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Here we continue with the ideas expressed in ”On the strangeness of quantum mechanics” [1]
aiming to demonstrate more concretely how this philosophical outlook might be used as a key for
resolving the measurement problem. We will address in detail the problem of determining how the
concept of undecidability leads to substantial changes to classical theory of probability by showing
how such changes produce a theory that coincides with the principles underlying quantum mechanics.

I. INTRODUCTION

The work that serves as the starting point for this pa-
per [1] suggests that the extravagances of quantum me-
chanics, in particular the violation of Bell’s inequalities,
are connected to the problem of logical undecidability .
The term undecidable refers to a proposition that, within
formal system S, cannot be shown to be true or false.

At the beginning of the twentieth century, Hilbert [2]
explained the need to formally demonstrate of the com-
pleteness of the foundations of mathematics, that is, to
demonstrate that every true mathematical proposition
can be proven.

In 1931, Gödel [3, 4] disregarded Hilbert’s program by
demonstrating how, on the contrary, for any coherent
formal system that is sufficiently expressive to include
arithmetic, it is possible to generate true propositions
that cannot be proven within that system.

Around 1910, Charles Sanders Peirce [5] defined a log-
ical system, expressly proposing a third alternative value
to truth and falsehood, which he defined as limit. This
approach – ingenuous, in light of the subsequent results
– directly undermines the law of excluded middle by vi-
olating the fundamental true/false duality. The theorem
of incompleteness may seem to suggest that Gödel was
doing the same, but this is a gross error - according to
Gödel, undecidable is not an alternative to true or false.

We define as manifestly true in S a proposition p which
can be proven in S. A proposition whose negation, in-
stead, can be proven in S is then said to be manifestly
false.

We shall refer to true and false with the swash-serif
symbols T and F . We shall refer to manifestly true and
false with the straight-serif symbols T and F. Undecid-
ability will be indicated with the symbol U.

To rephrase, U is an alternative condition to TF, not
to T F . Thus we create two domains of propositions, the
binary system T F subject to the law of excluded middle,
and the ternary TFU system, not subject to that law and
connected to the concept of demonstrability.

Both these domains, T F and TFU, fall within classi-
cal logic. Reasoning about the implications of the TFU
domain has nothing to do with the elaboration of an-
other logic, and in this the work proposed here diverges
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immediately from the classical works called many-valued
logics [6], as well from what is known as quantum logic,
understood as logic in any way alternative to classical
logic.

A TFU perspective has obvious repercussions in vari-
ous contexts. Boolean logic, for example, handles the T
and F values very clearly, and thus, within a given sys-
tem S there are propositions for which algebra cannot be
used, propositions for which it is not concretely possible
to associate any Boolean value {0, 1}.

It is possible, however, to conceive of a TFU Boolean
algebra that handles the concept of demonstrability and
that produces an alternative Boolean algebra within the
confines of classical logic. An algebra of this kind will
appear paradoxical whenever we make the error of con-
fusing truth with demonstrability.

A second excellent example is offered by the theory of
probability. Probability is a borderline concept, strad-
dling mathematical theory and the pragmatics of mea-
surement. It is about the frequencies with which certain
events, a priori unknown, occur and this raises an issue:
is this occurrence a manifestation of the truth (T) or an
ontological state of being true (T )? What is probabil-
ity? A relative measurement of the states in which a
certain proposition is true, or a relative measurement of
the states in which it is manifestly true?

It is possible to develop (at least) two theories of prob-
ability - one from a T F perspective and one from a TFU
perspective. Ultimately, the thesis of this paper is that
the former coincides with the classical theory of proba-
bility and the latter with the foundational principles of
quantum mechanics.

In essence, we argue here that the paradoxes of quan-
tum mechanics can be traced to a fundamental confusion
between T F and TF. The overlapping of states such
as |True〉 + |False〉 (”both true and false” or ”neither
true nor false”) violate the excluded middle and lead to
the search for logical ”alternatives” (that violate the ex-
cluded middle as in Pierce, or that have truth continu-
ums, as in fuzzy logic [7] or others, etc.) or even result in
a search for extraordinarily costly models that in some
way restore logicality (many worlds [8, 9], many minds
[10]).

These paradoxes immediately dissolve when the over-
lapping status is written as |Manifestly True〉 +
|Manifestly False〉(neither T nor F, undecidable),
which is not illogical at all and does not require any viola-
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tion of logical principles; in particular, it does not violate
the law of excluded middle.

The theorem of incompleteness has often been asso-
ciated with the strangeness of quantum mechanics, not
infrequently in terms that verge on metaphysics. With-
out detracting anything from those arguments, the point
of departure here is that this theorem also has very tan-
gible implications and that such implications may be the
key for bringing the apparent illogicality of QM back into
the completely logical domain.

In [1], violation of the Wigner-d’Espagnat inequality
[11] is used as a litmus test for the reasoning applied:

(A,B) ∪ (¬B,C) ⊇ (A,C)

Things that are A e B, together with things that are
not B and C, including things that are A and C. This
same relationship is rewritten in TFU terms: Things that
are manifestly A and B, are combined with things that
are manifestly not B and C, including things that are
manifestly A and C. In this form, the inequality is imme-
diately violated by considering things that are manifestly
A and C and for which the B property is undecidable.

We will proceed with a few preliminary considerations
on the possibility of a Boolean TFU algebra. We will
then formulate the classical theory of probability in a
matrix-vector format, to show the connections with QM
and to prepare an extension to a TFU probability theory.
Finally, we will explicitly construct the foundations of
such a theory and show how they coincide with the first
postulates (excluding Shrödinger’s dynamic equation) of
quantum mechanics.

II. TERMINOLOGY

Complete States

Given n propositions p1, p2, etc., we define complete
state as the conjunction of all pi or their negations. For
example, given p and q, the complete states would be the
propositions p ∧ q, p ∧ ¬q, ¬p ∧ q, ¬p ∧ ¬q.

The complete states of n propositions are 2n.
The conjunction of two distinct complete states is a

contradiction.
The disjunction of all 2n complete states is a tautology.

Vectors, Directions, Operators

A direction is a vector space, i.e., a sub-space with a
dimension of 1 will be called a state and will henceforth
be indicated, using Dirac notation, with a capital letter,
for example |S〉, |P 〉, |Q〉,...

Generic vectors will be indicated with lower-case let-
ters, for example |s〉, |p〉, |q〉...

Versors will be indicated in bold-face type, for example
|s〉, |p〉, |q〉...

Linear operators will be indicated with a bold-faced
capital letter, for example P , Q, ... Since a linear op-
erator maps vectors of the same direction on the same
direction, the symbol P |S〉 will be used to indicate the
common direction for each vector kP |s〉.

The symbol 〈P |S〉 will be used for the cosine of the
angle subtended by directions |P 〉 and |S〉, i.e., 〈P |S〉 =
〈p|s〉.1

III. TFU BOOLEAN ALGEBRA

First we will take a look at the basic properties of a
possible TFU Boolean algebra that focuses on the demon-
strability of the propositions rather than the absolute
concepts of true or false.

The negation of a proposition T is F, and vice versa.
The negation of a proposition U is U.


¬T = F

¬F = T

¬U = U

For the conjunction of two propositions p and q a truth
table is applied:

p

∧ T F U

T T F U

q F F F F

U U F U/F

The conjunction p ∧ q is manifestly true if and only if
their conjoined parts are true.

If one of the conjoined parts is manifestly false, then
so is that conjunction.

The conjunction of an undecidable proposition and a
manifestly true proposition is undecidable.

The case U ∧ U is critical. The conjunction of two
undecidable propositions may in fact be both undecidable
and false, in which case p =⇒ ¬q (q =⇒ ¬p).2

Conversely, when the TFU values for the complete
states are known, it is possible to unambiguously deter-
mine the TFU values of the conjoined parts, in fact, given
n propositions p, q, r...

1 This leads to an ambiguity about the sign which is however ir-
relevant

2 The implication is understood here more in a semantic sense
than a material one. The manifest falseness of U ∧ U is directly
connected to the presence of the logical nexus p =⇒ ¬q. The
set of manifestly false complete states for undecidables p and q
completely defines the semantic relationships between p and q,
in terms of the connections p =⇒ q, p =⇒ ¬q, p ⇐⇒ q...
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I. p is F if and only if every complete state that in-
cludes p in affirmative form is of type F.

II. p is T if and only if every complete state that in-
cludes p in negative form is of type F.

In one direction I. is obvious: if p is manifestly false,
every complete state that includes p will in turn be man-
ifestly false.

For the opposite direction, ∨p,q,r,... indicates the dis-
junction of the complete states of p, q, r.... If every com-
plete state that includes p in affirmative form is of type
F, then the disjunction o of all these same states will be
type F. But o = p ∧ ∨q,r... and ∨q,r... is a tautology for
which the falseness of o entails the falseness of p.

II. derives from the observation that p is T if and only
if ¬p is F.

A TFU Boolean algebra cannot be the mere syntax of
the three symbols T, F, U or their immediate algebraic
representations, because this would sacrifice the concept
of a static truth table. The state of propositions p, q,
r, ... is not completely given by the respective values
TFU, while it may be given by the values TFU of the
complete states, which, in addition to providing values
for the conjoined parts, specify the semantic relationships
between the propositions. In particular, the assignment:

pu ∧ qu = F

is the index of the nexus p =⇒ ¬q.

IV. CTP MATRIX REPRESENTATION

The classical theory of probability (CTP) may be ex-
pressed in a matrix/vector form which will now be de-
scribed. The purpose of this representation is to highlight
the relationships and differences between CTP and QM,
and to prepare an algebraic foundation for the explicit
construction of a TFU theory of probability.

In CTP, the rule of conditional probability applies:

|p ∧ q| = |p||q|p (1)

Where |q|p is a new algebraic symbol associated with
probability q, known p.

Once again, the probability value of the conjunction is
not the mere syntax of probability values for the parts,
but depends on the semantic relationships between the
propositions. Conversely, if the probability values of the
4 complete states of p and q are known, then it is possible
to determine the probabilities of the conjoined parts. In
fact, by combining 1 with the fundamental rule

|¬p| = 1− |p| (2)

we obtain:

|p| = |p|(|q|p + |¬q|p) = |p ∧ q|+ |p ∧ ¬q|

More generally, n propositions generate 2n complete
states. These states are always separate and exhaus-
tive and cannot be further separated. In this respect,
a complete information system in CTP is given by the
2n probability values associate with those conjunctions,
more specifically: the probability of a generic proposition
φ, decidable when the p, q, r... truth values are known,
can be calculated by simply adding together the prob-
abilities associated with the complete states that verify
φ.

The 2n complete states s1, s2... are associated with
the versors |s1〉, |s2〉... of an orthonormal base of vector
space R2n .

In this way we build the vector:

|s〉 =
∑
i

√
|si| |si〉

|s〉 is in turn a versor, whose components in relation
to base {si} are the roots of the probabilities for the
corresponding complete states.

A generic proposition p is associated with diagonal lin-
ear operator P defined as follows:

• Pii = 1 If p is true in state si

• Pii = 0 If p is false in state si

Projector P then acts on vector |v〉 by annihilating the
|v〉 components corresponding to the complete states in
which p is false and by keeping unchanged the compo-
nents corresponding to the complete states in which p is
true. Thus we have:

|p| = ‖P |s〉 ‖2

And since P is idempotent:

|p| = 〈s|P |s〉

We find immediately that the proposition ¬p will be
associated with the operator:

¬P = I − P

And that proposition p ∧ q will be associated with the
operator:

P ∧Q = PQ = QP

In this algebraic form, the probability of conjunction
p ∧ q is a direct function of the symbols associated with
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p and q and CTP turns out to be based on the same
underlying rules as classsical Boolean algebra.

These rules enable us to derive the algebraic repre-
sentation of arbitrary combinations of the given proposi-
tions, in particular:

P ∨Q = P + Q− PQ

Every tautology is true in every one of the complete
states and will thus be associated with identity opera-
tor I. Every contradiction will be false in every one of
the complete states and will be associated with the null
operator 0. In particular, we have

P ∧ ¬P = 0

P ∨ ¬P = I

We pose:

|ps〉 = P |s〉

|¬ps〉 = (I − P ) |s〉 = ¬P |s〉

Subscript s makes the statement excessively elaborate,
so we will use the simpler |p〉 in place of |ps〉. However, it
is important to bear in mind that, unlike the operator P ,
the direction |P 〉 does not represent proposition p itself,
but rather a state related to |S〉.

Direction |S〉 is a linear combination of |P 〉 and |¬P 〉:



|s〉 = (P + I − P ) |s〉 = α |p〉+ β |¬p〉

α2 = |p|

β2 = |¬p|

α2 + β2 = 1

The square of the cosine of the angle between states
|S〉 and |P 〉 is |p|:

〈P |S〉2 = 〈p|s〉2 =
〈p|s〉2

|p|
=
〈s|P |s〉2

|p|
= |p|

Direction |P 〉 may be reconceived, in turn, as a state
in which the probability of p is 1, and indeed we have:

〈p|P |p〉 = 1

This is because |p〉 is the eigenversor of P with eigen-
value 1.

The probability of q for relative to state |P 〉 will be the
probability of q, known p:

〈p|Q|p〉 =
〈s|PQP |s〉
|p|

=
〈s|PQ|s〉
|p|

=
|p ∧ q|
|p|

= |q|p

Where PQP = PQ is guaranteed by the commuta-
tivity and idempotence of P .

And once again, the cosine squared of the angle be-
tween |P 〉 and |P ∧Q〉 gives |q|p

〈P |P ∧Q〉2 =
〈p|PQ|s〉2

|p ∧ q|
=
〈s|PQ|s〉2

|p ∧ q||p|
=
|p ∧ q|
|p|

= |q|p

Operator P acts, then, by transforming |s〉 in the new
vector |p〉 = P |S〉 and the probability of this transition
is a function of the angle between the two vectors. A
second operator Q then acts on |p〉 and transforms it
into QP |S〉 and |q|p will be the cosine squared of the
angle between these two vectors.

Figure 1.

Finally, the cosine squared of the angle between |P 〉
and |Q〉 gives us:

〈P |Q〉2 =
〈s|PQ|s〉2

|p||q|
=
|p ∧ q|2

|p||q|
=
|p||q|p|q||p|q
|p||q|

= |p|q|q|p

Expressed in this form, the classical theory of proba-
bility shows certain affinities with the algebraic mecha-
nisms used in quantum mechanics. The entire amount of
information on the semantic relationships between propo-
sitions is given a certain direction |S〉 in an appropriate
vector space. The propositions are associated with diago-
nal linear operators (or all simultaneously diagonalizable
by applying a general change of basis). The probability

|p| is given by the square of the cosine of angle P̂S in
a form wholly analogous to the Born rule. The evident
differences between this algebraic form and QM are the
use of the real field instead of a complex one and a wider
selection of operators, in QM, including in particular op-
erators that do not commute.
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V. EXTENSION OF CTP TO TFU

The classical theory of probability may be based on
the concept of measure. In very basic terms:

|p| = ‖T ‖
‖T ‖+ ‖F‖

(3)

In other words, the probability of p is defined as the
ratio between the measure of states in which p is true
and the measure of possible states.

Considering two propositions p and q we have 4 possi-
ble states (T ,F)⊗ (T ,F):

|p| =
‖T T ‖+‖T F‖

‖T T ‖+‖T F‖+‖FT ‖+‖FF‖ = |p ∧ q|+ |p ∧ ¬q|

|q| = ‖T T ‖+‖FT ‖
‖T T ‖+‖T F‖+‖FT ‖+‖FF‖ = |p ∧ q|+ |¬p ∧ q|

Probability q, known p can easily be identified by re-
ducing |q| to only those states in which p is T :

|q|p =
‖T T ‖

‖T T ‖+ ‖T F‖

Thus, we obtain the rule of conditional probability:

|p||q|p =
‖T T ‖

‖T T ‖+ ‖T F‖+ ‖FT ‖+ ‖FF‖
= |p ∧ q|

In addition, by inverting the roles of p and q we obtain
the fundamental:

|p||q|p = |q||p|q

We now consider an analogous approach from a TFU
perspective.

For the sake of clarity, the TFU probability value of
proposition p will be indicated with [p], using the symbol
[·] to distinguish it from the corresponding | · | used in
CTP.

[p] =
‖T‖

‖T‖+ ‖F‖
(4)

In other words, TFU probability [p] is defined as a mea-
sure of the states in which p is manifestly true relative to
the states in which it manifests.

The symbol U does not appear, and it gives the fun-
damental rule 23:

3 This rule is a form of excluded middle, in TFU probability it
states that only probabilities T and F are given, not U.

[¬p] = 1− [p]

3 and 4 are formally identical and are distinguished
only by the epistemological interpretation of the symbols.
The only tangible difference between the two approaches
is the composition of the propositions . Probability p as
a function of pairs (T,F,U)⊗ (T,F,U) gives us:

[p] =
‖TT‖+ ‖TF‖+ ‖TU‖

‖TT‖+ ‖TF‖+ ‖TU‖+ ‖FT‖+ ‖FF‖+ ‖FU‖

And for q:

[q] =
‖TT‖+ ‖FT‖+ ‖UT‖

‖TT‖+ ‖FT‖+ ‖UT‖+ ‖TF‖+ ‖FF‖+ ‖UF‖

The probability of q, known p, on the other hand, looks
exactly the same as in CTP. Given that p is manifestly
true, all non-T states of p are ignored and according to
4, so are all U states of q:

[q]p =
‖TT‖

‖TT‖+ ‖TF‖

Inverting the roles of p and q, we get a fundamental
result of a TFU probability theory based on 4:

[p][q]p 6= [q][p]q (5)

Let p :=”p is decidable”. If p is decidable, then so is
¬p, and vice versa:

p ⇐⇒ ¬p

The TFU states can now be defined in classical terms
as:


p is T := p ∧ p

p is F := ¬p ∧ p

p is U := ¬p

4 can now be written as a function of classical proba-
bility as:

[p] =
|p ∧ p|
|p|

And therefore:

[p] = |p|p
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This curious relationship between three p is the essence
of TFU probability; all that remains is to identify the al-
gebra in which to place it. The vector version given by
CTP is a good starting point, in the interest of exploit-
ing the non-commutativity of the linear operators for the
purpose of reproducing 5.

In this particular representation, state |S〉 is a direction
that forms the proper angles with the complete states

Figure 2.

In the simplest case of a single proposition, |S〉 forms
angle α with the axis of state T . The angle between
|S〉 and the axis of state F is complementary to α, and
therefore this simple geometry reproduces the fundamen-
tal rule |p| = 1− |¬p| in the form cos2α = 1− cos2β.

From a TFU perspective, the possible states are 3 in-
stead of 2, considering an analogous geometrical repre-
sentation in R3

Figure 3.

This representation incorporates information on TFU
states but angles α and β are not complementary, there-
fore they lose the most characteristic feature, also valid
in TFU, of the vector representation given by CTP. The

space suitable for representing a TFU version of |S〉
should instead present two complementary directions T
and F, and in any case provide a third degree of freedom
that incorporates information related to state U.

The extension being sought, therefore, is not from R2

to R3 but rather from R2 to C2.
Similarly, a problem involving n propositions will be

represented in space C2n = C2⊗C2⊗... and in such space
a violation of 5 will be obtained by considering generic
orthogonal projectors, thus, linear Hermitian operators
with eigenvalues in {0, 1}.

The TFU theory of probability therefore coincides with
what is usually identified as quantum logic.

VI. CONCLUSIONS

Quantum mechanics is strange, precisely to the extent
it violates Bell’s inequalities and therefore classical prob-
ability, but it is not illogical and, in particular, it does not
require a new logic nor violate any of the preconditions
of classical logic.

The violation of Bell’s inequalities makes it impossi-
ble to assign objective properties, but in a subtly rela-
tional form [12]. A physical proposition, such as ”the
electron has spin-UP,” for instance, is not ”both true
and false” nor even ”neither true nor false”. It may be
considered objectively true or false (T o F) but, in rela-
tion to the system of the observer, undecidable and this
means that all such observer could do no more than ad-
just the weighting of the expected measures a priori with
an algebra that violates CTP, thus running up against
the usual paradoxes, which, from the right standpoint,
avoiding the confusion of TF with T F , are not paradox-
ical in any way.

The interpretation that emerges is clearly incompatible
with attempts to ”restore normality” through the prolif-
eration of objective states (many worlds, many minds).
Alice has some properties p that are undecidable for Bob;
Bob’s desire to resolve them by imagining the existence
of a different Alice for every possible value of p is un-
derstandable, but completely superfluous and unneces-
sarily costly. QM is a relational theory that expresses
the mechanics of a not completely knowable system, i.e.,
a system S which, in relation to observer-system O, pos-
sesses some properties that are undecidable in O. Noth-
ing, however, prevents that same property p of S, unde-
cidable in O, from being decidable in a second system
S′, which is also spatially separated from S. From the
perspective of O, therefore, systems S and S′ will be de-
scribed as entangled.
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