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  On the strain gradient bending deformations  

   Abstract:   Bending deformations are reviewed in the con-

text of strain gradient linear elasticity, considering the 

complete set of strain gradient components. It is well 

understood that conventional bending deformations 

depend on the collective uniaxial extension of axial fibers 

resulting in the dependence on the curvature of the neu-

tral geometry of various (linear or surface) structures. Nev-

ertheless, the deformation of each fiber depends not only 

on the local curvature of the neutral geometry but also on 

the distance of the fiber from the neutral axis. Hence, the 

strain gradient tensor of the conventional bending strain 

should include not only components along the neutral 

axis but also those on the transverse direction. The prob-

lems of bending and buckling, along with geometrically 

non-linear and post-critical behavior, are reviewed in the 

context of strain gradient elasticity considering not only 

conventional bending strain but also the complete com-

ponents of the strain gradient.  
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1     Introduction 

 Because size effects have been observed in thin films, 

micro-electromechanical systems, and nano-electro-

mechanical systems, those microstructures are studied, 

invoking strain gradient elasticity theories. Further, the 

thin beam theory has found many applications in the 

areas of micromechanics and nanomechanics. Altan and 

Aifantis  [1]  and Ru and Aifantis  [2]  have correlated the 

thin beam theory with strain gradient elasticity theories. 

The theory of gradient elasticity has been applied to many 

mechanics problems lifting various singularities in frac-

ture problems  [1]  and around concentrated forces like the 

Flamant problem  [3] . Further applications in plasticity 

and dislocation dynamics may be found in ref.  [4] . Many 

researchers  [5 – 7]  have presented a Bernoulli thin beam 

theory that is a straightforward extension of the conven-

tional thin elastic beam theory. Let us point out that Park 

and Gao  [6]  and Yang et  al.  [7]  invoked a questionable 

principle in mechanics of the balance of the moment of 

rotational momentum. The authors have also presented a 

series of articles concerning thin structures based on Ber-

noulli ’ s thin beam theory as well as on the Timoshenko 

beam assumption  [8, 9] . 

 In the above studies, the authors considered not only 

the gradient strain component along the axis of the beam 

but also on the transverse direction. New terms appeared 

in the governing equilibrium of the beam that do not 

depend on the bending but on the shear stiffness of the 

beam. These terms highly influence the bending behav-

ior of thin strain gradient elastic beams. In fact, the fiber 

character of the Bernoulli conventional thin elastic beam 

breaks down as the couple elasticity effects combine the 

non-symmetric stress tensor, namely the shearing effects, 

with the bending moments. To understand the essence of 

the present ideas, let us consider the simple bending of 

a beam. It is well-known that bending deformation is the 

deformation of various fibers axially distributed along the 

beam (see Figure  1  ). 

 Hence, the conventional bending deformation is 

defined by 
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 Considering the equilibrium of a representative 

element at some point of the cross section (see Figure 1), 

strain gradient linear elasticity yields the equilibrium 

diagram with balance stresses  [10] ,   
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  contributes into the equilibrium of the bending moment 

apart from the contribution of the axial stresses due to the 
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deformation of the fibers. Consequently, additional terms 

show up in the analysis of various bending problems, 

owing to the non-symmetric stress tensor, which is a sub-

stantial difference between conventional and strain gradi-

ent bending. Further, the absence of those terms in some 

strain gradient bending theories is considered a serious 

handicap, as these terms involve only the area instead of 

the moment of inertia of the bending cross-section. This 

suggests the primary importance of these terms in very 

thin bending structures. The influence of the complete set 

of strain gradient tensor components in bending has been 

proved by Spencer and Soldatos  [11]  in the context of con-

tinuum mechanics. 

 The problems that are outlined in the present work 

under the umbrella of strain gradient elastic bending, con-

sidering the complete set of the components of the strain 

gradient tensor, have also been discussed elsewhere  [8, 9, 

12 – 15] .  

2     Revised bending model 

of a strain gradient elastic 

beam 

 Following Aifantis  [4] , a linear theory of elasticity with 

microstructure, equipped with extra gradient terms and 

corresponding constitutive coefficients, apart from the 

Lame constants, is adopted. The intrinsic bulk length,  g , 

is the additional constitutive parameter. Indeed, the strain 

energy density function for the case considered herein is 

expressed by 
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  denotes the infinitesimal strain and   ɛ   
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  the infini-

tesimal strain gradient, with 

   
( )1

= = + , = =
2

ij ji i j j i ijk ikj i kju uε ε ε ε ε∂ ∂ ∂
 

(2)
 

 and   µ   
 i 
   =    µ   

 i 
 ( x  

 k 
 ) being the infinitesimal displacement field. 

 The usual stresses are defined by the relations 
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 and the hyperstresses by 
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 For the present study, we consider a beam shown in 

Figure  2  . The x - axis is the axis of the beam, whereas the 

y-axis is the deflection axis. 

 The elastic line lies on the x-y plane. Considering the 

Bernoulli-Euler principle, the infinitesimal strain of the 

beam is defined by 
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 with  w  denoting the displacement of the elastic line. 

 For the formulation of the present problem, we need 

the stress 
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 where  E  is the elastic Young ’ s modulus, as well as the 

hyperstresses 
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 Figure 1    Representative element with the non-symmetric stresses 

and the distributed moments contributing to the equilibrium of the 

bending moment.    
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 Figure 2    Beam axis.    
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 with the corresponding hyperstrains being 
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 Following the analysis of Lazopoulos and Lazopoulos 

 [8] , the equilibrium equation of the strain gradient beam 

is given by 
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 where  I  is the moment of inertia,  A  is the cross-sectional 

area, and  q  denotes the distributed load. 

 Furthermore, the corresponding boundary conditions 

are 
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 where  V  denotes the shear force,  M  the bending moment, 

and  m  the hypermoment. It should be pointed out that 

the equilibrium Eq. (10) departs from Aifantis ’ s special 

theory of gradient elasticity (GRADELA model), as the 

considered stress tensor in the present case is not sym-

metric. Owing to that property of the stress tensor, beam 

bending ceases to be considered as the result of the uni-

axial stretching of various beam fibers, but it is a result of 

a two-dimensional strain gradient elastic configuration, 

where the bending moment contributes not only to the 

extension of the set of the ideal fibers, but also interacts 

with the distributed moments on the cross-section of the 

beam, due to the asymmetry of the stress tensor. This 

makes the present bending strain gradient theory quite 

different not only from the conventional one but also 

from other strain gradient theories that do not account 

for the contribution of the asymmetry of the stress tensor. 

Let us point out that the terms of the equilibrium in Eqs. 

(10 – 13), including the cross-sectional area, correspond 

to the contribution of the asymmetry of the stress tensor. 

These terms become of primary importance when the 

beam is thin, as the moment of inertia  I  is proportional 

to  h  3 , while the cross-sectional area  A  is proportional to 

the thickness  h . 

 In relation to the discussion of the beam buckling 

problem of a strain gradient elastic beam, it turns out the 

governing equation along with the boundary conditions 

are of the form  [9]  
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 for the governing differential equation with the boundary 

conditions ( P  denotes the point axial load applied on the 

right end of the beam) 
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 It is also evident here the contribution of the asym-

metry of the stress tensor as shown by the inclusion of the 

cross-sectional area  A  into the various terms.  

3     Non-linear beam bending 

of strain gradient elastic 

beam 

 It is obvious that for thin beams, large deformations may 

be expected. Therefore, the constitutive relations will 

remain the same, while the effects of large deformations 

will be introduced through the non-linear equation for 

the curvature of the elastic curve. Indeed, for inextensible 

elastic curves, the curvature is given by 
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 where  w ( x ) denotes the y-displacement of the inextensible 

beam elastic line. 

 As the displacement is small, the curvature  k  may be 

approximated by 
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 In this case, the axial strain is approximated by 
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 By following an analysis similar to that of Lazopoulos 

et al.  [14] , and by further adopting Aifantis ’  special theory 

of gradient elasticity  [1] , i.e., by assuming that surface 

effects are entirely accounted for by the bulk internal 

length  g , the governing equation is given by 
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 with  I  
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   =   I  +  g  2  A  and the boundary conditions 
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 One may use the successive approximations procedure 

for evaluating an approximate solution of the non-linear 

problem. Indeed, if we are looking for a solution of the 

type 

    w   =    ɛ w  
1
  +   ɛ   3  w  

3
  +  o (  ɛ   3 ) (27) 

 for the loading 

   
( ) ( ) ( )2

1 3= +p t p t p tεɶ
 

(28)
 

 and 

  M   =   M  
1
  +   ɛ   2  M  

3
  +  o (  ɛ   2 ),  V   =   V  

1
  +   ɛ   2  V  

3
  +  o (  ɛ   2 ),  m   =   m  

1
  +   ɛ   2  m  

3
  +  o (  ɛ   2 ) 

 then the solution  w  
1
  for the first-order problem is 
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 with the boundary conditions 
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 As the symmetry of the problem should allow for two 

symmetrical solutions reflected on the beam axis, the 

second-order problem is not of relevance. In fact, consid-

eration of the second-order problem breaks the symmetry 

of the problem. 

 Proceeding with the definition of the third-order 

problem, we obtain the following governing equation: 

   

( ) ( ) {{
} {

( ) ( )}
( )} ( )

2 2 2 2
3 3 3 1 1 1

2 2 2 2
1 1 1 1 1 1

2
1 1 1 1 1

2 2
1 1 1

1
- =- - + -4 +24

2

+2 +1.5 +2 +

+8 + -6 +6

-2 - 33

IV VI

g g

IV

g

IV V

g

IV VI

g

EI w g EIw p t x t EI w w EIg w

g EIw w Eg w w EI w g EIw

w w w EI w g EIw

Ew I w g Iw

δ ′′ ′′ ′′′

′′ ′′′ ′ ′′ ′′′

′′′ ′′ ′′′

′
 

 with the boundary conditions 
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4     Post-critical buckling problem 

of a strain gradient elastic 

beam 

 In the present section, the buckling problem of a strain 

gradient elastic beam along with its post-critical behav-

ior is discussed. First, we list the governing equation 

along with the corresponding boundary conditions, and 

then perform a bifurcation analysis. Following Lazopou-

los et al.  [14] , the governing equilibrium equation for the 

present non-linear buckling problem is expressed by 
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 with the boundary conditions 
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 Eqs. (38) and (39) are the counterparts of the classic 

boundary conditions, while Eq. (40) is a non-classic one. 

It is evident that the present equations first introduce the 

geometrical non-linearity through the non-linear curva-

ture expression, and second, involve terms that corre-

spond to the double stresses   µ   
 yxx 

 . 

 Looking for solutions of the type 
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 we apply the bifurcation theory to consider the multipli-

city of rotations of the non-linear problem given by Eqs. 

(37) – (40), by utilizing the linear homogeneous problem, 

i.e., the governing differential equation 
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 When the boundary value problem given by Eqs. 

(41) – (44) possesses only the trivial solution, the non-

linear boundary value problem, Eqs. (37) – (41), admits 

only a unique solution. Nevertheless, whenever the linear 

problem, or Eqs. (41) – (44), has a non-trivial solution, for 

a specific value  P  
 o 
 , 

     w  
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 the non-linear problem of Eqs. (37) – (41) admits a solution 

of the type 

       w   =    ɛ  ξ  φ  ( x ) +  o (  ξ   2 ) (46) 

 e.g., ref.  [16] . It is evident that the deflection of the beam 

can be described when the small parameter   ξ   is defined. 

 Furthermore, the third-order equilibrium equation is 

given by 
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= + -2 -

- or =0 at =0,  

IV

g g

IV

3,x

M EI w EI w w g EIw w w g EIw

EIg w w w x Lδ

′′ ′ ′′ ′ ′′ ′′′

′
 

(49)
 

   ( )2 2 2
3 3 1 1 1 1 3= + + or =0 at =0, ,xxm g EI w w w w w w x Lδ′′′ ′ ′′ ′ ′′′

   
(50)

 

 It is well known that the small parameter   ξ   may be 

 determined by invoking Fredholm ’ s alternative theorem 

 [16]  or by directly defining the minimum of the potential 

energy  V . Fredholm ’ s alternative theorem pertaining to 

the existence of the solution  w  
3
  of Eq. (47), with  boundary 

conditions given by Eqs. (48) – (50), requires that 

   

( )( ) ( ) ( )[ ] ( )[ ] ( )[ ]3 3 3 30 0 0
0

, + - - =0
L

L L L
R x x dx V x M x m xξφ λ φ φ φ φ′ ′′∫

 (51) 

 so that Eq. (51) is reduced to an algebraic equation of the 

type 

      ξ   3 -  γ  λ  ξ    =  0 (52) 

 with the solutions for   ξ   of Eq. (52) defining  w , through Eq. 

(46) and   γ   being a constant. 

 Specifically, the deflection of the beam defined by Eq. 

(46) is expressed by the equation 

  w   =   c  
2
  +  c  

1
  x  +  c  

3
 sin( r  

1
  x ) +  c  

4
 cos( r  

1
  x ) +  c  

5
 sinh( r  

2
  x ) +  c  

6
 cosh( r  

2
  x ) (53) 

 where  c  
 i 
  ’ s are constants defined by the boundary condi-

tions and 

   

2 2 2 2

1 22 2

- +4 + +4
=    =

2 2

a a g p a a g p
r r

g g

+

 

(54)

 

 with 

   

2 -
=( + ) / , = oP P

a I g A I p
EI  

(55)
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