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Abstract

During their evolutions, the small bodies of our Solar System are affected
by several mechanisms which can modify their properties. While dynamical
mechanisms are at the origin of their orbital variations, there are other mech-
anisms which can change their shape, spin, and even their size when their
strength threshold is reached, resulting in their disruption. Such mechanisms
have been identified and studied, by both analytical and numerical tools. The
main mechanisms that can result in the disruption of a small body are col-
lisional events, tidal perturbations, and spin-ups. However, the efficiency of
these mechanisms depends on the strength of the material constituing the
small body, which also plays a role in its possible equilibrium shape. As it
is often believed that most small bodies larger than a few hundreds meters
in radius are gravitational aggregates or rubble piles, i.e. cohesionless bodies,
a fluid model is often used to determine their bulk densities, based on their
shape and assuming hydrostatic equilibrium. A representation by a fluid has
also been often used to estimate their tidal disruption (Roche) distance to
a planet. However, cohesionless bodies do not behave like fluids. In particu-
lar, they are subjected to different failure criteria depending on the supposed
strength model. This paper presents several important aspects of material
strengths that are believed to be adapted to Solar System small bodies and
reviews the most recent studies of the different mechanisms that can be at
the origin of the disruption of these bodies. Our understanding of the complex
process of rock failure is still poor and remains an open area of research. While
our knowledge has improved on the disruption mechanisms of small bodies of
our Solar System, there is still a large debate on the appropriate strength
models for these bodies. Moreover, material properties of terrestrial rocks or
meteorites are generally used to model small bodies in space, and only space
missions to some of these bodies devoted to precise in-situ analysis and sam-
ple return will allow us to determine whether those models are appropriate or
need to be revised.
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1 Introduction

In our Solar System, there are several populations of small bodies, which
differ both by their locations and by their physical properties. While most
asteroids evolve in the main belt, a region located between the orbits of Mars
and Jupiter, some of them originating from this region cross the orbits of the
terrestrial planets (the so-called Near-Earth Objects or NEOs), while another
population evolves on the same orbit as Jupiter on the L4 and L5 lagrangian
points (the so-called Trojan asteroids). Then, another population of small
bodies called Kuiper Belt Objects (or KBOs) evolves beyond the orbit of
Neptune and is at the origin of the Jupiter-Family Comets (JFCs). Finally
the Long Period Comets (LPCs) come temporarily in the Solar System from
an external location called the Oort Cloud.

Small bodies of our Solar System are all affected by planetary gravitational
perturbations. Thus, their orbits are more or less stable, depending on their
locations. For instance, most NEOs are transported to Earth-crossing orbits
from the main belt as a result of their injection into mean motion resonances
with Jupiter, or secular ones with Saturn. These resonances increase their
orbital eccentricity such that their perihelion distance becomes eventually
shorter than 1 AU on only a few Myr timescale (e.g. [9], [5]). The population
of JFCs is also transported from KBO orbits through resonant channels, and
finally the LPCs are believed to come from the Oort cloud due to some stellar
perturbations or galactic tides. Thus, these populations are all dynamically
active.

In addition to these changes in their trajectories, small bodies of our Solar
System can also undergo dramatic changes in their physical properties due
to different mechanisms. Lightcurves obtained by ground-based observations,
and images obtained from space missions, all show that these bodies can
have very irregular shapes and heavily cratered surfaces, indicating a quite
intense collisional activity. Moreover, spin rates give important clues about
the composition and strength of these bodies. Then, the presence of binary
objects, which represent about 15% of the main belt and NEO populations,
indicates that some processes are efficient to form such systems.

So, what are the mechanisms that can modify the physical properties of
a small body? We know at least three mechanisms which can be effective
enough to change the shape or disrupt a small body, depending on its strength.
The first most intuitive one is the collisional process. It is well known that
populations of small bodies evolve collisionally. Witnesses of these collisional
events are for instance the asteroid families in the main belt. About 20 asteroid
families have been identified, and each corresponds to a group of small bodies
who share the same orbital and spectral properties. From these characteristics,
reproduced recently by numerical simulations (see, e.g. [30] and references
therein), it is now established that an asteroid family is the outcome of the
disruption of a large asteroid due to an impact with another small asteroid. As
a consequence, a large asteroid is transformed into a group of smaller bodies,
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Strength and disruption of small bodies 3

and the shapes, sizes, spins and orbits of these objects depend on several
parameters of the collision, one of them being the strength of the parent
body. The second mechanism which can lead to a change of the physical
properties of an object is the increase of its spin due to a thermal effect called
the YORP effect ([43]). When a rotating body has an irregular shape, it can
reemit the light received from the Sun in a different direction than the one
from which it received it, and such difference in direction can lead to a change
of its spin rate. Although acting on long timescales, such effect has recently
been observed ([22]). When an acceleration occurs, depending on the strength
and internal properties of the object, the spin can reach the threshold above
which the shape of the body is not in equilibrium anymore, so that either the
shape readjusts into another equilibrium or the body breaks up. The third
mechanism which can produce similar effects is due to tidal encounters with a
massive object (a planet). It is well known that below a certain limit distance,
tidal forces can cause the deformation or the disruption of an object. This
distance is known as the Roche limit for fluid bodies ([38], but as we will see,
it can take different values and the bodies can take a wide range of shapes at
this distance when solid materials (with and without cohesion) are considered.

The efficiency of all the mechanisms described above relies at least partially
on the assumed strength of the small body on which these mechanisms act.
This is why it is important that the definition of strength is clearly understood,
and this paper addresses this problem. In Section 2, the definition of strength
is given for different kinds of materials. Section 3 summarizes the most recent
study on the spin limits of small bodies and what the observed spins tell us on
the strength and internal structure of these objects. The latest results on the
limit distances of small bodies to a planet as a function of their strength are
then presented in Section 4. Several reviews have already been devoted to our
current understanding of the collisional disruption of small bodies based on
numerical simulations (see., e.g., [29], [30]), therefore this problem is briefly
discussed in Section 5, concentrating only on the some important issues and
open areas. Discussions, conclusions and perspectives are then given in Section
6.

2 The strength of materials

2.1 What do we mean by strength?

The behavior of a small solid body subjected to different forces is a wide area
of research, and the results depend at least partially on the definition used
for the strength of the material. In this section, we expose some important
concepts which can help better understand the meaning of strength of a small
body.

There is no doubt that the term ”strength” is often used in imprecise ways.
Given the implications of this concept in different areas of study, we believe
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that it is important to present it in different places to ensure that a same lan-
guage is spoken among researchers dealing with it. The description presented
here is largely inspired from different works by Holsapple, and Holsapple and
Michel ([15], [16] and [31]). Materials such as rocks, soils and ices, which are
the main constituants of small bodies of our Solar System, are complex and
characterized by several kinds of strength.

Generally, the concept of ”strength” is a measure of an ability to withstand
stress. But stress, as a tensor, can take on many different forms. One of the
simplest is a uniaxial tension, for which one principal stress is positive and the
two others are zero. The tensile strength, i.e. the value of this stress at which
the specimen breaks, is often (mis)used to characterize material strength as a
whole. Thus, while it is common to equate ”zero tensile strength” to a fluid
body, that is not correct. In fact, a body can both be solid and have no tensile
strength. For instance, dry sand has no tensile strength. However, contrary to
a fluid, dry sand and granular materials in general can withstand considerable
shear stress when they are under pressure: that is why we can walk on dry
sand but not on water. Here comes into play a second kind of strength: the
shear strength which measures the ability to withstand pure shear. The shear
strength in a granular material under confining pressure comes from the fact
that the interlocking particles must move apart to slide over one another, and
the confining pressure resists that. A third kind of strength, the compressive
strength, governs the ability to withstand compressive uniaxial stress. Thus,
in general, a material has tensile strength, shear strength at zero pressure
(technically the ”cohesion”) and compressive strength. In geological materials
such as soils and rocks, the failure stresses depend strongly on the confining
pressure; as a result, these three strength values can be markedly different.
Then, contrary to a common assumption, a cohesionless body is simply a solid
body whose cohesion (shear strength at zero pressure) is null, but that does
not mean it does not have any shear strength under confining pressure. For
instance, there are strong evidence that probably most asteroids greater than
a few kilometers in diameter are rubble piles or gravitational aggregates (see
[36] for a definition of those terms). For such bodies, cohesion can be ignored
but they should not be represented by a fluid. In their case, the confining
pressure at the origin of the shear strength is played by their self-gravity.
Hence, a body can be cohesionless but nevertheless solid.

2.2 Failure criteria of solid bodies

Once the strength of a material has been defined consistently, a failure law
is required to determine imminent failure states of stress. Failure criteria for
geological materials parallel the yield criteria for metals. Recall that the max-
imum stress at which a load can be applied without causing any permanent
deformation defines the elastic limit. It is also called the yield point, for it
marks the initiation of plastic or irreversible deformation.
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Strength and disruption of small bodies 5

There are two common yield criteria for metals: the Tresca criterion and
the von Mises criterion. The Tresca criterion states that yield occurs when
the maximum shear stress on any plane reaches a critical value. The von
Mises criterion replaces the shear stress with the square root of the second
invariant J2 of the deviatoric stress tensor (non-diagonal components of the
stress tensor), which depends on all shear stresses. A common assumption of
these criteria is that the average stress (pressure), given in terms of principal
stresses σi as P = (σ1 +σ2 +σ3)/3, has no effect. Then, in a plane in principal
stress space perpendicular to the pure pressure axis, the von Mises criterion
is a circle, while the Tresca criterion is a hexagon (see, for example, [7] for a
good discussion of various yield and failure criteria).

For geological materials, failure can also be described by two such criteria,
but with an important addition: because the allowable shear depends on the
confining pressure, the size of either of the circle or hexagon depends on the
pressure or normal stress. The Mohr-Coulomb criterion (MC) assumes that
the maximum shear stress on any plane (τmax) depends linearly on the normal
stress (σn) on the plane:

τmax = Y − σn tan(φ) (1)

where the constant of proportionality is the tangent of the angle of friction

φ, and the constant Y is called the cohesion (shear strength at zero pres-
sure); both are material constants determined by experiments. This defines
an envelope (limit curve) of maximum shear stress. Thus, compressive stress
(negative) increases the allowable shear. In three-dimensional principal stress
space, this criterion defines a hexagonal cylinder that increases linearly in size
for increasing pressure ([7]). The MC criterion can be considered a Tresca
criterion generalized to account for the normal stress effect.

Another criterion called Drucker-Prager (DP) is also common model for
geological materials. The DP criterion can be considered a modification of
the von Mises criterion, which now assumes that the allowable shear stress
depends linearly on the confining pressure. The shear stress magnitude is
measured by the square root of the second invariant J2 of the deviator stress
(see Eq. 3). Thus, the DP criterion is similar to models for linear friction and is
defined by two constants: one characterizes the ”cohesion” (shear strength at
zero pressure), and the second characterizes the dependence on the confining
pressure and is related to the angle of friction. Those two constants determine
the tensile and compressive strengths. When the cohesion is zero, so is the
tensile strength, but not the compressive strength. Physically, the pressure
dependence is, as already explained, the consequence of the interlocking of
the granular particles and not the friction of the surfaces of the particles. In
fact, a closely packed mass of uniform rigid frictionless spherical particles has
an angle of friction about 23◦. So the term angle of friction is somewhat a
misnomer and angle of interlocking would be more correct. However, we will
keep using the usual name angle of friction. Figure 1 gives a representation
of the DP model. Using the three principal stresses σ1, σ2, σ3 (positive in

To be published in:
"Small Bodies in Planetary Systems".

(Mann, Nakamura, Mukai eds.)
Submitted to Lecture Notes in Physics series by Springer

Funded by the 21the Century COE Program 
"Origin and Evolution of Planetary Systems"
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tension) of a general three-dimensional stress state, the pressure (positive in
tension) is given as:

P =
1

3
(σ1 + σ2 + σ3) (2)

and the square root of the second invariant of the deviator stress is:

√

J2 =
1
√

6

√

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] (3)

Then, the DP failure criterion is generally given as:

√

J2 ≤ k − 3sP (4)

which is illustrated as a straight line with slope 3s and intercept k on Fig. 1.
Clearly negative pressure (compression) increases the allowable

√
J2 when s

is positive.
For the special case of a pure shear stress only,

√
J2 is just that shear

stress and the pressure P is zero. On Fig. 1, the uniaxial tension strength σT

has
√

J2 = 3−1/2σT and P = σT /3. The uniaxial compression strength σc has√
J2 = −3−1/2σC and P = σC/3.

The DP criterion can be made to match the MC one in all combinations
of pressure plus uniaxial compression if the parameters s and k are related to
the cohesion and the angle of friction φ used in the MC model. In particular,
the slope s is related to the angle of friction φ of the MC model by:

s =
2 sin φ

√
3(3 − sinφ)

. (5)

The intercept k of the DP model is also the shear stress τ for failure in pure
shear. Technically the term ”cohesion” means this intercept value of shear
stress at zero pressure. When the cohesion is zero, so is the tensile strength,
and vice versa; both cases would have the envelope starting at the origin
on Fig. 1. For instance, an appropriate failure criterion for rubble piles is a
criterion for which those two measures are zero, while the plot shows the more
general case where they are non-zero.

The tensile stress σT for failure is located at the intersection of the tensile
line shown on Fig. 1 sloping to the left with the straight line representing the
criterion. Its value is given by:

σT =

√
3

√
3s + 1

k. (6)

Similarly, the compressive failure occurs when the compression line intercepts
the failure line, and the resulting compressive stress is given by:

σP =

√
3

√
3s + 1

k. (7)
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Strength and disruption of small bodies 7

Fig. 1. The Drucker-Prager failure criterion. The abscissa is positive in compres-
sion. The four small squares indicate the failure condition in, respectively from the
left: tension, shear, compression and a confined compression or tri-axial test. The
intercept at zero pressure at the value k is called the cohesion and the slope of the
line passing through k is 3s. From [16] and [31].

Hence, the ratio of compressive strength to tensile strength is given by:

σC

σT
=

√
3s + 1

√
3s − 1

(8)

which defines the slope of the DP criterion, i.e. the friction coefficient s.
To give an order of idea of the difference between those strengths, a com-

mon friction angle for rocks is 45◦, so that s = 0.356, and the ratio of com-
pressive strength to tensile strength is −4.22 : 1. In this case, from Eq. (6),
the shear stress for failure k would be 0.93 of σT , i.e. the shear and tensile
strengths are roughly equal.

This envelope is usually determined experimentally by a test known as a
”confined compression” or a ”tri-axial” test. In such a test, a uniform confining
pressure is applied to a specimen in all directions, and the axial stress is
increased in compression until failure occurs when the envelope is reached.
This path is illustrated on Fig. 1.

Finally, from a practical point of view, the two criteria (MC and DP) can
offer different advantages. The MC model defines a maximum shear stress
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directly, which is determined by the difference of the maximum and minimum
principal stresses. As a consequence, to use this criterion in algebraic manip-
ulations involving general stress states, one must first determine the principal
stresses, then which is the largest and which is the smallest. The result is a
difference in the algebra of the results in six different regimes, where the three
principal stress components take on different orderings. An example of the
six possible cases of the ordering of the stress magnitudes is given in Fig. 4
of [12]. Moreover, there are ”corners” in the curves shown where the ordering
of the principal stresses changes. In contrast, the DP criterion has a single
algebraic relation for all stress states. Thus, although the algebraic form of
that relation is more complicated than the MC criterion, there is no need to
consider the six different possibilities of the ordering of the stress magnitudes.
The algebraic complexity of the DP model is of little consequence when an
algebraic manipulation program such as Mathematica is used. For instance,
Holsapple and Michel used the DP failure criterion to characterize the tidal
disruption limit distance of a cohesionless ellipsoid to a planet, noting that
the differences between the two models are small (see [15] and Sect. 4).

2.3 Strength dependence on object’s size and loading rate

It is generally believed that the effective static cohesive and tensile strengths
decrease with increasing body size. The origin of this assumption comes from
indications that a distribution of incipient flaws is present within the volume
of a solid body. Because larger bodies are more likely to contain larger natural
flaws than smaller bodies, the strength is expected to decrease with the body’s
size. Thus, the use of a strength measure that decreases with size is now a
common feature of the studies of disruption of small bodies by impacts (see,
e.g. [13], [30]) and has even been demonstrated experimentally ([19]).

A common model for a distribution of incipient flaws in a solid body is a
power-law Weibull distribution ([45]). Such a distribution is used in numerical
simulations of catastrophic disruption of solid bodies (see Sect. 5) to generate
the initial flaws in the bodies involved. A two-parameter Weibull distribution
is usually assumed to describe the network of incipient flaws in any material,
expressed as:

N(ε) = kεm (9)

where ε is the strain and N is the number density of flaws that activate
(i.e. start their propagation) at or below this value of strain. The Weibull
parameters m and k are material constants which have been measured for a
number of geological and industrial materials, although data are quite scarce
for some important rocks (see [24]). In particular the parameter k varies widely
between various rock types and the exponent m ranges typically between 6
and 12, but can have a wider range of values. Recently it was measured for
the first time for the same basalt material as the one used in some impact
experiments, and its value was found to be around 17 in static loadings ([33]).
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Strength and disruption of small bodies 9

From the Weibull distribution, it is easily shown that the most probable
static strength S of a specimen of volume V (diameter D) decreases with
increasing size as:

S ∝ V −1/m ∝ D−3/m. (10)

As explained above, such a decrease in strength is simply because larger spec-
imens are more likely to have larger cracks.

The values of the Weibull parameters represent important material prop-
erties. Large values of m describe homogeneous rocks with uniform fracture
threshold, while small values apply to rocks with widely varying flaw activation
thresholds. The existence of incipient flaws within any rock is understood to
originate from its cooling history and from crystal lattice imperfections. Due
to the initial presence of these flaws, when a finite strain rate ε̇ is applied,
a stress increase occurs in time, which is compensated by the propagation of
active flaws causing a stress release. Thus a competition takes place between
the stress increase due to loading and the stress release due to flaw activation
and propagation, until a temporary equilibrium is reached at the time of peak
stress. Then, the stress decreases to zero as active flaws propagate rapidly
through the rock.

From these explanations, it is obvious that the crack growth velocity cg

is an important parameter since it governs the stress release due to an active
flaw. Experiments indicate that it relates to the speed cl of longitudinal waves
in a rock by cg ≈ 0.4cl, and this is usually the value used in numerical simu-
lations of fragmentation. Since cracks propagate at this fixed velocity, under
moderate conditions, the weakest flaws (those which activate at lower values
of ε) suffice to accomodate the growing stresses. Therefore, the peak stress
at failure is low and fragments are relatively large (see, e.g., Fig. 1 in [30]).
Conversely, more resistant flaws have time to activate at high strain rates. In
this case, the peak failure stress is high and fragments are small. This process
depends strongly on the assumed value of the crack growth velocity cg. In
particular, fragment sizes scale with cg. For instance, a higher velocity would
enhance the efficiency at which a crack relieves stress, since stress release is
proportional to crack length cubed. As a consequence, fewer flaws would be
required to relieve a given increase in stress.

Thus, the concept of material strength reaches another level of complex-
ity as it can also depend on the dynamical context. From the explanations
above, one may conclude that defining the material strength as the stress at

which sudden failure occurs is not rigorously adequate. Material strength could
rather be defined as the stress at which the first flaw begins to fail, thereby
initiating an inelastic behavior characterized by irreversible deformation. But
in practice, the adopted definition is the peak stress which the rock under-
goes prior to failure. It is then not a material constant, since as explained
above, the peak stress is a function of the loading history of the rock. This
is the reason why a distinction is made between static strength and dynamic
strength on the basis of the loading rate. For extremely small loading rates,
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elastic stresses increase in equilibrium until the onset of catastrophic failure.
This occurs at loading rates that are typically smaller than ≈ 10−6 strains per
second. Static tensile strength decreases with increasing size of the rock due
to the greater probability of finding a weaker (larger) flaw. At high enough
loading rates, stresses can continue to build while catastrophic rupture has
begun. In this case, it is more appropriate to speak of dynamic failure. For
most rocks, dynamic strain rates are of the order of 1 s−1 and decrease with
increasing rock size. Therefore, the peak stress that the rock suffers prior to
failure is rigorously called the material’s dynamic strength at that strain rate.
This dynamic strength increases with strain rate and is always greater than
the static strength.

All hypervelocity impacts into small targets are in the dynamic regime,
but some impacts on large bodies can still be in a regime close to the static
one. In this case, part of the event, close to the impact point, can be dynamic,
but some important aspects can also be understood in terms of quasi-static
failure. Therefore, in all studies that are described in the following sections,
apart from the problem of catastrophic disruption, the tensile strength will
generally be the static one.

3 Rotation rates and implications on the strength of

small bodies

The spin rates of small bodies of the Solar System give an important clue
about the composition and strength of those bodies. Indeed, the greatest spin
that a body can take without being deformed or disrupted depends directly on
those properties. For instance, a simple analysis based on the property of zero
tensile stresses at the body’s poles ([11]) led to the conclusion that an object
whose assumed typical mass density is 2.5 g/cm3 has a period limit of 2.1 h.
This value is smaller than the measured rotation period of all large asteroids.
Thus, it was suggested that most asteroids must be gravitational aggregates or
rubble piles with no tensile strength. This value was later revised ([12], [14]) by
a complete stress analysis of spinning, self-graviting, ellipsoidal bodies using
the MC failure criterion for cohesionless solid bodies (see Sect. 2.2). From this
analysis, it was concluded that the spin limits are not determined by tensile
failure, but by shear failure. Consequently, it was found that the spin limits
depend on the angle of friction (see Sect. 2.2) of the material of the body. A
typical minimum period was found to be about 2.6 h, which is higher than
the previous estimate ([11]), but still smaller than the rotation period of large
asteroids. Numerical experiments of spinning rubble piles (modeled as hard
spheres maintained together by gravity) found that such rubble-piles behave
in a manner consistent with those last theoretical expectations ([37]).

It was thus tempting to conclude on this basis that most asteroids are
rubble piles, because none of them was found to rotate faster than the limit
above which a rubble pile would break, in principle. However, recent data
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Strength and disruption of small bodies 11

for small asteroids indicated that some of them rotate at a rate which is
much greater than those previous limits, which suggests that they have some
cohesive and tensile strength. This raised the question whether the spin limits
observed for large asteroids really rule out that their material is strengthless.

Fig. 2. Spin limits and data for small Solar System bodies. The dark sloped line as-
sumes a size dependent strength; it becomes asymptotic to the horizontal red band
for materials without cohesion. On the left, the spin limit for cohesive bodies is
determined by the cohesive/tensile strength and defines a strength regime. The hor-
izontal asymptote on the right characterizes a gravity regime where tensile/cohesive
strength is of no consequence. Gravity regime values do depend on shape and angle
of friction, so average values have been assumed to represent them on the plot. The
data in the upper left triangular region are the fast spinning near-Earth asteroids.
The triangular points for the large diameter bodies on the right are trans-Neptunian
objects (from [16] and [18]).

These questions have been addressed in a recent study ([16]), and this sec-
tion summarizes its principle and main results. It is an extension of previous
studies ([12], [14]) and considers spinning bodies with cohesive (and therefore
tensile) strength. The fundamental approach consisted of calculating the in-
ternal stress state in an ellipsoidal spinning body as a function of size, shape
and spin of the body, and comparing the stress state with the limit failure
state (provided by the DP model; see Sect. 2.2) to determine the spin limits
at which the failure occurs. It must be noted that rather than solving for
the stress state by assuming linear elasticity from some actual prior history
of the material, the limit states are solved in the spirit of limit analyses of
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plasticity theories. Those limit states correspond to the situation when the
body has reached a final state at which collapse is imminent, and give the
final and greatest loadings for failure. The great advantage of this approach
is that the prior history of the material is not a factor, and the analyses give
a limiting loading state with a greater spin than any found from first failure
using a linear elastic approach. This is important because small bodies of our
Solar System are formed by complex processes and undergo disruptions, reac-
cumulations, heating, cratering events, tidal forces and so on. Those processes
inevitabily introduce residual stresses that cannot be known, so the assump-
tion of linear elastic behavior from a virgin stress-free state is not reasonable
given the history of these bodies. There exist several explicit examples (see
[15]) that illustrate the important differences between stress analyses using
elasticity theory, and those using the limit state approach. This limit state
approach will also be used to determine the tidal disruption limit distances of
solid bodies ([15], [18], [31]; see Sect. 4).

A significant complexity is added once the cohesive terms are included
in the strength measure. Indeed, for a cohesionless failure criterion, it was
found ([14]) that the limit states had simultaneous failure at all points in the
body and the algebra to find that state was rather simple. When the mate-
rial has cohesion, failure is rather attained only at certain points and planes
within the body, and the algebra that determines the stress state with certain
failure locations seems insurmontable (even for a symbolic program such as
Mathematica). Therefore, the approach chosen by Holsapple in his study was
to construct the volume-averaged stresses and to use those stresses to com-
pare to the failure criterion ([16]). In other words, spin states are determined
which, on average, cause stresses to equal the failure threshold (see Sec. 2.2).
It is clear that for a body having a certain degree of cohesion, more or less
critical stress states than the average may exist at some locations within the
body, so in reality failure may occur at a lower spin than that found with
this approach. But in the particular case of a cohesionless material, failure
occurs at all locations in the body at the limit spin. Thereore in this case,
both the average and the exact methods give identical results. In other words,
in the gravity regime (in which self-gravity dominates over strength, so that
cohesion can be ignored) the results are exact, while in the strength regime
(in which self-gravity is negligible) they are only approximate.

Once the average stresses have been expressed ([16]), they can be inserted
into the DP criterion (Eq. (4)) to find the combinations of spin and shape
that satisfy this criterion. Then for a given shape, represented by the aspect
ratios of an ellipsoid, the spin at a given limit state can be found. Defining a
scaled spin as:

Ω2 =
ω2

πρG
, (11)

where ω is the actual spin, ρ is the bulk density and G is the gravitational
constant, the results can be put into the form of relations for the scaled spin
at failure states as functions of the cohesion, the angle of friction φ (see Sect.
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Strength and disruption of small bodies 13

2.2), the average body radius r̄ = (abc)1/3 (where a, b and c are the semi-axes
of the ellipsoid representing the object with a > b > c) and the two aspect
ratios α = c/a and β = b/a:

Ω = F (k, φ, r̄, α, β). (12)

The spin limits are indicated on Fig. 2. Both constant strength and de-
creasing strength with body size have been considered. For the size-dependent
strength (see Sect. 2.3), the value assumed for the Weibull parameter m (Eq.
(9)) is m = 6, which seems to fit many data for crack distributions in samples
from micron to kilometer sizes ([19]). From Eq. (10), for m = 6, the strength
of a body decreases with the body’s diameter to the power of −1/2. Therefore,
the strength (cohesion) expresses as:

k = κr̄−1/2 (13)

where the strength coefficient κ is the strength of an object of 1 cm in radius
(here k is used for the cohesion and should not be confused with the Weibull
parameter having the same name). The spin limits represented on Fig. 2
have been estimated assuming κ = 2.25 × 107 dynes/cm3/2, which is one
order of magnitude below the measurements of the tensile strength of Georgia
Keystone granite specimens ([19]). The sloped line corresponding to this size-
variable strength (Fig. 2) gives an extremely good upper envelope for the
current data over the entire range of small body sizes. Measured strengths are
still scarce, so it is not necessarily surprizing that the best fit is provided by
the line corresponding to a strength value smaller than the measured one.

Note that these estimates of spin limits by Holsapple ([16]) assume that
the bodies have ideal ellipsoidal shapes (with aspect ratios of 0.7 and prolate
for the representation on the figure) and a fixed friction angle. The reality is
obviously more complex, which may explain that the observed spin limits are
smaller than the ones assuming the measured tensile strength. In particular,
small bodies do not have ideal shapes, their actual friction angle is not known,
they may have weaker materials and other non-ideal properties. Moreover,
determinations of the observed body’s sizes and shapes contain their own
error bars which may shift the points on Figure 2 toward higher or lower
values. Note finally that the magnitude of the dependence of the estimated
spin limit on shape and friction angle is well within a factor two, except in
extreme cases. Also, the average method used to make those estimates gives
an upper bound to the limit spin in the strength regime.

Thus, a detailed investigation of the spin limits as a function of the men-
tioned parameters, including strength, has been performed recently by Hol-
sapple ([16]) and the conclusion of this investigation is rich in implications.
In particular, it is found that the presence of tensile and cohesive strength
for a large body (> 10 km in diameter) makes no difference in its spin limit.
Therefore, the observed spin limit (also called the spin barrier) for large bodies
cannot be interpreted as evidence of a zero-strength (cohesive/tensile) rubble
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14 Patrick Michel

pile structure. It is the gravity that limits the spin in those cases, even if they
have some cohesion. So, large asteroids may be rubble piles, but not on the
pure basis of the so-called spin barrier (however, other evidence may point
to a rubble pile structure). On the other hand, the strength that allows the
higher spins of the smaller and fast spinning km-sized bodies is only of the
order of 10-100 kPa, which is very small compared to the strength of small
terrestrial rocks. So, these small asteroids do not have to be very strong to
be able to rotate so fast. They could be some kind of rubble piles that have
accumulated slight bondings between constituents.

As a conclusion, the spin data of small bodies can give us some indications
on the internal structure of these bodies. However, based on the current ob-
served spins and our current understanding on the strength of large bodies,
they are not sufficient to indicate whether these bodies are rubble-piles or
monolithics. If some small asteroids were found to spin above the theoretical
limits provided by the described approach ([16]), then this would be a first
indication of the potential existence of strong (monolithic) rocky bodies in the
Solar System.

4 Tidal disruption of small bodies

When a small body has a close encounter with a planet, depending on the
approach distance, it can be subjected to tidal forces that may change its
shape or even disrupt it. Such mechanism was at the origin of the observed
disruption of Comet Shoemaker-Levy 9, which was fragmented into 21 pieces
during a first passage close to Juipter, and which collided with the giant planet
during its next passage in 1994. Tidal disruption has often been proposed
as a formation mechanism for binary asteroids, which represent 15% of the
Near-Earth Object population, and as an explanation of crater chains and
doublet craters on planetary surfaces. The strength of a small body is an
important parameter in the determination of its limit distance to a planet for
tidal disruption (or shape readjustment).

The investigation of the limit distance for tidal disruption started in the
19th century, using a fluid to represent the small body. This led to the concept
of the Roche limit ([38]), which is still often used nowadays. A great numbers
of studies followed until know, which accounted for important parameters in
different manners from one study to the other. The last theoretical studies on
this problem provided a continuum theory which allows the determination of
this limit distance for cohesionless bodies, and a lower bound of this distance
for small bodies with cohesion ([15], [31], [18]). We summarize here the theory
and results provided by these studies, and the reader interested in other pre-
vious studies on these problems can refer to these last publications in which
a history of previous works and their differences are well exposed.

Although the Roche limit ([38]) for tidal disruption of orbiting satellites
assumes a fluid body, a length to diameter of exactly 2.07 : 1, and a particular
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Strength and disruption of small bodies 15

orientation of the body, it is often used in studies of Solar System satellites
and small asteroids or comets encountering a planet. Clearly, these bodies are
neither fluid, nor generally are that elongated, so more appropriate theories
are needed and have been developed since this first work. Recently, exact ana-
lytical results for the distortion and disruption limits of solid spinning ellipsoid
bodies subjected to tidal forces, using the DP model with zero cohesion (see
Sect. 2.2) have been presented ([15]). The study used the same approach as
the one exposed in Sect. 3 to study the spin limits for solid ellipsoidal bodies.
It was followed by a study along the same lines, in which the cohesion of the
small bodies was now considered, which, due to the added complexity, could
not provide exact but only approximate results ([18]), for the same reasons
as the ones already exposed in the case of spin limits (see Sect. 3). Thus, a
static theory was developed that predicts conditions for breakup, the nature
of the deformation at the limit state, but it does not track the dynamics of
the body as it comes apart. At the end of the section, we will briefly expose
results from dynamical investigations.

In the case of cohesionless bodies, as already indicated in previous sections,
the strength is essentially characterized by a single parameter associated with
an angle of friction ranging from 0◦ to 90◦. The case with a null angle of
friction has no shear strength whatsoever, so it corresponds to the case of a
fluid or a gas (and the limit distance corresponds to the Roche limit). The
case of 90◦ represents a material that cannot fail in shear, but still has zero
tensile strength. Typical dry soils have angles of friction of 30◦- 40◦. As most
satellites are spin-locked with the planet around which they evolve, both the
spin-locked case and the zero spin case, a possible case for passing stray body,
have been considered to characterize the limit distance.

The equilibrium problem of an ellipsoid body has been described by Hol-
sapple ([12]). Three stress equilibrium equations must be satisfied by the
stresses σij in any body in static equilbrium with body forces bi, which are
given as (using repeated index summation convention):

∂

∂xj
σij + ρbi = 0 (14)

where ρ is the bulk density of the body. An (x, y, z) coordinate system
aligned with the ordered principal axes of the ellipsoid is used. In the problems
here, the body forces arise from mutual gravitational forces, centrifugal forces,
and/or tidal forces; they all have the simple linear forms bx = kxx, by = kyy,
bz = kzz. The full expressions of kx, ky and kz are explicitely presented by
Holsapple and Michel ([15]). Then, for the limit states sought, the stresses
must satisfy the DP failure criterion (see Sect. 2.2) at all points x, y and z.
Also, the surface tensions are zero on the surface points of the ellipsoidal body
surface defined by: x

a
2 + y

b
2
+ z

c
2 −1 = 0. This problem has been solved ([12]),

showing that the distribution of stresses in that limit state just at uniform
global failure has the simple form:
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],
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b

)2

−
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c

)2

], (15)

and the shear stresses in this coordinate system are all zero. The body force
constants kx, ky, kz depend on the body forces, so those forces must be such
that the DP failure criterion is not violated. That condition determines the
limit states. Putting the expressions of these components into the DP criterion

(Eq. (4)), one can see that the common functional dependence 1 −
(

x
a

)2 −
(

y
b

)2 −
(

z
c

)2
will cancel out of the Eq. (15). That is because the limit stress

state has simultaneous failure at all points. Thus, we can omit that functional
dependence and focus on finding the combinations of the leading multipliers
of the three terms of Eq. (15) that satisfy the failure criterion. We define the
dimensionless distance by:

δ =

(

ρ

ρp

)1/3
d

R
(16)

where ρp is the bulk density of the primary (the planet). Then, as detailed by
Holsapple and Michel ([15]), failure will occur when:

1

6
[(cx − cy)2 + (cy − cz)

2 + (cz − cx)2] = s2[cx + cy + cz]
2 (17)

where, for arbitrary spin and when the long axis points towards the Earth:

cx =

(

−Ax +
1

2
Ω2 +

4

3
δ−3

)

,

cy = β2

(

−Ay +
1

2
Ω2 −

2

3
δ−3

)

,

cz = α2

(

−Az −
2

3
δ−3

)

(18)

and Ax, Ay and Az are the components of the self-gravitational potential
of a homogeneous ellipsoidal body of uniform mass density ρ in the body
coordinate system expressed as: U = πρG(A0 + Axx2 + Ayy2 + Azz

2) (e.g.
[6]). Ω is the scaled spin already expressed in Sect. 3. A similar form when the
long axis points along the trajectory at its closest approach can be obtained
([15]). The criterion expressed in these forms can then be used to solve for the
dimensionless distances δ at the failure condition as a function of the aspect
ratios α and β (which determine the Ax, Ay and Az), the mass ratio p of the
secondary to the primary, and for any value of the constant s related to the
angle of friction. The solution always has the dimensionless form:
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Strength and disruption of small bodies 17

δ =
d

R

(

ρ

ρp

)1/3

= F [α, β, p, φ,Ω] (19)

so that the bulk density ratio only occurs with this cube root. Note that in
the spin-locked case, the spin is given by:

ω =
G(M + m)

d3
(20)

where M and m are the masses of the primary and secondary, respectively.
The number of independent variables is then reduced by one when the scaled
spin is zero or the spin-locked value, and by another one when p = 0, i.e.
when the mass of the secondary is negligible compared to that of the primary,
which is the case for an asteroid flying by a planet or a small satellite of a
giant planet.

Note that this limit distance to the primary corresponds to the distance
below which a secondary cannot exist with its assumed shape, because the
failure criterion would be violated. However, it does not mean that below this
distance, the secondary would disrupt. A flow rule is required to indicate the
nature of any readjustment (or disruption). Then, if those changes lead to a
new configuration that is within failure at the given distance, a shape change
is indicated. Otherwise, if the new shape still violates the failure criterion, a
global disruption is indicated. Such analysis has been done by Holsapple and
Michel ([15] but goes beyond the scope of this review.

The results provided by this static theory show that a spin-locked spherical
body can approach a planet as close as d/R = 1.23168(ρp/ρ)1/3 if its angle
of friction is 90◦, and the orbit distance decreases smoothly as the angle of
friction increases. For a generic rock value, say φ = 30◦, the closest orbit
for a spherical satellite is about d/R = 1.5(ρp/ρ)1/3. The fluid case with
zero angle of friction has a distance of infinity, as there is no solution for a
spherical body in this case. Other general ellipsoid shapes have then been fully
investigated, and it was found that for each combinations of aspect ratios α
and β, there is a range of permissible orbital distances for any angle of friction
φ > 0◦. For instance, a prolate body of negligible mass with aspect ratios of
0.8 and φ = 20◦ can orbit as close as d/R = 1.78261(ρp/ρ)1/3, center to
center, and if φ = 40◦, it can orbit as close as d/R = 1.15141(ρp/ρ)1/3. Then,
an elongated prolate body with α = 0.4 and φ = 40◦ can orbit as close as
d/R = 1.92929(ρp/ρ)1/3. Figure 3 illustrates the same application to a stray
body with zero spin, p = 0 and α = 0.8.

Thus, all of these are noticeably closer than the fluid Roche limit of d/R =
2.455(ρp/ρ)1/3, and for a solid, even cohesionless, the shapes are not limited
to fluid shapes. This is why it is important to make no confusion between a
fluid and a cohesionless bodies. This is particularly important in the context
of the study of satellites of giant planets. In fact, many planetary satellites
are inside their Roche limit, and do not have the aspect ratios required for
a fluid at this limit (see e.g. Table 1 in [15]). The same holds true for stray
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18 Patrick Michel

Fig. 3. Limits on the possible distances for a stray body with no spin and for various
aspect ratios α and β, and different angles of friction Φ. Note that for small angles
of friction, the region of permissible distances is a closed curve. This means that the
body cannot approach too close, because tidal forcs would be too strong, nor range
too far as some tidal forces are still necessary for its equilibrium. The limit case of
such behavior is the Roche fluid case, for which there is a single point at the center
of the closed curves, near the prolate bodies on the left. For typical angles of friction
(20◦ to 40◦), there is no large variation with the aspect ratios. As in the spin-locked
situation, the miminum distances for cohesionless stray bodies are all well below the
Roche limit, and a much wider range of aspect ratios can exist.

(zero-spin) cohesionless bodies (the case of a fluid body in this configuration
is called the Jean’s problem, [21]).

The difference with a fluid body is even more striking when cohesion is
added to the strength of a small body. This has been investigated recently
by Holsapple and Michel ([18]) who extended their previous analysis of limit
distances of cohesionless ellipsoids to the limit distances of ellipsoids with
cohesion. Recall that when the cohesion term k is zero in the DP criterion
(Eq. (4)), the general form of the stresses satisfying the equilibrium condition,
the boundary values and the failure criterion at all points in the body can be
found exactly in closed form with a quadratic dependence on the coordinates.
Conversely, when the cohesion is not zero, there is no solution to this general
equilibrium problem with simultaneous failure at all locations. Therefore, an
exact answer cannot be determined, but an approximate solution can be found
by averaging the stresses across the body, as explained in Sect. 3 for the spin
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Strength and disruption of small bodies 19

limits. The difference here with the spin limit study is that the tidal terms are
added. It has been proven that the loads for which the average stresses are at
failure are equal to or greater than the actual limit loads ([17]). thus, using
average stresses to look for failure gives an upper bound on actual limit loads.
In other words, the analysis provides a lower bound to the closest approach
for collapse. But recall again that in the special cases with zero cohesion
the results are exact. In fact, a study along the same lines devoted to tidal
encounters of granular bodies has been done by Sharma et al. using the volume
average approach and, although the calculations of limit distances were not
investigated with the same level of details, it was consistent with the results
above using the closed form for the stresses ([39]).

The limit distance for a small cohesive body can be expressed in terms
of 7 non-dimensional parameters (one dependent, six independent variables),
leading for each orientation of the body to the reduced form:

δ =
d

R

(

ρ

ρp

)1/3

= G[α, β, p,Ω, φ,
k

ρ2Gr2
] (21)

using the previously defined aspect ratios α, β, mass ratio p, and a scaled
cohesion term k∗ = k/(ρ2Gr2), where r is the body’s average radius. This
scaled term corresponds to the ratio of the cohesive strength to a gravity
pressure. For any given value of these six parameters, numerical results can
then easily be obtained, using appropriate programs (see [18] for significant
examples and illustrations of important dependencies). In this analysis, the
cohesion is also assumed to decrease with the body’s size, and the same size
dependency as in Sect. 3 is used.

For bodies larger than a few km in diameter, the limit distance is the one
provided by the theory for cohesionless bodies, as the cohesion is so small
that gravity is dominant (due to the decrease of cohesion with size). Thus,
the new approach in which cohesion is included is only relevant for those
bodies whose size is below a few kilometers. For them, the limit distance
becomes much closer to the primary, and depending on the values of the six
parameters (or on the density ratio) the distance can even be smaller than the
primary’s radius, which means that these small bodies cannot be disrupted
by tidal forces. An interesting application relates to planetary satellites, and
a preliminary analysis showed that some of them must have non zero friction
angles or cohesion to evolve at the observed distance from their primary (see
[18]). Thus, the approach developed to determine limit distances can provide
some indirect indications on the possible internal structure of real objects,
which is a very interesting aspect. Also, it can tell us whether some shape
readjustment or disruption will occur during the close approach with the Earth
of a real asteroid. For instance, if we assume that the asteroid Apophis (2004
MN4) is a cohesionless body, then the static theory developed by Holsapple
and Michel indicates that its close approach with the Earth at 5.6 Earth’s
radii in 2029 will correspond to its tidal limit distance only if its bulk density
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is smaller than 0.25 g/cm3 or unless it is highly elongated, or its angle of
friction is less than about 5◦ ([15], [31]).

Thus, according to these recent studies, both cohesionless bodies and co-
hesive ones with expected properties of geological solids can exist in arbitrary
ellipsoidal shapes and much closer to a primary than a fluid body. The main
limitation of these studies is that they are not based on a dynamic approach
but a static one, which is used to determine the onset of disruption or shape
readjustment. Actually, in case of readjustment, the angular moment of iner-
tia would change, so the spin would change. Then the new state would not
be in the spin-locked or zero spin configuration as supposed here. The effects
of tidal torques on the asteroid’s spin have been investigated in details ([40],
[41]), and a complete analysis should incorporate these results, thereby ac-
counting for the change in the limit distance as the small body’s spin rate
changes during a fly-by. Such analysis will have to be performed in the future.

Also, when a small body goes through the limit distance, the resulting
motions are affected by how the body changes its shape or breaks up, and by
the resulting dynamics. That is a much more complicated problem, which is
left for future studies. Some semi-analytical studies have been recently done
to address this problem ([39], but numerical simulations are probably the
best tools. In a pioneering numerical study ([34]), the break-up of bodies en-
countering a planet was considered. Small bodies were modeled as granular
aggregates comprised of 247 smooth spheres that interacted with each other
only through inelastic collisions and were held together by gravity. Numerical
simulations were then used to determine the motion of individual spheres.
Various parameters, such as the initial angular velocity vector and encounter
variables, were changed to explore the consequences of different close approach
configurations. But this study was limited by the low resolution (number of
smooth spheres) constrained by the computer performances and numerical
codes at that time. More recently, numerical simulations of tidal disruption
of rubble piles at higher resolutions using a sophisticated N-body code named
pkdgrav have been performed ([44]) in order to determine whether tidal dis-
ruptions can explain the presence of 15% of binaries in the NEO population.
The results show that tidal encounters with a planet (Earth) can form bina-
ries. However, when a small body experiences a tidal encounter, it is likely to
experience another such encounter in its close future, so that the binary which
is first formed is often eventually disrupted by the next encounter. Thus, al-
though tidal encounters are efficient to form temporary binaries, they cannot
be at the origin of the high fraction of binaries observed in the NEO popula-
tion. Some other potential mechanisms must be found and investigated. Also,
these simulations only addressed the problem of tidal approaches of cohesion-
less bodies, and they will be extended to the case of cohesive bodies in a close
future. In principle, the limit distances should be similar to the ones provided
by the static approach (for some values of the angle of friction and cohesion),
but a dynamical approach will also allow the determination of the behavior
of the small body and its seperate pieces once it breaks up. The gravitational
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evolution of fragments from a disrupted body has already been studied but
only in the specific case of the collisional disruption of a small body. This is
the last mechanism of disruption which is briefly summarized in the following
section.

5 Collisional disruption of small bodies

In this section, we just summarize the most important concepts and issues
concerning the catastrophc disruption of an asteroid due to a collision. The
reader interested in more details can refer to a few articles whhich expose the
main recent results concerning this process (see, e.g., [29], [30]).

Collisional processes occur frequently between the small bodies of our Solar
System. The best witnesses of those events are asteroid families in the main
belt. Each family originates from the break-up of a large body, which is now
represented by a group of asteroids sharing the same spectral and orbital prop-
erties (see, e.g., [20], [47]). As in the case of spin limits (Sect. 3), two regimes
of collisional disruption have been defined: the strength regime, in which the
fragmentation of the body is the only process determining the outcome (this
is the case of impact experiments in laboratory), and the gravity regime, in
which not only the fragmentation but also the gravitational interactions of
fragments have an influence on their final size and velocity distributions. The
transition between the two regimes has been found to occur for body sizes
in the hundred meter range by numerical simulations ([3]), while the transi-
tion between the two regimes derived from the spin limits occurs at higher
diameters (kilometer range; see Sect. 3 and [16]).

The first numerical simulations which reproduced succesfully large scale
events represented by asteroid families ([25], [26], [27], [28]), showed that when
a large parent body (several tens of kilometers in diameter) is disrupted by a
collision with a projectile, the generated fragments interact gravitationnally
during their ejections, and some of them reaccumulate to form aggregates. The
final outcome of such a disruption is thus a distribution of fragments, most
of the large ones being aggregates formed by gravitational reaccumulations
of smaller ones. The implication of these results is that most large family
members should be rubble piles and not monolithic bodies. Moreover, it was
found that collisional disruptions form naturally binary systems and satellites
([25], [8]), although the timescale of their stability still needs to be determined.

The physics of the gravitational phase during which generated fragments
evolve under their mutual attractions relies on the fundamental laws of clas-
sical mechanics, which are well understood. However, the development of nu-
merical simulations which account for all the processes that may occur during
this phase is a difficult task. When a large body is fragmented, the number
of generated sizeable fragment can be as large as a few millions. Therefore,
the numerical difficulties come from the fact that the forces must be com-
puted for a large number of particles, up to millions, and this requires the
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use of efficient numerical methods to reduce the CPU time to reasonable val-
ues. Moreover, during their evolutions, these fragments do not only evolve
under distant interactions, they can also undergo physical collisions between
them, which must also be dealt with. A numerical N-body code called pkdgrav

has been developed (see [35]) to compute the evolutions of large numbers of
particles. It is a parallel tree-code which is able to compute the gravitational
evolutions of millions of particles and handles collisions between them. During
the gravitational phase, such collisions are assumed to not cause fragmenta-
tion, but only mergers or bounces. This simplification is justified by the fact
that the relative velocities between the ejected fragments are small enough
that collisions between them are quite smooth. So, when collisions occur dur-
ing this phase, depending on some velocity and spin criteria, the particles
either merge into a single one whose mass is the sum of the particle masses
and whose position is at the center of mass of the particles, or bounce with
some coefficient of restitution to account for dissipation (see [26] for details).
In this approximation, while the aggregates that are formed have ”correct”
masses, their shapes are all spherical because of the merging procedure. Of
course, the final shape and spin distributions are also an important outcome
of a disruption and a study is currently under way to improve the simulations:
instead of merging into a single spherical particle, colliding particles will be
able to stick together using rigid body approximations. Such improvement will
allow the determination of the shapes and spins of aggregates formed during
a catastrophic disruption.

The most poorly understood part of the collisional process is the fragmen-
tation phase, following immediately the impact of the projectile. It usually
lasts twice the time for the shock wave to propagate through the whole target
(a few seconds for a kilometer-size body). The process of rock fragmentation is
still a widely open area of research, relying on a large number of assumptions
based on a limited number of data. Moreover, not only the physics is badly un-
derstood, the numerical techniques used to perform the computation are also
confronted to some difficulties. Indeed, the fragmentation process in a rock
involves two kinds of approaches, which are generally incompatible. A high-
velocity impact on a rock generates a shock wave, followed by a rarefaction
wave which will activate the crack propagation. Thus, the rock can be seen
as a continuum for the shock treatment. On the other hand, a rock contains
some discrete elements (the initial cracks). This mixture of continuum and
discrete features makes the development of a numerical scheme difficult. A
numerical code used to compute the fragmentation phase is generally called a
hydrocode, which emphasizes the fact that this process involves the physics of
hydrodynamics, although it occurs in a solid. Indeed, the difference between a
fluid and a solid is that the deviatoric (non-diagonal) part of the stress stensor
is not null in the case of a solid, while in a fluid only the spherical (diagonal)
part of the stress tensor representing the pressure plays a role (see Sect. 2 for a
detailed explanation of the difference between a fluid and a solid). Thus, three
kinds of waves (elastic, plastic and shock) propagate through a rock during an
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impact. Elastic waves are well known and determined by linear realtionships
between the stress and strain tensors. Plastic waves begin to develop when
the material strength changes with the wave amplitude. Then, at wave ampli-
tudes that are high enough and associated to shock waves, the body is treated
as a fluid. Being non-linear, the transitory behaviors between these kinds of
waves are difficult to determine analytically from constitutive models, and this
probably motivated the development of numerical algorithms. The process has
thus been studied by implementing the bulk properties of a given rock in a
numerical model of continuous medium (a hydrocode), including a yielding cri-
terion and an equation of state for the appropriate material. The main power
of this method is that no assumption on the form of the stress wave that drives
the fragmentation is required since the initial conditions evolve numerically
based on a rheological model and a failure criterion. The appropriate regime
(elastic, plastic or shock) is determined by the computation.

The 3D Lagrangian hydrocode developed by Benz and Asphaug ([2]) rep-
resents the state-of-the-art in numerical computations of dynamical fracture
of brittle solids. It uses the method called Smooth Particle Hydrodynamics
(SPH) (see [1] for a review of this method). Basically, the value of the dif-
ferent hydrodynamics quantities are known at finite numbers of points which
move with the flow. Starting from a spatial distribution of these points called
particles, the SPH technique allows to compute the spatial derivatives with-
out the necessity of an underlying grid. The 3D SPH hydrocode is thus able
to simulate consistently from statistical and hydrodynamical points of view
the fragments that are smaller or larger than the chosen resolution (number
of SPH particles). The resulting system has proven to predict successfully
the sizes, positions and velocities of fragments measured in laboratory exper-
iments, without requiring the adjustment of too many free parameters ([2]);
moreover, associated with the N-body code pkdgrav, it has succesfully repro-
duced the main properties of asteroid families ([25], [26], [27], [28]).

For the sake of completeness, we recall here the basic equations that must
be solved to compute the fragmentation process. Other important concepts,
such as the equations of state, the model of brittle failure used to propagate
damage and the method to distribute appropriately incipient flaws in the
modeled rock with a Weibull distribution are not reproduced here, as they
have been descibed several times (see [2], [30]).

The basic equations that must be solved to compute the process are the
well-known conservation equations of hydrodynamics that can be found in
standard textbooks. The first equation represents the mass conservation. Its
expression is:

dρ

dt
+ ρ

∂

∂xα
vα = 0 (22)

where d/dt is the lagrangian time derivative. Other variables have their
usual meaning (i.e. ρ is the bulk density, v is the velocity and x the posi-
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tion) and the usual summation rule over repeated indices is used. The second
equation describes the momentum conservation (in absence of gravity):

dvα

dt
=

1

ρ

∂

∂xβ
σαβ (23)

where σαβ is the stress tensor given by:

σαβ = −Pδαβ + Sαβ (24)

where P is the isotropic pressure and Sαβ is the traceless deviatoric stress
tensor.The energy conservation is then expressed by the equation:

du

dt
= −

P

ρ

∂

∂xα
vα +

1

ρ
Sαβ ε̇αβ (25)

where ε̇αβ is the strain rate tensor given by:

ε̇αβ =
1

2

(

∂

∂xβ
vα +

∂

∂xα
vβ

)

. (26)

This set of equations is still unsufficient in the case of a solid since the evolution
in time of Sαβ must be specified. The basic Hooke’s law model is assumed in
which the stress deviator rate is proportional to the strain rate:

dSαβ

dt
= 2µ

(

ε̇αβ −
1

3
δαβ

)

+ SαγRβγ + SβγRαγ (27)

where µ is the shear modulus and Rαβ is the rotation rate tensor given by:

Rαβ =
1

2

(

∂

∂xβ
vα −

∂

∂xα
vβ

)

. (28)

This term allows the transformation of the stresses from the reference
frame associated with the material to the laboratory reference frame in which
the other equations are specified.

This set of equations can now be solved, provided an equation of state is
specified, P = P (ρ, u), linking the pressure P to the density ρ and internal
energy u. The Tillotson equation of state for solid material ([42]) is gener-
ally used. Its expression and method of computation, as well as parameters
for a wide variety of rocks are described in [23] (Appendix II). Other equa-
tions of states have been developed and all have different pros and cons and
remain necessarily limited to materials studied in laboratory. This is one of
the limits of any collisional model that necessarily relies on the behavior of
known materials that do not necessarily represent the materials constituing
an asteroid.

Perfectly elastic materials are well described by these equations. Plastic
behavior beyond the Hugoniot elastic limit is introduced in these relations by
using the von Mises yielding criterion (see Sect. 2). This criterion limits the
deviatoric stress tensor to:
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Sαβ = fSαβ (29)

where f is computed from:

f = min[
Y 2

0

3J2

, 1], (30)

where J2 is the second invariant of the deviatoric stress tensor (see Sect. 2)
and Y0 is a material dependent yielding stress which generally depends on
temperature, density, etc. in such a way that it decreases with increasing
temperature until it vanishes beyond the melting point.

The von Mises criterion is adapted to describe the failure of ductile media
such as metals. Brittle materials like rocks do not undergo a plastic failure but
rather “break” if the applied stresses exceed a given threshold. Conversely, the
yielding beyond the Hugoniot elastic limit does not prescribe any permanent
change in the constitution of the material, since once stresses are reduced the
original material remains behind, possibly heaten by the motion against the
remaining stress, but otherwise not weakened. Therefore, it is not adapted to
impacts into rocks, as any yielding beyond the elastic limit invariably involves
irreversible damage, and one needs to know how the rock is permanently
altered by the event. A realistic fracture model is then clearly required to
study the disruption of a solid body. The Grady-Kipp model of brittle failure
is generally the model implemented in numerical codes aimed at simulating
fragmentation processes in solid bodies ([10]).

Despite thee recent successes of impact simulations to reproduce some
experiments and asteroid family properties, there are still many issues and
uncertainties in the treatment of the fragmentation phase. Some of the im-
portant ones are:

• Material parameters: one of the main limitations of all researches de-
voted to the fragmentation process comes from the uncertainties on the
material properties of the objects involved in the event. For instance, ten
material parameters describe the usually adopted Tillotson equation of
state (see e.g. [23], appendix II). Other sensitive material-dependent pa-
rameters are, for instance, the shear and bulk modulus, but the most
problematic parameters are probably the two Weibull parameters m and
k used to characterize the distribution of initial cracks in the target. In
fact, as already mentioned (Sect. 2.3), data are still scarce about these pa-
rameters, due to the experimental difficulty to determine their values. This
is a crucial problem because so far, the validation of numerical simulations
by confrontation to experiments has been done by choosing freely those
missing values so as to match the experiments ([2]). This is not a totally
satifactory approach for an ab initio method such as the one provided by
SPH simulations. Unfortunately, this is often the only alternative which
one has. A database including both the material parameters of targets and
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Fig. 4. SPH simulation of the impact of a projectile on a basalt target in the same
conditions as a high-velocity experiment ([32]). The plot shows how damage (labelled
dm) propagated 30 µs after the impact (red zones are fully damaged). In particular,
a core fragment can be identified which has the same mass and velocity as the one
measured in the experiment.

outcomes of impact experiments using these targets is thus required to per-
form a full validation of numerical codes. Such a project has started using
the experimental expertise of japanese researchers from Kobe University,
and the numerical expertise of french and swiss researchers from Côte
d’Azur Observatory and Berne University. For instance, measurements of
Weibull parameters of a Yakuno basalt used in impact experiments were
made in this purpose ([33]).

• Crack propagation speed in a solid: the value of the crack growth
speed is usually assumed to be 40% of the longitudinal sound speed in
numerical simulations. This speed highly influences the number of cracks
that can be activated for a given strain rate (see Sect. 2.3). It thus plays a
major role in the number and sizes of fragments which are eventually cre-
ated. The lack of measurements of this speed and its possible dependency
on material type leave no choice but to use an intermediate value such as
the one currently assumed. However, it is important to keep in mind that
this may need to be revised once some cracks are found to propagate at
higher/lower speed in a sufficient number of experiments.
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• Model of fragmentation: up to now, all published simulations of impact
disruption have been done using in general the Grady-Kipp model of brittle
failure ([10]. In this model, damage increases as a result of crack activa-
tion, and microporosity (pore crushing, compaction) is not treated. How-
ever, several materials contain a certain degree of porosity (e.g. pumice,
gypsum), and asteroids belonging to dark taxonomic types (e.g. C, D) are
believed to contain a high level of microporosity. The behavior of a porous
material subjected to an impact is likely to be different than the behavior
of a non-porous one, as already indicated by some experiments (e.g. [19]).
Therefore, a model for porous materials is required, in order to be able
to address the problem of dark-type asteroid family formations, and to
characterize the impact response of porous bodies in general (including
porous planetesimals during the phase of planetary growth). Such models
have been developed recently and inserted in numerical codes ([46], [4]).
However, so far their application has been limited to the cratering regime
and their validy is still not guaranteed. Moreover, it will be important to
check their validity in the disruptive regime by comparison to impact ex-
periments, such as recent ones made on pumice by the group of Kobe led
by A. Nakamura.

• Rotating targets: all simulations of catastrophic disruption have been
performed starting with a non-rotating target. However, in the real world,
small bodies are spinning (see Sect. 3), and the effect of the rotation on
the fragmentation is totally unknown. Some preliminary experiments have
been performed suggesting that, everything else being equal, a rotating
target is easier to disrupt than a non-rotating one (K. Housen, private
communication). If this is confirmed, this will be an important result as all
models of collisional evolutions of small body populations use prescriptions
that are provided by numerical simulations on non-rotating targets. In
particular, the lifetime of small bodies may be shorter than expected if
their rotation has an effect on their ability to survive collisions. It will
thus be important to characterize the impact response of rotating bodies,
both experimentally and numerically, although on both sides, starting with
a rotating body is confronted to several difficulties.

6 Conclusion

Our understanding of the disruption mechanisms of small bodies of our Solar
System has greatly improved in the last decades, thanks to the development
of analytical theories and sophisticated simulations. However, there are still
many uncertainties, and problems that need to be investigated. Concerning
the spin limits and tidal disruptions, the theories that have been developed
so far are all static. Nevertheless, they allowed us to undertand that the spin
barrier observed for large asteroids does not imply necessarily that these bod-
ies are pure rubble piles, in contrast with the usual interpretation. On the
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other hand, the small fast rotators do not need to have much cohesion to spin
at such high rates (see Sect. 3). Then, these theories allowed us to revisit the
concept of Roche limit for solid ellipsoidal bodies with and without cohesion.
They showed that, contrary to a fluid, a solid body can come much closer
to a planet or a primary and with a wide variety of shapes (see Sect. 4).
However, these theories rely on a model of material strength (Drucker-Prager
or Mohr-Coulomb) which is not necessarily unique and they are limited to
bodies whose shapes are idealized ellipsoids. Some other strength models or
non-idealized shapes should certainly be considered. Then, a complete dy-
namical investigation of these problems is required to determine the outcome
of rotational and tidal break-ups of small bodies.

Sophisticated numerical codes have been developed to study the process
of impact disruption of a small body. The outcome of some impact experi-
ments and the main properties of some asteroid families have been reproduced
successfully with one of those codes, based on the Smooth Particle Hydrody-
namics technique and the Grady-Kipp model of brittle failure. However, as
discussed in Sect. 5, there are still many issues, and the road is still long before
being able to characterize with high accuracy the impact response of a small
body as a function of its material properties. This is a challenging topic which
has many applications. Indeed, the collisional process plays a fundamental
role in the different phases of the history of our Solar System, from the phase
of planetary growth by collisional accretion to the current phase during which
small bodies are catastrophically disrupted. Moreover, the determination of
the impact response of a small body as a function of its physical properties is
crucial in the definition of efficient mitigation strategies aimed at deflecting
a potential threatening near-Earth asteroid whose trajectory leads it to the
Earth.

Thus, researches devoted to these disruption mechanisms and to the con-
cept of strength will certainly keep busy future generations of researchers,
and they will also take advantage of future space missions devoted to in-situ
investigations and sample returns from small bodies.
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