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ON THE STOCHASTIC HEAT EQUATION

WITH SPATIALLY-COLORED RANDOM FORCING

MOHAMMUD FOONDUN AND DAVAR KHOSHNEVISAN

Abstract. We consider the stochastic heat equation of the following form:

∂

∂t
ut(x) = (Lut)(x) + b(ut(x)) + σ(ut(x))Ḟt(x) for t > 0, x ∈ Rd,

where L is the generator of a Lévy process and Ḟ is a spatially-colored, tempo-
rally white, Gaussian noise. We will be concerned mainly with the long-term

behavior of the mild solution to this stochastic PDE.

For the most part, we work under the assumptions that the initial data
u0 is a bounded and measurable function and σ is nonconstant and Lipschitz
continuous. In this case, we find conditions under which the preceding sto-
chastic PDE admits a unique solution which is also weakly intermittent. In
addition, we study the same equation in the case where Lu is replaced by
its massive/dispersive analogue Lu − λu, where λ ∈ R. We also accurately
describe the effect of the parameter λ on the intermittence of the solution in
the case where σ(u) is proportional to u [the “parabolic Anderson model”].

We also look at the linearized version of our stochastic PDE, that is, the
case where σ is identically equal to one [any other constant also works]. In
this case, we study not only the existence and uniqueness of a solution, but
also the regularity of the solution when it exists and is unique.

1. Introduction and statements of main results

The principle aim of this paper is to describe the asymptotic large-time behavior
of the mild solution u := {ut(x)}t≥0,x∈Rd to the stochastic heat equation,

(1.1)
∂

∂t
ut(x) = (Lut)(x) + b(ut(x)) + σ(ut(x))Ḟt(x),

where t > 0 and x ∈ Rd, where the preceding stochastic PDE can be understood
in the sense of Walsh [92] and Dalang [30]. We have used, and will be using,
the standard notation of probability theory throughout: Namely, gt denotes the
evaluation of a random or nonrandom function g at time t, and never the time
derivative of g.

We consider only the case where the initial data u0 is a nonrandom, as well as
bounded and measurable, function. The functions σ, b : R → R are nonrandom
and Lipschitz continuous. Also, we let L be the L2-generator of a d-dimensional
Lévy process X := {Xt}t≥0, and assume that X has transition functions.
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410 M. FOONDUN AND D. KHOSHNEVISAN

As regards the forcing term Ḟ in (1.1), we assume that Ḟ is a generalized Gauss-
ian random field [50, Chapter 2, §2.4] whose covariance kernel is δ0(s− t)f(x− y),
where the “correlation function” f is a nonnegative definite, symmetric, and non-
negative function that is not identically zero. The symbol “f” is reserved for this
correlation function here and throughout. We never refer to any other function as
f . Alternatively, one can use

(1.2) Ḟt(x) :=
∂d+1

∂t∂x1 · · · ∂xd
F (t , x)

in the sense of generalized random fields, where F is a centered generalized Gaussian
random field with covariance kernel

Cov

(∫
φ dF ,

∫
ζ dF

)
=

∫ ∞

0

ds

∫
Rd

dx

∫
Rd

dy φs(x)ζs(y)f(x− y)

=

∫ ∞

0

(φs , f ∗ ζs)L2(Rd) ds,

(1.3)

where
∫
φ dF and

∫
ζ dF are Wiener integrals of R+ × Rd � (s , x) �→ φs(x) and

R+ × Rd � (s , x) �→ ζs(x) with respect to F , and φ and ζ are nonnegative mea-
surable functions for which the right-most multiple integral in (1.3) converges ab-
solutely. We mention that the generalized Gaussian random field (t , φ) �→

∫
φ dF

continues to make sense when the correlation f is a measure, or more generally a
Schwartz distribution, provided that we interpret the covariance functional in (1.3)
as the final integral that appears in that display. However, we will not consider
such generalizations, primarily because we do not know how to prove Theorems 1.8
and 1.11 below except when f has reasonable function structure.

According to the Bochner–Schwartz theorem [50, Theorem 3, p. 157]: (a) the

Fourier transform f̂ of f is a [nonnegative Borel] tempered measure on Rd; (b)

conversely, every tempered measure f̂ on Rd is the Fourier transform of one such

correlation function f . The measure f̂ is known as the “spectral measure” of the
noise F . Throughout, we assume without further mention that F “has a spectral
density”. That is,

(1.4) f̂ is a measurable function.

This implies that f̂ is locally integrable on Rd as well. Strictly speaking, these
conditions are not always needed in our work, but we assume them for the sake of
simplicity.

By enlarging the underlying probability space, if need be, we introduce an in-
dependent copy X∗ := {X∗

t }t≥0 of the dual process −X. We can then use X∗ to
define a symmetric Lévy process X̄ := {X̄t}t≥0 on Rd via the assignment

(1.5) X̄t := Xt +X∗
t for all t ≥ 0.

Motivated by the works of Kardar, Parisi, and Zhang [60] and Kardar [59], we may
refer to X̄ as the replica Lévy process corresponding to X and will therefore call
the resolvent {R̄α}α>0 of X̄ the replica resolvent. These quantities are defined in
more detail in §2.

We will consider the condition that the correlation function f has finite α-
potential at zero for all α > 0. That is, we consider the following:

Condition 1.1. (R̄αf)(0) < ∞ for all α > 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE STOCHASTIC HEAT EQUATION 411

It will turn out that Condition 1.1 allows one to apply the theory of Dalang
[30] to the present setting and obtain an existence and uniqueness result for the
stochastic heat equation (1.1). Here we show that the existence and uniqueness
of a solution is closely linked to the large-time behavior of the solution itself [via
a priori estimates]. As mentioned above, our solution is of mild form; it can be
written as

ut(x) = (Ptu0)(x) +

∫ t

0

ds

∫
Rd

dy pt−s(y − x)b(us(y))

+

∫ t

0

∫
Rd

pt−s(y − x)σ(us(y))F (ds dy),

where {Pt}t>0 is the semigroup of X, defined in §2, and pt(·) is the transition
function of X. Next we describe these results in greater detail. But first, let
us define two important quantities: The first denotes the upper Lp(P)-Liapounov
exponent of the solution u := {ut(x)}t>0,x∈Rd to (1.1) at the spatial point x ∈ Rd:

(1.6) γx(p) := lim sup
t→∞

1

t
ln E (|ut(x)|p) ,

and the second the upper maximum Lp(P)-Liapounov exponent of u:

(1.7) γ∗(p) := lim sup
t→∞

1

t
sup
x∈Rd

ln E (|ut(x)|p) .

The above two quantities are variants of Liapounov exponents.
Define for all β ≥ 0,

(1.8) Υ(β) :=
1

(2π)d

∫
f̂(ξ)

β + 2ReΨ(ξ)
dξ,

where Ψ is the characteristic exponent of the Lévy process X. Dalang [30] has
established a very general result which guarantees the existence and uniqueness of
solutions to large families of SPDEs. If we apply Dalang’s result to the present
parabolic problem (1.1), then we find the following: The condition

(1.9) Υ(1) < ∞
ensures the existence and uniqueness of a [mild] solution to (1.1). [The main result
of [30] is stated for the case where u0 is a constant, but its derivation applies equally
well to the present case where u0 is bounded and measurable.]

In addition, Dalang [30] has shown that (1.9) cannot be improved upon: (1.9) is
necessary and sufficient for the existence and uniqueness of a solution in the case
that (1.1) is a linear SPDE [σ ≡ 1, b ≡ 0]. There are also many closely related
results including analyses of hyperbolic equations [19, 25, 31, 35, 36, 37, 83].

We are now ready to state the first main contribution of our paper. Our first
result implies among many other things that Dalang’s condition (1.9) is generically
equivalent to the potential-theoretic Condition 1.1.

Theorem 1.2 (A maximum principle). For all β > 0,

(1.10) (R̄βf)(0) = sup
x∈Rd

(R̄βf)(x) = Υ(β).

Thus, Condition 1.1 holds if and only if (1.9) holds. Furthermore, if Condition 1.1
[and/or (1.9)] holds and f is lower semicontinuous, then for all β > 0 there exists
πβ ∈ C0(R

d) such that R̄βf = πβ almost everywhere.
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412 M. FOONDUN AND D. KHOSHNEVISAN

{R̄β}β>0 is the resolvent of a self-dual semigroup—namely the semigroup of the
Lévy process X̄—and, because of (2.8) below, the theory of [14] applies and tells
us that (R̄βh)(x) is maximized at x = 0 for all h ∈ L1(Rd). Theorem 1.2 tells
us that the integrability condition can be replaced by positive definiteness without
changing the end result. Our proof turns out to be Fourier analytic and quite
different from the balayage arguments of potential theory [14].

Theorem 1.2 implies that, under Condition 1.1, we may apply Dalang’s theory,
and therefore (1.1) has an a.s.-unique solution which can be written in mild form.
Our next result provides information about the upper maximum Lp(P)-Liapounov
exponent of that solution.

Theorem 1.3. Assume Condition 1.1 and suppose u0 : Rd → R is bounded and
measurable. Then

(1.11) γ∗(p) ≤ inf {β > 0 : Q(p , β) < 1} for all integers p ≥ 2,

where

(1.12) Q(p , β) :=
pLipb
β

+ zpLipσ

√
(R̄2β/pf)(0),

and zp denotes the largest positive zero of the Hermite polynomial Hep.

The proof of Theorem 1.3 is a potential-theoretic abstraction of our Fourier-
analytic arguments in [45, Theorem 2.1] that were devised to study the heat equa-

tion (1.1) driven by space-time white noise [in place of Ḟ ]. The present potential-
theoretic methods can be generalized further to include operators L that are genera-
tors of much more general Markov processes, but we will not pursue those extensions
here.

Let us make two remarks before we continue with our presentation of the main
results of this paper.

Remark 1.4. It is possible to deduce from Condition 1.1 and the monotone conver-
gence theorem that limα→∞(R̄αf)(0) = 0. This, in turn, implies that Q(p , β) → 0
as β → ∞. Consequently, Theorem 1.3 implies, among other things, that γ∗(p) < ∞
for all p ∈ (0 ,∞). �

Remark 1.5 (Borrowed from [45, Remark 2.2]). It might help to recall that

(1.13) Hek(x) = 2−k/2Hk

(
x/

√
2
)

for all integers k ≥ 0 and x ∈ R,

where {Hk}∞k=0 is defined uniquely via the following:

(1.14) e−2xt−t2 =
∞∑
k=0

tk

k!
Hk(x) (t > 0, x ∈ R).

It is not hard to verify that

(1.15) z2 = 1 and z4 =

√
3 +

√
6 ≈ 2.334.

This is valid simply because He2(x) = x2−1 and He4(x) = x4−6x2+3. In addition,

(1.16) lim
p→∞

(
zp√
p

)
= sup

p≥1

(
zp√
p

)
= 2;

see Carlen and Kree [16, Appendix]. �
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THE STOCHASTIC HEAT EQUATION 413

In order to pave the way for the second main result of this paper, we recall the
following [45]:

Definition 1.6. Suppose (1.1) has an a.s.-unique solution u := {ut(x)}t>0,x∈Rd .
We say that u is weakly intermittent if γ∗(p) is finite for all p ∈ [2 ,∞) and
infx∈Rd γx(2) > 0.

The same reasoning that was employed in [45] can be used to deduce that if
the solution to (1.1) is nonnegative for all t > 0, then weak intermittence implies
the much better-known property of intermittency [19, 77, 96]; that is, the property
that p �→ γx(p)/p is strictly increasing on [2 ,∞) for all x ∈ Rd. There is a
large literature which shows that, under further mild hypotheses on L and/or f ,
if u0 is nonnegative, then the solution to (1.1) is nonnegative at all times [1, 19,
40, 53, 63, 69, 71, 70, 78, 81, 87, 86]. In connection to matters of positivity and
regularity, we also mention the closely related paper [39], where (1.1) is considered
with σ(u) = const · √u. Positivity of the solution is shown to follow from many-
particle approximations to the underlying SPDE.

Thus, we can draw the conclusion that, in all such cases, weak intermittence
actually implies intermittency.

A quick calculation, using only Hölder’s inequality, shows that p �→ γx(p)/p is
always nondecreasing on [2 ,∞). However, the mentioned strict monotonicity does
not always hold. When it does hold, then it has some physical significance [77, 96].

Our next main goal is to find nontrivial conditions that guarantee the weak
intermittence of the solution to (1.1). In light of Theorem 1.3, we aim to derive a
positive lower bound on infx∈Rd γx(2). Unfortunately, it is quite hard to do this
at the level of generality of the conditions of Theorem 1.3, and we are able to
establish weak intermittency only when certain technical conditions hold. In order
to describe those technical conditions, let ĝ denote the Fourier transform of a locally
integrable function g, and consider the following:

Condition 1.7. Suppose:

(1) f̂(ξ) depends on ξ ∈ Rd only through |ξ1|, . . . , |ξd|;
(2) |ξj | �→ f̂(ξ) is nonincreasing for every j = 1, . . . , d; and
(3) ReΨ(ξ) depends on ξ ∈ Rd only through |ξ1|, . . . , |ξd|.
These are relatively mild provisions on the spectral density f̂ and the process

X̄. Our conditions on the spectral density can be applied to all of the examples
that we would like to cover. It is possible to show that they include the following
choices for f :

(i) Ornstein–Uhlenbeck-type kernels. f(x) = exp(−‖x‖α) for α ∈ (0 , 2], f̂(ξ) =
(2π)−d

∫
Rd exp(−iξ · x− ‖x‖α) dx;

(ii) Poisson kernels. f(x) = (‖x‖2+1)−(d+1)/2, f̂(ξ) = c1 exp(−c2‖ξ‖) for some
c1, c2 ∈ (0 ,∞);

(iii) Cauchy kernels. f(x) =
∏d

j=1(1 + x2
j)

−1, f̂(ξ) = c1 exp{c2
∑d

j=1 |ξj |} for

some c1, c2 ∈ (0 ,∞); and

(iv) Riesz kernels. f(x) = ‖x‖−α, f̂(ξ) = c‖ξ‖−d+α for α ∈ (0 , d) and a suitable
c ∈ (0 ,∞).

Moreover, one can construct a great number of other permissible examples as well.
Having introduced Condition 1.7, we can now present the third main result of

this paper.
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414 M. FOONDUN AND D. KHOSHNEVISAN

Theorem 1.8. Suppose b ≡ 0 and Conditions 1.1 and 1.7 hold. Suppose, in
addition, that η := infx∈Rd u0(x) > 0 and there exists Lσ ∈ (0 ,∞) such that
σ(z) ≥ Lσ|z| for all z ∈ R. Then

(1.17) inf
x∈Rd

γx(2) ≥ sup

{
β > 0 : (R̄βf)(0) ≥

2d−1

L2
σ

}
,

where sup∅ := 0.

Consider, for an example, the case where (R̄0f)(0) = ∞, whence (Rβf)(0) ↑ ∞
as β ↓ 0. Consequently, (R̄βf)(0) ≥ 2d−1/L2

σ for all β > 0 sufficiently small.
Hence, whenever (R̄0f)(0) = ∞, the hypotheses of Theorem 1.8 guarantee weak
intermittence of the solution to (1.1) without further restrictions. The condition
(R̄0f)(0) = ∞ is basically stating that f is a recurrent function for the Lévy process
X̄; for a precise statement see Proposition 3.13 below.

Remark 1.9. (1) In the case where Ḟ is space-time white noise, the condition
“σ(z) ≥ Lσ|z|” can be replaced with the slightly better condition “|σ(z)| ≥
Lσ|z|” [45]. But the methods employed here are different in a few [quite
essential] spots from the techniques of [45].

(2) We will see later on that, when d = 1, the lower bound (1.17) and the upper
bound (1.11) can sometimes match. However, the two bounds can never
agree when d ≥ 2. This phenomenon is due to the fact that level sets of
β �→ (R̄βf)(0) cannot exactly describe the growth of u. The correct gauge
appears to be a much more complicated function, except in the cases where
Ḟ is space-time white noise and when d = 1. Compare this with [45] for

results on the case where Ḟ denotes space-time white noise. �

We are aware of a few variants of Theorem 1.8, but the next one is perhaps the
most striking since it assumes only that the nonlinearity term σ is asymptotically
sublinear. Thus, the local behavior of σ is shown not to have an effect on weak
intermittence, provided that the initial data u0 is sufficiently large. A significant
drawback of this result is that its proof does not provide any information about
how large “sufficiently large” should be. We introduce the following condition.

Condition 1.10. (R̄0f)(0) = ∞.

The following result is the mentioned variant of Theorem 1.8 and has a similar
flavor to [45, Theorem 2.10], though its method of proof differs significantly, in key
spots, from the arguments of [45].

Theorem 1.11. Suppose b ≡ 0 and Conditions 1.1, 1.7, and 1.10 hold. Suppose,
in addition, that σ ≥ 0 pointwise, and q := lim inf |z|→∞ σ(z)/|z| > 0. If u0(x) > 0

and P{ut(x) > 0} = 1 for all t > 0 and x ∈ Rd, then γx(2) > 0 for every x ∈ Rd

provided that η := infx∈Rd u0(x) is sufficiently large.

Theorems 1.3, 1.8, and 1.11 describe our main contributions to the analysis of
the stochastic heat equation (1.1) in the case where σ is not a constant and that
u0 is a bounded and measurable function. We also study the linearization of (1.1);
this is the case when σ is identically equal to one. The general theory of Gaussian
processes readily resolves all existence-and-uniqueness issues; we use that theory
to study continuity properties of the solution. Moreover, we produce a class of
interesting examples which we briefly describe next.
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Consider the linear stochastic heat equation

(1.18)
∂

∂t
ut(x) = (Δut)(x) + Ḟt(x) (t > 0, x ∈ R3),

where u0 ≡ 0 and the Laplacian acts on the x variable only. Then, we construct
families of noises Ḟ which ensure that (1.18) has a solution u := {ut(x)}t≥0,x∈R3

that is a square-integrable random field. But that random field is discontinuous
densely with probability one. In fact, outside of a single null set [of realizations of
the process u],

(1.19) sup
(t,x)∈V

ut(x) = − inf
(t,x)∈V

ut(x) = ∞,

for all open balls V ⊂ R+ ×Rd with rational centers and radii! We know of only a
few examples of SPDEs with well-defined random-field solutions that have densely
unbounded oscillations [34, 33, 32, 79, 46]. The preceding (1.19) yields a quite
simple example of an otherwise physically-natural stochastic PDE [the operator is
the Laplacian in R3, and the noise is white in time] which has a very badly behaved
solution.

This paper was influenced greatly by the theoretical physics literature on the
“parabolic Anderson model” (see, for example, [60, 75, 96] and [64, §5]), as well
as the mathematical physics literature on the very same topic [6, 5, 4, 8, 7, 18,
17, 19, 20, 24, 23, 22, 27, 26, 29, 28, 44, 48, 49, 91, 62, 67, 77, 93]. In a nutshell,
the parabolic Anderson model is equation (1.1), where σ(u) is proportional to u.
There are many good reasons why that equation has been studied intensively [19,
Introduction]. Two such reasons are that the parabolic Anderson model is exactly
solvable in the two cases where u0 ≡ constant and u0 = δ0 and that it is related to
the stochastic Burgers equation as well as the KPZ equation of statistical mechanics.

Perhaps not surprisingly, the results of our Theorems 1.3, 1.8, and 1.11 are
sharpest for the parabolic Anderson model, particularly when d = 1. However,
an inspection of Theorems 1.3 and 1.8 reveals an inconsistency: Our upper bound
on the Liapounov exponent [Theorem 1.3] does not require the drift b to be zero,
whereas our lower bound [Theorem 1.8] does. In this connection, David Nualart
has asked us whether we know how the drift b can affect the weak intermittence of
the solution to (1.1). This seems to be a hard question when the drift b is a general
Lipschitz-continuous function, though it is intuitively clear that a sufficiently-strong
drift ought to destroy the natural tendency of the solution to be weakly intermittent.

Although we are not aware of general theorems of this type, we are able to give a
partial answer to Professor Nualart’s question, and the striking nature of our partial
answer confirms our initial suspicion that it might be rather difficult to answer such
questions in good generality.

Here is an instance where we can rigorously study weak intermittency in the
presence of a drift: Consider the one-dimensional parabolic Anderson model for
the relativistic [or massive/dissipative] Laplacian; i.e., the stochastic PDE

(1.20)
∂

∂t
ut(x) = (Δut)(x) +

λ

2
ut(x) + κut(x)Ḟt(x),

where t > 0 and x ∈ R, κ �= 0, λ ∈ R, and u0 : R → R is a measurable function
that is bounded uniformly away from zero and infinity. Let us consider the special
case where the correlation function of the noise is of Riesz type; that is,

(1.21) f(z) := ‖z‖−1+b for all z ∈ R,
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416 M. FOONDUN AND D. KHOSHNEVISAN

where b ∈ (0 , 1). Then, Example 5.8 below implies that weak intermittence is
equivalent to the condition

λ > − |κ|4/(1+b)
8−(1−b)/(1+b)

[
Γ(b/2)Γ((b+ 1)/2)√

π

]2/(1+b)

= −
[
κ4[Γ(b)]2

21−b

]1/(1+b)

.

(1.22)

The inequality is new; the identity follows from a standard application of Euler’s
duplication formula, Γ(2z) = (2π)−1/222z−(1/2)Γ(z)Γ(z + 1

2 ), for gamma functions.
A brief outline of the paper follows: In §2 we review, very briefly, some analytical

facts about Lévy processes and their L2 generators, and also construct examples
that will be used in subsequent sections.

Section 3 is concerned with positive-definite functions and their connections to
potential theory and harmonic analysis. The maximum principle [Theorem 1.2] is
derived in §3 as a consequence of the mentioned connections. Section 3 also contains
a probabilistic characterization of the analytic condition (1.10) and Condition 1.1 in
terms of continuous additive functionals of the replica process X̄. Those results are
analogous to the local-time results of [46, 45] on equation (1.1) driven by space-time
white noise. Finally, a family of useful correlation functions is constructed in that
section; that construction uses the results of §2 on probabilistic potential theory.

In §4 we study the linearization of the heat equation (1.1) and derive necessary
and sufficient conditions for the existence and spatial continuity of a solution. We
also consider various examples, one of which leads to (1.18).

Theorems 1.3 and 1.8 are derived in §5. In that section we also consider a
relativistic version of the stochastic heat equation, thereby constructing examples
that include the mentioned analysis of (1.20).

Let us conclude the present section by introducing some notation that will be
used throughout the paper. For all integers k ≥ 1,

(1.23) ‖x‖ :=
(
x2
1 + · · ·+ x2

k

)1/2
for every x ∈ Rk.

If g : Rk → R is a function, then

(1.24) Lipg := sup
x,y∈Rk

x�=y

|g(x)− g(y)|
‖x− y‖ .

This so-called Lipschitz constant of g is well defined, but might be infinity.
Throughout this paper, “ ̂ ” denotes the Fourier transform, in the sense of

distributions, normalized so that

(1.25) ĝ(ξ) :=

∫
Rd

eix·ξg(x) dx for all ξ ∈ Rd and g ∈ L1(Rd).

For every distribution v onRd we define the reflection ṽ as the distribution whose
pairings are given by ṽ(φ) := v(φ̃) for all test functions φ, where φ̃(x) := φ(−x).
Note in particular that if v is a Borel measure, then ṽ(A) = v(−A).

2. Lévy processes

2.1. Preliminaries. Throughout this paper, X := {Xt}t≥0 denotes a Lévy process
on Rd. We use notation that is more or less standard and can be found in pedagogic
form in [9, 58, 65, 85].
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Let mt denote the distribution of Xt for every t ≥ 0; that is,

(2.1) mt(A) := P{Xt ∈ A} for all t ≥ 0 and Borel sets A ⊆ Rd.

Let us recall that throughout this paper we are assuming that the process X has
transition functions; that is,

(2.2) mt(dx) � dx for all t > 0.

According to Hawkes [54, Theorem 2.2], we can [and will] always select a version
of these transition functions that has the following regularity properties:

(1)
∫
A
pt(z) dz = mt(A) for all t > 0 and Borel sets A ⊆ Rd;

(2) (0 ,∞)×Rd � (t , x) �→ pt(x) ∈ R+ is Borel measurable;
(3) x �→ pt(x) is lower semicontinuous for all t > 0;
(4) pt+s(x) = (pt ∗ ps)(x) for all s, t > 0 and x ∈ Rd;

where “∗” denotes the convolution operator. Note that

(2.3) Eφ(x+Xt) =

∫
Rd

φ(z)pt(z − x) dz = (φ ∗ p̃t)(x),

for every t ≥ 0 and x ∈ Rd, and for Borel-measurable functions φ : Rd → R+.
The semigroup {Pt}t≥0 of X is defined via

(2.4) (Ptφ)(x) := Eφ(x+Xt).

It is easy to verify that {Pt}t≥0 is a Feller semigroup; i.e., Pt : C0(R
d) → C0(R

d),
where C0(R

d) denotes the collection of all continuous functions g : Rd → R that
vanish at infinity. In fact, under the present conditions, {Pt}t≥0 is strong Feller in
the sense of Girsanov [51]; see [54]. We emphasize that Ptφ = φ ∗ p̃t.

Let {Rα}α≥0 denote the resolvent of {Pt}t≥0; i.e.,

(2.5) Rα :=

∫ ∞

0

e−αsPs ds.

It follows that if φ : Rd → R+ is Borel measurable, then

(2.6) (Rαφ)(x) =

∫ ∞

0

φ(z)rα(x− z) dz = (φ ∗ r̃α)(x),

where

(2.7) rα(x) :=

∫ ∞

0

e−αtpt(x) dt for α ≥ 0 and x ∈ Rd.

Each “α-potential density” rα(x) is well defined, but could well be infinity at some
[even all, when α = 0] x ∈ Rd. Nevertheless, the regularity properties of the
transition functions imply that every rα is lower semicontinuous. Furthermore,

(2.8) Rα : C0(R
d) → C0(R

d) for every α > 0.

Rα(C0(R
d)) is uniformly dense in C0(R

d) when α > 0 [13, Exercise (9.13), p. 51].
The characteristic exponent of the process X is a function Ψ : Rd → C that is

uniquely defined via the “Lévy–Khintchine formula [9, Theorem 1.2, p. 13]”,

(2.9) Eeiξ·Xt = e−tΨ(ξ) (ξ ∈ Rd, t ≥ 0).
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2.2. The generator. We will be working with the L2-theory of generators, as
developed, for instance, in Fukushima et al. [47] for more general Markov processes.
We outline the details in the present special case; matters are greatly simplified and
in some cases generalized because of harmonic analysis.

Define

(2.10) Dom[L] =
{
φ ∈ L2(Rd) : Ψφ̂ ∈ L2(Rd)

}
.

Plancherel’s theorem guarantees that φ ∈ Dom[L] if and only if φ : Rd → R is

Borel-measurable, locally integrable, and
∫
Rd

(
1 + |Ψ(ξ)|2

)
|φ̂(ξ)|2 dξ < ∞.

It is well known [15, (3.4.14), p. 67] that the following holds:

(2.11) |Ψ(ξ)| = O(‖ξ‖2) (‖ξ‖ → ∞).

Recall that W 1,2(Rd) denotes the collection of all functions φ ∈ L2(Rd) such that
∇φ ∈ L2(Rd). It is possible to prove that because of Plancherel’s theorem and
(2.11), W 1,2(Rd) ⊆ Dom[L] ⊆ L2(Rd) densely.

According to Plancherel’s theorem,

(2.12) (ψ , Ptφ)L2(Rd) = (ψ ∗mt , φ)L2(Rd) =
1

(2π)d

∫
Rd

φ̂(ξ) ψ̂(ξ)e−tΨ(ξ) dξ

for all t ≥ 0 and ψ, φ ∈ L2(Rd). It follows easily from this and (2.10) that

(2.13) Lφ := lim
t↓0

(
Ptφ− φ

t

)
exists in L2(Rd) if and only if φ ∈ Dom[L]. Thus, we have the so-called genera-
tor [L2-generator, in fact] L, defined on its domain Dom[L]. In addition, L can

be thought of as a convolution operator with Fourier multiplier L̂ = −Ψ̃. More
precisely,

(2.14) L̂φ(ξ) = −Ψ(−ξ)φ̂(ξ) for all φ ∈ Dom[L] and ξ ∈ Rd.

Let us note that for all t ≥ 0, ξ ∈ Rd, and φ ∈ L1(Rd),

(2.15)
∣∣∣P̂tφ(ξ)

∣∣∣2 = e−2tReΨ(ξ) · |φ̂(ξ)|2.

Therefore, the well-known nonnegativity of ReΨ(ξ) [see (2.17)] implies that Pt [resp.
αRα] is nonexpansive on W 1,2(Rd) for all t ≥ 0 [resp. α > 0].

2.3. The replica semigroup and associated Sobolev spaces. Let X∗ denote
an independent copy of the Lévy process −X and, following Lévy [66], define

(2.16) X̄t := Xt +X∗
t for all t ≥ 0.

It is easy to see thatX∗ := {X∗
t }t≥0 is the dual process toX and that X̄ := {X̄t}t≥0

is a symmetric Lévy process on Rd. If we denote the distribution of X̄t by m̄t, then
m̄t(A) = (mt ∗ m̃t)(A) for all Borel sets A ⊆ Rd. Because ̂̄mt(ξ) = |m̂t(ξ)|2 =
e−2tReΨ(ξ) is nonnegative, we deduce the classical fact that

(2.17) ReΨ(ξ) ≥ 0 for all ξ ∈ Rd.

The absolute-continuity condition (2.2) implies that every m̄t is absolutely con-
tinuous with respect to the Lebesgue measure on Rd [t > 0]. We denote the
resulting transition density by p̄t. Every p̄t is a symmetric function on Rd [t > 0].
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We can always choose a version of p̄ that has good regularity features [of the
type mentioned earlier for p]. In fact, the following version works:

(2.18) p̄t(x) := (pt ∗ p̃t)(x) =
∫
Rd

pt(x+ z)pt(z) dz for x ∈ Rd and t > 0.

Equivalently, if P̄ := {P̄t}t≥0 denotes the semigroup of X̄, then

(2.19) P̄t = PtP
∗
t for all t ≥ 0,

where P ∗
t denotes the adjoint of Pt in L2(Rd). Every P̄t is a self-adjoint contraction

on L2(Rd).
Motivated by [59], we refer to X̄ and P̄ respectively as the replica process and

the replica semigroup. The corresponding generator is denoted by L̄ and its domain
by Dom[L̄].

For all α ≥ 0, we can define the replica α-potential density r̄α as

(2.20) r̄α(x) :=

∫ ∞

0

e−αsp̄s(x) ds for all x ∈ Rd.

Clearly, r̄α(x) is well defined, but r̄α(x) can be infinite for some [and even all, in
the case that α = 0] x ∈ Rd. The resolvent R̄ := {R̄α}α>0 of the semigroup P̄ can
also be defined as follows:

(2.21) (R̄αφ)(x) :=

∫ ∞

0

e−αs(P̄sφ)(x) ds =

∫
Rd

φ(z)r̄α(z − x) dz,

for all α > 0 and x ∈ Rd. Since r̄α is a symmetric function on Rd, it follows that
R̄αφ = φ ∗ r̄α. The displayed quantity is called the α-potential of φ, and is well
defined for example if φ : Rd → R+ is Borel measurable, or when φ ∈ Lp(Rd) for
some p ∈ [1 ,∞], because every P̄s is nonexpansive on Lp(Rd).

2.4. On the heat equation and transition functions. We begin by recalling
some generally known facts about the fundamental weak solution to the heat equa-
tion for L: We seek to find a function H such that for all t > 0 and x ∈ Rd,

(2.22)

∣∣∣∣∣∣
∂

∂t
Ht(x) = (LHt)(x),

H0 = δz,

where z ∈ Rd is fixed. Because of (2.14), we can rewrite the preceding as

(2.23)

∣∣∣∣∣∣
∂

∂t
Ĥt(ξ) = −Ψ(ξ)Ĥt(ξ),

Ĥ0(ξ) = eiξ·z,

whose solution is Ĥt(ξ) = exp{iξ · z − tΨ(ξ)}. Direct inspection of the Fourier
transform reveals that Ht(x) = pt(z − x). Thus, we find that the fundamental
solution to (2.22) is the measurable function (0 ,∞) × Rd × Rd � (t ;x , y) �→
pt(y − x).

The preceding argument also shows that (2.22) has a function solution if and
only if the underlying Lévy process X has transition densities. We are thus led
to the natural question: “What are the necessary and sufficient conditions on the
characteristic exponent Ψ that ensure the existence of transition densities of the
corresponding Lévy processes?” Unfortunately, there is no satisfactorily known
answer to this question at this time, though several attempts have been made
[11, 43, 52, 90, 89, 88]; see also [2, 80] and [95, Example (4.6)].
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We will use the following unpublished result of Hawkes, which provides a good-
enough sufficient condition for the existence of transition functions. We include a
proof in order to document this interesting fact.

Proposition 2.1 (Hawkes [55]). The following conditions are equivalent:

(1) Condition (2.2) holds and pt ∈ L2(Rd) for all t > 0.
(2) Condition (2.2) holds and pt ∈ L∞(Rd) for all t > 0.
(3) Condition (2.2) holds and pt ∈ L2(Rd) for almost every t > 0.
(4) Condition (2.2) holds and pt ∈ L∞(Rd) for almost every t > 0.
(5) exp(−ReΨ) ∈ Lt(Rd) for all t > 0.
(6) exp(−ReΨ) ∈ Lt(Rd) for almost every t > 0.

Moreover, any one of these conditions implies that: (i) (t , x) �→ pt(x) has a contin-
uous version which is uniformly continuous for all (t , x) ∈ [η ,∞) ×Rd for every
η > 0; (ii) pt vanishes at infinity for all t > 0.

Proof. (Hawkes [55]). Recall that
∫
Rd pt(x) dx = 1 and pt = pt/2 ∗ pt/2. There-

fore, two applications of Young’s inequality yield ‖pt‖L∞(Rd) ≤ ‖pt/2‖2L2(Rd) ≤
‖pt/2‖L∞(Rd) for all t > 0. Consequently, (1)⇔(2) and (3)⇔(4).

Next let us suppose that (6) holds. Because |p̂t(ξ)| = |e−tΨ(ξ)| ≤ e−tReΨ(ξ),
Plancherel’s theorem ensures that

(2.24) ‖pt‖2L2(Rd) =
1

(2π)d
‖p̂t‖2L2(Rd) ≤

∥∥e−2tReΨ
∥∥
L1(Rd)

.

Since ReΨ ≥ 0, it follows from (6) that pt ∈ L2(Rd) for every t > 0; i.e., (6)⇒(1).
Moreover, we have—in this case—the following inversion formula: For almost all
x ∈ Rd and every t > 0,

(2.25) pt(x) =
1

(2π)d

∫
Rd

e−iξ·x−tΨ(ξ) dξ.

It remains to prove that (1) and equivalently (2) together imply (5). We may
observe that the Fourier transform of pt/4 ∗ p̃t/4 is exp{−(t/2)ReΨ}. Therefore, by
Plancherel’s theorem,

(2.26)
∥∥e−ReΨ

∥∥
Lt(Rd)

= (2π)d
∥∥pt/4 ∗ p̃t/4∥∥2L2(Rd)

≤ (2π)d
∥∥pt/4 ∗ p̃t/4∥∥L∞(Rd)

.

Consequently, Young’s inequality implies that ‖e−ReΨ‖Lt(Rd) ≤ (2π)d‖pt/4‖2L2(Rd),

which has the desired effect.
Finally, if (5) holds, then the inversion theorem applies and tells us that we can

always choose a version of p that satisfies the properties of the final paragraph in
the statement of the theorem. �

2.5. On a family of isotropic Lévy processes. The main result of this section
will be needed to construct a counterexample in §4. It is possible that it is known,
but we were not able to find an explicit reference. Therefore, we provide a complete
proof. We begin by recalling a few definitions used to study Lévy processes.

We say that a Lévy process X := {Xt}t≥0 is isotropic—or radial [76]—if its
characteristic exponent Ψ is a radial function [and hence also real-valued and non-
negative].

A [standard] subordinator τ := {τt}t≥0 is a one-dimensional Lévy process that
is nondecreasing and τ0 := 0. According to the Lévy–Khintchine formula [10,
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Theorem 1.2, p. 13], every subordinator τ is determined by the formula Ee−λτt =
e−tΦ(λ), where t, λ ≥ 0, and

(2.27) Φ(λ) =

∫ ∞

0

(
1− e−λz

)
Π(dz),

for a Borel measure Π on R+—the so-called Lévy measure—that satisfies the con-
ditions

(2.28) Π({0}) = 0,

∫ ∞

0

(1 ∧ x) Π(dx) < ∞.

The function Φ is the so-called Laplace exponent of the subordinator τ .
We have the following lemma.

Lemma 2.2. Choose and fix two numbers p ∈ (0 , 1) and q ∈ R. Then, there exists
a subordinator τ on R+ whose Laplace exponent satisfies

(2.29) 0 < inf
λ>e

Φ(λ)

λp(log λ)q/2
≤ sup

λ>e

Φ(λ)

λp(log λ)q/2
< ∞.

Proof. Define a measure Π via

(2.30)
Π(dx)

dx
:=

{
x−1−p (log(1/x))q/2 if 0 < x < 1

2 ,

0 otherwise.

It is easy to see that Π is a bona fide Lévy measure because p ∈ (0 , 1).
We apply the definition (2.27) of the Laplace exponent and write Φ(λ) = λpQ(λ),

where

(2.31) Q(λ) =

∫ λ/2

0

1− e−x

x1+p
(log(λ/x))

q/2
dx for λ > 0.

In order to complete the proof, we will verify that Q(λ) � (log λ)q/2 for λ > e.1

We do so in the special case that q ≥ 0; similar arguments can be used to estimate
Q(λ) in the case that q < 0.

Whenever λ > e, we can write Q(λ) := I1 + I2, where

I1 :=

∫ λ/2

1

1− e−x

x1+p
(log(λ/x))

q/2
dx,

I2 :=

∫ 1

0

1− e−x

x1+p
(log(λ/x))q/2 dx.

(2.32)

Evidently,

(2.33) I1 ≤ (log λ)q/2 ·
∫ ∞

1

dx

x1+p
=

1

p
(log λ)q/2.

Since I1 ≥ 0, it remains to prove that I2 � (log λ)q/2 for λ > 1. We establish this
by deriving first an upper, and then a lower, bound for I2. Because 1−exp(−y) ≤ y
for y ≥ 0, and since supz∈(0,1) z

ε log(1/z) < ∞ for all ε ∈ (0 , 1), it follows that

(2.34) I2 ≤ (log λ)q/2 ·
∫ 1

0

(
1 +

log(1/x)

log λ

)q/2
dx

xp
≤ const · (log λ)q/2.

1As usual, h(x) � g(x) over a certain range of x’s is shorthand for the statement that, uniformly
over that range of x’s, h(x)/g(x) is bounded above and below by positive and finite constants.
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A similar lower bound is obtained via the bounds: (i) 1 − exp(−x) ≥ x/2; (ii)
log(λ/x) ≥ log λ; both are valid for all x ∈ (0 , 1). �

The following is the main result of this section. It gives a special construction of
an isotropic Lévy process X := {Xt}t≥0 whose characteristic exponent is regularly
varying in a special manner.

Theorem 2.3. Choose and fix r ∈ (0 , 2) and q ∈ R. Then, there exists an isotropic
Lévy process X := {Xt}t≥0 such that

(2.35) 0 < inf
ξ∈Rd:
‖ξ‖>e

Ψ(ξ)

‖ξ‖r(log ‖ξ‖)q ≤ sup
ξ∈Rd:
‖ξ‖>e

Ψ(ξ)

‖ξ‖r(log ‖ξ‖)q < ∞.

Proof. Let B := {B(t)}t≥0 denote a d-dimensional Brownian motion, independent
from the subordinator τ := {τt}t≥0 of Lemma 2.2. Define Xt := B(τt) for all t ≥ 0.
It is well known—as well as easy to check—that the process X := {Xt}t≥0 is a Lévy
process with characteristic exponent Ψ(ξ) = Φ(‖ξ‖2/2). We can apply Lemma 2.2
with p := r/2 to complete the remainder of the proof. �

3. Positive-definite functions and probabilistic potential theory

A large part of this paper relies heavily on our ensuing analysis of positive-
definite functions and their many connections to harmonic analysis. In this section
we develop the requisite theory and then derive Theorem 1.2 as a consequence. We
also provide intrinsically-probabilistic interpretations of the two central potential-
theoretic hypotheses of this paper, namely Conditions 1.1 and 1.10.

3.1. Fourier analysis. Our normalization (1.25) of Fourier transforms ensures the
following form of the Parseval identity:

(3.1)

∫
Rd

g(x)h(x) dx =
1

(2π)d

∫
Rd

ĝ(ξ) ĥ(ξ) dξ.

The preceding is valid when g, h ∈ L2(Rd) and also when g ∈ S—the collection of
all rapidly-decreasing tests functions—and h : Rd → R is continuous and tempered
[say]. It might help to recall that h : Rd → R is tempered if it is Borel-measurable
and there exists k ≥ 0 such that |h(x)| = O(|x|k) as |x| → ∞.

3.2. Positive-definite functions. Recall that a function g : Rd → R+ is positive
definite if g is tempered and (φ , g ∗ φ)L2(Rd) ≥ 0 for all rapidly-decreasing test
functions φ. A theorem of L. Schwartz [50, Theorem 3, p. 157] tells us that g :

Rd → R̄ is positive definite if and only if g = Γ̂ for a tempered Borel measure Γ
on Rd. Schwartz’s theorem is a generalization of the following theorem of Herglotz
[d = 1] and Bochner [d ≥ 2]: If g : Rd → R is continuous and positive definite,

then there exists a finite Borel measure Γ on Rd such that g = Γ̂.

3.3. A preliminary maximum principle. Now that we have recalled the basic
definitions and properties of positive-definite functions, we can begin our proof of
our maximum principle [Theorem 1.2]. But first let us prove the following technical
result.

Lemma 3.1. If φ ∈ S, then there exists a version of f ∗ φ that is in C0(R
d).

Consequently, R̄β(f ∗ φ) ∈ C0(R
d) for every β > 0.
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Proof. Because f̂ is tempered, the following defines a uniformly continuous function
on Rd:

(3.2) h(x) =
1

(2π)d

∫
Rd

e−ix·ξ f̂(ξ)φ̂(ξ) dξ for all x ∈ Rd.

In fact, h ∈ C0(R
d) because of the Riemann–Lebesgue lemma. Furthermore, if

ψ ∈ S, then

(3.3)

∫
Rd

ψ(x)h(x) dx =
1

(2π)d

∫
Rd

ψ̂(ξ) f̂(ξ)φ̂(ξ) dξ =

∫
Rd

ψ(x)(f ∗ φ)(x) dx.

The first line is justified by the Fubini theorem, and the second by the Parseval
identity. It follows from density and the Lebesgue differentiation theorem that
h = f ∗ φ almost everywhere. This proves the first assertion of the lemma. In
addition,

(3.4) (R̄βh)(x) =

∫
Rd

r̄β(y − x)(f ∗ φ)(y) dy =
(
R̄β(f ∗ φ)

)
(x).

Since h ∈ C0(R
d), it follows from (2.8) that R̄β(f ∗ φ) = R̄βh ∈ C0(R

d). �

The following contains a portion of the said maximum principle of Theorem 1.2.
It also provides some of the requisite technical estimates that are needed for the
remainder of the proof of Theorem 1.2.

Proposition 3.2. For all β ≥ 0,

(3.5) Υ(β) = sup
x∈Rd

(R̄βf)(x) = ess sup
x∈Rd

(R̄βf)(x) = lim sup
x→0

(R̄βf)(x),

where Υ(0) := limβ↓0 Υ(β).

Proof. First, we prove the proposition in the case where β > 0.
In accordance with Lemma 3.1, if φ ∈ S, then R̄β(f ∗φ) is continuous. Therefore,

the Plancherel theorem applies pointwise: For all x ∈ Rd,

(3.6) (R̄β(f ∗ φ))(x) = 1

(2π)d

∫
Rd

f̂(ξ)φ̂(ξ)e−ix·ξ

β + 2ReΨ(ξ)
dξ.

[Without the asserted continuity, we could only deduce this for almost every x ∈
Rd.] In particular, for all probability densities φ ∈ S,
(3.7) sup

x∈Rd

(
R̄β(f ∗ φ)

)
(x) ≤ Υ(β).

[Υ was defined in (1.8).] If {φn}∞n=1 is an approximate identity consisting solely of
probability densities in S, then R̄βf ≤ lim infn→∞ R̄β(f ∗ φn) pointwise, thanks to
Fatou’s lemma. Consequently, (3.7) implies that

(3.8) sup
x∈Rd

(R̄βf)(x) ≤ Υ(β).

In order to prove the reverse bound, define the Gaussian mollifiers {φn}∞n=1:

(3.9) φn(z) :=
( n

2π

)d/2
exp

(
−‖z‖2n

2

)
.

Observe that because of the monotone convergence theorem,(
R̄β(f ∗ φn)

)
(0) =

1

(2π)d

∫
Rd

f̂(ξ)e−‖ξ‖2/(2n)

β + 2ReΨ(ξ)
dξ = (1 + o(1))Υ(β),(3.10)
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as n → ∞. On the other hand,

(3.11)
(
R̄β(f ∗ φn)

)
(0) =

∫
Rd

(R̄βf)(y)φn(y) dy ≤ ess sup
x∈Rd

(R̄βf)(x),

since
∫
Rd φn(y) dy = 1. This and (3.7) together prove that Υ(β) is the maximum

of the β-potential of f , and the maximum β-potential is finite if and only if Υ(β)
is. We can choose the φn’s so that in addition to the preceding regularity criteria,
every φn is supported in the ball of radius 1/n about the origin. In that way we
obtain (R̄β(f ∗φn))(0) = ((R̄βf) ∗φn)(0) ≤ sup‖x‖<1/n(R̄βf)(x). This proves (3.5)

for every β ∈ (0 ,∞).
Now we address the case where β := 0. First of all, β �→ Υ(β) is nonincreasing.

Therefore, Υ(0) := limβ↓0 Υ(β) exists as a nondecreasing limit. Because R̄βf ≤
R̄0f [pointwise] for all β > 0, we can deduce that Υ(0) ≤ ess supx∈Rd (R̄0f)(x) and
Υ(0) ≤ lim supx→0 (R̄0f)(x).

For the reverse bound, recall (3.7) and let β ↓ 0. Since Υ(β) → Υ(0), we find
that for every probability density φ ∈ S and x ∈ Rd,

(3.12) lim
β↓0

(
R̄β(f ∗ φn)

)
(x) ≤ Υ(0).

But the left-hand side is

(3.13) lim
β↓0

E

[∫ ∞

0

(f ∗ φn)(X̄s + x)e−βs ds

]
=
(
R̄0(f ∗ φn)

)
(x),

thanks to the monotone convergence theorem. Another application of Fatou’s
lemma shows that (R̄0f)(x) ≤ Υ(0) for all x ∈ Rd. This establishes (3.5), and
hence the proposition, in the case where β = 0. �
3.4. Proof of the maximum principle. The main goal of this subsection is
to establish Theorem 1.2. This subsection also contains a harmonic-analytic esti-
mate that might be of independent interest. We will use that harmonic-analytic to
demonstrate Theorem 1.2, as well as the subsequent Theorems 1.8 and 1.11.

In order to motivate our estimate, let us first consider the important special case
where the correlation function f is of Riesz type. That is,

(3.14) f(z) := ‖z‖−(d−b) for z ∈ Rd,

where 0−1 := ∞. Clearly, f is locally integrable when b ∈ (0 , d), a condition which
we assume, and in fact its Fourier transform is [73, eq. (12.10), p. 161]

(3.15) f̂(ξ) =
πd/22bΓ(b/2)

Γ((d− b)/2)
· ‖ξ‖−b.

Then, it is well known that∫∫
f(x− y)μ(dx)μ(dy) =

∫∫
μ(dx)μ(dy)

‖x− y‖d−b

=
πd/22bΓ(b/2)

Γ((d− b)/2)
·
∫
Rd

|μ̂(ξ)|2
‖ξ‖b dξ

=
1

(2π)d

∫
Rd

|μ̂(ξ)|2f̂(ξ) dξ.

(3.16)

It is easy to guess this famous identity from an informal application of the Fubini
theorem. However, a rigorous derivation of (3.16) requires a good deal of effort
[73, Lemma 12.12, p. 162]. In the language of potential theory, the preceding
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asserts that the Riesz-type “energy” of the form
∫∫

‖x − y‖−d+b μ(dx)μ(dy) is

equal to a constant multiple of the Pólya–Szegő-type energy
∫
Rd |μ̂(ξ)|2‖ξ‖−b dξ.

The following proposition shows that there is a very general lower bound that is
valid for every correlation function f .

Proposition 3.3. For all Borel probability measures μ on Rd,

(3.17)

∫∫
f(x− y)μ(dx)μ(dy) ≥ 1

(2π)d

∫
Rd

|μ̂(ξ)|2f̂(ξ) dξ.

Proof. We will assume, without loss of generality, that

(3.18)

∫∫
f(x− y)μ(dx)μ(dy) < ∞,

for there is nothing to prove otherwise. We also observe that

(3.19)

∫∫
f(x− y)μ(dx)μ(dy) =

∫
(f ∗ μ) dμ.

This is essentially the famous “reciprocity theorem” of classical potential theory.
Because f ∗ μ ∈ L1(μ), Lusin’s theorem implies that for all ε > 0 there exists a

compact set Aε in Rd such that: (i) μ(Ac
ε) < ε; (ii) f ∗ μ is continuous on Aε.

Let

(3.20) με(•) := μ(• ∩ Aε)

denote the restriction of μ to Aε, and recall the Gaussian densities {φ}∞n=1 from
(3.9). Because limn→∞

(
f ∗ φn/2 ∗ μ

)
= f ∗μ uniformly on Aε, it follows from (3.19)

that ∫∫
f(x− y)μ(dx)μ(dy) ≥

∫
Aε

(f ∗ μ) dμ =

∫
(f ∗ μ) dμε

= lim
n→∞

∫
(f ∗ φn/2 ∗ μ) dμε

≥ lim sup
n→∞

∫
(f ∗ φn/2 ∗ με) dμε.

(3.21)

Since φn/2 = φn ∗ φn,∫∫
f(x− y)μ(dx)μ(dy) ≥ lim sup

n→∞

∫
Rd

(f ∗ μn,ε)(x)μn,ε(x) dx,(3.22)

where μn,ε(x) := (φn ∗ με)(x). Since μn,ε ∈ S and f ∗ μn,ε is C∞ and tempered,
Parseval’s identity (3.1) implies that

(3.23)

∫
Rd

(f ∗ μn,ε)(x)μn,ε(x) dx =
1

(2π)d

∫
Rd

e−‖ξ‖2/n|μ̂ε(ξ)|2f̂(ξ) dξ.

This, (3.21), and the monotone convergence theorem together imply that

(3.24)

∫∫
f(x− y)μ(dx)μ(dy) ≥ 1

(2π)d

∫
Rd

|μ̂ε(ξ)|2f̂(ξ) dξ.

Since με converges weakly to μ as ε → 0, we know that μ̂ε converges to μ̂ pointwise.
The proposition follows from this and Fatou’s lemma. �

An elementary computation [73, Lemma 12.11, p. 161] and Proposition 3.3 above
together yield the following corollary.
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Corollary 3.4. If f is lower semicontinuous, then for all Borel probability measures
μ on Rd,

(3.25)

∫∫
f(x− y)μ(dx)μ(dy) =

1

(2π)d

∫
Rd

|μ̂(ξ)|2f̂(ξ) dξ.

A weaker version of Corollary 3.4 can be found in [61, Theorem 5.2].
We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Note that for all t ≥ 0,

(3.26) (P̄tf)(0) = (P ∗
t Ptf) (0) = (p̃t ∗ pt ∗ f) (0) =

∫∫
f(x− y)pt(x)pt(y) dx dy.

This requires only the Tonelli theorem. Proposition 3.3 shows us that

(3.27) (P̄tf)(0) ≥
1

(2π)d

∫
Rd

e−2tReΨ(ξ)f̂(ξ) dξ.

Multiply both sides by exp(−βt) and integrate [dt] to find that

(3.28) (R̄βf)(0) ≥
1

(2π)d

∫
Rd

f̂(ξ)

β + 2ReΨ(ξ)
dξ = Υ(β).

This and Proposition 3.2 together imply (1.10). Consequently, (1.1) holds if and
only if Υ(β) < ∞ for all β > 0.

Next we prove that R̄βf ∈ C0(R
d) whenever Υ(β) < ∞ and f is lower semicon-

tinuous.
When f is lower semicontinuous we can find compactly-supported continuous

functions fn that converge upward to f as n → ∞. Recall from (2.8) that R̄β maps
C0(R

d) to C0(R
d). Consequently, R̄βfn ∈ C0(R

d), and from this we may conclude
that R̄βf is lower semicontinuous.

Next, let us define

(3.29) πβ(x) :=
1

(2π)d

∫
Rd

e−iξ·xf̂(ξ)

β + 2ReΨ(ξ)
dξ.

If Υ(β) < ∞, then πβ ∈ C0(R
d). Moreover, a few successive applications of Fubini’s

theorem tell us that
∫
Rd πβ(x)φ(x) dx =

∫
Rd(R̄βf)(x)φ(x) dx for all φ ∈ S. Thus,

πβ = R̄βf a.e.
It remains to prove that if Υ(1) is finite, then so is Υ(β) for every β > 0.
We have shown that if Υ(1) is finite, then R̄1f = π1 almost everywhere, π1 ∈

C0(R
d); also, R̄1f is bounded [Proposition 3.2]. If h1 = h2 almost everwhere and

h1, h2 : Rd → R+ are measurable, then

(3.30) (R̄βh1)(x) =

∫
Rd

r̄β(y)h1(x− y) dy =

∫
Rd

r̄β(y)h2(x− y) dy = (R̄βh2)(x),

for all x ∈ Rd. Therefore, (2.8) and the fact that π1 ∈ C0(R
d) together imply that

R̄βπ1 ∈ C0(R
d) for all β > 0. In particular, R̄βR̄1f ∈ C0(R

d)—whence R̄βR̄1f
is bounded—for every β > 0. Using the resolvent equation [13, (8.10), p. 41], the
boundedness of R̄1f and R̄βR̄1f [for all β > 0] together imply that R̄βf is bounded
for every β > 0. Consequently, Proposition 3.2 implies the finiteness of Υ(β) for
every β > 0. �
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3.5. Probabilistic potential theory. Define, for all measurable functions φ :
Rd → R+, a stochastic process {Lt(φ)}t≥0 as follows:

(3.31) Lt(φ) :=

∫ t

0

φ(X̄s) ds (0 ≤ t ≤ ∞).

The random field (t , φ) �→ Lt(φ) defined above is often called the occupation field
of the Lévy process X̄ [41]. The occupation field is well defined, though it can
be infinite, even in simple cases. The following example highlights this and also
paves the way to the ensuing discussion which yields a probabilistic interpretation
of Conditions 1.1 and 1.10.

Example 3.5 (After Girsanov, 1962 [74, §3.10, pp. 78–81]). Consider d = 1, and let
X denote 1-D Brownian motion, normalized so that E exp(iξ ·Xt) = exp(−tξ2/4)
for all t > 0 and ξ ∈ R. In this way, X̄ is normalized to be standard linear
Brownian motion; that is, E exp(iξ ·X̄t) = exp(−tξ2/2) for all t > 0 and ξ ∈ R. Let
φ(x) := |x|−α for all x ∈ R, where α ∈ (0 , 1) is fixed. By the occupation density
formula [84, Cor. (1.6), p. 209],

(3.32) Lt(φ) =

∫ ∞

−∞

�xt
|x|α dx,

where � denotes the process of local times associated to X̄. According to Trotter’s
theorem [84, Theorem (1.7), p. 209] and the occupation density formula,

P{�•t ∈ C0(R) for all t > 0} = 1.

It is a well-known consequence of the Blumenthal zero-one law and Brownian scaling
that P{�0t > 0 for all t > 0} = 1. Consequently [if we ignore the null sets in the usual
way], Lt(φ) < ∞ for some—hence all—t > 0 if and only if α < 1. At the same
time, we note that

(3.33) ELt(φ) = E

∫ t

0

ds

|X̄s|α
=

∫ t

0

ds

sα/2
· 1√

2π

∫ ∞

−∞
|z|−αe−z2/2 dz.

This requires only Brownian scaling and the Tonelli theorem. Thus, ELt(φ) is finite
for all t > 0 if and only if α < 1. In rough terms, we have shown that Lt(φ) < ∞ if
and only if ELt(φ) < ∞. As we shall see, a suitable interpretation of this property
can be generalized; see Theorem 3.10 below. �

It is convenient to use some notation from Markov-process theory: Recall from
Markov-process theory that Pz denotes the law of the underlying Lévy process
started at z ∈ Rd [so that P = P0] and that Ez denotes the corresponding expec-
tation operator. Thus,

(3.34) (R̄αφ)(z) = Ez

∫ ∞

0

e−αsφ(X̄s) ds.

Before we state and prove the main result of this section, let us first establish
some technical facts which will be needed in the proof of the main result.

Lemma 3.6. For all t, α > 0 and measurable functions φ : Rd → R+,

(3.35) sup
x∈Rd

Ex

(
sup
s>0

[
e−αsLs(φ)

])
≤ sup

z∈Rd

(R̄αφ)(z) ≤ χα(t) sup
x∈Rd

ExLt(φ),

where χα(t) := eαt/(eαt − 1).
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Remark 3.7. Let us point out the following elementary bound for the right-most
term in (3.35): For all t, α > 0,

(3.36) e−αt sup
x∈Rd

ExLt(φ) ≤ sup
x∈Rd

Ex

(
sup
s>0

[
e−αsLs(φ)

])
.

Therefore, the quantities on the two extreme ends of (3.35) agree up to an explicit
multiplicative constant that depends only on α and t. �

Proof of Lemma 3.6. Because φ is nonnegative, we have the sure inequality,

(3.37) e−αsLs(φ) ≤
∫ ∞

0

e−αrφ(X̄r) dr, valid for all s, α > 0.

We take suprema over s > 0 and then apply expectations [dPx] to deduce the first
inequality in (3.35). For the second bound, let us note that for all α, t > 0 and
z ∈ Rd,

(3.38) (R̄αφ)(z) =
∞∑

n=0

Ez

∫ (n+1)t

nt

e−αsφ(X̄s) ds ≤
∞∑

n=0

e−αntEz

∫ t

0

φ(X̄s+nt) ds.

This implies the second inequality because

(3.39) Ez

∫ t

0

φ(X̄s+nt) ds = EzEXnt

∫ t

0

φ(X̄s) ds ≤ sup
x∈Rd

Ex [Lt(φ)] ,

in accordance with the Markov property. �

Lemma 3.8. For all t > 0 and measurable φ : Rd → R+,

(3.40) sup
x∈Rd

Ex

(
|Lt(φ)|2

)
≤ 2

(
sup
z∈Rd

Ez [Lt(φ)]

)2

.

Proof. We follow some of the ideas in [3] and use subadditivity. Clearly,

(3.41) Ex

(
|Lt(φ)|2

)
= 2

∫ t

0

du

∫ t

u

dv Ex

(
φ(X̄u)φ(X̄v)

)
.

Because the following holds Px-almost surely,

(3.42) Ex

(∫ t

u

φ(X̄v) dv

∣∣∣∣ X̄s; s ≤ u

)
= EXu

∫ t−u

0

φ(X̄s) ds = EXu
[Lt−u(φ)] ,

it follows that

Ex

(
|Lt(φ)|2

)
= 2Ex

∫ t

0

φ(X̄u)EXu
[Lt−u(φ)] du

≤ 2Ex

∫ t

0

φ(X̄u) · sup
z∈Rd

Ez [Lt−u(φ)] du.

(3.43)

We can deduce the lemma because Lt−u(φ) ≤ Lt(φ). �

The following constitutes the third, and final, technical lemma of this section.

Lemma 3.9. For all α, t > 0,

(3.44) sup
x∈Rd

Px

{
Lt(f) ≥

(R̄αf)(0)

2χα(t)

}
≥ 1

8
,

where χα(t) is defined in Lemma 3.6.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE STOCHASTIC HEAT EQUATION 429

Proof. Recall the Paley–Zygmund inequality [82]: If Z is a nonnegative random
variable in L2(P) with EZ > 0, then

(3.45) P

{
Z ≥ 1

2
EZ

}
≥ (EZ)2

4E(Z2)
.

We can apply this inequality with Z := Lt(φ)—where φ : Rd → R+ is bounded
away from zero and infinity—to see that for all z ∈ Rd,

(3.46) sup
x∈Rd

Px

{
Lt(φ) ≥

1

2
EzLt(φ)

}
≥ (EzLt(φ))

2

4Ez (|Lt(φ)|2)
.

By selecting z appropriately, we can ensure that

(3.47) EzLt(φ) ≥ (1− ε) · sup
x∈Rd

ExLt(φ),

where ε ∈ (0 , 1) is arbitrary but fixed. Let ε ↓ 0 and appeal to the continuity
properties of probability measures to deduce that

(3.48) sup
x∈Rd

Px

{
Lt(φ) ≥

1

2
sup
z∈Rd

EzLt(φ)

}
≥ (supz∈Rd EzLt(φ))

2

4 supx∈Rd Ex (|Lt(φ)|2)
≥ 1

8
;

see Lemma 3.8 for the last inequality. A monotone-class argument shows that the
preceding holds true for all bounded and measurable functions φ �≡ 0. We apply it
with φN := min(f ,N) in place of φ, where N ≥ 1 is fixed. In this way we obtain

(3.49) sup
x∈Rd

Px

{
Lt(f) ≥

1

2
sup
z∈Rd

EzLt(φN )

}
≥ 1

8
.

This and Lemma 3.6 together tell us that

(3.50) sup
x∈Rd

Px

{
Lt(f) ≥

(R̄αφN )(0)

2χα(t)

}
≥ 1

8
.

As N ↑ ∞, (R̄αφN )(0) ↑ (R̄αf)(0), and the lemma follows. �
The next result yields a probabilistic characterization of Condition 1.1.

Theorem 3.10. Under Condition 1.1,

(3.51) Pz {Lt(f) < ∞ for all t > 0} = 1 for all z ∈ Rd.

Moreover, in this case, t �→ Lt(f) grows subexponentially. That is,

(3.52) Pz

{
lim sup
t→∞

logLt(f)

t
≤ 0

}
= 1 for all z ∈ Rd.

On the other hand, if Condition 1.1 fails to hold, then

(3.53) Pz {Lt(f) < ∞ for some t > 0} = 0 for some z ∈ Rd.

Remark 3.11. Consider the stochastic heat equation where Ḟ is space-time white
noise. Formally speaking, this means that f := δ0 is our correlation “function”. In
this case, one can [again formally] interpret

(3.54) Lt(f) = Lt(δ0) =

∫ t

0

δ0(X̄s) ds

as the local time of the replica process X̄ at zero. If we interpret Theorem 3.10
loosely as well, then Theorem 1.3 suggests that (1.1) has a mild solution if and
only if X̄ has local times. This interpretation is correct, as well as easy to check,
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and leads to deeper connections between SPDEs driven by space-time white noise
on one hand and local-time theory on the other hand [42, 46]. In the case of the
parabolic Anderson model [that is, (1.1) with σ(u) = const · u and b ≡ 0], Bertini
and Cancrini [5] and Hu and Nualart [57] discuss other closely related connections
to local times. In the case where x is a discrete variable [for example, because
L is the generator of a Lévy process on Zd; i.e., the generator of a continuous-
time random walk], similar connections were found earlier still; see Carmona and
Molchanov [19], for instance. �

Proof of Theorem 3.10. If (R̄αf)(0) < ∞ for some α > 0, then (R̄βf)(0) < ∞ for
all β > 0 by Theorem 1.2. It follows from the first inequality of Lemma 3.6, and
Theorem 1.2, that

(3.55) Ez

[
sup
t>0

(
e−βtLt(f)

)]
≤ (R̄βf)(0) < ∞ (β > 0, z ∈ Rd).

This implies (3.51); it also implies that

(3.56) lim sup
t→∞

[
e−tβLt(f)

]
< ∞ almost surely [Pz].

We can now deduce (3.52) because β > 0 and z ∈ Rd are arbitrary.
In order to finish the proof, let us consider the remaining case that (R̄αf)(0) = ∞

for all α > 0.
According to Lemma 3.9,

(3.57) sup
x∈Rd

Px{Lt(f) = ∞} ≥ 1

8
(t > 0).

In particular, there exists z ∈ Rd such that

(3.58) Pz{Lt(f) = ∞ for some t > 0} ≥ 1

9
.

Because t �→ Lt(f) is nondecreasing, the Blumenthal zero-one law applies and
implies that Pz{Lt(f) = ∞ for some t > 0} = 1; this implies the remaining portion
of the theorem. �

We now have the following consequence of Theorem 3.10. It is particularly useful
because its hypotheses are verified by all the examples that we have mentioned in
the Introduction.

Corollary 3.12. Suppose f is bounded uniformly on the complement of every open
neighborhood of the origin. Then, Condition 1.1 is equivalent to the following:
P{Lt(f) < ∞ for some t > 0} = 1.

Proof. According to Theorem 3.10, if Condition 1.1 holds, then

(3.59) Pz{Lt(f) < ∞ for some t > 0} = 1 for all z ∈ Rd.

Set z := 0 to obtain half of the corollary.
Conversely, suppose Condition 1.1 fails. According to Theorem 3.10, there exists

a point z ∈ Rd such that

(3.60) Pz {Lt(f) < ∞ for some t > 0} = 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE STOCHASTIC HEAT EQUATION 431

We need to prove that z = 0. This holds because if z were not equal to the origin,
then Pz{Lt(f) < ∞ for all t ∈ [0 , τ )} = 1, where τ denotes the first hitting time of
the open ball of radius ‖z‖/2 around 0. Indeed,

(3.61) sup
0≤t<τ

Lt(f) ≤ τ · sup
‖u‖≥‖z‖/2

f(u) < ∞,

Pz-almost surely. Since the paths of X are right-continuous, Pz{τ > 0} = 1, and
hence (3.60) is contradicted. �

Condition 1.10 also has a probabilistic interpretation that, in rough terms,
(R̄αf)(0) < ∞ if and only if L∞(f) < ∞. The following is a more precise de-
scription of this interpretation, as it sorts out the various null sets.

Proposition 3.13. If (R̄αf)(0) < ∞ for some, hence all, α > 0, then:

(3.62) (R̄0f)(0) < ∞ =⇒ L∞(f) < ∞ a.s.

and

(3.63) (R̄0f)(0) = ∞ =⇒ L∞(f) = ∞ a.s.

Proof. If (R̄0f)(0) < ∞, then because (R̄0f)(0) = EL∞(f) < ∞, it follows that
L∞(f) is finite a.s.

If, on the other hand, (R̄0f)(0) = ∞, then because E
∫∞
0

e−αsf(X̄s) ds =

(R̄αf)(0), the Paley–Zygmund inequality (3.45) implies that

(3.64) P

{∫ ∞

0

e−αsf(X̄s) ds ≥
1

2
(R̄αf)(0)

}
≥

∣∣(R̄αf)(0)
∣∣2

4E
(∣∣∫∞

0
e−αsf(X̄s) ds

∣∣2) .
It follows from this and Lemma 3.8—see also the proof of Lemma 3.9—that

(3.65) P

{∫ ∞

0

f(X̄s) ds ≥
1

2
(R̄αf)(0)

}
≥ (R̄αf)(0)

8 supx∈Rd(R̄αf)(x)
=

1

8
,

owing to Theorem 1.2. Let α ↓ 0 to find that

(3.66) P := P

{∫ ∞

0

f(X̄s) ds = ∞
}

≥ 1

8
.

But according to Theorem 3.10,
∫ T

0
f(X̄s) ds < ∞, for all T > 0 a.s., because

(R̄αf)(0) < ∞ for some [hence all] α > 0. This implies that

(3.67) P = P

{
lim

T→∞

∫ ∞

T

f(X̄s) ds = ∞
}
.

That is: (i) P is the probability of a tail event; (ii) P is strictly positive, in fact
P ≥ 1/8. By the Hewitt–Savage zero-one law [56], P = 1. �

3.6. A final observation. Let us conclude this section with an observation that
will be used later on in Theorem 4.9 in order to produce a stochastic PDE whose
random-field solution exists but is densely discontinuous.

Let X := {Xt}t≥0 denote a Lévy process on Rd with characteristic exponent Ψ.
Recall that X has a one-potential density v if v is a probability density on Rd that
satisfies the following for all Borel-measurable functions φ : Rd → R+:

(3.68) E

[∫ ∞

0

e−sφ(Xs) ds

]
=

∫
Rd

φ(x)v(x) dx.
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Because φ ≥ 0, the preceding expectation commutes with the ds-integral. Recall
thatms denotes the law of Xs, and restrict our attention to only nonnegative φ ∈ S.
In that case,∫ ∞

0

e−sEφ(Xs) ds =

∫ ∞

0

e−s

(∫
φ dms

)
ds

=
1

(2π)d

∫ ∞

0

e−sds

∫
Rd

dξ φ̂(ξ) e−sΨ(ξ)

=
1

(2π)d

∫
Rd

φ̂(ξ)

1 + Ψ(ξ)
dξ.

(3.69)

We compare this to the right-hand side of (3.68), and then apply Plancherel’s
theorem to the latter, to deduce the well-known formula:

(3.70) v̂(ξ) =
1

1 + Ψ(ξ)
(ξ ∈ Rd).

If we consider only the case that X is symmetric, then v̂ is rendered nonnegative,
since Ψ is nonnegative in this case. This observation and the Bochner–Schwartz
theorem together imply that v is a correlation function. Because products—and
hence integer powers—of correlation functions are themselves correlation functions,
Theorem 2.3 yields the following byproduct.

Theorem 3.14. Choose and fix a > 0 and b ∈ R. Then, there exists a correlation
function v on Rd such that

(3.71) v̂(ξ) � 1

‖ξ‖a(log ‖ξ‖)b for ξ ∈ Rd with ‖ξ‖ > e.

4. The linear equation

Before we study the fully nonlinear equation (1.1), we analyse the far simpler
linearized form of the same equation [σ ≡ 1, b ≡ 0] and show that it has many
interesting features of its own. Because the solutions, if any, to the said linear
equations can only be Gaussian random fields, we are able to use the theory of
Gaussian processes in order to quickly produce some definitive existence and regu-
larity results. This portion of our work should be compared with our earlier joint
effort with Eulalia Nualart [46], in which Ḟ was space-time white noise. Our earlier
effort was, in turn, motivated strongly by references [31, 30, 83].

4.1. Existence and uniqueness. The linearized form of (1.1) is the stochastic
PDE,

(4.1)
∂

∂t
ut(x) = (Lut)(x) + Ḟt(x),

subject to u0 being the initial function. As was mentioned in the Introduction,
u0 : Rd → R is assumed to be a nonrandom bounded and measurable function.
One can follow through the theory of Walsh to define the weak solution to (4.1)
as the Gaussian random field u := {ut(φ)}t>0,φ∈S , where [we recall] S denotes the
collection of all rapidly-decreasing test functions on Rd and

(4.2) ut(φ) =

∫
Rd

u0(x)(P
∗
t φ)(x) dx+

∫ t

0

∫
Rd

(pt−s ∗ φ) (y)F (ds dy).
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The double integral is a Wiener integral and {P ∗
t }t≥0 is the semigroup associated

to the dual process X∗
t := −Xt [t ≥ 0].

There are two main questions that one needs to answer before one proceeds
further:

(a) Is u well defined?
(b) What is the largest family of φ’s for which ut(φ) is well defined?

An affirmative answer to the first question would imply existence of solutions in
the general sense of Walsh [92]. Since the analysis of the nonrandom quantity∫
Rd u0(x)(P

∗
t φ)(x) dx is standard, we can reduce our problem to the special case

that u0 ≡ 0. In that case, these questions are addressed by the following estimate.
Here and throughout, we define

(4.3) Eλ(v) :=
1

2(2π)d

∫
Rd

|v̂(ξ)|2f̂(ξ)
λ−1 + 2ReΨ(ξ)

dξ

for all Schwartz distributions v whose Fourier transform is a function.
Next we borrow an observation of [46] in the case of space-time white noise and

extend it to the present setting.

Lemma 4.1. The weak solution u to (4.1) with u0 ≡ 0 exists as a well-defined
Gaussian random field parametrized by t > 0 and φ ∈ S. Moreover, for all t, λ > 0
and φ ∈ S,

(4.4) a(t)Eλ(φ) ≤ E
(
|ut(φ)|2

)
≤ b(t)Eλ(φ),

where a(t) := (1− e−2t/λ) and b(t) := e2t/λ.

In fact, Lemma 4.1 holds under far greater generality than the one presented
here. For instance, it holds even when transition functions do not necessarily exist
and when the correlation function is a general correlation measure. The less general
formulation above suffices for our needs.

Proof. If φ ∈ S, then p̂tφ̂ ∈ S for all t ≥ 0. Since the Fourier transform is an
isometry on S, this proves that
(4.5) P ∗

t φ = pt ∗ φ ∈ S for every t ≥ 0.

Therefore, in accord with (1.3), the second moment E(|ut(φ)|2) is equal to

E

(∣∣∣∣∫ t

0

∫
Rd

(
P ∗
t−sφ

)
(y)F (ds dy)

∣∣∣∣2
)

=
1

(2π)d

∫ t

0

ds

∫
Rd

dξ
∣∣∣e−(t−s)Ψ(ξ)

∣∣∣2 · |φ̂(ξ)|2f̂(ξ)
=

1

(2π)d

∫ t

0

ds

∫
dξ e−2sReΨ(ξ) · |φ̂(ξ)|2f̂(ξ).

(4.6)

The lemma then follows from the preceding and Lemma 3.5 of [46]. �

There are standard ways to extend the domain of Gaussian random fields. In
our case, we proceed as follows: Consider the pseudo-distances {ρt}t>0 defined by

(4.7) ρt(φ , ψ) :=
{
E
(
|ut(φ)− ut(ψ)|2

)}1/2

for φ, ψ ∈ S.
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Because L2(P)-limits of Gaussian random fields are themselves Gaussian random
fields, we deduce the following: Suppose v is a Schwartz distribution such that
limn→∞ ρt(v , v ∗ φn) = 0 for all t > 0, where {φn}∞n=1 is the sequence of Gaussian
densities, as defined in (3.9). Then ut(v) is well defined in L2(P), and the totality
{ut(v)} of all such random variables forms a Gaussian random field.

We follow [46] and say that (4.1) has a random-field solution if we can obtain
ut(δx) in this way for all x ∈ Rd.

Consider the space H0 of all φ ∈ S such that E1(φ) < ∞ for all t > 0. Evidently,
H0 can be metrized by using the distance

(4.8) δ(φ , ψ) :=
√
E1(φ− ψ) for ψ, φ ∈ S.

Define H1 to be the completion of H0 in the distance δ.

Lemma 4.2. Condition 1.1 holds iff δx ∈ H1 for some, hence all, x ∈ Rd.

Proof. First of all, we recall (1.8) and check that

(4.9) Eλ(δx) =
1

2(2π)d

∫
Rd

f̂(ξ)

λ−1 + 2ReΨ(ξ)
dξ =

1

2
Υ(1/λ).

In particular, the value of Eλ(δx) does not depend on x ∈ Rd. Theorem 1.2 implies
that Eλ(δx) is finite for some λ > 0 if and only if it is finite for all λ > 0.

Let us first suppose that Eλ(δx) is finite. We can note that δx∗φn = φn(•−x) ∈ S,
where {φn}∞n=1 was defined in (3.9). Therefore, for all n,m ≥ 1,

Eλ(δx ∗ φn − δx ∗ φm)

=
1

2(2π)d

∫
Rd

f̂(ξ)

λ−1 + 2ReΨ(ξ)

∣∣∣∣1− exp

{
−‖ξ‖2

∣∣∣∣ 12n − 1

2m

∣∣∣∣}∣∣∣∣2 dξ.
(4.10)

Since Eλ(δx) is finite, the dominated convergence theorem tells us that the sequence
{δx ∗ φn}∞n=1 is Cauchy in H0. A calculation similar to the preceding shows that
the quantity Eλ(δx ∗ φn − δx) converges to zero as n → ∞. Therefore, δx ∈ H1.

Conversely, if δx ∈ H1, then Eλ(δx ∗ φn − δx ∗ φm) → 0 as n,m → ∞. We can
extract an unbounded subsequence n1 ≤ n2 ≤ · · · of positive integers such that

(4.11) Eλ(δx ∗ φnj
− δx ∗ φnj+1

) ≤ 2−j for all j ≥ 1.

It follows from (4.10) that if k−1 ≤ |n−1
j − n−1

j+1|, then

Eλ(δx − δx ∗ φk) =
1

2(2π)d

∫
Rd

f̂(ξ)

λ−1 + 2ReΨ(ξ)

∣∣∣1− e−‖ξ‖2/(2k)
∣∣∣2

≤ Eλ(δx ∗ φnj
− δx ∗ φnj+1

) ≤ 2−j .

(4.12)

Let k → ∞ and then j → ∞, in this order, to deduce from the preceding discussion
that limk→∞ Eλ(δx − δx ∗ φk) = 0. Because v �→

√
Eλ(v) satisfies the triangle
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inequality, it follows from (4.11) that for all k ≥ 2,√
Eλ(δx) ≤

√
Eλ(δx − δx ∗ φk) +

√
Eλ(δx ∗ φk)

≤
√
Eλ(δx − δx ∗ φk) +

√
Eλ(δx ∗ φk − δx ∗ φk−1)

+
√
Eλ(δx ∗ φk−1)

≤
√
Eλ(δx − δx ∗ φk) + 2−(k−1)/2 +

√
Eλ(δx ∗ φk−1)

...

≤
√
Eλ(δx − δx ∗ φk) +

k−1∑
j=1

2−j/2 +
√
Eλ(δx ∗ φ1).

(4.13)

We have shown that the first quantity on the right-hand side converges to zero as
k → ∞ and the second term remains bounded. Finally, the third quantity on the
right-hand side of the preceding is finite since φ1 ∈ S. Therefore, it follows that if
δx ∈ H1, then Eλ(δx) < ∞. This concludes our proof. �

For more general initial functions u0 ≥ 0, (4.1) has a random-field solution if
and only if Condition 1.1 holds and (Ptu0)(x) < ∞ for all t > 0 and x ∈ Rd. Let
us conclude this section with a lemma that provides simple conditions that ensure
that (Ptu0)(x) is finite for all t > 0 and x ∈ Rd.

Lemma 4.3. Suppose exp(−ReΨ) ∈ Lt(Rd) for all t > 0 and u0 ∈ Lβ(Rd) for
some β ∈ [1 ,∞]. Then, (Ptu0)(x) < ∞ for all t > 0 and x ∈ Rd. Moreover, Ptu0

is uniformly bounded and continuous for every fixed t > 0.

Proof. Since Pt is a contraction on L∞(Rd), it suffices to consider only the case
where 1 ≤ β < ∞.

Choose and fix some t > 0. According to Young’s inequality,

(4.14) ‖Ptu0‖L∞(Rd) = ‖p̃t ∗ u0‖L∞(Rd) ≤ ‖pt‖Lp(Rd) · ‖u0‖Lq(Rd),

where p−1 + q−1 = 1. On the other hand, for all p ∈ (1 ,∞),

(4.15) ‖pt‖Lp(Rd) ≤ ‖pt‖L∞(Rd),

and this is finite, thanks to Proposition 2.1. Therefore, it remains to prove conti-
nuity.

First consider the case that β < ∞. In that case, we can bound the quantity

(4.16) |(Ptu0)(x)− (Ptu0)(x
′)| = |(p̃t ∗ u0)(x)− (p̃t ∗ u0)(x

′)| ,

from above, by∫
Rd

pt(y) |u0(y − x)− u0(y − x′)| dy

≤
(∫

Rd

pt(y) |u0(y − x)− u0(y − x′)|β dy

)1/β

≤ ‖pt‖1/βL∞(Rd)
· ‖u0(• − x)− u0(• − x′)‖Lβ(Rd) .

(4.17)

It is a classical fact that u0 ∈ Lβ(Rd) implies that u0 is continuous in Lβ(Rd).
Therefore, Ptu0 = p̃t ∗ u0 is continuous.
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Next let us consider the case where β = ∞. In that case, we write

|(p̃t ∗ u0)(x)− (p̃t ∗ u0)(x
′)|

≤ ‖u0‖L∞(Rd) · ‖pt(• − x)− pt(• − x′)‖L1(Rd) ,
(4.18)

which goes to zero because, once again, pt ∈ L1(Rd) implies that pt is continuous
in L1(Rd). �
4.2. Spatial regularity: Examples. Define for all x, y ∈ Rd,

(4.19) d(x , y) :=

(
1

(2π)d

∫
Rd

1− cos(ξ · (x− y))

1 + 2ReΨ(ξ)
f̂(ξ) dξ

)1/2

.

Then, d defines a pseudo-distance on Rd. Let Nd denote the metric entropy of
[0 , 1]d. That is, for all ε > 0, Nd(ε) denotes the minimum number of radius-ε d-
balls required to cover [0 , 1]d. We can combine Lemma 4.1 with theorems of Dudley
[72, Theorem 6.1.2, p. 245] and Fernique [72, Theorem 6.2.2, p. 251], together with
Belyaev’s dichotomy [72, Theorem 5.3.10, p. 213], to deduce the following:

Proposition 4.4. Suppose exp(−ReΨ) ∈ Lt(Rd), for all t > 0, and Υ(1) < ∞
so that (4.1) has a random-field solution u with u0 ≡ 0. Then the following are
equivalent:

(1) x �→ ut(x) has a continuous modification for some t > 0.
(2) x �→ ut(x) has a continuous modification for all t > 0.
(3) The following metric-entropy condition holds:

(4.20)

∫
0+

(logNd(ε))
1/2 dε < ∞.

Next we describe a large family of examples for (4.1) that have continuous
random-field solutions. Throughout, we write “h � g” in place of “(h/g) is bounded,
above and below uniformly, by finite positive constants”.

Theorem 4.5. Suppose f(x) = const/‖x‖d−β and ReΨ(ξ) � ‖ξ‖α (‖ξ‖ > 1) for
some α ∈ [0 , 2] and β ∈ (0 , d). Then (4.1) has a random-field solution if and only
if α+ β > d. In this case, (4.20) holds. In fact, we have

(4.21) d(x , y) � g(‖x− y‖) uniformly when ‖x− y‖ < 1/e,

where for all r ∈ (0 , 1/e),

(4.22) g(r) :=

⎧⎪⎨⎪⎩
r(α+β−d)/2 if α+ β ∈ (d+ 1 , d+ 2),

r
√
log(1/r) if α+ β = d+ 2,

r if α+ β > d+ 2.

Remark 4.6. The condition that ReΨ(ξ) � ‖ξ‖α (‖ξ‖ > 1) implies that the upper
and lower Blumenthal–Getoor indices of Ψ match and are both equal to α. See
[12, Theorem 3.2] and [61] for definitions and further details, including the vari-
ous connections that exist between those indices and the fractal properties of the
underlying Lévy process X. �
Proof of Theorem 4.5. Recall (1.8). In order to prove the existence of random-field
solutions, it suffices to show that Υ(1) < ∞. We begin by writing

(4.23) Υ(1) =
1

(2π)d

∫
Rd

f̂(ξ)

1 + 2ReΨ(ξ)
dξ := I1 + I2,
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where

I1 :=
1

(2π)d

∫
‖ξ‖≤1

f̂(ξ)

1 + 2ReΨ(ξ)
dξ and

I2 :=
1

(2π)d

∫
‖ξ‖>1

f̂(ξ)

1 + 2ReΨ(ξ)
dξ.

(4.24)

It is clear from the hypothesis of the theorem that I1 is always finite, because β < d.
We now turn our attention to I2 and note that

(4.25) I2 �
∫
‖ξ‖>1

dξ

‖ξ‖α+β
.

Therefore, I2 < ∞ if and only if α + β > d. This concludes the first part of the
result.

For the second part we assume that

(4.26) ‖x− y‖ ≤ 1/e.

We write

(4.27) |d(x , y)|2 :=
1

(2π)d
(J1 + J2 + J3) ,

where

J1 :=

∫
‖ξ‖≤1

1− cos(ξ · (x− y))

1 + 2ReΨ(ξ)
f̂(ξ) dξ,

J2 :=

∫
‖ξ‖>1/‖x−y‖

1− cos(ξ · (x− y))

1 + 2ReΨ(ξ)
f̂(ξ) dξ,

J3 :=

∫
1<‖ξ‖≤1/‖x−y‖

1− cos(ξ · (x− y))

1 + 2ReΨ(ξ)
f̂(ξ) dξ.

(4.28)

We can estimate each Jj separately.
Because 1− cos θ � θ2 for θ ∈ (−1 , 1),

J1 � ‖x− y‖2 ·
∫
‖ξ‖≤1

‖ξ‖2f̂(ξ) dξ � ‖x− y‖2 ·
∫
‖ξ‖≤1

‖ξ‖2−β dξ

� ‖x− y‖2 ·
∫ 1

0

dr

rβ−d−1
.

(4.29)

Because β < d, the integral term in the above display is finite, and hence

(4.30) J1 � ‖x− y‖2.

We estimate J2 similarly:

(4.31) J2 ≤ const ·
∫
‖ξ‖>1/‖x−y‖

f̂(ξ) dξ

‖ξ‖α �
∫ ∞

1/‖x−y‖

dr

rα+β−d+1
.

The final integral is finite if and only if α + β > d, and in this case, we have the
estimate

(4.32) 0 ≤ J2 ≤ const · ‖x− y‖α+β−d.
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Finally,

J3 �
∫
1<‖ξ‖≤1/‖x−y‖

‖ξ‖2−α−β · ‖x− y‖2 dξ

� ‖x− y‖2 ·
∫ 1/‖x−y‖

1

dr

rα+β−d−1
.

(4.33)

We evaluate the integrals (4.31) and (4.33) for the different cases of α+β to obtain
the result. �

The following is an immediate consequence of Proposition 4.4 and Theorem 4.5.

Corollary 4.7. Every random-field solution u given by Theorem 4.5 has a contin-
uous modification for all t > 0.

We devote the remainder of this section to a special case of (4.1), namely

(4.34)
∂

∂t
ut(x) = (Δut)(x) + Ḟt(x) (t > 0, x ∈ R3),

where u0 ≡ 0 and the Laplacian acts on the x variable only. The noise F is a
centered Gaussian noise, as before, that is white in time and homogeneous in space
with a correlation function f that satisfies the following for a fixed q ∈ R:

(4.35) f̂(ξ) � 1

‖ξ‖(log ‖ξ‖)q for ξ ∈ R3 with ‖ξ‖ > e.

According to Theorem 3.14, such correlation functions exist.
The following lemma will be useful for the proof of the main result of this section.

Lemma 4.8. If g : R3 �→ R+ is a Borel-measurable radial function, then

(4.36)

∫
‖x‖>1/‖y‖

(1− cos(x · y))g(x) dx ≥ const ·
∫
‖x‖>1/‖y‖

g(x) dx,

uniformly for all y ∈ R3 \ {0}.

Proof. Clearly,∫
‖x‖>1/‖y‖

(1− cos(x · y))g(x) dx

=

∫ ∞

1/‖y‖
r2R(r) dr

∫
S2

dθ (1− cos(y · rθ)),
(4.37)

where R is the function on R+ defined by R(‖x‖) := g(x) for all x ∈ R3. But for
all r > 0, the dθ-integral can be computed as

(4.38)

∫
S2

(1− cos(y · rθ)) dθ = const ·
(
1− sin(r‖y‖)

r‖y‖

)
,

and this is bounded below uniformly, as long as r > 1/‖y‖. We combine the
preceding two displays to obtain the result. �

The following is the main result concerning (4.34).

Theorem 4.9. Consider the stochastic heat equation (4.34) in R3, where the cor-
relation function f of the noise satisfies (4.35) for a given fixed value q ∈ R. Then:

(a) (4.34) has a random-field solution u iff q > 1;
(b) x �→ ut(x) has a continuous modification for all t > 0 iff q > 2.
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Remark 4.10. Theorem 4.9 and general facts about stationary Gaussian processes
[see Belyaev’s dichotomy [72, Theorem 5.3.10, p. 213], for instance] together prove
that when q ∈ (1 , 2], the stochastic heat equation (4.35) has a random-field solution
u that almost surely has infinite oscillations in every open space-time set. This
example was mentioned at the end of the Introduction. �

Proof. In order to show the existence of a random-field solution it suffices to show
that Υ(1) < ∞ if and only if q > 1. Because Ψ(ξ) = ‖ξ‖2, we may write Υ(1) as
follows:

(4.39) Υ(1) =
1

8π3

∫
R3

f̂(ξ)

1 + 2‖ξ‖2 dξ :=
I1 + I2
8π3

,

where

(4.40) I1 :=

∫
‖ξ‖<e

f̂(ξ)

1 + 2‖ξ‖2 dξ and I2 :=

∫
‖ξ‖>e

f̂(ξ)

1 + 2‖ξ‖2 dξ.

Direct inspection reveals that

(4.41) I1 �
∫ e

0

r

(log r)q
dr and I2 �

∫ ∞

e

1

r(log r)q
dr.

It follows readily from this that Υ(1) < 1 if and only if q > 1.
We now turn our attention to the second part of the proof. Throughout, we

assume that ‖x− y‖ ≤ 1/e and consider the following integral:

(4.42) |d(x , y)|2 =
1

8π3

∫
R3

1− cos(ξ · (x− y))

1 + 2‖ξ‖2 f̂(ξ) dξ :=
J1 + J2 + J3

8π3
,

where

J1 :=

∫
‖ξ‖≤e

1− cos(ξ · (x− y))

1 + 2‖ξ‖2 f̂(ξ) dξ,

J2 :=

∫
‖ξ‖>1/‖x−y‖

1− cos(ξ · (x− y))

1 + 2‖ξ‖2 f̂(ξ) dξ,

J3 :=

∫
e<‖ξ‖≤1/‖x−y‖

1− cos(ξ · (x− y))

1 + 2‖ξ‖2 f̂(ξ) dξ.

(4.43)

We estimate each of the integrals separately. The first term can be dealt with easily,
and we obtain the following, using similar computations to those in the proof of
Theorem 4.5:

(4.44) J1 � ‖x− y‖2.

The estimation of the second term requires a little bit more work, viz.,

J2 ≤ 1

2

∫
‖ξ‖>1/‖x−y‖

1− cos(ξ · (x− y))

‖ξ‖2 f̂(ξ) dξ

≤ const ·
∫
‖ξ‖>1/‖x−y‖

f̂(ξ)

‖ξ‖2 dξ ≤ const ·
∫ ∞

1/‖x−y‖

1

r(log r)q
dr

= const ·
(
log

1

‖x− y‖

)−q+1

.

(4.45)
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Finally, we consider the final term J3:

J3 � ‖x− y‖2
∫
e<‖ξ‖≤1/‖x−y‖

f̂(ξ) dξ � ‖x− y‖2
∫ 1/‖x−y‖

e

r

(log r)q
dr

≤ const ·
(
log

1

‖x− y‖

)−q

.

(4.46)

Upon combining the above estimates we obtain the bound

(4.47) |d(x , y)|2 ≤ const ·
(
log

1

‖x− y‖

)−q+1

.

Next, we compute a similar lower bound for |d(x , y)|2. Since the integrands are
nonnegative throughout, we may consider only J2. In that case, Lemma 4.8 yields
the following:

(4.48) J2 ≥ const ·
∫
‖ξ‖≥1/‖x−y‖

f̂(ξ)

‖ξ‖2 dξ ≥ const ·
(
log

1

‖x− y‖

)−q+1

.

The preceding discussion implies that

(4.49) d(x , y) � | log(‖x− y‖)|(1−q)/2,

uniformly, as long as ‖x− y‖ < 1/e. From this, we obtain

(4.50) logNd(ε) � ε2/(1−q),

valid for 0 < ε < 1/e. In particular, the metric-entropy condition (4.20) applies if
and only if q > 2. Since the other conditions of Proposition 4.4 hold [for elementary
reasons], the second part of the theorem follows from Proposition 4.4. �

5. The nonlinear equation

The primary goal of this section is to study the fully-nonlinear stochastic heat
equation (1.1) as described in the Introduction.

In the first part, we derive a series of a priori estimates that will ultimately lead
to the proof of Theorem 1.3. The latter theorem shows that the finite-potential
Condition 1.1 is sufficient for the existence of a mild solution to the stochastic heat
equation. As a byproduct, that theorem also yields a temporal growth rate for
the solution. This means that under some natural conditions on the multiplicative
nonlinearity σ, the mild solution will not be intermittent.

The second part is devoted to the proofs of Theorems 1.8 and 1.11, and thereby
establishing the fact that, in contrast to the preceding discussion, if “there is enough
symmetry and nonlinearity”, then the mild solution to the stochastic heat equation
is weakly intermittent.

In the third and final part, we give a partial answer to a deep question of Pro-
fessor David Nualart who asked about the “effect of drift” on the intermittence of
the solution. In particular, we show that if the drift is exactly linear—which cor-
responds to a massive and/or dissipative version of (1.1)—then there is frequently
an explicit phase transition which describes the amount of drift needed in order to
offset the intermittent multiplicative effect of the underlying noise.
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5.1. Proof of Theorem 1.3. We rewrite (1.1), in mild form, as follows:

ut(x) = (Ptu0)(x) +

∫ t

0

ds

∫
Rd

dy pt−s(y − x)b(us(y))

+

∫ t

0

∫
Rd

pt−s(y − x)σ(us(y))F (ds dy).

(5.1)

As is customary (see [30], for instance) we seek to find a mild solution that satisfies
the following integrability condition:

(5.2) sup
t∈[0,T ]

sup
x∈Rd

E
(
|ut(x)|2

)
< ∞ for all T > 0.

In order to prove Theorem 1.3 we apply a familiar fixed-point argument, though
the details of this argument are not entirely standard.

Let F := {Ft}t≥0 denote the right-continuous complete filtration generated by
the noise F . Specifically, for every positive t, we define F0

t to be the σ-algebra
generated by random variables of the form of the Wiener integral

(5.3)

∫
[0,t]×Rd

φ dF :=

∫
[0,t]×Rd

φs(x)F (ds dx),

as φ ranges over L2([0 , t] × Rd). Define F1
t to be the P-completion of F0

t , and
finally define Ft :=

⋂
s>tF1

s as the right-continuous extension.
We recall from Walsh [92] that a random field {vt(x)}t≥0,x∈Rd is predictable if

it can be realized as an L2(P)-limit of finite linear combination of random fields of
the type

(5.4) zt(x)(ω) := X(ω)1(a,b]×A(t , x) for t > 0, x ∈ Rd, and ω ∈ Ω,

where 0 < a < b < ∞, A ⊆ Rd is compact, and X is an Ft-measurable and bounded
random variable. [We are using the standard “(Ω ,F ,P)” notation of probability
for the underlying probability space, of course.]

Define for all predictable random fields v,

(5.5) (Av)t(x) :=

∫
[0,t]×Rd

pt−s(y − x)σ(vs(y))F (ds dy)

and

(5.6) (Bv)t(x) :=
∫ t

0

ds

∫
Rd

dy pt−s(y − x)b(vs(y)),

provided that the integrals exist. The first integral must exist in the sense of Walsh
[92], and the second in the sense of Lebesgue.

Define for all β, p > 0 and all predictable random fields v,

(5.7) ‖v‖β,p := sup
t>0

sup
x∈Rd

[
e−βtE (|vt(x)|p)

]1/p
.

It is easy to see that the preceding defines a [pseudo-] norm on random fields, for
every fixed choice of β, p > 0. In fact, these are one among many possible infinite-
dimensional Lp-norms. The corresponding Lp-type space is denoted by Bβ,p. We
make the following definition which will be in force throughout the rest of the paper.

Definition 5.1. Let Bβ,p denote the collection of all [equivalence classes of modifi-
cations of] predictable random fields X := {Xt(x)}t≥0,x∈Rd such that ‖X‖β,p < ∞.
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One can easily check that ‖ · ‖β,p defines a pseudo-norm on Bβ,p. Moreover, if
we identify X ∈ Bβ,p with Y ∈ Bβ,p when ‖X − Y ‖β,p = 0, then [the resulting
collection of equivalence classes in] Bβ,p becomes a Banach space. Because ‖X −
Y ‖β,p = 0 if and only if X and Y are modifications of one another, it follows that—
after the usual identification of a process with its modifications—Bβ,p is a Banach
space of [equivalence classes of] functions with finite ‖ · ‖β,p norm.

Our next two lemmas contain a priori estimates on Walsh-type stochastic inte-
grals, as well as certain Lebesgue integrals. Among other things, these lemmas show
that B and A are bounded linear maps from predictable processes to predictable
processes. These lemmas are strongly motivated by the theory of optimal regularity
for parabolic equations, as is our entire approach to the proof of Theorem 1.3; see
Lunardi [68]. We follow the main idea of optimal regularity and aim to find a good
function space such that if u0 resides in that function space, then ut has to live
in the same function space for all t. As we shall soon see, the previously-defined
Banach spaces {Bβ,p}β,p>0 form excellent candidates for those function spaces. In
a rather different context, this general idea also appears in Dalang and Mueller [35].
Those authors show that L2(Rd) is also a good candidate for such a function space
provided that σ(0) = 0.

Here and throughout, we will use the following notation on Lipschitz functions.

Convention 5.2. If g : Rd → R is Lipschitz continuous, then we can find finite
constants Cg and Dg such that

(5.8) |g(x)| ≤ Cg +Dg|x| for all x ∈ Rd.

To be concrete, we choose Cg := |g(0)| and Dg := Lipg to be concrete.

As mentioned above, the next two results describe a priori estimates for the
Walsh-integral-processes Bv and Av when v is a nice predictable random field.
Together, they imply that the random linear operators A and B map each and
every Bβ,p into itself boundedly and continuously. The respective operator norms
are both described in terms of a replica potential of the correlation function f .

Lemma 5.3. For all integers p ≥ 2, real numbers β > 0, and predictable random
fields v and w,

(5.9) ‖Bv‖β,p ≤ p

β

(
Cb

e
+ Db‖v‖β,p

)
and

(5.10) ‖Bv − Bw‖β,p ≤ pLipb
β

‖v − w‖β,p.

Proof. On one hand, the triangle inequality implies that E(|(Bu)t(x)|p) is bounded
above by the following quantity:∫ t

0

ds1

∫
Rd

dy1 · · ·
∫ t

0

dsp

∫
Rd

dyp

p∏
k=1

pt−sk(tk − x) · E

⎛⎝ p∏
j=1

|b(vsj (yj))|

⎞⎠ .

On the other hand, the generalized Hölder inequality tells us that

(5.11) E

⎛⎝ p∏
j=1

|b(vsj (yj))|

⎞⎠ ≤
p∏

j=1

‖b(vsj (yj))‖p.
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Therefore, we can conclude that

(5.12) E (|(Bv)t(x)|p) ≤
(
Cbt+Db

∫ t

0

ds

∫
Rd

dy pt−s(y − x)‖vs(y)‖p
)p

.

We multiply the preceding by exp(−βt) and take the the (1/p)-th root to find that[
e−βtE (|(Bv)t(x)|p)

]1/p
≤ Cbte

−βt/p +Db

∫ ∞

0

ds

∫
Rd

dy e−β(t−s)/ppt−s(y − x)e−βs/p‖vs(y)‖p

≤ Cbte
−βt/p +

pDb

β
‖v‖β,p.(5.13)

The first display of the lemma follows because t exp(−βt/p) ≤ p/(eβ) for all t > 0.
In order to obtain the second display we note that

(5.14) |(Bv)t(x)− (Bw)t(x)| ≤ Lipb · (B1(|v − w|))t(x),

where B1 is defined exactly as B was, but with b(x) replaced by b1(x) = x. Because
we may choose Cb1 = 0 and Db1 = 1, the second assertion of the lemma follows
from the first. �

Lemma 5.4. For all even integers p ≥ 2, real numbers β > 0, and predictable
random fields v and w,

(5.15) ‖Av‖β,p ≤ zp (Cσ +Dσ‖v‖β,p)
√
(R̄2β/pf)(0)

and

(5.16) ‖Av −Aw‖β,p ≤ zpLipσ‖v − w‖β,p
√
(R̄2β/pf)(0).

Proof. According to Davis’s formulation [38] of the Burkholder–Davis–Gundy in-
equality, E(|(Av)t(x)|p) is bounded above by zpp times the expectation of

(5.17)

∣∣∣∣∫ t

0

ds

∫
Rd

dy

∫
Rd

dz Vs(y , z)pt−s(y − x)pt−s(z − x)f(z − y)

∣∣∣∣p/2 ,
where

(5.18) Vs(y , z) := σ(vs(y))σ(vs(z)).

By the generalized Hölder inequality,

(5.19) E

⎛⎝p/2∏
j=1

Vsj (yj , zj)

⎞⎠ ≤
p/2∏
j=1

∥∥σ(vsj (yj))∥∥p ‖σ(vsj (zj))‖p.
Consequently, E (|(Av)t(x)|p) is bounded above by zpp times

(5.20)

(∫ t

0

ds

∫
Rd

dy

∫
Rd

dz V ′
s (y , z)pt−s(y − x)pt−s(z − x)f(z − y)

)p/2

,

where

(5.21) V ′
s (y , z) := ‖σ(vs(y))‖p ‖σ(vs(z))‖p .
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We can note that for all s > 0 and y ∈ Rd,

‖σ(vs(y))‖p ≤ Cσ +Dσ‖vs(y)‖p ≤ Cσ +Dσe
βs/p‖v‖β,p

≤ eβs/p (Cσ +Dσ‖v‖β,p) .
(5.22)

Therefore, a line or two of computations yield

(5.23) E (|(Av)t(x)|p) ≤ eβtzpp (Cσ +Dσ‖v‖β,p)p
(∫ ∞

0

e−2βs/pHs ds

)p/2

,

where

(5.24) Hs :=

∫
Rd

da

∫
Rd

db f(a− b)ps(a)ps(b) = (P ∗
s Psf) (0) = (P̄sf)(0).

Hence,

(5.25) E (|(Av)t(x)|p) ≤ eβtzpp (Cσ +Dσ‖v‖β,p)p
(
(R̄2β/pf)(0)

)p/2
.

The first assertion of the lemma follows immediately from this.
In order to deduce the second assertion we note that

(5.26) ‖Av −Aw‖β,p ≤ Lipσ · A1(|v − w|),
where A1 is the same as A, but with σ(x) replaced by σ1(x) = x. Therefore, the
first assertion of the lemma implies the second. This completes the proof. �

We are ready to begin a more-or-less standard iterative construction that is used
to prove Theorem 1.3.

Let

(5.27) u0
t (x) := u0(x),

and define iteratively: For all n ≥ 0,

(5.28) un+1
t (x) = (Ptu0)(x) + (Bun)t(x) + (Aun)t(x).

Dalang’s theory [30] tells us that the solution u to (1.1) can be obtained pointwise as
limn→∞ un

t (x), where the limit takes place in L2(P) and holds uniformly in x ∈ Rd

and locally uniformly for t > 0. We need to strengthen the sense in which that
limit holds. The following is a key step toward reaching that goal.

Lemma 5.5. Choose and fix β > 0 and an even integer p ≥ 2. If

(5.29)
pDb

β
+ zpDσ

√
(R̄2β/pf)(0) < 1,

then supn≥0 ‖un‖β,p < ∞.

Proof. Because Ptu0 is bounded, uniformly in modulus, by supx∈Rd |u0(x)|, the
triangle inequality implies that

(5.30) ‖un+1‖β,p ≤ sup
x∈Rd

|u0(x)|+ ‖Bun‖β,p + ‖Aun‖β,p.

Lemmas 5.3 and 5.4, and a few lines of direct computation, together imply that

(5.31) ‖un+1‖β,p ≤ A+B‖un‖β,p,
where

(5.32) A := sup
x∈Rd

|u0(x)|+
pCb

βe
+ zpCσ

√
(R̄2β/pf)(0)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE STOCHASTIC HEAT EQUATION 445

and

(5.33) B :=
pDb

β
+ zpDσ

√
(R̄2β/pf)(0).

Iteration yields the bound

(5.34) ‖un+1‖β,p ≤ A

(
1 +B + · · ·+Bn−1 + Bn sup

x∈Rd

|u0(x)|
)
.

Consequently, if B < 1, then

(5.35) sup
k≥1

‖uk‖β,p ≤ A

1−B
.

Since ‖u0‖β,p ≤ supx∈Rd |u0(x)| < ∞, the lemma follows. �

We now have all the technical estimates for the proof of Theorem 1.3.

5.2. Proof of Theorem 1.3. Without loss of generality, we can find β > 0 such
that Q(p , β) < 1, otherwise there is nothing to prove. Choose and fix such a β.

Thanks to Lemma 5.5, every un is well defined and ‖un‖β,p is finite, uniformly in
n. In particular, un ∈ Bβ,p. Next we apply Lemmas 5.3 and 5.4—with Cg := |g(0)|
and Dg := Lipg—to find that

‖un+1 − un‖β,p ≤ ‖Bun − Bun−1‖β,p + ‖Aun −Aun−1‖β,p
≤ ‖un − un−1‖β,p ·Q(p , β).

(5.36)

Because Q(p , β) < 1, the preceding implies that

(5.37)
∞∑
n=1

‖un+1 − un‖β,p ≤ const ·
∞∑

n=1

{Q(p , β)}n < ∞.

Therefore, we can find a predictable random field u∞ ∈ Bβ,p such that limn→∞ un =
u∞ in Bβ,p. Our arguments can be adjusted to also show that limn→∞ Bun = Bu∞

and limn→∞ Aun = Au∞, with both limits taking place in Bβ,p. This discussion
proves that u∞ is another solution to (5.1). Because of the theory of [30], u is the
almost-surely unique solution to (5.1). Therefore, u∞ is equal to u up to evanes-
cence, and hence u ∈ Bβ,p for all β > 0 such that Q(p , β) < 1. This proves the
theorem. �

5.3. Intermittency. We now prove Theorems 1.8 and 1.11. They state, in one
form or another, that the solution to the stochastic heat equation can be weakly
intermittent in the presence of enough symmetry and nonlinearity. The basic idea is
to follow, and adapt, our earlier work on space-time white noise [45] and apply clas-
sical renewal-theoretic ideas [21]. However, because of the spatial correlation of the
noise, that adaptation quickly meets obstacles that do not exist when considering
space-time white noise.

It might help to recall the definition (1.8) of the function Υ, and the relation
[Theorem 1.2] between the positive number Υ(β) and the maximum value of the
replica β-potential of the correlation function f , as well as the positive number
(R̄βf)(0) of that replica potential at the origin.
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Proof of Theorem 1.8. We can assume, without loss of generality, that there exists
β > 0 such that

(5.38) Υ(β) ≥ 2/L2
σ,

for there is nothing left to prove otherwise. Now consider any such β.
Since b(x) = 0, u0 ≥ η, and σ(u) ≥ Lσ|u|, we can apply (5.1) to deduce that for

all x, y ∈ Rd and t > 0,

E (|ut(x)ut(y)|)
≥ E (ut(x)ut(y))(5.39)

≥ η2 +

∫ t

0

ds

∫
Rd

dz

∫
Rd

dz′ Ws(z , z
′)pt−s(z − x)pt−s(z

′ − y)f(z − z′),

where

(5.40) Ws(z , z
′) := E (σ(us(z))σ(us(z

′)) ≥ L2
σE (|us(z)us(z

′)|) .

Consider the following R+-valued functions on (Rd)2:

Hβ(a , b) :=

∫ ∞

0

e−βtE (|ut(a)ut(b)|) dt,

Gβ(a , b) :=

∫ ∞

0

e−βtpt(a)pt(b) dt,

F (a , b) := f(a− b).

(5.41)

Also consider the linear operator Aβ defined as follows: For all nonnegative Borel-
measurable functions h : (Rd)2 → R+,

(5.42) (Aβh)(x , y) :=
(
Fh ∗ G̃β

)
(x , y).

A line or two of computation shows that the preceding is simply a quick way to
write the following:

(Aβh)(x , y)

=

∫
Rd

da

∫
Rd

db F (a , b)h(a , b)Gβ(x− a , y − b)

=

∫ ∞

0

e−βt dt

∫
Rd

da

∫
Rd

db f(a− b)h(a , b)pt(x− a)pt(y − a).

(5.43)

With the preceding definitions under way, we can write equation (5.39) in short-
hand as follows:

(5.44) Hβ(x , y) ≥
η2

β
+ L2

σ (AβHβ) (x , y).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE STOCHASTIC HEAT EQUATION 447

Since F ≥ 0 on (Rd)2, we can apply the preceding to find the following pointwise
bounds:

Hβ ≥ η2

β
1+ L2

σ

(
Aβ

{
η2

β
+ L2

σ(AβHβ)

})
=

η2

β
1+ L2

σ

η2

β
Aβ1+ L4

σA2
βHβ

≥ η2

β
1+ L2

σ

η2

β
Aβ1+ L4

σA2
β

(
η2

β
+ L2

σAβHβ

)
=

η2

β
1+ L2

σ

η2

β
Aβ1+ L4

σ

η2

β
A2

β1+ L6
σA3

βHβ ,

(5.45)

where 1(x , y) := 1 for all x, y ∈ Rd. By applying induction we may arrive at the
following simplified bound:

(5.46) Hβ ≥ η2

β
·

k∑

=0

L2

σ A


β1+ L2(k+1)
σ Ak+1

β Hβ ≥ η2

β
·

k∑

=0

L2

σ A


β1.

Because the parameter k ≥ 0 is arbitrary, it follows that

(5.47) Hβ ≥ η2

β
·

∞∑

=0

L2

σ A


β1.

We analyse this infinite sum by using moment estimates that are motivated by
Xiao’s fractal analysis of fractional Brownian motion [94]. In order to understand
the structure of our estimates, we begin by inspecting only the first few terms.

The first term in the sum is identically 1. The more interesting second term can
be written as L2

σ multipled by

(Aβ1)(x , y) =
(
F ∗ G̃β

)
(x , y)

=

∫ ∞

0

e−βtdt

∫
Rd

da

∫
Rd

db f(a− b)pt(a− x)pt(b− y)

≥ 1

(2π)d

∫ ∞

0

e−βtdt

∫
Rd

dξ f̂(ξ)e−2tReΨ(ξ)eiξ·(x−y),

(5.48)

thanks to Proposition 3.3. We change the order of the double integral [dt dξ] to
find that

(5.49) (Aβ1)(x , y) ≥
1

(2π)d

∫
Rd

eiξ·(x−y)f̂(ξ)

β + 2ReΨ(ξ)
dξ.

[Theorem 1.2 and condition (1.1) together justify the use of Fubini’s theorem.]
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In order to bound the third term in the infinite sum in (5.47), we need to estimate
the following quantity:

(A2
β1)(x , y) =

(
F (Aβ1) ∗ G̃β

)
(x , y)

≥ 1

(2π)d

∫
Rd

f̂(ξ) dξ

β + 2ReΨ(ξ)
Zξ(x , y),

(5.50)

where

(5.51) Zξ(x , y) :=

∫ ∞

0

e−βtdt

∫
Rd

da

∫
Rd

db f(a− b)eiξ·(a−b)pt(a− x)pt(b− y).

[The same ideas that were applied to the second term can be applied here, in exactly
the same manner, to produce this bound.] The Fourier transform of the function
a �→ exp(iξ · a)pt(a− x) is ζ �→ exp(i(ξ+ ζ) · x− tΨ(ξ+ ζ)). Therefore, Proposition
3.3 implies the following:

Zξ(x , y) ≥
1

(2π)d

∫ ∞

0

e−βtdt

∫
Rd

dζ f̂(ζ)ei(ξ+ζ)·(x−y)−2tReΨ(ξ+ζ)

=
1

(2π)d

∫
Rd

ei(ξ+ζ)·(x−y)f̂(ζ)

β + 2ReΨ(ξ + ζ)
dζ.

(5.52)

Therefore,

(A2
β1)(x , y)

≥ 1

(2π)2d

∫
Rd

f̂(ξ1) dξ1
β + 2ReΨ(ξ1)

∫
Rd

f̂(ξ2) dξ2
β + 2ReΨ(ξ1 + ξ2)

ei(ξ1+ξ2)·(x−y).
(5.53)

Now, we can apply induction to deduce that we have the following estimate [used
to analyse the �-th term in the infinite sum in (5.47)] in general: For all integers
� ≥ 1 and x, y ∈ Rd,

(A

β1)(x , y)

≥ 1

(2π)
d

∫
Rd

f̂(ξ1)dξ1
β + 2ReΨ(ξ1)

∫
Rd

f̂(ξ2) dξ2
β + 2ReΨ(ξ1 + ξ2)

· · ·
∫
Rd

f̂(ξ
) dξ

β + 2ReΨ(ξ1 + · · ·+ ξ
)

ei
∑�

j=1 ξj ·(x−y).

(5.54)

Although the preceding multiple integral is manifestly nonnegative, the integrand
itself is complex valued. Fortunately, we wish to only understand the behavior of
F


β1 on the diagonal of (Rd)2. In that case, the integrand is real and nonnegative.
As such, we can estimate the integrand directly. In order to do so, let us set y := x
in (5.54) and then plug the result in (5.47), to find that

inf
x∈Rd

∫ ∞

0

e−βtE
(
|ut(x)|2

)
dt

≥ η2

β
·

∞∑

=0

L2

σ

(2π)
d

∫
Rd

dξ1 · · ·
∫
Rd

dξ



∏
j=1

f̂(ξj)

(β + 2ReΨ(ξ1 + · · ·+ ξj))
.(5.55)
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A change of variables yields the following:

inf
x∈Rd

∫ ∞

0

e−βtE
(
|ut(x)|2

)
dt

≥ η2

β
·

∞∑

=0

L2

σ

(2π)
d

∫
Rd

dz1 · · ·
∫
Rd

dzd


∏
j=1

f̂(zj − zj−1)

(β + 2ReΨ(zj))
,

(5.56)

where z0 := 0.
The preceding holds even without Condition 1.7. But now we recall that Condi-

tion 1.7 is in place and use it to produce the announced lower bound on infx∈Rd γx(2).
Define

(5.57) Σ :=
{
x := (x1 , . . . , xd) ∈ Rd : sign(x1) = · · · = sign(xd)

}
.

Equivalently, Σ := Rd
+ ∪Rd

−. Because the terms under the product sign in (5.56)
are all individually nonnegative, Condition 1.7 assures us that the following holds:

inf
x∈Rd

∫ ∞

0

e−βtE
(
|ut(x)|2

)
dt

≥ η2

β
·

∞∑

=0

L2

σ

(2π)
d

∫
Σ

dz1 · · ·
∫
Σ

dzd


∏
j=1

f̂(zj − zj−1)

(β + 2ReΨ(zj))
.

(5.58)

If z1, . . . , zd ∈ Σ, then the absolute value of the k-th coordinate of zj − zj−1 is less
than or equal to the absolute value of the k-th coordinate of zj for all k = 1, . . . d;
therefore

(5.59) f̂(zj − zj−1) ≥ f̂(zj),

thanks to Condition 1.7. Consequently,

inf
x∈Rd

∫ ∞

0

e−βtE
(
|ut(x)|2

)
dt ≥ η2

β
·

∞∑

=0

L2

σ

(2π)
d

∫
Σ�

dz

∏

j=1

f̂(zj)

(β + 2ReΨ(zj))

=
η2

β

∞∑

=0

(
L2
σ

(2π)d

∫
Σ

f̂(z)

(β + 2ReΨ(z))
dz

)


.

(5.60)

In particular, if there exists β > 0 such that

(5.61)
1

(2π)d

∫
Σ

f̂(ξ) dξ

β + 2ReΨ(ξ)
≥ L−2

σ ,

then

(5.62)

∫ ∞

0

e−βtE
(
|ut(x)|2

)
dt = ∞ for all x ∈ Rd.

Thanks to symmetry considerations, Condition 1.7 has the following consequence:

(5.63)

∫
Σ

f̂(ξ) dξ

β + 2ReΨ(ξ)
= 2−d+1

∫
Rd

f̂(ξ) dξ

β + 2ReΨ(ξ)
= 2−d+1Υ(β).

This and (5.61) together imply that (5.62) holds whenever Υ(β) ≥ 2d−1/L2
σ. Now

we can apply a real-variable argument to prove that if (5.62) holds for some β > 0,
then

(5.64) γx(2) ≥ β for all x ∈ Rd.

This and (5.38) together imply the theorem.
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Indeed, let us suppose to the contrary that (5.62) holds for our β, and yet
infx∈Rd γx(2) < β for the very same β. It follows immediately that there exists
x ∈ Rd, δ ∈ (0 , β), and C ∈ (0 ,∞) such that

(5.65) E
(
|ut(x)|2

)
≤ Ce(β−δ)t for all t > 0.

Hence, (5.62) cannot hold in this case. This produces a contradiction and shows
that (5.62) implies the theorem. �

Proof of Theorem 1.11. We begin as we did with (5.39), but can no longer apply
the inequality in (5.40). To circumvent that, note that for all q0 ∈ (0 , q) there
exists A := A(q0) ∈ (0 ,∞) such that σ(y) ≥ q0|y| as soon as |y| > A. We have
assumed that P{us(y) > 0} = 1 for all s > 0 and y ∈ Rd. Therefore,

Ws(z , z
′) ≥ q20E (us(z)us(z

′) ; us(z) ∧ us(z
′) > A)

≥ q20E (us(z)us(z
′))− q20A

2 − q0AE (us(z) ; us(z) > A)

− q0AE (us(z
′) ; us(z

′) > A)(5.66)

≥ q20E (us(z)us(z
′))− q20A

2 − q0A {E (us(z)) + E (us(z
′))} .

On the other hand, (5.1) guarantees that

(5.67) 0 ≤ E (ut(x)) = (Ptu0) (x) ≤ ‖u0‖L∞(Rd).

Consequently,

(5.68) Ws(z , z
′) ≥ q20 {E (us(z)us(z

′))−A∗} ,

where

(5.69) A∗ := max
(
A2, 2‖u0‖L∞(Rd)

)
.

Now we apply the recursion argument in the proof of Theorem 1.8 and find the
following pointwise bounds:

Hβ ≥ η2

β
+ q20 {AβHβ − A∗Aβ1}

≥ η2

β
+ q20

(
η2

β
−A∗

)
Aβ1+ q40A2

βHβ − q40A∗A2
β1

...(5.70)

≥ η2

β
+

(
η2

β
−A∗

) N∑

=1

q2
0 A

β1+ q

2(N+1)
0

(
AN+1

β Hβ −A∗AN+1
β 1

)
,

valid for every integer N ≥ 1. We apply the following obvious inequalities: η2/β ≥
η2/β−A∗ to the first term on the right; and Hβ ≥ η2/β to the last bracketed term,
to find that for all integers N ≥ 1,

(5.71) Hβ ≥
(
η2

β
−A∗

)N+1∑

=0

q2
0 A

β1.
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We can now let N ↑ ∞ and apply the same estimate that we used to derive (5.60),
and deduce the following bound:

inf
x∈Rd

∫ ∞

0

e−βtE
(
|ut(x)|2

)
dt

≥
(
η2

β
−A∗

)
·

∞∑

=0

(
q20

(2π)d

∫
Σ

f̂(z)

(β + 2ReΨ(z))
dz

)


=

(
η2

β
−A∗

)
·

∞∑

=0

(
q20

2d−1
Υ(β)

)


.(5.72)

Thanks to Theorem 1.2, the preceding implies the following bound:

(5.73) inf
x∈Rd

∫ ∞

0

e−βtE
(
|ut(x)|2

)
dt ≥

(
η2

β
−A∗

)
·

∞∑

=0

(
q20

2d−1
(R̄βf)(0)

)


.

Because (R̄0f)(0) = ∞, we can find a β0 > 0 such that

(5.74) (R̄β0
f)(0) ≥ 2d−1

q20
.

For that choice of β0, the preceding sum diverges. Therefore,

(5.75)

∫ ∞

0

e−β0tE(|ut(x)|2) dt = ∞, provided that η >
√
β0A∗.

This and an elementary real-variable argument together prove the theorem; confer
with the discussion that led to (5.65) for further details. �

5.4. The massive and dissipative operators. David Nualart asked us about the
effect of the drift coefficient b in (1.1) on the intermittent behavior of the solution
to the stochastic heat equation (1.1). At present, we have only an answer to this
in a special, but physically-interesting, family of cases.

Indeed, let us consider the stochastic heat equation

(5.76)
∂

∂t
ut(x) = (Lut)(x) +

λ

2
ut(x) + σ(ut(x))Ḟt(x),

where x ∈ Rd, t > 0, λ ∈ R, and Ḟ is as before. Moreover, σ : R → R is
Lipschitz continuous, also as before. That is, (5.76) corresponds to the drift-free
stochastic heat equation for the massive operator L(λ) := L+ (λ/2)I when λ > 0,
the dissipative operator L(λ) = L − |λ/2|I when λ < 0, and the free operator
L(0) = L when λ = 0. Of course, Dalang’s theory [30]—applied with b(u) := λu/2—
guarantees us of the existence of an a.s.-unique mild solution to (5.76).

The operator L(λ) is the generator of the semigroup {P (λ)
t }t≥0 defined by

(5.77) (P
(λ)
t φ)(x) := eλt/2(Ptφ)(x).

This can be seen immediately by a semiformal differential of t �→ P
(λ)
t at t = 0, and

it is easy to make the argument rigorous as well. The corresponding “transition

functions” are given by p
(λ)
t (y−x) := eλt/2pt(y−x). The domain Dom[L(λ)] of the

definition of L(λ) is the same as Dom[L], and

(5.78) L(λ)φ = Lφ+
λ

2
φ for all φ ∈ Dom[L(λ)].
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Let {P ∗(λ)
t }t≥0 denote the adjoint [or dual, in probabilistic terms] semigroup.

That is, (P
∗(λ)
t φ)(x) := eλt/2(P ∗

t φ)(x), with corresponding transition functions,

p
∗(λ)
t (y−x) := eλt/2pt(x−y). Finally there is also a corresponding replica semigroup,

(P̄
(λ)
t φ)(x) := eλt(P̄tφ)(x), whose resolvent is described by the following:

(5.79) (R̄(λ)
α φ)(x) :=

∫ ∞

0

e−(α−λ)s(P̄sφ)(x) ds for all α ≥ λ.

We might note that R̄
(λ)
α f = R̄α−λf is merely a shift of the free replica resolvent

of f . Therefore, the proof of Theorem 1.3 goes through unhindered, and after
accounting for the mentioned shift, produces the following:

Theorem 5.6. Suppose u0 : Rd → R is bounded and measurable. Then, under
Condition 1.1, the mild solution to (5.76) satisfies the following: For all integers
p ≥ 2 and λ ∈ R,

(5.80) γ∗(p) ≤ λ+
(p
2

)
inf

{
α > 0 : (R̄αf)(0) <

1

z2pLip
2
σ

}
,

where zp denotes the largest positive zero of the Hermite polynomial Hep.

Recall the function Q of Theorem 1.3. Since

(5.81) Q(p , β) ≥ max

(
pλ

2β
, zpLipσ

√
(R̄2β/pf)(0)

)
a few lines of arithmetic show that Theorem 5.6 provides us with a better upper
bound than Theorem 1.3 for the top Liapounov Lp-exponent of the mild solution
to (1.1). Next, we produce instances where the solution is intermittent.

First of all, note that according to (5.80),

(5.82) γ∗(2) ≤ λ+ inf

{
α > 0 : (R̄αf)(0) <

1

Lip2σ

}
,

because z2 = 2. We apply similar “shifting arguments”, together with Theorem 1.8,
to deduce that the following offers a converse, under some symmetry and regularity
conditions. We note, in advance, that when d = 1, the preceding estimate and the
following essentially match up.

Theorem 5.7. Suppose that both Conditions 1.1 and 1.7 hold, η := infx∈Rd u0(x)
> 0, and there exists Lσ ∈ (0 ,∞) such that σ(z) ≥ Lσ|z| for all z ∈ R. Then,

(5.83) inf
x∈Rd

γx(2) ≥ λ+ sup

{
α > 0 : (R̄αf)(0) ≥

2d−1

L2
σ

}
,

where sup∅ := 0.

We end this section with an example mentioned in the Introduction.

Example 5.8. Consider the case where L = −(−Δ)q/2 is a power of the Laplacian.
In that case, L is the generator of an isotropic stable process of index q, and
q ∈ (0 , 2] necessarily. Also consider the case where f(x) = ‖x‖−d+b is a Riesz
kernel, where b ∈ (0 , d). Then [see (3.15)],

(5.84) f̂(ξ) =
Cd,b

‖ξ‖b , where Cd,b :=
πd/22bΓ(b/2)

Γ((d− b)/2)
.
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Therefore, Theorem 1.2 and direct computation together imply that

(R̄αf)(0) = Υ(α) =
Cd,b

(2π)d
·
∫
Rd

‖ξ‖−b

α+ 2‖ξ‖q dξ

=
Cd,bα

−1+(d−b)/q

(2π)d · 2(d−b)/q
·
∫
Rd

dz

‖z‖b + ‖z‖q+b
.

(5.85)

In other words,

(5.86) (R̄αf)(0) =
Ad,q,b

α1−ν
,

where

(5.87) ν :=
d− b

q
and Ad,q,b :=

Cd,b

(2π)d · 2ν ·
∫
Rd

dz

‖z‖b + ‖z‖q+b
.

Since b ∈ (0 , d), Ad,q,b—and hence (R̄αf)(0)—is finite if and only if q+b > d, this
is the sufficient condition for the existence of a unique mild solution to the resulting
stochastic PDE. Not surprisingly, this “q + b > d” condition is the necessary and
sufficient condition for the existence of a solution to the linear equation [Theorem
4.5]. Moreover, when q + b > d, we can apply Theorems 5.6 and 5.7 to find that
for all x ∈ Rd,

(5.88) λ+

(
Ad,q,bL

2
σ

2d−1

)1/(1−ν)

≤ γx(2) ≤ λ+
(
Ad,q,bLip

2
σ

)1/(1−ν)
.

In particular, consider the massive/dissipative “parabolic Anderson model”,

(5.89)
∂

∂t
ut(x) = −

(
(Δ)q/2ut

)
(x) +

λ

2
ut(x) + κut(x)Ḟt(x),

where u0 : R → R is measurable and bounded uniformly away from zero and
infinity, and κ �= 0. The preceding discussion shows that the parabolic Anderson
model has a solution if q + b > d. When q + b > d, we obtain the following bounds
for the upper L2-Liapounov exponent of the solution: For all x ∈ Rd,

(5.90) λ+

(
Ad,q,bκ

2

2d−1

)1/(1−ν)

≤ γx(2) ≤ λ+
(
Ad,q,bκ

2
)1/(1−ν)

.

Theorem 1.3 also shows that γ∗(p) < ∞ for all p ≥ 2. Therefore, we have no
weak intermittency if λ ≤ −(Ad,q,bκ

2)1/(1−ν), whereas there is weak intermittency

if λ > −(Ad,q,bκ
2/(2d−1))1/(1−ν). Our condition is sharp when, and only when,

d = 1. In that one-dimensional case, we have a solution if and only if q + b > 1,
and if this inequality holds, then

(5.91) A1,q,b =
C1,b

2νπ
·
∫ ∞

0

dz

zb + zb+q
=

C1,b

2νπq
· B
(
1− b

q
, 1− 1− b

q

)
,

where B(x , y) := Γ(x)Γ(y)/Γ(x+ y) denotes the beta function. Thanks to (5.84),
this implies that

(5.92) A1,q,b =
2b−νΓ(b/2)

π1/2qΓ((1− b)/2)
B

(
1− b

q
, 1− 1− b

q

)
,
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and we find that weak intermittency holds if and only if

(5.93) λ > −
(
A1,q,b κ

2
)1/(1−ν)

.

Another simple though tedious computation shows that this example [applied with
q := 2] includes the material that led to (1.22).
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20. René A. Carmona and Frederi G. Viens, Almost-sure exponential behavior of a stochastic
Anderson model with continuous space parameter, Stochastics Stochastics Rep. 62 (1998),
no. 3-4, 251–273. MR1615092 (99c:60126)

21. Gustave Choquet and Jacques Deny, Sur l’équation de convolution μ = μ ∗ σ, C. R. Acad.
Sci. Paris 250 (1960), 799–801. MR0119041 (22:9808)

22. Francis Comets, Tokuzo Shiga, and Nobuo Yoshida, Directed polymers in a random environ-
ment: Path localization and strong disorder, Bernoulli 9 (2003), no. 4, 705–723. MR1996276
(2004f:60210)

23. , Probabilistic analysis of directed polymers in a random environment: A review, Sto-
chastic analysis on large scale interacting systems, Adv. Stud. Pure Math., vol. 39, Math. Soc.
Japan, Tokyo, 2004, pp. 115–142. MR2073332 (2005d:82050)

24. Francis Comets and Nobuo Yoshida, Brownian directed polymers in random environment,
Comm. Math. Phys. 254 (2005), no. 2, 257–287. MR2117626 (2005m:60242)

25. Daniel Conus and Robert C. Dalang, The non-linear stochastic wave equation in high dimen-
sions, Electron. J. Probab. 13 (2008), no. 22, 629–670. MR2399293 (2009c:60170)

26. M. Cranston and S. Molchanov, On phase transitions and limit theorems for homopolymers,
Probability and Mathematical Physics, CRM Proc. Lecture Notes, vol. 42, Amer. Math. Soc.,
Providence, RI, 2007, pp. 97–112. MR2352264 (2009a:60119)

27. , Quenched to annealed transition in the parabolic Anderson problem, Probab. Theory
Related Fields 138 (2007), no. 1-2, 177–193. MR2288068 (2008h:60066)

28. M. Cranston, T. S. Mountford, and T. Shiga, Lyapunov exponents for the parabolic An-
derson model, Acta Math. Univ. Comenian. (N.S.) 71 (2002), no. 2, 163–188. MR1980378
(2004d:60162)

29. , Lyapunov exponent for the parabolic Anderson model with Lévy noise, Probab. The-
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44. Ionuţ Florescu and Frederi Viens, Sharp estimation of the almost-sure Lyapunov exponent for
the Anderson model in continuous space, Probab. Theory Related Fields 135 (2006), no. 4,

603–644. MR2240702 (2008g:60189)
45. Mohammud Foondun and Davar Khoshnevisan, Intermittence and nonlinear parabolic sto-

chastic partial differential equations, Electron. J. Probab. 14 (2009), no. 21, 548–568.
MR2480553

46. Mohammud Foondun, Davar Khoshnevisan, and Eulalia Nualart, A local time correspondence
for stochastic partial differential equations, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2481–
2515. MR2763724
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81. D. Nualart and É. Pardoux, White noise driven quasilinear SPDEs with reflection, Probab.
Theory Related Fields 93 (1992), no. 1, 77–89. MR1172940 (93h:60093)

82. R. E. A. C. Paley and A. Zygmund, A note on analytic functions in the unit circle, Proc.
Camb. Phil. Soc. 28 (1932), no. [Issue] 03, 266–272.

83. Szymon Peszat and Jerzy Zabczyk, Nonlinear stochastic wave and heat equations, Probab.
Theory Related Fields 116 (2000), no. 3, 421–443. MR1749283 (2001f:60071)

84. Daniel Revuz and Marc Yor, Continuous Martingales and Brownian Motion, Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.

293, Springer-Verlag, Berlin, 1991. MR1083357 (92d:60053)
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