ and a Bcfeasible strategic func-
 77n, 

tion F(n, N; B„) are assigned. That is, if a stochastic variable B„ is assigned and a 

utility function e(e) is employed, then E {U(F(n, N; B„); B„, is also a functional 

defined on the set B(n, N; B„). We have the following 

   DEFINITION 4.8. The functional E {U(F(n, N; BO; B,,, s)}, defined on the basis 

of (4.4) being connected with a stochastic variable B,,, is called a " (B„, e)-criterion 

functional." 

   DEFINITION 4.9. In S. D. M. S.-I, if (i) the (B„, e)-criterion functional E {U(F(n, N; 

B„); is finite or negative infinite on N; BO, and (ii) a strategic function 

P(n, N; maximizes the (B., e)-criterion functional E {U(F(n, N; ; Bn, e)} in 

    N; B.), then the strategic function F(n, N; B.) is called " (B., e)-optimal." 

   1) In S. D. M. S.-I, if (i) each stochastic variable C, (t 0, 1, 2, •••) has not any positive 

variance contradicting Condition 3.1, and (ii) there are no restrictions with respect to the upper 
bound of ft(bt), then any values of optimal strategic function at each time may be equal to 0 

in the case of ct—r < 0, and the values may be positive infinite in the case of ct—r > 0. However, 
if Ct's are stochastic variables which have positive variance, the stochastic dynamic program-
ming is not always so simple.
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   In what follows, a  (b., e)-optimal strategic function is denoted by F*(n, N; B., e), 

and the set of all (Be, e)-optimal strategic function is denoted by *(n, N; Bn, e)* 

   Applying the principle of optimality in dynamic programming which is generalized 

on S. D. M. S.-I, in connection with (4.4), we have 

(4.5) E {U(F*(n, N; B., e); B., e)} = max E N; B.); B., e)} 
   VnF(n,N;Bn) 72n 

              1  • = r)
BcE [U(.(e. ; B.) ; B., e)    N n+1 fn 

         -F(N—n)-maxE {U(F(n+1, N ; Bn÷i) ; e) 
                                F(n 1,N; Bn+1(Bn•fn(en; Bn))) Vn+1 

                                         

I B., fn(en ; B0}1 

            1          = n 
            N n+1•fni(,a.)s,n)E EU( f .(e. ; B.) ;Bn,e) 

           +(N—n) • E U(F*(n+1, N; e); Bn+i, e)1Bizt f n(e 7, ; B.)1] 
                                        Vn-1 

                                              (n= 0, 1, 2, •• , N; Bo= bo).

   § 5. A Special Domain D and the Set of All D-feasible strategic functions 

   Now, if we intend to obtain a (bo, e)-optimal strategic function F*(0, N; bo, e) in 

S. D. M. S.-I by means of the forward working algorithm on the basis of the relation 

(4.5), it is, at least, necessary (i) to purse the domain D(Bn(bo, F(0, N; b0)) with respect 
to each n (n_= 1, 2, • • • , N) and each F(0, N; bo) in N; bo), and (ii) to verify that 

either a (bn, e)-optimal strategic function F*(n, N; bn, e) can or cannot be chosen 

with respect to each n (n =0,1, 2, • • • , N) and to any bn on the domain D(Bn(bo, 

F*(0, N; bo, ))). Therefore, if we intend to conduct the stochastic dynamic program-

ming in S. D. M. S.-I directly by means of the stochastic relation (4.5), the derivation 

and computation of an optimal solution meets with considerable difficulties. One must 

thus simplify the problem of stochastic dynamic programming so that the forward 

working algorithm may be applied more easily. 

   For our purpose, first of all, let us introduce special domains D(n, N)'s by the 

following 

   DEFINITION 5.1. Let 95 be the empty set. Such domain 15(n, N) (or D(n ; co)) as 

the following two conditions 

(5.1)B:(n, N; D(n, N)) cb (or co ; D(n, co)) ci) 

and 

(5.2)U N; b.) = ci (or U 00 ; b.) = 95) 
           bn-1D(n,N)cbn-i5(n,00)C 

hold true is called a " maximal fuasible domain" pertaining to n and N (or n and co). 

   Then, we have the following 

   THEOREM 5.1. If there is the domain D(n, N) pertaining to any assigned non-

negative integers n and N such that n N, these domains D(n, N)'s are independent 

of n and N in S. D. M. S.-I.



24Yasuo KUGIMIYA

    PROOF. If there is a  bn-feasible strategic function F(n, co ; bn), the strategic func-
tion F(n, N; P(n, co ; bn)) is also a bn-feasible strategic function, according to Definitions 

4.1 and 4.3. Therefore, we have 

(5.3)D(n, cc) c B(n, N). 

Furthermore, if there is a bn-feasible strategic function P(n, N; bn), we can also choose 

such a bn-feasible strategic function F(n, co ; bn) as 

(5.4)P(n, N; bn) F(n, N; P(n, co ; b.)) 

holds true according to Definitions 4.1 and 4.3. Hence, we have 

(5.5)D(n, N) c D(n, co) . 

    According to (5.3) and (5.5), we have D(n, N) = 11)(n, co). And, since the stochastic 

process {Co, C1, C2, •-• } is a stationary stochastic process in S. D. M. S.-I, the domain 
D(n, co) is independent of n, and the theorem is verified.Q. E. D. 

    Hence, we have the following 

    DEFINITION 5.2. We call the domain B(0, oc) the "maximal feasible domain," and 

denote the domain as simple D. 

   Let us verify that (i) there is the maximal feasible domain B, and that (ii) we can 

determine the concrete structure of the set of all D-feasible strategic functions N; 

1.)), in S. D. M. S.-I. First, let us verify the following : 

   THEOREM 5.2. In S. D. M. S.-I, if —K/r > bo (> M), there are no bo feasiblestrate-

gic function F(0, co ; bo), and also no bo feasiblestrategic function F(0, N; bo) (N= 0, 
1, 2, • • .). 

   PROOF. If a decision maker has capital money bt and he employs a strategic 

function ft(et) at a time t, the following relation 

(5.6) Bt,(bt, ft(et))+KIr = (1+r) • bt±(Ct—r) • ft(bt)+K±K/r 

                      = (1+r) • (l) - K / r) (C t—r) • f t(b (t = 0, 1, 2, -.) , 

is obtained, according to the fundamental stochastic relation (3.6). 

   Let us assume that bo< —K/r and a strategic function P(0, co) {f0(e0), 

/2(e2), •• • } is a bo-feasible strategic function. Then, we have the relation 

(5.7)Bn(bn, P(0, co)+KIr 
                                                                  s-i 

             = (1-Fr)8 • (b 0+ K / r)-F E (1+ r)s-t-1 • (Ct—r). ft(Bt(b0, P(0, co)) 
                                                          t=0 

                                           (s = 1, 2, 3,•; Bo= bo) 

applying the relation (5.6) successively. 

   And, even if any constant M is assigned, we can choose such an integer n as 

the relation 

(5.8)(1+r)n • (bo+K/r)�. AIH-K/r 

holds true in the case of bo+K/r < 0, since we have r> 0 from Condition 3.2-(i). 

   Furthermore, according to Condition 3.1-(iii), we can choose such a positive num-

ber it as
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(5.9) P{Ct—r  <  0}  =  >  0 (t = 0, 1, 2, ...) 

holds true. And, of course, we have the relation 

(5.10)P{ f t(B -� 0 I bo, P(0, co)} =1 (t 0, 1, 2, • •.) 

which, in combination of (5.9), yields us 

                             (n-1 

(5.11)Pi Eat —1 • (Ct—r) • ft(Bt)<0 I bo, P(0, °°)}ten >       E 

with respect to the integer n chosen in (5.8). 

   Connecting the relations (5.8) and (5.11) with the relation (5.7), we have 

(5.12)P{Bn Mlbo< —K/r, F(0, 00)} 

                  = P{Bn+K/r� 1VI+K1r I bo< —K/r, F(0, 00)} 

                    fe> 0. 

This relation shows that the strategic function P(0, co) cannot be any bo-feasible 

strategic function in the case of bo < —K/r, and we have a contradiction. Q. E. D. 

   COROLLARY 5.2.1. In S. D. M. S.-I, if there is a 15-feasible strategic function, any 

element of the domain 13 is not smaller than —K/r. 

   COROLLARY 5.2.2. In S. D. M. S.-I, if P{Bt< —K1r I bo, P(0, N)} > 0 at a certain 

time t (t 0, 1, 2, ••• , N), the strategic function P(n, N) is not bo feasible. 

   PROOF. According to the assumption of this corollary, we can choose such two 

positive numbers r and 5 as 

(5.13)P{Bt� —K1r—sIbo, P(0, N)} > 6> 0 (0 t N) 

holds true. And by means of the same manner as we have obtained (5.12), we can 

choose a positive number v and a positive integer n such that the relation 

(5.14)P{B,� MI —K/r—s, F(0, 00 ; P(0, N))1 > vn > 0 

holds true. 

    Hence, we have 

(5.15) MI bo, F(0, co ; P(0, N))} > 5 vn > 0 

which shows the strategic function P(0, N) cannot be bo-feasible, (see Fig. 5.1). Q. E. D. 

   COROLLARY 5.2.3. We have ft(—K1r ; bn)= 0 On —K/r) with respect to each 

t (t = n, n+1, , N). 

   PROOF. According to (3.6), we have 

(5.16)Bt.„(bt-= —K/r, ft(et; bi,))+KIr 

                 = (1+r) • (-1C1r)±(Ct—r).ft(—KIr ; bti)+K+KIr 

                    (Ct—r). ft(—KIr ; bn) (t = n, n+1, • , N) . 

   On the other hand, there is such a positive number 3 as P{Ct—r < —r} > 5> 0 

holds true, from Condition 3.1-(iii). Since the relation Bt+i(bt= f t(et ; bri))+K/r 

  (Ct—r) -ft(—KIr ; bn)_� 0 must be held with probability 1 from Corollary 5.2.2, 

f t(- K Ir) must be equal to 0 according to (5.16).Q. E. D.
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   THEOREM 5.3. Let p be the constant defined iu Condition 3.1-(iii). In S. D. AI. S.-1, 

if a strategic function F(0, oo) satisfies the relation 

(5.17)0 F(0, oo) -< (1+r) • (e+KIr)1((3+r) 

on the domain [—K/r, oo), then we have also 

(5.18) P{ n (B.—K1r, F(0, oo)} =1 . 
                                           1-5.n 

   PROOF. In order to prove this theorem, as the first step, let us verify the following 

    LEMMA 5.3.1. In S. D. M. S.-I, we have 

(5.19) P{13,+,� —K1rIbt>_— —K/r, 0 ,-.ft(et) (1+r)• (et+Klr)1(P±r)} =1. 

   PROOF OF LEMMA 5.3.1. We have P{—P<C0<r} =1 from (3.1). Therefore, if 

f t(et) 0, we have 

(5.20) P{(1+r) • (bt+KM-F(Ct—r) • ft(bt)>(1+r) • (bt+Klr)+(— 48—r) • ft(bt)} =1. 

Furthermore, if bt-FKIr 0 and 0 _-_<ft(bt)-- (l+r) • (bt-FKIr)1((3±r), we have 

(5.21)(1-Fr) • (bt-FKIr)±(-13—r) • ft(bt)>=0 , 

since p-Fr > 0. 

   Applying the relations (5.20) and (5.21) to the relation (5.6), we can admit the 

relation (5.19).LEMMA 5.3.1. Q. E. D. 

   If we apply the mathematical induction to (5.19), we can admit this theorem. 

                                                                           Q. E. D. 
   COROLLARY 5.3.1. The maximal feasible domain D (defined by Definition 5.2) is 

the domain [—K/r, CO) 

   PROOF. According to Corollary 5.2.1 and Theorem 5.3, we can admit this corol-

lary.Q. E. D.
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   COROLLARY 5.3.2. In S. D.  M.  S.-I, if a strategic function F(n, N) satisfies the 

relation 

(5.22)0 F(n, N) (1+r) (e+K/r)/(13-1-r) 

on the domain 13 (defined in Corollary 5.3.2), the steategic function is B-feasible. 

   COROLLARY 5.3.3. If a strategic function F(n, N) satisfies the relation (5.22), we 

have 

(5.23) n (Be> —K1r)Ibn> —K/r, F(n, N)} =1 . 
       n 1 

The number N may be substituted by 00. 

   Theorem 5.3 (and Corollary 5.3.2) shows that the relation (5.17) (and (5.22)) is 

sufficient condition in order that the strategic function F(0, co) (and F(0, N)) is 

feasible. Furthermore, let us verify that this condition is also necessary condition. 

   Now, in the following many cases, we employ the following notation. 

(5.24)ft(et) = ht(et) , H(n, hn+I(en+i), ••• tiN(e0}            e
t+K/r 

                                   (etE D ; n+1, , N). 

Then, each function ht(et) is uniquely determined on the domain (—K/r, 00) according 

to the function Me t). And it is a single valued continuous function on the domain 

(—K/r, co) except finite points. 
   ht(—K/r) may be any finite value since we have ft(—K/r)= 0 from Corollary 5.2.3. 

However, for the sake of simplicity, let us assume as follows : 

(5.25)lim ht(ee)-= ht(—K1r) = 0, 1, 2, 

Then, ht(e) is uniquely determined from the function ft(et) on the domain 13, and it 

is a single valued continuous function on that domain except finite points. In what 

follows, let us denote as Mee; 13)/(ee+Klr)=ht(et; D), and denote as H(n, N; D) 

  fhn(en ; D), hn+,(en+,; 15), ••• , h,(eN; D)}. Then, we have the relation 

(5.26)0 H(n, N; D)-,5_,(1--Pr)1(IS-Fr) 

from (5.22) and (5.24). 

   Furthermore, applying the relation (5.24) to (3.6), we have a fundamental stochastic 

relation 

(5.27) Be-f1+K/r=_-(bt+KM.(14-7-4-(Ct—r). WO) (be� —K/r, t= 0, 1, 2, ...) . 

And if by, E B, we have the following stochastic relation 

(5.28) 13t(b„, F(n, N; D))+K/r 

             =(bii+K/r)(1+ r-F(C,,—r) • 12,(Bs(bn, F(n, N;p);B))) 
                                          s=n 

                                      (t = n+1, n+2, • , N-F1) , 
applying (5.27) successively. 

   Now, we have the following 

   THEOREM 5.4. Let co) be the set of all strategic functions F(0, 00)'s which



28Yasuo  KUGIMIYA

satisfy the relation (5.17) on the domain D. Then, we have 

(5.29) (0, co) = co ; . 

   PROOF. We have (0, co) g(0, oo ; 15) from Theorem 5.3. Let us verify the 
relation -(0, co) Q(0, co ; D). 

   First, let a strategic function P(0, co) {_to(e0),f,(ei),f2(e2), ••-} be a strategic 
function which does not belong to co). Then, there is a time t at which (i) the 
relation 0 -< F(0, t-1 ; F(0, co)) -< (1-1-r) • (e+K/r)/(13-F-r) holds true on the domain D, 
and (ii) we can choose such a number bt in the domain 15 as the relation 

(5.30) t(b t) > (1R-r) • (b,+K/r)/(13-Fr) 

holds true. 

   Now, we have the following 

   LEMMA 5.4.1. In S. D. M. S.-I, if bt E 13 and f,(b,)> (l+r) • (b,+K/r)/((3+-r), we 

can choose such a positive number 51 and two numbers b' and b" as —K/r � _bt < b" 
and the relation 

(5.31)P{B,+1<—K/r16' < b", ft(et)} > 51> 0 

holds true with respect to any b, in the domain [b', b"), (see Fig. 5.2). 

   PROOF OF LEMMA 5.4.1.

btB,+,(b „ t)) 

   b' 

—K/r 

                              / > 

                              1+1 

                                 Fig. 5.2.

   The function ft(et) is a continuous function on the domain D except finite points, 
due to Condition 3.2-(ii). Therefore, if the assumption of this lemma is true, we can 

choose a positive number s and two numbers b' and b" so that (i) —K/r �b' < b" 

may hold, and (ii) the function 1,(e,) may be continuous in the domain [b', b"), and 

(iii) the relation 

(5.32)f t) > (1+r) • (b,--1-K/r)/(13+r—E)� 0
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may hold true with respect to any  b, in the domain [b', b"), (see Fig. 5.3). Hence, 

we have

                          ft(et) 

                              (1±r) • (eHriqr) 
                                       p+r-E 

                                    (1-i-r) • (e,-HK/r)  
                                   fid-r 

                                                                     e, —rb' b, b" 

                               Fig. 5.3.

(5.33)(1+r) • (bt+K/r)±(—(—r+s) •ft(bt) < 0 

with respect to any b, in the domain [b', b"). 

   Furthermore, if we assign the positive number r employea in (5.33), there is a 

positive number 51 such that the relation P{C, < —15+E} > 51> 0 holds true, due to

                                      / 

                            z/ 
                                / 

                      / b" • 

        // z                             ,/,› 52 131(bo, F(0, t —1 ; F(0, o))) 
                                //// 

                                b'                   z 
                 z 

   bo 

—KI r 

    0 

                                 Fig. 5.4.
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Condition 3.1-(ii). Therefore, we have 

(5.34)P{(1+r) • (bt+Klr)±(Ct—r) • ft(bt) 

                  -� (1+r) • (bt+Klr)±(--P—r-FE)•ft(bt)1> 51> 0 

with respect to any bt in the domain D (and also in the domain [b', b")). 

   Connecting (5.33) and (5.34) with (5.6), we have (5.31). LEMMA 5.4.1. Q. E. D. 

   LEMMA 5.4.2. If we assign any two numbers b' and b" (b' <b") in the domain D, 

we can choose such a positive number 52 and a number b, as the relation 

(5.35) P{b' Bt < b" I bo, F(0, t-1 ; P(0, co))) > 52 > 0 

holds true, (see Fig. 5.4). 

   PROOF OF LEMMA 5.4.2. Applying the notation (5.24) to the strategic function 

F(0, t-1 ; E(0, co)) , let us denote as follows : 

                 fs(es):_—_ (es+ K/r) • ris(es), (s = 0, 1, 2, • , t-1) 
(5.36)               H

(0, t-1) ffio(eo), , 

   Now, since the assumption (5.25) is employed, we have 

    P{ n (138-+Klr-� 0)1 bo^KIr 0, 0 t-1; P(0, oo)) (l+r)•(e+K/r)/((3+r)} 
           1•Ssit 

(5.37) 

   =P{ n (B.,±K/r� 0)1 bod-K/r�0, < n(0, t — 1) (1+ +r)} =1 , 

according to the definition of the functions F(0, t-1 ; P(0, co)) and n(0, t-1). There-

fore, if we apply the functions F(n, N; P(0, co)) and H(0, t-1) in (5.28), we have 

(5.38) B8(b0, t-1))+K/r = (14--PK/r) -1i (1 +r-I-(Ci—r) • fit(Bt(bo, H(0, t-1))) 
                                                              i=0 

                                       (s 1, 2, , t ; B,,=b0) • 

   Hence, we can see that if a vector C= {c0, c1, ••• , ct_1} is assigned, et is determined 

by e, through the following recurring relation 

                                                     s-1 

(5.39) es-I-K/r=(e„-1--Klr)• H (l+r+(ci—r)•izt(et)) (s = 1, 2, , t), 
                                            i=0 

and et can be recognized as a function of e, on the domain D. For the sake of 

simplicity, let us denote the function of e, as 

(5.40)et=Ct(e0;C, t-1)) . 

Then, we have the following : 

   LEMMA 5.4.2.-1. If < r, the function et=Ct (e0; C, H(0, t-1)) is a contin-

uous function of e, on the domain B. 

   PROOF OF LEMMA 5.4.2-1. According to (5.39), we have a function of eo, 

(5.41)e1=-- (eo+Klr) • (1-1-r+(co—r) • lio(e0))—K/r (E D), 

which is continuous on the domain 13, since we have —p <co < r and 0 flo(eo) 

 (l+r)/(48+r) on that domain.
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   Next, let us assume that (i) the function  es defined by (5.40) is a continuous 

function of eo on the domain D, and (ii) the domain of e, is also D. Then, according 

to (5.39), we have 

(5.42)es+,= (es+K/r) • (l+r-1--(cs—r) • iis(es))—K/r . 

We can admit that (i) es+, is a continuous function of es on the domain 15 and also 

it is a continuous function of eo on the domain D, and (ii) the domain of e, is D. 

   Applying the mathematical induction, we can admit this lemma. 

                                                           LEMMA 5.4.2-1. Q. E.D. 

   Next, let us employ the following 

   DEFINITION 5.3. Let {C; bo, bt,11(0, t-1)} be a set of all vectors C's so that the 

relation Ct(bo; C, H(0, t-1)) = bt holds true for assigned bo, bt and H(0, t-1). And let 

{C; bo, D, H(0, t-1)} be a set U {C; bo, 6011(0, t-1)} defined for assigned bo, (a domain) 
                                   bt ED 

D and (the fnnction)fi(0, t-1). That is, we may also define as follows. 

             {C; bo, bt, H(0, t-1)} = {C; ; C, H(0, t-1)) = bt} (5
.43) 

             {C; bo, D, 12(0, t-1)} -= {C; UN; C, t-1)) E DI . 

   Then, we have the following 

   LEMMA 5.4.2-2. Let Di be the set of all rational numbers which are not smaller 

than —K/r. If Do is an open sub-set of D, then we have 

(5.44)U {C; b, Do, H(0, t-1)} = U {C; b, Do, H(0, t-1)} . 
    begbED 

   PROOF OF LEMMA 5.4.2-2. It is easy to see that the following relation is true. 

(5.45)U {C; b, Do, AO, t —1)} U {C; b, D0,11(0, t-1)} . 
     bE9tbED 

Therefore, let us verify the following relation. 

(5.46)U {C; b, Do, AO, t-1)} U {C; b, Do, H(0, t-1)} . 
       bE9?b -11) 

   Let bo be any element of D, and let O be any assigned element of the set 

{C; bo, Do, H(0, t-1)}. Then, according to Definition 5.3, we have 

(5.47)Ct(bo ; e, t-1)) = bt E Do 

   Since Do is an open set, we can choose such a positive number e as may cause 

any et in the domain (bt—s, bt+s) to be an element of Do (see Fig. 5.5). 

   Furthermore, since the function et= Ct(e0 ; e, H(0, t-1)) is a continuous function 

of eo on the domain n from Lemma 5.4.2-1, we can choose a positive number 3 so 

that the relation 

(5.48) Ct(bo ; 6, Mo, t-1D—Ct(e0 ; C, C-1(0, t-1))1 =1k—et' < s 

holds true on the domain nn { e0 ; 1bo—e01< 3}. We can choose a rational number R 

in the set D n leo ; I bo— 6'0 1 < 51, and we have Ct(R ; e, mo, t-1)) e Do, (see Fig. 5.5). 
   That is, we have
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(5.49)U {C; b, Do, H(0, t-1)} {C; bo, Do, H(0, t-1)} 
                        bET 

with respect to any assigned bo in the domain D. Hence we have also 

(5.50)U {C; b, Do, H(0, t-1)} U {C; b, Do, 11(0, t-1)} . 
     be9tbED 

According to (5.45) and (5.50), we can admit this lemma. LEMMA 5.4.2-2. Q. E. D. 

   LEMMA 5.4.2-3. Let b', b", 5' and 5" be any four numbers such that —K/r �b' <b" 
  -6' <5" . And let Do and D1 be two domains (b', b") and [5', -6"), respectively. Then, 

we have 

(5.51) {C; bo, D1, 12(0, t-1)} C U {C; b, Do, H(0, t-1)} 
                                                        bE9tnE-K/7,bo'3

  e,e1=C,(e0; C, H(0, t — 1)) 

    5" 

_L___ 5/ 

-T--- b" — — — ---  

Do 

      --11 

—K e
o 
    —K/rb 

                                          Fig. 5.6.
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with respect to any  b'o in the domain D, (see Fig. 5.6). 

   PROOF OF LEMMA 5.4.2-3. Let o be any element of the set {C;D„fig t-1)}, 

then we have Ct(b; e,11                   /o(0, t —1)) E Di according to Definition 5.3. 

   Now, since (i) we have C,(—K/r; e,t-1)) = —K/r due to the definition of 

the function C, defined by (5.40) in Combination with (5.39), and (ii) the function 

Ct(e0 ; o,no, t-1)) is a continuous function of eo on the domain D according to Lemma 
5.4.2-1, then we can choose a number b in the domain [—K/r, NJ so that Ct(b, 

C,n(0, t-1)) E Do holds true, (see Fig. 5.6). 

   Therefore, we have 

(5.52){C; b'o, D„t-1)}{C; b, Do,n(0, t-1)} . 
                                                 bEDn[- Kir ,b0'] 

   Due to this relation (5.52) and Lemma 5.4.2-2, we can admit the relation (5.51), 

since the domain Do is an open interval in the domain B. LEMMA 5.4.2-3. Q. E. D. 

   Next, let m{C; b,, D,11(0, t-1)} be the probability measure of a set {C; 

bo, D, H(0, t-1)}, then, the probability measure is equal to P{Bt(bo, H(0, t —1)) E D}. 

If we put a domain (b', b") (C D) as D„ we have 

(5.53)m{C; bo, D„ H(0, t-1)} = P{b' < Bt< b"Ibo, H(0, t-1)1 

hence, we have the following : 

   LEMMA 5.4.2-4. Let b', b", 5' and 5" be any four numbers in the domain D that 

b' <b" �_5' <51, and let Do and D1 may be two domains (b', b") and [b', 5"), respectively. 

If there is a number b'o, in the domain D so that 

(5.54)m{C; b'0, D1, H(0, t-1)} > 0, 

there is also a rational number b, so that —K/r _-bo�b'o and 

(5.55)m{C; bo, Do,n(0, t-1)} > 0 

holds true, (see Fig. 5.7).

               5"                        // 

                                 D, > 0 Bt(W0, H(0, t-1)) 

   bo _ 
    --

--

- 

                                      b" 

                       — 

                — 

                            Do > I Bi(bo, t-1)) 

  1)0 — 

 K/r 

    0 
                                  Fig. 5.7.
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   PROOF OF LEMMA 5.4.2-4. 

   According to Lemma 5.4.2-3 and the relation (5.54), we have a relation 

 (5.56) 0 < m{C ; b'o, D1, 11(0, t-1)} U {C; b, D0, H(0, t-1)}i • 
                                                       bE9111C-1C/nb0.3 

   Since the set of rational numbers Din[-K/r, b'o] is a denumerable set, let us 

denote the set by an infinite sequence of rational numbers {R1, R2, R3, •••}. Then, 

we have 

(5.57) 0 < m[ u {C; b, D0, 17(0, t-1)}] m{C; Ri, D0, H(0, t-1)} . 
         bE9i11E-IiInb0']i=1 

That is, we can choose, at least, a rational number Ri so that m{C; Ri, D0, H(0, t-1)} 

> 0. Putting as b0 = Ri, we can admit this lemma.LEMMA 5.4.2-4. Q. E. D. 

   LEMMA 5.4.2-5. If 5' is any assigned number so that 5' > —K/r, there are two 

numbers b'o (> —K/r) and 5." (> 5') so that the following relation holds true, (see 

Fig. 5.8). 

(5.58)P{5' < 5"1 b'o, fl(0, t —1)} > 0 . 

    PROOF OF LEMMA 5.4.2-5.

                                         b" 

                                                                       - -                        —
> 0Bt(N, H(0, t-1)) 

                                   15, 

—A- /1- 

    0 

                                   Fig. 5.8.

   We have the relation 

(5.59)P{ n (B8 -� —K1r)lbo E D, t-1)} =1 
                                                  -1 

according to Theorem 5.3 and the definition of the function AO, t-1). Therefore, 
we have also 

(5.60)P{ n (0 �- 118(B R) (1 +7)1(48-1-r))1bo E t-1)} = 1 . 
                               cs,sst--1 

Hence, we have 

(5.61) /3{1-Pr 1d-r-1-(C.-r) • 11.03)lb0 —K/r, 17(0, t-1)} 

                P{0� (C8—r). Its(B8)1b0.?„. H(0, t-1)} 

               PIC8—r> 01 • P{O� 13(138) I b$ —K/r, 11(0, t-1)} tt 

                                           (s= 0, 1, 2, •-• , t-1) ,
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from (5.60) in combination with Conditions 3.1-(ii) and 3.2-(i). Applying (5.61) to the 

relation (5.38), we have 

 (5.62) P{(bo-FK/r) • (1+71 13,1,-K/rIbo� —K/r, C1(0, t-1)} pg> 0 . 

If we choose a number bo (> —K/r) so that K/r) • (1+0' = 51-1-K1r, and a suf-

ficiently large number 5", then we have 

,(5.63) P{E' +Kir B,±K/r � .5"+-K/r} = P{15' 13, _�_5"114, H(0, t-1)} > 0 

which verifies this lemma is true.LEMMA 5.4.2-5. Q. E. D. 

   Now, let b' and b" be any two numbers so that —K/r <b". If we choose 

. a number 5' larger than b", and choose a sufficiently large number 5", then we can 

•choose a number (> —K/r) so that (5.58) holds true, according to Lemma 5.4.2-5. 

Therefore, we can choose a rational number bo and a positive number 52 so that 

the relation —K/r < bo < ty, and the relation 

,(5.64)13{b' B, < b"lbo, F(0, t —1; F(0, co)} 

                      P{b' < B, < b" I bo, 111(0, t-1)} > a,> 0 

-h
old true, according to Lemma 5.4.2-4, (see Fig. 5.9).Lemma 5.4.2. Q. E. D.

                         b"  > 

     b',— — — —13,(b,;, F(0, t-1;P'(0,-.)0)) 

                                > 3, > 0 

              — — — — — — — — — —b' 131(b„ F(0, t-1; E(0, 00)) 

—K/r  

      0 

                                        Fig. 5.9.

   Lemmas 5.4.1 and 5.4.2 show that we can choose a number bo in the domain D 
rand two positive numbers 61 and 32 so that the relation 

,(5.65)P{B,+i< —K/ribo, F(0, co)} 

                   min P{B,4, < —K/r I bts ft(et)} 
                                      b' 

                    

• P{ b' B,<b"lb „, F(0, t-1 ; P(0, 00)1 -� Oi •(32 

-h
olds true. That is, we can admit that if P(0, co) EE(0, co), then we have also P(0, co) 

-EE W(0, co ; D), according to Corollary 5.2.2. Hence, we have the relation f (0, cc) 

     co ; B), and we can admit this theorem due to Theorem 5.3. 

                                                      THEOREM 5.4. Q. E. D.
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   § 6. Simplification of the Stochastic Dynamic Programming in S. D. M. S.-I 

   In order to evade difficulties in derivation and calculation of the (b0, e)-optimal 

strategic function on the basis of the relation (4.5) in S. D. M. S.-I, the sets N; D)'s 

(n= 0, 1, 2, • • • , N; N= 0, 1, 2, • • -) will play an important role. Furthermore, let us 

prepare the following definitions. 

   DEFINITION 6.1. In S. D. M. if (i) a (b., e)-criterion functional U(F(n, N; D); 

bn, e) is finite or negative infinite on N; .13), and a strategic function F(n, N; 

maximizes the (b„, e)-criterion functional U(F(n, N; B); b„, e) in B=(n, N; ri), then the 

strategic function P(n, N; D) is called " (13 ; b,, e)-optimal." 

   A (15 ; b„, e)-optimal strategic function is denoted by F*(n, N; D ; b,, e), and the 

set of all (1)- ; b„, e)-optimal strategic function is denoted by ,if*(n, N; D ; b., ). 

   DEFINITION 6.2. In S. D. M. S.-I, if (i) a (B„, e)-criterion functional E U(F(n, N; 

1; Bn, e)} (where D(Bn)D) is finite or negative infinite on N; 13), and (ii) a 

strategic function F(n, N; 13) maximizes the (13n, e)-criterion functional E {U(F(n, N; 

13); B., )} inN;El), then the strategic function F(n, N;El) is called (1)- ; Bn, e)-

optimal." 

   In what follows, a (D ; 13n, e)-optimal strategic function is denoted by F*(n, N; D ; 

Bn, e), and the set of all (15 ; Bn, e)-optimal strategic functions is denoted by *(n, N; 

17, ; Bn, e). 

   DEFINITION 6.3. An element of the set (1 *(n, N; D ; bn, e) is called " (13 ; D,  )-

optimal." 

   In what follows, a (13 ; D, e)-optimal strategic function is denoted by F*(n, N ; D ; 

D, e) and the set n *(n, N; D ; b„, e) is also denoted by *(n, N; D ; D, e). 
                       bnED 

   Hence, we shall verify the following two propositions. 

   (A) If there is a (D; 13, e)-optimal strategic function F*(0, N; D; D, e), the strate-

gic function is also a (bo, e)-optimal strategic function F*(0, N; bo, e), with respect to 

any bo in the domain D. 

   (B) There is a (D ; D, )-optimal strategic function F*(0, N; 15 ; 13, e) if the utility 

function e satisfies the following. 

   ASSUMPTION 6.1. At each time n (n = 0, 1, 2, ••• , N), if a decision maker has any 

amount of capital money b„ in the domain 13 and he assign a last time of programming 

N (N= n, n+1, n+2, then 

   (a) the (b„, e)-criterion functional U(F(n, N; b„); b„, e) is finite or negative infinite 

on N; b„), and 

   (b) there is a strategic function P(n, N; b„) which maximizes the (bn, e)-criterion 

functional U(F(n, N; b„); b,, e) in N; b„) and by which the value U(P(n, N; b.); 

b„, e) is a finite value. 

   Assumption 6.1 is a fundamental condition in order that we can obtain a (bo, e)-

optimal strategic function in S. D. M. S.-I on the basis of the stochastic relation (4.5). 

Therefore, if we verify the above two propositions (A) and (B), the stochastic dynamic 

programming in S. D. M. S.-I is completed on the theoretical part, by making only a 

(13 ; D, e)-optimal strategic function F*(0, N ; '15 ; D, e).
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   First, let us verify the following 
   THEOREM 6.1. If there is a  (13  ; B,--)-optimal strategic function F*(n, N; D ; 

in S. D. M. S.-I, the strategic function is also a (b., e)--optimal strategic function 

F*(n, N; b,„ e), on any b7, in the domain 13, and we have 

(6.1)U(F*(n, N; D ; r), ; b ri, = * (n , N ; b e); 6,, e). 

   PROOF. We have the following relations 

(6.2) N; D ; D, ct) N; D ; b., e) (b„ 

and 

(6.3) U(F*(n, N; D ; D, e); b., e)-= U(F*(n, N; b,„ e); b,, (b„ 

due to Definitions 6.1 and 6.3. 

   Furthermore, we have the following 
   LEMMA 6.1.1. If there is a CD ; bn, e)-optimal strategic function F*(n, N; D ; bn, e) 

in S. D. M. S.-I on a b„ in the domain B, then the strategic function is also a (b., e)-

optimal strategic function F*(n, N; b., e), that is, we have the relations 

(6.4)*(n, N; 13 ; b., N; b„, (b. E B) 

and 

(6.5) U(F*(n, N; D ; b., e); b., e)= U(F*(n, N; 6n, e); b., e) 13). 

   PROOF OF LEMMA 6.1.1. Let 67, be any assigned element of B, and let us choose 
any (13 ; bn, e)-optimal strategic function F*(n, N; 1)- ; b,„ e) and any bn-feasible strategic 

function F(n, N; b.). Furthermore, let f t(et; D ; b., e) and f t(e t ; b.) (n t N) be 

component functions at the time t of the strategic functions F*(n, N; 15 ; 6,, e) and 

F(n, N; b„), respectively. Then, we can produce a strategic function F(n, N) = 

.f.+1(e.+1), • • f _v(eN)} so that

                                               t(e) 

                                .17(et; D ; b„, e) / 

                                                                  / 

                              .6(et; b.) 

             e,D(B
,_,;(b,,F(n,;b0)) 
      f:(e„;1:5;b„,-)\ 

                                                                                                                               • 

          6(et; b„) 

.en(en)D(B,) \\ 

                                                             N+1                 \1\ 

                                                   71 

                                         Fig. 6.1.
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   (i) ft(et) f ; b.) if et D(Bt(b„, F(n, N; b.))); 

   (ii)ft(et)-=ft(et; D ; bn, e) if eE D(B t(b „, F(n,N; bn)De(Th,D, 

        (t n-H1, ••• , N), (see Fig. 6.1).1) 

   Of course, (i) we have 

(6.6)U(t(n, N); bn, e)= U(F(n, 1V ; b„); b„, e) 

according to the definition of the strategic function F(n, N), and (ii) we have 

(6.7)U(F*(n, N; D ; bn, e); bn, )�_U(P'(n, N); b., e) 

since the strategic function F(n, N) is also B-feasible. Hence we have 

(6.8)U(F*(n, N; D ; e); ba, e)�U(F(n, N; b.); b., e) 

with respect to any F(n, N; bn) in t"(n, N; b„). 

   Since N; D) N; bn), we can admit this lemma due to (6.8). 

                                                            LEMMA 6.1.1. Q. E. D. 

   Relations (6.2) through (6.5) show this theorem is true. THEOREM 6.1. Q. E. D. 

   Our next problem is to verify that there is a (15 ; B, ;)-optimal strategic function 

under Assumption 6.1. First, let us verify the following : 

   THEOREM 6.2. Let B, be a stochastic variable so that D(Bn) B. If there is a 

(D; B, e)-optimal strategic function F*(n, N; D ; B, the strategic function is also 

(15; B,,, e)-optimal in S. D. M. S.-I, and we have 

(6.9)E {U(F*(n, N; 15; D, e); Bn, e)} = E {U(F*(n, N; D; e); B., e)} • 
 rn'nn 

   PROOF. We have 

(6.10)E {U(F*(n, N; 15; D, ); B,,, e)} 
                         rn 

                  = U(F*(n, N; D ; B, e); en, e) • 72.(e.)- de. 

                             D(Bn) 

                        U(F(n, N; ..0); en, e) 22.(e.) • den 

                             D(Bn) 

                 = E {U(F(n, N ; -1:3); B., e)} 
                                'in 

with respect to any strategic function F(n, N; 15) in ,1"(n, N; B). That is, we can 

admit this theorem.Q. E. D. 

   Next, we have the following 

   THEOREM 6.3. In S. D. M. S.-I, if a utility function e(e) satisfies Assumption 6.1, 

there is a (15 ; B, )-optimal strategic function F*(n, N; D ; 15, with respect to any 

assigned non-negative two integers 71, and N so that n N. 

   PROOF. In order to prove this theorem, as the first step, let us verify the 

following 

   1) These strategic functions ft(et)'s (t = n, n+1, n+ 2, ••• , N) may be discontinuous at finite 

points in the domain D. However, such discontinuity of the strategic functions ft(et)'s is admitted 
in S. D. M. S.-I, by Condition 3.2-(ii).
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   LEMMA 6.3.1. In S. D. M. S.-I, if a utility function e(e) satisfies Assumption 6.1, 

there is a  (Li; b„, e)-optimal strategic function F*(n, N; D; b., e), with respect to any 
assigned bn in the domain 15 and any assigned integers n and N (n = 0, 1, 2, • , N; 

N= 0, 1, 2, •••). 

   PROOF OF LEMMA 6.3.1. Let F(n, N; D) be any assigned D-feasible strategic 

function and let F*(n, N; bn, e) be any (b„, e)-optimal strategic function which can be 

chosen due to Assumption 6.1. And let fl'(et; bn, e) (n� t N) be component function 
at the time t of the strategic function F*(n, N; bn, e). Then, we can make a strategic 

function P(n, N)= f.+1(e.+1), •• • iN(eN)} so that 

   (i) ft(et) =f t(et ; b., e) if et E D(Bt(bn, F*(n, N; b., e))) and 

   (ii) ft(et)=-Met ; -15) if et D(Bt(bn, F*(n, N; b., e)))e D, (t = n, n+1, ..• , N),

                                                           _qe,) 
                                    f ,* (e, ; b „, '.-) ,- ik 

                               .1,(et ; LY) 

        e,<6 ‘ 

                                     s\i'D(B
,,,,(1,n,F(ii,A-;1)0))                                                       

I                                                       
i\          f; ,*(en ; bn, e)\ 1                                \ 

\ \I     get; D) N N 
,\1  
 \•\                     I• i\                  N —7fn(en)

.„.^,-- —D(130       --^'\ I 
e„---- 

           1Ni- 1                         \ 
„ 

     All't          b:1111111111111/41/4# 

                                                   n 

                                          Fig. 6.2.

   Of course, (i) if bn E D, we have 

(6.11)U(P(n, N) ; b., e) = U(F*(n, N; bn, e) ; b., e) 

and (ii) the strategic function F(n, N) is a //feasible strategic function due to the 

definition of it. 

   Since N; D) N; bn), the strategic function P(n, N) is a (13 ; bn, e)-optimal 

strategic function.LEMMA 6.3.1. Q. E. D. 

   Now, let f:(es; 15; b., e) be the component function at the time s of a (B; b., e)-

optimal strategic function F*(n, N; 15; b., e). And let us prove the theorem by means 
of the backward mathematical induction. 

   (A) Let us consider the case of n= N. 
   If we assign any bN in the domain B, we can choose a (B) ; bN, e)-optimal strategic 

function MeN ; 13; bN, ) according to Lemma 6.3.1. Therefore, we can also choose 

such a strategic function f N(eN ; 15) as may cause the relation 

(6.12)!N(ON ; 13) = f N ; B; bN, ) 

to be satisfied with respect to each bN in the domain 15, (see Fig. 6.3).
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; D ; 

                                                 A(e, ;D) 
                                 N;17'; b, e) 

               .1,t(eN ; ; e) 

                                                                                     eN 

—K/rb'                                  b" 
                                                        iv 

                                        Fig. 6.3.

   Then, we have 

(6.13)U(IN(eN; 13); bN, U(IN(bN; 15); bN, e) 

                           =U(1-1,"(bN; B; bN, e); bN, e) 

                           =U(MeN; 15; bN, e); bN, e) 

and therefore, we have 

(6.14)fN(eN ; N; D ; bN, e) 

with respect to any bN in the domain B. Hence, we have 

(6.15)fN(eN ; 15) N; 13'; bN, e) = *(1V, N; 17'; D, e)                                  bND 

which shows this theorem is true in the case of n= N. 

   (B) Next, let us assume (i) the utility function (e) satisfies Assumption 6.1, 

and (ii) there are (B; B, )-optimal strategic functions F*(N, N; B; B, F*(N-1, N; 

D; D, e), ••• , F*(s+1, N; ); D, e). 

   If we assign any bs in the domain B, we can choose a (n ; b„ )-optimal strategic 

function F*(s, N; D ; b„ on the basis of Lemma 6.3.1. If we apply the principle of 

optimality in dynamic programming, in connection with (4.5), on the basis of the 

result of Theorem 6.2, we have the relation 

(6.16) U(F*(s, N; 15; b3, e); b„ e) 

           = max U(F(s, N; b,, e) 
                    F(s,N; D) 

        1  

            N—s+1•fn(rND)[U(fs(es;15); bs, e)
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 +(N-  s) • max E IU(F(s +1, N; D) ; B s+i, e)I bs, f,,(es D)}] 
                                 F(s ,1,N; D) 72n 1 

                 1  

             N-s+1final)[U(.f.,(es ; D); bs, e) 

           +(N-n) • E {U(F*(s+1, N; D ; 13, e); Bs" e)Ib„ fs(es; 5)1] , 
                                72n+1 

with respect to each 6, in the domain D. 
   If we assign any 6, in the domain B, we can choose a function f:(es; D ; b8, e) 

which maximizes the (b„ e)-criterion functional U(F(s, N; 13); b3, e) in (6.16). Hence, 

we can also make such a function fs(es ; B) as may cause the relation 

(6.17)Abs ; f:(bs; D ; bs, e) 

to be satisfied with respect to each bs in the domain Ti (see Fig. 6.3). 
   Let P(s, N; :5) be a strategic function composed of the strategic functions is(es ; 15) 

and F*(s+1, N; B ; B, e), i. e. { is(es; 13), F*(s+1, N; B ; B, e)}. Then, we have 

(6.18) U(F(s, N; 13); bs, e)-= U(If,(es; B), F*(s+1, N; D ; 13, e)} ; b„ e) 

                    =U({f,(bs; B), F*(s+1, N; D ; 13, e)} ; bs, e) 

                    = U({f'Abs; ; b„ e), F*(s+1, N; ; 13, e)} ; bs, e) 

                    = U(Ift(es; D ; bs, F*(s+1, N; B ; D, e)} ; b„ e) 

                     = U(F*(s, N; B ; b3, e); b8, e) 

from (6.17). And we have 

(6.19) P(s, N ; Ifs(es ; F*(s+1, N ; B ; B, e)} N ; B ; b8, ) 

with respect to any bs in the domain D. That is, we have 

(6.20)P(s, N; r)) E nA‘*(s, N; B ; b8, e)=*(s, N; B ; B, e) . 
                                 bs ED 

According to the above conclusions (A) and (B), we can admit this theorem is true. 

                                                                          Q. E. D. 

   Now, we can conduct the stochastic dynamic programming by means of the 

forward working algorithm on the basis of the following relation : 

(6.21) E IU(F*(n, N; B ; B, e); 13„, e)} 
           Vn 

        = max E IU(F(n, N ; r)); B„, e)} 
                  F(n,N; Vn 

            1 

           N n frnaxi55E72[U( f.(e.;Es) ; B., e) 

          +(N-n) • max E {U(F(n+1, N; 15) ; Bn+i, e) I B., fn(e ; 
                                 F(n+1,N; 72, 

            1                     •
f71"1,).(b-)E„[U(f.(e.; B); B., e)            N-n+1 

          +(N-n) • E IU(F*(n+1, N; -15 ; B, P); B.+1, e)I B., f.(e.; D)}1 
                               Vn 

                                       (n= 0, 1, 2, • , N; Bo= bo) 
in place of the relation (4.5).
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   § 7. A Reasonable Utility Function in S. D. M. S.-I 

   In order to complete concretely the stochastic dynamic programming on the basis 

of definitions 4.6 and 4.7, it is necessary to choose a reasonable utility function  e in 

S. D. M. S.-I. For this purpose, let us employ the following three assumptions as the 

basic attitude in our stochastic dynamic programming!) 

   ASSUMPTION 7.1. (i) A utility function e is a monotonously increasing and dif-

ferentiable function on the domain (—K/r, CO). 

   (ii) If there is the limitation lirn e(e), the limitation is equal to e(—K/r). 

   ASSUMPTION 7.2. Let Fo(n, N; D) be a special B-feasible strategic function so 

that Fo(n, N; 15)--0, and let us put as Uo(N—n-1-1, b.; e) = U(Fo(n, N; D ; bn, $). Then, 

Uo(N—n+1, bn; e) is a constant, and it is independent of bn larger than —K/r and of 

non-negative integers N and n so that n �_ N. That is, we can denote as Uo(N—n+1, 

b ; e) = o(e)• 

   ASSUMPTION 7.3. If any common probability density function of the stochastic 

variables Ct's (t = 0, 1, 2, ••.), i. e. 0, which satisfies Conditions 3.1-(ii) and 3.1-(iii), is 

assigned, then, with respect to the probability density function, 

   (i) the (bn, e)-criterion functional U(F(n, N; 13); bn, e) is finite or negative infinite 

on N; .15) in the case of bn� —K/r, and 

   (ii) there is a (15; 13, e)-optimal strategic function F*(n, N; 13; 15, e), and the 

value U(F*(n, N; 13; B, e); is a constant, independently of any non-negative 

integers n and N so that n N and of any bn larger than —K/r. 

   In Assumptions 7.2 and 7.3, there are not conditions in the case of bn= —K/r. 

However, if 6„= —K/r, we have fn(bn; I3)= 0 and also we have B.+1(b., F(n, N; 17)) 

= b„—K/r, according to Corollary 5.2.3 and the relation (3.6). Hence, if bn= —K/r, 

we have 

    fn(bn; B) = fn÷i(bn÷i; B) = • = f NON ; 0 

(7.1) 

             (Bs= bn)lbn= —K/r, F(n, N; D)} =1 , U(F(n, N; B); b., e)= 0 , 

           n with respect to any B-feasible strategic function F(n, N; 13) and any (bn, e)-criterion 

functional. Therefore, it is not necessary to choose a (15 ; D, e)-optimal strategic 

function in case of bn=—K/r. 

   Now, Assumption 7.1 is agreed to be reasonable and necessary in general economic 

fields. 

   Assumptions 7.2 and 7.3 may be recognized to be reasonable from a point of view 

of the 3rd approach in Section 1,2) since these Assumptions reflect the following actual

   1) The following assumptions are employed according to a point of view of the 3rd approach 

in Section 1, on the basis of our intuition. All of these assumptions are not always necessary 

and there are overlapping parts in these assumptions. More arranged assumptions are shown 

in the end of this section. 

   2) Actual manner of making a utility function on the basis of Assumptions 7.2. and 7.3 is 

different from the manner of Charns, Dreze and Miller [5-1. But, the fundamental concept of 

Assumptions 7.2 and 7.3 coincides with their concept on the third approach stated in Section 1.
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economic situations. 

   It is commonly agreed that even if we employ a reasonable strategic  function. 

through infinite future, (i) the more remote the truncated last time of multi-stage 

stochastic strategy-making, the larger the probability by which the reasonable 

strategic function will produce a large profit, and (ii) the greater the initial capital 

money, also the larger the probability by which the reasonable strategic function 

will produce a large profit. Hence, it seems reasonable, from the point of view of 

the 3rd approach in Section 1, to measure the degree of effectiveness of the strategic. 

functions Fo(n, N; 13) and F*(n, N; -13 ; B, e) to be independent of b, and N—n+1. If 

U(Fo(n, N; D); 6,, e) or U(F*(n, N; D ; B, e); b„, e) is subject to the length of period 

of programming N—n-1-1 or the initial condition b,, the (b,, )-criterion functional 

U(F(n, N; .5); 6,, e) on (n, N; B) confuses the effectiveness of the activity due to 

the length of period of programming N—n±1 or due to the initial condition b, with 

the effectiveness of the strategic function Fo(n, N; I)) or F*(n, N ; D ; D, e) itself, 

respectively. 

   Now, let us search a utility function which satisfies Assumptions 7.1 through 7.3. 

   First, we have the following : 

   THEOREM 7.1. If a utility function e satisfies Assumptions 7.1 and 7.2 in S. D.M.S.- 

I, the utility function is denoted by 

(7.2) e(e) = A- log (e±K/r)+S(log (e+K/r))+L (e> —K/r). 

Where, A is a positive constant, and L is any constant, and S(u) is a differentiable 

periodic function which has a periodic time log (1+r) and satisfies the following 

relation: 

(7.3)AH-Si(log (e+K/r))> 0 (e> —K/r). 

   PROOF. If we admit Assumption 7.2 and employ a special B-feasible strategic 

function Fo(n, N; so that Fo(n, N; we have 

(7.4) U,g) 

      = 1 • [E 
1{(BN-1-1)1b,,, Fo(n, N;15)}—e(b.)] 

         ((I n+• II (1 +r-1-(Cs—r) • hs(Bs(b,,, Fo(n, N; B); 15)))—K/1)—e(bn) 
                               S = 71  

                               N—n+1 

         $0.+K/r) • (1-Fr)h-n+1—K/r)—e(bn) 
,(bn> —K/r),                    N—n+1 

due to (5.28). 

   Now, for the sake of simplicity, in some cases, let us employ the following 

notations. 

(7.5)e+K/r=e", e(e) = #(6- KM= , A= Ulg")/log (1+r) 

Then, we have 

(7.6)(N—n+1) • U 0(e) = (5 „ • (1+ ON-n+1)____#(50 (67,› 0)
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from (7.4). Let us express the function -(e) by the form 

(7.7)#(J)= A • log e L (0' > 0) 

with the constant A (defined in (7.5)) and any constant L and a suitable function 

S(e). If we apply the function (7.7) to the relation (7.6) in combination with (7.5), 

we have the relation 

(7.8) (N—n-1-1)• Uo(e) 

            = A • log (57, • (1+ r)N-n+i)+S•(5n. ± ry—_                                              )4 • log (6,i)--(6.) 

            = A • (N—n +1) • log (1+ r)-I-S(5,,• (1+ r):V--721) ^.(5,1) 

            = (N—n+1) • U0()-E-.(57, • (l+r)N-n+1)___,(50(157, > 0) . 

Therefore, the function S(e) (J> 0) in (7.7) must satisfy the following relation. 

(7.9).3(e" • (1+ r)N-n+1)—S(e)= 0 (e > 0) . 

Let us employ the following transformation. 

(7.10)log z =u , S(z)= S(log z)= S(u). 

Then, we have 

(7.11)S(log e'+(N—n+1) • log (1 + r))—S(log e) 

                     = S(u+(N—n+1) • log (1+ r))+S(u)= 0 

from (7.9) in combination with (7.10). Therefore, the function S(u) in (7.10) has a 

periodic time (N—n +1) • log (1+r). And, since the relation (7.9) must be held with 
respect to any non-negative integers n and N so that 71 N according to Assump-

tion 7.2, the function S(u) must have the minimum periodic time log (1+r). 

   Therefore, if a function S(u) is a differentiable periodic function which has a 

periodic time log (l+r), the function 

(7.12) S(log e') 

is a solution of the functional equation (7.9). 

   If we substitute the relation (7.12) for (7.7), we have 

(7.13) e(e) = N)= A • log e+S(log e')+L = A • log (e+ K /r)+S(log (e+K/r))+ L 

with a differentiable periodic function S(u) which has a periodic time log (1+r). 

   Now, we have e'(e) > 0 from Assumption 7.1. Therefore, it is necessary to hold 

the following relation 

(7.14)(e+K/r)•'(e)= AH-Si(log (e+K/r))> 0 (e>—K/r). 

   Furthermore, we have A = Uo(e)/log (1+r) > 0, since U0() is positive according to 

the definition (7.4) in combination with Assumption 7.1, and log (1+r) must be positive 
due to assumption r> 0 in Condition 3.2-(i).Q. E. D. 

   Next, we have the following : 

   THEOREM 7.2. If (i) a utility function satisfies Assumptions 7.1 through 7.3 in 

S. D. M. S.-I, and (ii) a number h* produced by the relation
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(7.15)maxEflog (1-Fr-F(C—r) • h)} = E{log  (1±r±(C—r)  • h*)} 
                                ot 

is PO SitiV e ,1) then the utility function is denoted as 

(7.16)-(e) = A • log (e-FK/ r)± L (e > —K/r) 

where a = (1+r)/(t3-1--r), and A is a positive number,2) and L is any constant. 

   PROOF. As the first step, let us verify the following 

   LEMMA 7.2.1. In S. D. M. S.-I, if we employ a utility function (7.16), then (i) the 

value U(F*(0, N; D; D, ); b0, (b0> —K/r) is a constant P* which is independent of 

bo and N, and (ii) a (15 ; D, ;)-optimal strategic function F*(0, N; D; is denoted as 

(7.17)F" (0, N; D; D, h* (e> —K/r) 

with a constant h* defined by (7.15). 

   PROOF OF LEMMA 7.4.1. Let us verify this lemma by means of the mathematical 

induction. 

   (a) We can easily admit, due to (5.27), that if the utility function (7.16) is em-

ployed, then (i) there is a value h*, so that 

(7.18) U(F*(N, N; D; D, ); bN, 

              = max [A • E {log ((bN±Klr)-(1-1-r-F(C„—r)• /IN)))} 
           N a N 

                     —A • log (bN±K/r)1 

                = max A • E {log (1--0—H(CN—r)- 11_1-)} 
             0`h N` N 

              = A • E {log (1+ rd-(CN—r) • h*)} 

                     N 

                  =_ def. P* 

holds true uniformly independent of any b, larger than —K/r, and (ii) we can denote 

a (D; D, )-optimal strategic function as F*(N, N; D; D, )=---(eN-HK/r) • h*. 

   (b) Next, let us assume that there is a (D; D, )-optimal strategic function 

F*(s+1, N; D; D,),,-,(e+K/r) • h* with a constant h* so that U(F*(s+1, N; D ; r), e); 

bs+1, e) = A • E{log (1+ r±(C—r) • h*)} (b.,4_1> —K/r). Then, by means of the principle 

of optimality in dynamic programming in which we obtained the relation (6.21), we 

have the following relation :

   1) In this theorem, the assumption h* > 0 is necessary. That is, in the case of h* 0, 

Assumption 7.3 coincides with Assumption 7.2, and we have only a conclusion due to Theorem 

7.1. Therefore, it is necessary that there is a case of h* > 0 in S. D. M. S.-I, in order that we 

have a utility function (7.16). The condition h* > 0 does not constrain our general argument. 

Assumption 7.3 is employed with respect to any common probability density function of the 

stochastic variables Ce's, i. e. 0, which satisfies Conditions 3.1- (ii) and 3.1-(iii). We can easily 

admit that there is a positive h* defined in (7.15) in connection with a probability density func-

tion 0 which satisfies Conditions 3.1-(ii) and 3.1-(iii). 

   2) A is defined by A Uo(C)/log (1+r) in (7.5). However, A may be any positive number, 

since 1.10(e) may be any assigned positive number.
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<7.19) U(F*(s, N; 15; B, e); bs, e) 

         = maxA                          Ar
—s+1• CE{ log ((b,± K r) (1±rd--(Cs—r)•h3)))1 

              —log (I) s+ K / r)±(N— s) • E{log (1+ rH--(C—r) • h*)} 

             = A. E{log (1±r±(C—r) • h*)} = P* . 

   By means of the mathematical induction , we have a (15; 15, )-optimal strategic 
function F*(s, N; 15; 13, e),-,-,(e+K/r) • h*. Hence, we can admit this lemma. 

                                                           LEMMA 7.2.1. Q. E. D. 

    Next, we have the following 

    LEMMA 7.2.2. In S. D. M. S.-I, if a utility function ct satisfies Assumptions 7.1 

through 7.3, we have 

(7.20)U (F * (0 , N; D ; D, e); bo, e) = A . E{ log (1+ r±(C — h*)} = P* 

with respect to any be (> —K/r) and any non-negative integer N, with constants h* 
and P* defined in (7.18). 

   PROOF OF LEMMA 7.2.2. Since the utility function satisfies Assumptions 7.1 and 

7.2, the utility function is denoted by (7.2) due to Theorem 7.1. If we substitute 

<5.28) for (4.4), and also substitute the utility function (7.2) for the substituted 
relation (4.4), then, we have 

(7.21) U(F *(0, N; -15; 15, ); be, ) 

        1 
max          N+1[c{.{E{e((be+K/r) 

          • H (1-Fr±(Ct—r) • ht(13,(be, H(0, N)))— KM)}} • • }—e(bo)] 
                         t=0 

           1 

            N+1•0<iriir,<„[A ••• 1EE log (1+ r±(Ct—r) 
                                              0N t=0 

         ^ht(B,(be, H(0, N))))}} }±E{ {S(log (bo-FIC/r)) 
                       00 ON 

            E log (1+r±(Ct—r). ht(13,(bo, H(0, N)))))—S(log (bo-F-Klr))}} 
                          t=0 

         = def. P* ,(I30(be, H(0, N)) = bo) , 

independently of be (> —K/r) and of non-negative integer N, due to Assumption 7.3. 

   Now, since the function S(u) is a differentiable periodic function which has a 

periodic time log (1+r) according to Theorem 7.1, there is a finite number p so that 
—p G S(u) < p holds true on the domain (— oo, 00). That is, we have 

<7.22)—p <•-•{E{S(log (bo+K/r))+f log (1+ r) 
     cbc,t=0 

                  • ht(13,00, H(0, N))))—S(log (bod-K/r))}} < p
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with respect to any  bo (> —K/r), any non-negative integer N and any function H(0, N) 

so that 0 < H(0, N) -< a. Therefore, if we notice Assumption 7.3 and the conclusion 

of Lemma 7.2.1 in connection with the relations (7.21) and (7.22), we can easily admit 

the relation 

(7.23) lim U(F*(0, N; D D, e); bo, e) 
                       N.,00 

               = lirn max ,
1— A E{•-• {EE log (1±7--1-(Ci—r)                       (11/(0,N):�aIV00 t=0 

                            

• ht(Bt(boy H(0, N))))}} ... } 

              = A • E{log (1+ -(C — r) • h*)} = P* . 

Since U(F*(0, N; D ; D, e); bo, ) is uniformly independent of b0 larger than —K/r and 

of non-negative integer N according to Assumption 7.3, we can admit this lemma is 

true from (7.23).LEMMA 7.2.2. Q. E. D. 

   Furthermore, we have the following 

   LEMMA 7.2.3. If (i) a function S(u) (—co <u < co) is a differentiable periodic 

function which is not any constant, and (ii) the function S(u) has a periodic time 

log (1-1-r), and (iii) a number h* produced by the relation (7.15) is positive, then there 

is a number bo larger than —K/r so that 

(7.24)max [E{log (1 + r-F(Co—r) • h)} 
                               0,5_h'_*-a (Po 

                   -1-EIS(log (bod-K/r)d-log (1+ rd-(Co—r). h))1 
                          Go 

                 —S(log (bo+KIr))] 

                Ellog (1±r±(Co—r) • h*)} 
                           (Po 

holds true. 

   PROOF OF LEMMA 7.2.3. According to the assumptions (i) and (ii) in this lemma, 

we can choose a positive number 3 and a number u* so that (i) S(u)_< S(u*) may be 

held on the domain (—oo, oo), and (ii) S(u*4-4u)<S(u*) may be held on any 4u such 

that 0 < 4u < 3, (see Fig. 7.1). 

   Let us choose a number bo such that log (bo-FKIr)=u*. Since we have S(log (bo 

+K/r) = S(log (b0-1-K1r)-1-log (l+r)) due to the assumption (i) in this lemma, and we 

have also sb(e)> 0 on the domain r) due to Condition 3.1-(iii), we have the 

relation 

(7.25)E{S(log (bod-K/r)d-log (1±r±(Co—r) • h))1 
                 (Po 

                = r S(log (60-I-KM-Flog (1- r (e— r) • h)) • cb o(e) • de 

              < S(log (60±Klr)± log (1+r)) = S(log (bo+Klr)) 

on any positive number h smaller than a. (7.25) shows this lemma is true. 

                                                           LEMMA 7.2.3. Q. E. D. 

   Lemma 7.2.3 shows that if (i) we employ a utility function (7.2) in which the
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S(u) 

                                                                                            11 

            = log (bo+K/r)log (bo+K/r) log (b0-1-K/r) 

                                +log (l+r) +log (14-7-) 

                                       +o 

                                         Fig. 7.1.

function S(u) is a periodic function which has the periodic time log (14-r) but is not 

any constant, and (ii) such number h* as (7.15) holds true is positive, then there is 

a number b, (in the domain (—K/r, co)) so that the relation 

(7.26)U(F *(0, 0; D; D, e); bo, = A • Eflog (1-Frd-(C—r) • h*)} 

cannot hold true. Noting Lemma 7.2.2, we can easily admit that if S(u) is not a 

constant, Assumption 7.3 cannot be employed.THEOREM 7.2. Q. E. D. 

   Now, strictly speaking, all Assumptions 7.1 through 7.3 are not always necessary, 

and there are overlapping parts in these assumptions. That is, 

   (I) We can easily admit from Theorem 7.1 that if Assumptions 7.1-(i) and 7.2 
are true in S. D. M. S.-I, Assumption 7.1-(ii) is not necessary, since we have 

(7.27) lim (e) = lim {A. log (e+K/r)+S(log (e+K/r))+L} = —co (A> 0) . 
       Kir -Kir 

   (II) Next, we have the following 
   THEOREM 7.3. Let Fo(n, N; 13) be a special D-feasible strategic function so that 

F(n, N; B)--0, and let Uo(N—n+1, b.; e) be U(Fo(n, N; E'); b., e'). If the function 

Uo(N—n+1, en ; e) is independent of en, then the function Uo(N—n+1; en; e) is also 

independent of N—n+1 (N= 0, 1, 2, ••• ; n= 0, 1, 2, , N). 

   PROOF. Let us put as (b„--I-K/r) • (1-1-r)N-n+1—K/r= bN(b.) and put as Uo(N—n+1, 

en ; e) = Uo(N—n+1; e) on the basis of the assumption of this theorem. Then, we have 

(7.28) (N—n+1) • U0(N—n-I-1; e)=e(bN+100)—e(bn) (b.> —K/r) 

applying the relation (7.4). If we put as N= 1 and n = 0 in (7.28), we have 

(7.29)2 • U0(2 ; )= e(b2(b0))--(bi(bo))H-e(bi(bo))—(b0) 

                    = U0(1; e)+uo(i e) 

                       =2• U0(1; e),
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applying the relation (7.28) again. And also we have 

(7.30) U0(2  ; e) = Uo(1; e). 

   Next, if Uo(n; e)= Uo(1 ; e) holds true, then we have 

(7.31)(n+1)-Uo(n+1; $)=(b.-1-1(b0))—(bi(b0))-Pe(bi(b0))—(bo) 

                           = n • Uo(n ; U0(1; 

                         =(n+1) • U0(1 ; e) 

applying the relation (7.28), and we have also 

(7.32)Uo(n+1 ; )= U0(1; $) (n = 0, 1, 2, • •-) . 

Applying the mathematical induction, we can admit this theorem .Q. E. D. 

   (III) Furthermore, we have the following 

   THEOREM 7.4. If (i) a utility function e(e) satisfies Assumptions 7.1-(i) and 7.2, 
and (ii) bn, is larger than —K/r, then (i) a (b„, e)-criterion functional U(F(n, N; D); 

6,, e) can be defined on N; D), and (ii) it is upper bounded on the set (n , N; D), 
uniformly with respect to any b„ larger than —K/r and with respect to any non-

negative integers n and N so that n� N. 

   PROOF. According to Corollary 5.3.3, in combination with the notation (5.24), we 
have 

(7.33)P{ n (Be> —K/r)Ib.>—K/r, 0 -< H(0, N){ a} =1 

                                1 

                                       (1 ± r)/(p r) = a . 

And, by means of the same manner as we have (5.28), we have 

(3.34) BN+1(b„, F(n, N; D))+K/r 

           = BN+,(b„> —K/r, 0 H(n, N)-< a)+K/r 

             =(b.„-+-K/r)• (1-Fr±(C,i—r). h„(6„))• (1+ r-F(Cn+i—r). 17.4-1(13.-1-1))                                

• •-• • (1-1-r+(CN—r)• hN(BN)) • 

Since Assumption 7.2 is true, the utility function e(e) is denoted by (7.2) due to 
Theorem 7.1. Hence, we have 

(7.35)U(F(n, N; D); b„, e) 

         A  
                N—n+1 • oEn,{ •{E,(1±rd-(Ct—r)                   

• ht(B,(b„, H(n, N; D))))}} •••} 

               + N—n+1• E•-•{S(log (bn+K/r)) 
             onN 

                E log (1d-rd-(Ct—r)•ht(Be(b„, H(n, N;D)))) 
                                t=n 

              —S(log (b„-I-KM)}} (Bee(bee, H(n, N; D)) = b.) •
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   Since, S(u) is a periodic function on  (—co, cc) which has a periodic time log (1+r), 

we have 

(7.36)U(F(n, N; 13); 6,, A • log (1+r-1-(7—r) • a) 

                              N-1+1{max S(u)—min S(u)} . 

                                            n And, we can admit that U(F(n, N; D); bn, e) is upper bounded on N; if b. 

> —K/r, with respect to any non-negative integers n and N so that n N. Q. E. D. 

   According to the previous considerations (I) through (III), we can admit that, for 

the purpose of choosing a reasonable utility function from the point of view of the 

3rd approach in Section 1 in S. D. M. S.-I, Assumptions 7.1 through 7.3 may be sub-

stituted by the following three assumptions. 

   ASSUMPTION 7.4. A utility function e is a monotonously increasing and differenti-

able function on the domain (—K/r, co). 

   ASSUMPTION 7.5. Let Fo(n, N; D) be a special D-feasible strategic function so 

that Fo(n, N; D)-0, and let Uo(N—n+1, b.; be U(Fo(n, N; D); b., e). Then, 

Uo(N—n+1, is independent of bn in the domain (—K/r, co). 

   ASSUMPTION 7.6. There is a (D ; D, )-optimal strategic function F*(n, N; D ; D, e), 

and U(F*(n, N; D ; D, e); bn, e) is a constant, independently of bn in the domain (—K/r, 

CO) and of any non-negative integers n and N so that n N. 

   § 8. Some Comments on the Utility Function e(e) = A • log (e+K/r)+L 

   (A) First, let us see that the utility function (e) = A • log (e+K/r)-FL is really 

applicable in the problem of multi-stage stochastic strategy-making. That is, let us see 

the utility function has important significance not only from the point of view of the 3rd 

approach in Section 1 but from the point of view of the 2nd approach in the section. 

   A value of criterion functional (4.4) is only a " expectation " of utility of amount 

.of money which will be obtained at the time N-I-1 through a strategic function 

F(n, N; bn). However, the real goal of the stochastic dynamic programming is not 

to obtain the expectation of utility of amount of money, since the expectation is only 

a mathematical form and it cannot always be obtained as a realization at the time 

N+1. If the expectation, at least, does not have a high degree of reliability, the 

strategy which produces the maximal expectation is inapplicable. It is necessary to 

notice how reliable is the expectation produced by a stochastic strategy. 

   Now, let us measure the degree of reliability in obtaining the expectation of a 
             1  

                1 stochastic variableN-I-• [e(BN4.,(b„F(0, N; D)))—e(b0)1,i.e. U(F(0, N; D); b0,e), by 
the " coefficient of variation " of the stochastic variable. Then, it seems reasonable 

that a utility function employed in a stochastic dynamic programming satisfies the 

following : 

   CONDITION 8.1. Let V {B} be the variance of a stochastic variable B. Then, a 

utility function e satisfies the following relation. 

                N+1 1 • (e(BN4-1)—e(b0))160, F *(0, N;; D, e)} 
(8.1)lim= 0                     U(F*(0

, N; D-; D, e); bo, e)
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   We have the following 

   THEOREM  8.1. If a utility function e(e)= A • log (e+K/r)±L is employed for the 

purpose of the stochastic dynamic programming in S.D. )I. S.-I, the utility function 

satisfies Condition 8.1. 

    PROOF. In the process of proving Lemma 7.2.1, we have verified that if we 

,employ a utility function e(e) = A • log (e±K/r)+L , then we have 

<8.2)F*(0, N; D ; D, e),--(e+K/r) • h* 

and 

<8.3)U(F*(0, N; 15; D, e); b,,e)= A • E{log (1-Fr+(C—r). h*)} . 

Therefore, if the utility function (e) = A • log (e-FK/r)+L is employed, we have also 

(8.4)log (BN+,(bo, F*(0, N; D ; D, e))+Klr)—log (14±K/ 1') 

                       N 

                  = E log (1±r±(Ct—r) • h*) , 
                                       t=o 

according to (5.28) in combination with (8.2). 

    Now, let V NI-1 be the variance of the stochastic variable - NT—A
_F-i- • {log (B,÷1(b„ 

F*(0, N; D ; D, e)+K/r)—log (NH-KM}, and let v be the variance of each stochastic 

variable A • log (1-1--r-F(Ct—r) • h*) (t = 0, 1, 2, Then, we have 

(8.5)VA — N+1 

,due to (8.4), since the stochastic variables log (1+ r±(Ct—r). h*)'s (t = 0, 1, 2, • •-) are 
independent with each other according to Condition 3.1-(i). Therefore, the coefficient 

                            A •of variation of the stochastic variable 
+                                     • {log (BN÷i(bo, F*(0, N; D ; D, e)+K/r) 

—log (b0±K/r)} becomes equal to 

(8.6) 
                   A/ (N-1-1) • Eflog (1H-r±(C—r) • h*)} 

That is, we can admit this theorem.Q. E. D. 

   (B) Furthermore, it is interesting to notice the following fact based upon the 

utility function A • log (e+K/r)+L. 

   In S. D. M. S.-I, such a profit as may be produced through an activity by means of x 

is a stochastic realization. On the other hand, such a profit as may be produced through 

an activity by means of y is not. According to our intuition, it may seem reasonable 

that the ratio of optimal level of x, to the amount of total capital money b, i. e. 

x:(b)/b, does not decrease according to increase in capital money b [9], since it seems 

that the larger the total capital money is, the smaller the risk with which a manage-

ment activity becomes disadvantageous. However, if we make use of the utility 

function e(e) = A • log (e+K/r)-EL, the value x:(b)/b=f:(b; D ; D, e)/b does not always 

decrease. That is, it is easy to see that we have
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(8.7) 00       x(b)f*(b,• D • D, (b  I K r) •• h*K                                     =1+ r•b) h*(b > —K/r) . 

   This relation shows that if K < 0, our ordinary intuition agrees with the conclusion 

from the objective stochastic strategy-making by means of the stochastic dynamic 

programming on the basis of the utility function (e) = A • log (e+Klr)+L. However, 

if K > 0, the relation (8.7) shows that our ordinary intuition does not agree with the 

conclusion. 

   (C) According to Theorem 7.2 and Lemma 7.2.1, if Assumptions 7.1 through 7.3 

are admitted in S. D. M. S.-I, an optimal stochastic strategy at each time t is denoted 

by x*(bt)---- (bt-HK/r) • h* and y*(bt)=bt—x*(bt) in combination with the value h* maxi-

mizes E{ log (1+r--1--(Ct—r) • h)} • 

         t 

   If the domain D(rd-(C—r) • h) is so small that we can neglect all terms beyond 

the second degree in the expansion of the function log (1+r(c — r) • h) , with respect to 

any h in a domain [h*-5, h* +5], then we may denote the function approximately as 

follows : 

                                  1 (8
.8)log (1+ r + (c — r) • h)_=r (c — r) • h—2• (r (c — r) • h)2 . 

That is, denoting the variance of the stochastic variable C by a', we have also 

                                1 (8
.9) E{log (1+ r +(C — r) h} = r +(m — r) • h——2— {(r +(m—r) • h)2 a' • 12.21 , 

for the purpose of making an approximate stochastic strategy. 

   Hence, an approximate optimal value h* which maximizes (8.9) becomes equal to 

(8.10)h*(m — r) •(1—r)                                    (m — r)2a' • 

    For example, if we put as m = 0.06, 0.03 and r = 0.04 in S. D. M. S.-I, the 

optimal value h* becomes equal to 

(8.11)h* —                          —x0.020.96                                         =0.6316 ,                            (0.02)2+0.03 

and the optimal strategy is 

                                              v (8.12)f *(bt ; D ; D, )= max [0, 0.6316 bt+.i 
                                    06316  

                                              0.04'J 

                           = max [0, 0.6316 bt+15.7895 K] . 

   § 9. On the Linear Utility Function and the Bernoulli's Utility Function 

   (A) It is generally agreed that the strategy which maximizes expectation of 

capital money under a stochastic scheme will not always lead a reasonable stochastic 

strategy. Let us verify this situation objectively from a point of view of the stochatic 

dynamic programming. 

    In S. D. M. S.-1, if a monotonously increasing linear utility function e(e) = A 

•(e+Klr)+L (A> 0) is employed, a relation
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(9.1)  U(F*(N, N; D ; D, e); bN, e) 

           = max A • E {(bN+K/r) • (1±r±(CN—r) • hN)—(bN+KI01 

            = max A • (bN+K/r) • ((l+r+(m—r) • hN)-1) 

            = A (bN+K/r) • ((l+r+(m—r) • a)-1) 

            = A • (bN+Klr)- (R-1) 

is obtained with respect to any assigned bN in the domain D, putting as a = (14-r) 

/(48+r) and R = 1-Fr+(m—r) • a. 

   Now, let us apply the linear utility function and the relation (9.1) to the relation 

(6.21) in the case of n= N-1. Then, we have 

(9.2) U(F*(N-1, N; D ; D, e); bN„, e) 

              1 
        =

0-1-nAmax-• [EhN-11--(bN-1)                       7-1.--2 

             +E {LI(F*(N, N; D ; D, e); BN(bN_„ hN„), e)}1 
                            TIN 

         =max-2- - [E {(bN„±Klr)• (l+r+(CN„—r) • hN-1)}—(bN_,-FK/r) 

               +E {(BN,±K/r) • (1-1-r±(CN,—r) • hN-1) • (R-1)}] 
                            ON-1 

              A 
         = max0- • (bv„+K/r) • {((l+r+(m—r) • hN„)-1) 

               H-(1+ r±(m —r) • hN,) • (R —1)} 

        —A (b 
N„± K r) • {((l+ r (m— r) • a) —1)±(1+ r (m r) • a) • (R-1)}          2 

        .=A• (b v„±K/r) • {(R-1)+R•(R-1)}          2 

         =-A-• (b vi+ K r)•(R 1) • (R-1)          2 

          -=-A • (bv„-F-K1r) • (R2-1)          2 

with respect to any assigned bN-1 in the domain D. And similarly, we have also 

(9.3)U(F*(N-2, N; D ; D, e); bN-2, ) 

                 A                   =3 - • (bN-2- K/r) • {(R-1)+ R • (R +1) • (R-1)} 

                  — -A • (bK r) • (R2 R +1) • (R-1) 
                     3A-2 

                    =A• (bv-2-r)•(R3-1)        3 

 with respect to any assigned blv, in the domain D. Furthermore, we have also
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(9.4)U(F*(0, N; D ; D, bo, 

                A                  = • (bo+Klr)- (RN +RN-1+ ••• +1) • (R-1)                     N -F1 

                A 
                  1                  =+(bo-F KIr) (RN-1-1) . 

   Hence, if a linear utility function e(e) = A • (e+K/r)+ L is employed, we can obtain 

a ; D, )-optimal strategic function 

(9.5)F *(0, N; 15 ; (e+K/r) • a 

and we have the relation 

(9.6) e(BN-1-1(bo, F *(0, N;;))) = A • (bo+ K/ r)N (1+ r+(Ct—r) • a)+L , 
                                                                                  t=0 

applying (9.5) to (5.28). 

   Now, let a2 be the variance of the stochastic variables Cn's and let VN+1 be the 

                       A 
variance of the stochastic variable                          N+1 • le(BN4-1(b0,F*(0, N; 15 ; 15, )))—e(bo)}. Then, 

we have 

03)17N+1— { A • (bo+K/r)                                • (1+ r(m— r) • a)N+1}2 
                   N+1 

                               a2 • a'N 1                      •{0+ (1
+ r +(m— r) • a)2) —1} 

from (9.6), since stochastic variables (1-Frd-(Ct—r) • a)'s (t= 0,1, 2, ••• , N) are independ-

ent of each other. Therefore, we have the "coefficient of variation" of the stochastic 

       1 
        1 variable• {(BA-4-1(bo, F*(0,AT;;15, e)))—e(b0)},       N+ 

             V  ^+„‘,/(R2+,72• aT±i_R2•(N+1)                                    N1 

(9.8)=-            U(F*(0
, N; 13; 13, ); bo, 

                                          -‘/ (14-cf2 •  a2/R2)N+1-1 

                                                     1-1/R-v-1 

                                            (R = 1H-r+(m —r) • a). 

   Hence, if N becomes positive infinite, the " coefficient of variation," (9.8), also 

becomes positive infinite in S. D. M. S.-I, since a > 0, a > 0 and R =1+r+(m—r) • a 

> 1 hold true. That is, if a linear utility function of amount of money is employed, 

the expectation of the utility of amount of money has not any reliability in S. D. M. S.-

I, in the case of N is sufficiently large. 

   (B) Next, Bernoulli [4] proposed to employ a logarithmic function 

(9.9)(e) = A • log e+L 

as a utility function of amount of money, in order to evade a contradiction due to 

stochastic strategy-making which maximizes simple mathematical expectation of 

amount of money. And if Bernoulli's utility function is applied in the criterion 

functional (4.4) in the case of 71 = N, the criterion functional is denoted by
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(9.10) U(F(N, N;  bN); bN, e) 

            = A • E [log {(bN+K/r) • (1-i-r-F(CN—r) • hN)—K/r} —log bN] . 

   Now, if K> 0, there is a 6N-feasible strategic function F(N, N; bN) with respect 

to any assigned bN such that —K/r �bN 0. However, the criterion functional (9.10) 

cannot measure degrees of effectiveness of the 6N-feasible strategic function F(N,N;bN) 

in the case of —K/r �_bN 0, since log bN cannot be defined. 

   Moreover, if K < 0, the utility function e(e) = A • log e+L may be approximated 

to a linear function even in the neighbourhood of e= —K/r. And if bod-K/r is a 

sufficiently small positive number, the domain D(BN÷i(bo, F(0, N; bo)) may be also in the 

neighbourhood of bo = —K/r, even in the case of N is a large integer. In such a case, 

the Bernoulli's utility function will produce such a contradiction as we saw in a 

stochastic strategy-making which maximizes mathematical expectation of amount of 

money (i. e. employs a linear utility function of amount of money). 

   After all, Bernoulli's utility function can be applied only in the case of K= 0, in 

S. D. M. S.-I.
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