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1. Introduction. Let A be the C*-algebra of all complex valued continuous
functions vanishing at infinity on a locally compact space. The Stone-Weierstrass
theorem gives the conditions under which a C*-subalgebra B coincides with A.
A plausible non-commutative extension of the Stone-Weierstrass theorem is

Conjecture. Let % be a C*-algebra and let B be a C*-subalgebra of U.
Let P(A) be the set of all pure states of A and let 0 be the identically
zero function on . Suppose that B separates P(A)U(0), then A =J.

Kaplansky [ 9] proved a theorem equivalent to the conjecture for GCR
C*-algebras (equivalently, type I C*-algebras [61], [13]). Glimm [5], Ringrose
[10] and Akemann [1] gave some considerations related to this conjecture.

The purpose of this paper is to present another consideration to the
conjecture. Unfortunately, we can not solve the problem completely; but the
author feels that the results obtained here indicate strongly that the conjecture
will be true for all separable C*-algebras. Throughout the present paper, we
shall deal with separable C*-algebras only. The main tool to attack the problem
is the reduction theory. As corollaries of our results, we shall show: (1) Let
A be a separable C*-algebra and let B be a uniformly hyperfinite C*-subalgebra
of A. Suppose that B separates P(A)U(0), then A=V ; (2) A new proof of
Kaplansky’s theorem in the separable case ; (3) Let U be a separable C*-algebra
and let B be a C*-subalgebra of UA. Suppose that there exists a *-representation

{m, } of A such that z(B)G2(A) and the commutant of =(B) is hyperfinite,
where #(-) is the weak closure of #(-). Then, 8 can not separate P(A)uU(0);
(4) Let A be a separable C*-algebra and let B be a C*-subalgebra of . Suppose
that there exists a *-representation {7, §} of A such that #(A) is a finite
W*-agebra and 7(B) & #(A), where #(+) is the weak closure of #(+). Then, 8
can not separate P(%) U (0).

2. Theorems. Let A be a C*-algebra and let B be a C*-subalgebra of .
Let P(A) be the set of all pure states of U, and let 0 be the identically zero
function on A. Throughout this section, we shall assume that B separates P()

U(0)—namely, for any two different @,, @, € P(A)U(0), there exists an element
b such that @,(b) # @y(b).
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If % has not the unit, we shall consider the C*-algebra %A, =%+2Al and the
subalgsbra B, =B+l obtainad by adjoining the unit 1, where A\ are complex
numbars. Any pure state @ on ¥ can be uniquely extended to a pure state ¢

on U, ; therefore P(%+x1)=m)+7\.770, where @, is the purz state of ¥, such
that ¢o(%)=0. Then, clearly B, separates P(¥%,) U (0); therefore it is enough
to assume that % has the unit 1.

LEMMA 1. B contains the unit 1.

PROOF. Suppose that 1&%B. Then |b+1]=1 for b € B—in fact, if |6+1] <1,
—b is invertible and (—5)"'< 3B ; hence 1 ¢ B. Therefore, there exists a bounied
linzar functional f on ¥ such that f(B)=0 and |f|| =fQ)=1; hencz f is a
state (cf. [4],[11]). Let Y= {x|f(x*x)=0, 2 U}, then J is a closed left ideal
of A and BCIJ. Let € be a maximal left idzal of A such that JC L, then there
exists a pure state @ on ¥ such that €= {z|p(x*x)=0,xe A}(cf. [4]), [8]);
this implies that B can not separate @ an:l 0. Thls is a contradiction and
completes the proof.
' Henceforward, we shall assums ‘that ¥ has the unit and so B contains the
unit. In this case, the sep:lratlon of " P(A) U(0) by-B is equivalent to the
separation of P(%) by B.

DEFINITION 1. A W*-algebra M is said to be atomic, if it is a direct
sum of type I-factors.

DEFINITION 2. Let A bz a C*-algzbra ani let {7, §} be a *-representation
of A on a Hilbert spacz 9. By #(A), we shall dznote ths weak closure of 7(A)
on $. The representation {z, } is called to be éto.nic, if the W*-algebra 2(4A)
1S atomuic.

DEFINITION 3. Let @ be a state on a C*-algebra A, {7, 9.} the
*.representation of A on a Hilbert spacz $, constructed via @. @ is called to
be atomic, if the representation {7, 9,} is atomic.

LEMMA 2. Let @, @, be two states on U such that the restriction
@118, ¢.|B on B are atomic. Suppose that ¢, = @, on B, then ¢, =@, on A.

-%%an:l coasider the *-representation {7, §,} of U.

Let o(x) = <n(x)§, E> for £ €U, where ‘ <',‘_> is the inner product of §, and
£ is a vector in §,, and let €’ be the p-ojzction of §, on:o the closed subspace
[7(B)E] generated by =z (B)E; then the representation b— m,(b)e’(beB) is

PROOF. Put p=2
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atomic. Let z be the central envelops of €’ in the commutant 7,(B) of =,(B),
then the mappng yz—ye of 7,(B)z onto 7, (B)e’ is a *-isomorphism; hence
7(B) contains a direct summand of an atonic W+#-algzbra. Let p’ be a minimal
projection in 7,(B), then b— 7 (b)p'(b € B) is irreducible. Take n (|7|=1)<c p'H,
and consider a state Yr(x)= <mi(x)n, n> for xeA. Then, ¥,|B is pure;
we shall show that v, is pure on UA. Let I'={4r|yr =, on B,  states oa A},
then I' is a o{U¥*, A)-compact convex set in A¥, where A* is the dual Banach
space of UA. Arbitrary extreme point in I' is also extreme in the state space of
A ; hence it is pure. If T' contains two points, there are two different pure
states Yr;, ¥, on U such that Yo, =4, on B; hence T consists of only one point
and it is pure.

Now~ suppose that p'9, & [7,(A)7), and let V be the orthocomplement of
P9, in [7,(A)n]. Let E(#0)ep'H,, E(#0)eV and [, +&:]| =1. Then,
9i(x)= <m{x) (1 +Ey), (E1+E:)> and gy(x) = <m(x)(§1—E,), (E1—E)>for e ¥
are pure states of ¥ and ¢g,=¢g, on B. Hence g,=g, on U. Since the restriction
of 7, (A) on [, (A)n] is irreducible, &,+ &, = A&, —&,) for some complex number
AM|n] =1). This is a contradiction; hence [7,(%)7] = [7(B)7] and so p’ € m,(A).
Let ¢ be the greatest central projection of 7,(B) such that =,(B)¢c is atomic;
then any non-zero projection of #,(B)c is a sum of mutually orthogonal
minimal projections; hence ¢ € 7, ().

Since £ € ¢y, [TLWEIC cHy; hence ¢ D, = D, and so c =1g,, Where 1, is
the identity oderator on 9,; therefore 7 (B) C 7, (A) and so 7, (B) = 7, (N).
Since @,, @, = 2@, there exists vectors 7;, 7, such that ¢,(x)= <m,(x)7, >
and @y(x) = <m(x)ny, 7> for £ € A. For a € ¥, there exists a direct set {7,(b.)}
(b. € B) such that 7(b.)— 7,(a)(strongly) ; hence @,(b.)—#,(a) and @(b.)—@:(a);
@1(b.) = @o(b.) implies @,(a) = @,(a). This completes the proof.

LEMMA 3. Let @,, @, be two states on W and suppose that one of
them is atomic and @, =@, on B, then ¢, =@, on A.

PROOF. Suppose that @, is atomic. Consider the *-representation {7,,, £,,}
of U, then =, (U) is atomic; hence, there exists a family of mutually orthogonal
minimal projections (e;|i=1,2,++-) in 7z, (A) such that Z e/ =1,,. L

7’1(;)_ <7t¢x(x) ,€>, then ¢1(x) Z <7r,,‘(x)e, Ee'E>= Z lle: ‘f“ <7t¢.(x) ”e {;”
leve]” e

Since <m,(x)— "et f“’ lle, ) > is pure, its restriction on B is also pure (cf.

the proof of Lemma 2); hence @,|8 is atomic and so by Lemma 2, ¢, =@, on
UA. This completes the proof.
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Now we shall explain some results of the reduction theory (cf. [3], [11],
[12]). Let M be a type I W*-algebra on a separable Hilbert space, My the

predual of M. Then, M =)" @ M,, where M, is a homogenuous type I, W*-
i=1

algebra (7, = R,). Moreover, M, = B;® Z,, where B, is a type I,-factor, and
Z, is the center of M;. Let B;yx be the predual of B,, then we can consider the
weak *-topology o(B;, B.x) on B,.

Then, we have the realization B, ® Z; = L*(B,, Q,, p;), where (Q;, &) is a
measure space with a probability measure w, and L*(B,, Q;, p;) is the W#*-algebra
of all essentially bounded B;-valued weakly*-measurable functions on €,. For

ac B, ®Z, the corresponding element of L*(B,,Q;, ) is denoted by f a(t),
then |a| = ess. sup. la(?)] and a,+a2=f a(t)+ayt), ha,z] aaqy(t), aa,
= fa,(t)ag(t) and a,*= | a,(¢)* for a,, a, € B;QZ, and A are complex numbers.

Moreover the predual Of Lw(BL, Q[, F‘i):Ll(Bi-X-’ Qi’ F’i)’ Where Ll(Bi*, Ql’ Fi)
is the Banach space of all B,y-valued Bochner integrable functioas f on Q, with the

norm ||f||= f 1f(®)lldult). Therefore, we have the realization M,y = L'(Bix, Q4 ps)
For g € My, the corresponding element in L'(B.x, Q;, ;) is denoted by f 9(8).
Then we have: “g“:f“g(t)”d/"i(t)» g +9:= fgl(t)+g2(t)’ NG =f Aga(E),

and if @ is a normal state on M,, ¢(¢) is a normal state on B, for almost all ¢;
moreover let 9 be a separable C*-subalgzbra of M, then we can choose a null set
Q, such that d—d(¢) (d € 4 ) is a *-homomorphism of 9 into B, for all t e Q,—Q;;
moreover, if the W#-subalgebra (9, Z,) of M, generated by 9 and Z, coincides
with M,, the weak closure 9(¢)=B, for all ¢ € Q,—Q,, where 9D(¢)={d(¢)|d < D}
and 9(z) is the weak closure of D(¢).

Since M= }_ @ M,, by considering the direct sum (Q = UQ'“ p= Z@m)
et i=1

i=1
of the measure spaces (Q;, w,), M can be realized as the W*-algebra of vector

valued functions fx(t) such that x; € L*(B,, Q;, p:), | x| =sup|x;|, where z; is the
restriction of x on ;. This realization will be denoted by M= > @ L~(B;, &, py).

i=1
Now let & be a separable C*-subalgzbra of M such that the W#*-subalgebra of
M genzrated by & and Z coincides with M, where Z is the center of M. Then
€ z; and Z, generate M, where z; is the identity of M, ; hence there exists a
null set Q in Q such that a—a(z) (a < 6’) is a *homomno-phism and &)= B;
for all £<Q;,—Q and all 7.
Henceforward, the algebra A will be assumed to be separable. Let {=x, §}
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be a *-representation of U on a sepirable Hilbert spicz §. Put %, = z(A) and

B, =n(B) and let Ay (resp. B;) be the comnmutant of A, (resp. B,). Let C be a

maximal abelian *-subalgebra of %,’, then the W#*-algzbra (¥,, C) genzrated by

A, and C is of type Iand Cis the center of (U, C), because (U,, C)Y =U,NC=C.
By putting (%,, C)= M, we can apply the reductioa theory.

THEOREM 1. Let T be a linear mapping of U, into (N, C) such that
(@) | T( @) = x|l for xeWUy; (8) T(y)=y for y€B,. Then, T(x)==x for
xed,.

PROOF. Suppose that T(x,) # x, for some x,<€N,. Then, there exists a
normal state Y of (U, C) such that Y(T(xy)) =Y (x,). (Ao, C)=D_ BL(Bi, Qi» w1).

Now let D be the C*-subalgzbra of (%,, C) gznerated by %, and T(x,), then
D is separable.

By the previous considerations, we can assume that x—x(¢) (x€ D) is a
*-homomorphism of D into B; and U(z) = B; for all £ Q,—N with w(N)=0,
where Ay(2) = {x(2)| x € A}

Let 4= [ %), then (o) = [ (X eNdi(e) and WT(ao) = [ HeXT(x)
(®))d(t). Since Y{(x,) #Y(T(x,)), there exists a set M with p (M)>0 such that
W(t)x(2)) # Y(E)(T(x,)2)) for all £ € M. Therefore, there exists a ¢, such that
Y(t,) is a positive linzar functional on B;, and Y(£,)(xs(20)) # V(2. )(T(x,)(20)),
z—x(t,) (x € D) is a *-homomorphism of D into B, and U (z,) = B,,. Now we
shall define a linear functional Yr, on % as follows: (@)= (¢, )z(a)(t,)) for
a <. Then, ¥, is an atomic state on . Let x, = n(a,) for some a,<cU; we

shall define a linear functioaal 4¥; on B+ aa, (M conplex numbers) as follows:
V(b +nao) = Y0 )(n(D)(2o) + AT (x0)(L0)) for beB. Then,

12'(6 + Mao)| = [P (@) 2(5) + NT(zo)ll = [ () T((B)+ N(ad))l
= el 2(B) + Aa(ao)ll = (216 + Aaol -

Therefore, ¥," is well-defined and bounded. Let 4, be a linear functional
on U such that [yl =|v'| and Y, =Y, on B+ Az, Since Yr(1)=1,'(1)
=|[¥(t,)|l, ¥y is positive and clearly yr; =+, on B. Therefore by Lemma 3, ¥r; =1,
on A ; hence Yr(a,) =Y(t,)(7(a0)to)) = ¥(t)(xo(Lo)) = Yo ao) = Yt )(T (0 )(t0))-

This is a contradiction and completes the proof.

Let B(9) be the W+-algebra of all bounded opzrators on . For any
we B(P), let K(w) be the weakly closed convex subset of B($) g:nerated by
{u*wulu e C,}, where C, is the set of all unitary elements in C. A family of
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weakly continuous linear meppings {w—u*wu|u € C,} on B($) is commutative ;
hence by the theorem of Kakutani-Markoff (cf. [ 2]), K(w) contains at least one
fixed point w,—namely, u*wou =w, for all #<€C,; hence w,cC =(U,, C).
Therefore, there exists a projection P with norm one of B($) onto (¥, C)
(cf. [14)).

Now we shall show

THEOREM 2. For xe¥,, let T(x) be the weakly closed convex subset
of B(9) generated by {u'*xu'\u € B, .}, where By, is the set of all unitary
elements of the commutant By of B,. Then, P(r) =z for all r e I'(x).

PROOF. Let L(B(P)) be the algebra of all bounded operators of B(§) into
B(9). Then, L(B(9)) is the dual of B(9)®,B(P)x, where 7 is the greatest
cross norm and B(D)y is the predual of B(D) (cf. [7]). We shall consider the
weak *-1010'02y o(L(B(9)), B(§) RyB(9)x) on L(B(H)). Then, the unit sphere S
of L(B(9)) is compact. The linear mapping V. : w—u’ *wu' (w € B(H)) belongs to
S; let S, be the weakly *-closed convex subset of S generated by {V. |« € By, .},
then for arbitrary r € I'(x), there exists a V €S, such that V(z)=r.

Now, consider a linzar mapp.ng d—P(V(d)) (d<¥U,) of U, into (¥, C),
then P(V(y)) = P(y)=y for y<B,; hence by Theorem 1, P(V(x))= P(r)=x.
This completes the proof.

COROLLARY 1. Let B, be the weak closure of B, then |w—r|=|w—=zx|
for weB, and r e (x), where U,

PROOF. For ' €%B,, |w—uxu*|=|u*wu' —z| =|w—=x| ; therelore

n n
lw=3" nu*xu, |=|w-—zx|, where M=0 and >  M=1, % <By; hence
i=1 i=1

lw—rll = |w— . ~

On the other hand, if |w,—7r,| <|w,—z| for some w,<€ B, and r,< I'(x),
then || P{w,—7,)| = [[wo—P(r,)| = |wo—rll. But, wo—P(r,) = wo—x. This is a
contradiction and completes the proof.

COROLLARY 2. |v—r|=|v—z| for ve(¥, C) and r<I(x), where
xe ¥, v

The proof is quite similar with the second part of the proof of Corollary 1.

3. Applications. We shall show some applications of the results in the
‘section 2.
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DEFINITION 4. Let M be a W*-algzbra. M is called to bs hyp-rfinite,
if there exists an increasing sequenze of typz I,-factors {M,} (1, < + o)

contain'ng the unit of M in M such that UMi =M, where (+) is the weak
i=1

closure of (+).

PROPOSITION 1. Let U be a separable C*-algebra and B a C*-subalgebra
of . Suppose that there exists a *-represzntation {x, 9} of U such that
7(B) G 7(A) and the commutant n(BY of =(B) is hyperfinite. Then, B can
not separate P(A)U(0).

PROOF. Suppose that B sep’ara.ltes P(A)u(0). Put Ay =n(A) and B,=7(B).
By the result of Schwartz (cf. [14]), T(x) N B, #(s) for x € U, ; henc: by Corollary
1, inf |x—w|| =0 and so ze PB,. This is a contradiction and completes the

proof.

DEFINITION 5. Let A be.a C*-algsbra. A is called to be uniformly
hyperfinite, if there exists an . increasing sequence of type I, -factors
{A)} (n,<+00) containing the unit of A in A such that the uniform closure of

\JA-=4

i=1

PROPOSITION 2. Let U be a separable C*-algebra and let B be a
uniformly hyperfinite C*-subalgebra of U. Suppose that B separates
P)uU(0), then A=1B.

PROOF. Suppose that B3EU -and let f be a bounded selfadjoint linear
functional on % such that f(B) =0 and f#0. Let f=f*—f" be the orthogonal
decomposition such that f*,f~=0, and |[f*|+|f|l =If]l. Put @ =f*+f~ and

take the *-representation {,, §,} of % as the {7, §} in §2. Then, B, EA,. Since
B, is uniformly hyperfinite, there exists an increasing sequerre of typzI,,-factors

(B) (n,< +00) in B, such that the uniform clo:ure of U B, =%, We can

easily find a projection Q; with norm 1 of B(@,,) on‘o B;, because B(9,)=B,QB; .

Let Q be an accumulate point of the set {Q;|i=1,2,---} in L(B(H,))

with o(L(B(9,)), B(9,) ® B(D,)x), then clearly Q(y)=y for y<B,; moreover
Y .

Q) (U Bi> =B Uy, C) ; -hence by Theorem 1, Q(x) =z for x< WU, and
i=1

so %, € B,. This is a contradiction and completes the ‘pvroof;
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PROPOSITION 3. Let A be a separable C*-algebra and let B be a
C*-subalgebra of U. Suppose that there exists a *-representation {m, 9} of
A such that n(N) is a finite W*-algebra and n(B)en(N). Then, B can not
separate P(A)uU(0).

PROOF. Suppose that B separates P()uU(0). By the result of Umegaki
(cf. [15]), there exists a projection Q with norm 1 of #(¥) onto z(B). On the
other hand, by Theorem 1, Q(n(a)) = n(a) for a €A ; hence #{(A) = =(B). This

is a contradiction and completes the proof.

PROPOSITION 4 (Kaplansky {9]). Let U be a separable C*-algebra
and let B be a type I C*subalgebra of UN. Suppose that B separates
P(A)YU(0), then A =12.

PROOF. Suppose that B & A. Take a *-representation {z, 9} of A such
that () 2 7(B). Since B is a type 1 C*-algebra, z(B) is a type I W*-algebra,
By the theorem of Kakutani-Markoff, the structure theorem of type I W?*-
algebras and the considerations of Schwartz (cf. [14]), we can easily see that
(x)" B, # (¢) for 2 < U, ; hence by Corollary 1, x < B,. This is a contradiction
and completes the proof.
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