

ON THE STRONG LAW OF LARGE NUMBERS AND RELATED RESULTS FOR QUASI-STATIONARY SEQUENCES
by R. J. Serfling
FSU Statistics Report M430 ONR Technical Report No. 123

August, 1977
Department of Statistics The Florida State University Tallahassee, Florida 32306

Research supported by the Office of Naval Research under Contract No. N00014-76-C-0608. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public relecse; Distribution Unlimited

ABSTRACT

ON THE STRONG LAW OF LARGE NUMBERS AND RELATED RESULTS FOR QUASI-STATIONARY SEQUENCES

Under second moment assumptions and weak dependence conditions on a sequence of random variables $\left\{X_{i}\right\}$, Gaposkin (1975) has established almost sure convergence of the series $\sum_{1}^{\infty} \lambda_{k} X_{k}$ under certain restrictions on the rate of convergence to 0 of the constants $\left\{c_{k}\right\}$. Similarly, Moricz (1977) has established conditions for the almost sure convergence to 0 of the sequence $\lambda_{n} \sum_{1}^{n} X_{k}$. In the present paper, some extensions of these results are obtained.

1. Main results and discussion. Consider a sequence of random
variables $\left\{X_{1}\right\}$ satisfying

$$
E X_{i} \equiv 0, \quad E X_{1}^{2} \equiv 1
$$

and, for a sequence of constants $\left\{\phi_{1}\right\}$,

$$
\left|E X_{j} X_{k}\right| \leq \phi_{k-j}, \text { all } j \leq k .
$$

Such a sequence $\left\{x_{1}\right\}$ is called quasi-stationary with respect to the sequence $\left\{\phi_{i}\right\}$. The almost sure asymptotic behavior of the sum $\sum_{i=1}^{n} X_{i}$ may be characterized by an assertion of the form
(A)

$$
\lambda_{n} \sum_{i=1}^{n} x_{i} \rightarrow 0, n \rightarrow \infty, w . p .1
$$

where $\left\{\lambda_{n}\right\}$ is a sequence of positive constants tending to 0 . It is of interest to establish (A) under mild restrictions on the constants $\left\{\phi_{1}\right\}$ and $\left\{\lambda_{i}\right\}$. A related problem concerns the almost sure behavior of the sum $\sum_{i=1}^{n} \lambda_{i} X_{i}$ for such a sequence of constants $\left\{\lambda_{n}\right\}$. In this case the desired assertion is
(a)

$$
\sum_{i=1}^{\infty} \lambda_{i} x_{i} \text { converges w.p.1. }
$$

By the well-known Kronecker lemma, (α) implies (A) in the case of λ_{n} nonincreasing.

AMS 1970 subject olassifications. Primary 60F99, Secondary $60 G 99$.
Key words and phrases. Quasi-stationary random variables; strong law of large numbers; almost sure convergence of infinite series.

Rademacher (1922) and Mensov (1923) independently established that
(a) holds $1 f$
(1.1a) $\phi_{i}=0, i>0$,
and
(1.1b) $\quad \sum_{1}^{\infty} \lambda_{n}^{2} \log ^{2} n<\infty$.

Kac, Salem and Zygmund (1948) relaxed (1.1a) to $\phi_{n}=O\left(n^{-1-\epsilon}\right.$) for an $\epsilon>0$. Gaposkin (1975) proved the following much broader result. Put

$$
w(n)=\sum_{i=1}^{n} \phi_{i}
$$

theorem a (Gapoakin). If
(1.2) $\quad \sum_{1}^{\infty} w(n) \lambda_{n}^{2} \log ^{2} n<\infty$,
then (a) holds.
This theorem allows the possibility of $w(n) \rightarrow \infty$, whereas the earlier results are confined to the case $w(\infty)<\infty$.

Returning to (A), we have
COROLLARY a. If (1.2) is satisfied and λ_{n} is noninoreasing, then
(A) holds.

On the other hand, a direct approach - bypassing (α) - offers the possibility of obtaining (A) under weaker restrictions than (1.2). In this direction, M6ricz (1977) has obtained the following result.

THBOREM A (M6Ticz). If
(1.3a) $\quad \sum_{1}^{\infty} w(n) \lambda_{n}^{2}<\infty$,
(1.3b) $w(n) \lambda_{n}^{2}$ is noninoreasing,
and

$$
\text { (1.3c) } w(2 n) / w(n) \geq q>1 \text {, all } n \text {, }
$$

then (A) holds.

Note that (1.3a) relaxes (1.2). However, (1.3c) requires $w(n)$ to grow at a fast rate. For example, (1.3c) is satisfied by $w(n)$ of the form $w(n)=\mathrm{cn}^{a}$, but not by $w(n)$ of the form $w(n)=\exp (2 \sqrt{\log n})$. For the latter, Theorem A is inapplicable, whereas Theorem α does yield a conclusion.

The present note provides an alternate to Theorem A which essentially removes condition (1.3c). As in [5], put $W(1)=w(1)$ and, for $n \geq 2$, define $W(n)$ by

$$
W^{\frac{1}{2}}(n)=W^{\frac{1}{2}}\left(\left[\frac{1}{n} n\right]-1\right)+w^{\frac{1}{2}}([1 ; n])
$$

THEOREM B. If
(1.4a) $\quad \sum_{1}^{\infty} w(n) \lambda_{n}^{2}<\infty$
and
(1.46) $W(n) \lambda_{n}^{2}$ is nonincreasing,
then (A) holds.

Conditions (1.3a) and (1.3c) together imply (1.4a), as evident from the Lemma below. Also, the mild constraints (1.3b) and (1.4b) are mere variants of each other. Thus Theorem B has somewhat broader application than Theorem A. In particular, it yields

EXAMPLE. Consider $w(n)=\exp (2 \sqrt{\log n})$. In this case (by the Lemma below)

$$
W(n)=O(w(n) \log n),
$$

so that (A) holds if λ_{n} satisfies (1.4b) for this $w(n)$ and if

$$
\begin{equation*}
\sum_{1}^{\infty} w(n) \lambda_{n}^{2} \log n<\infty . \square \tag{1.5}
\end{equation*}
$$

In the preceding example, the use of Corollary α would be less effective than Theorem B, since (1.5) is weaker than (1.2). The gain in effectiveness of Theorem B over Corollary α occurs when $w(n)$ grows sufficiently fast.

Leman. (i) In generat, $W(n)=0\left(w(n) \log ^{2} n\right)$.
(ii) If $w(n)=\exp (2 \sqrt{\log n})$, then $W(n)=O(w(n) \log n)$.
(i1i) If $w(n)$ satisfies (1.5 c$)$, then $W(n)=0(w(n))$.

As a complement to Theorem B, the following generalization of Theorem α will be established.

THBOREM B. If (1.4a) and
(1.6a) $\quad \sum_{1}^{\infty} w(n) \lambda_{n}^{2}(\log n)(\log \log n)^{1+\epsilon}<\infty$, for some $\epsilon>0$,
are satisfied, then (a) holds.

Since (1.2) implies each of (1.4a) and (1.6a), Theorem B generalizes Theorem α.

2. Proofs.

proof of the lama. Note that, for $2^{k} \leq n<2^{k+1}$, (2.1) $\quad W^{\frac{1}{2}}(n)<W^{\frac{1}{2}}\left(2^{k+1}-1\right)=\sum_{j=0}^{k} w^{\frac{1}{2}}\left(2^{j}\right)$.

Thus $W^{\frac{1}{2}}(n) \leq k w^{\frac{1}{2}}(n)=0\left(w^{\frac{1}{2}}(n) \log n\right)$, which gives (i). Now, for $j \leq k$,

$$
\begin{aligned}
\exp \sqrt{j} & =\exp \sqrt{k} \exp \left(\frac{j-k}{\sqrt{j}+\sqrt{k}}\right) \\
& \leq \exp \sqrt{k} \exp \left(\frac{1-k}{2 \sqrt{k}}\right) \\
& =\exp \frac{1}{2} \sqrt{k}\left(\exp \frac{1}{2 \sqrt{k}}\right)^{j} .
\end{aligned}
$$

Thus by (2.1) we obtain, for the case $w(n)=\exp (2 \sqrt{10 g n})$, that

$$
W^{\frac{1}{2}}(n) \leq\left(\exp \frac{1}{2} \sqrt{k}\right) \frac{\exp \sqrt{k}}{\exp \left(\frac{1}{2 \sqrt{k}}\right)-1} \leq 2 \sqrt{k} \exp \sqrt{k},
$$

ie., $W^{\frac{1}{2}}(n)=Q\left(\sqrt{10 g n} w^{\frac{1}{2}}(n)\right)$, so that (if) is proved. Finally, for $w(n)$ satisfying (1.3c), the use of (2.1) yields

$$
W^{\frac{1}{2}}(n) \leq w^{\frac{1}{2}}\left(2^{k}\right) \sum_{j=0}^{k}\left(\frac{1}{q}\right)^{\frac{1}{2}(k-j)},
$$

from which (iii) follows. \square

In proving Theorems B and B, the following maximal inequality will be used.

LEMMA 2.1. For $\mathrm{m} \geq 1, \mathrm{n} \geq 1$,

$$
E\left\{\max _{1 \leq k \leq n}\left(\sum_{i-m+1}^{m+k} a_{i} x_{i}\right)^{2}\right\} \leq 2 W(n) \sum_{i=m+1}^{m+k} a_{i}^{2}
$$

This was proved by Moricz (1976), extending an earlier result of Serfling (1970a). For Theorem B, we will also need the following easily proved parallel result [5], [8].

LEMMA 2.2. For $n \geq 1$,

$$
E\left\{\left(\sum_{i=m+1}^{m+n} a_{i} X_{f}\right)^{2}\right\} \leq 2 w(n) \sum_{i=m+1}^{m+n} a_{i}^{2}
$$

PROOF OF THEOREM B. In order to show (A), it is equivalent to show that for every $\epsilon>0$,
(2.2) $P\left\{\left|\lambda_{n} S_{n}\right|>\epsilon\right.$ infinitely often $\}=0$.

Now observe that the nonincreasingness of $\lambda_{n}^{2} W(n)$, combined with the nondecreasingness of $W(n)$, implies that λ_{n} is nondecreasing. Thus, by the Borel-Cantelli lemma, (2.2) holds if
(2.3)

$$
\sum_{k=0}^{\infty} P\left\{\lambda_{2}{ }_{2}^{\max }{ }_{2}^{k} \leq n<2{ }^{k+1}\left|S_{n}\right|>\epsilon\right\}<\infty
$$

Now

$$
\begin{aligned}
& \leq \epsilon^{-2} \lambda_{2}^{2}{ }_{2} E\left\{\max _{2 k \leq n<2^{k+1}} S_{n}^{2}\right\} \\
& \leq 2 \epsilon^{-2} \lambda_{2}^{2} k E\left\{S_{2}^{2} k+\max _{2} k_{S n<2} k+1\left(S_{n}-S_{2}\right)^{2}\right\} .
\end{aligned}
$$

A two-fold application of Lemma 2.1 gives

$$
P\left\{\lambda_{2} \max _{2^{k} k_{n<2} k+1}\left|S_{n}\right|>\epsilon\right\} \leq 4 \lambda_{2^{k}}^{2} W\left(2^{k}\right) 2^{k}
$$

Thus the sum in (2.3) is bounded by $4 \sum_{k=0}^{\infty} 2^{k} \lambda_{2^{k}}^{2} W\left(2^{k}\right)$, which in turn in view of (1.3b) is clearly bounded by $4 \sum_{1}^{\infty} \lambda_{n}^{2} W(n)$. By (1.3a), the required (2.3) thus holds. \square

PROOF OF THEOREM B. Following the approach of [1], and using a standard elementary argument, we first establish that $T_{2}{ }^{k}$ converges w.p.l to a limit T_{∞}, by showing that
(2.4) $\quad \sum_{k=0}^{\infty}\left\|\Delta_{k}\right\|<\infty$,
where $\Delta_{k}=S_{2 k+1}-S_{2 k}$ and $\left\|\Delta_{k}\right\|$ denotes $\left(E \Delta_{k}^{2}\right)^{\frac{1}{2}}$. By the Cauchy-
Schwarz inequality,
$\sum\left\|\Delta_{k}\right\| \leq\left(\sum d_{k}^{2}\left\|\Delta_{k}\right\|^{2}\right\}\left(\sum d_{k}^{-2}\right)$
for positive constants d_{k}. Choose $d_{k}=k^{\frac{1}{2}}(10 g k)^{\frac{1}{2}(1+\epsilon)}, \epsilon>0$. Then, applying Lemma 2.2 and (1.6a), we obtain for an appropriate constant C,

$$
\begin{aligned}
\sum\left\|\Delta_{k}\right\| & \leq c \sum k(\log k)^{1+\epsilon}\left[2 w\left(2^{k}\right) \sum_{j=2^{k}+1}^{2^{k+1}} \lambda_{j}^{2}\right] \\
& \leq 2 C \sum_{n=1}^{\infty}(\log n)(\log \log n)^{1+\epsilon} w(n) \lambda_{n}^{2}<\infty .
\end{aligned}
$$

Next we establish that T_{n} converges w.p. 1 to T_{∞}, by showing that

$$
\max _{2^{k} \leq n<2} k+1\left|T_{n}-T_{2^{k}}\right| \longrightarrow 0 \text { w.p.1. }
$$

This follows, by an argument similar to the proof of Theorem B, if

$$
\sum_{k=0}^{\infty} E\left\{\max _{2^{k} \leq n<2^{k+1}}\left(T_{n}-T_{2^{k}}\right)^{2}\right\}<\infty,
$$

which in turn is established by Lemma 2.2 and (1.4a), via

$$
2 \sum_{k=0}^{\infty} w\left(2^{k}\right) \sum_{n=2^{k}}^{2^{k+1}-1} \lambda_{n}^{2} \leq \sum_{n=1}^{\infty} w(n) \lambda_{n}^{2}<\infty . \square
$$

REFERENCES

[1] Gaposkin, V. F. (1975). Convergence of series which correspond to stationary sequences. (In Russian) Izv. Akad. Nauk. SSSR, Ser. Mat. 39 1366-1392.
[2] Kac, M., Salem, R. and Zygmund, A. (1948). A gap theorem. Trans. Amer. Math. Soc. 63 235-248.
[3] Mensov, D. (1923). Sur les séries de fonctions orthogonales, I. Fund. Math. 4 82-105.
[4] Móricz, F. (1976). Moment inequalities and the strong laws of large numbers. Zeitschrift für Wahrscheinlichkeitstheoris und verw. Gebiete 35 299-314.
[5] M6ricz, F. (1977). The strong laws of large numbers for quasi-stationary sequences. Ibid. 38 223-236.
[6] Rademacher, H. (1922). Einige Sätze über Reihen von allgemeinen Orthogonol-functionen. Math. Ann. 87 112-138.
[7] Serfling, R. J. (1970a). Moment inequalities for the maximum cumulative sum. Ann. Math. Statist. 41 1227-1234.
[8] Serfiing, R. J. (1970b). Convergence properties of S_{n} under moment restrictions. Ann. Math. Statist. 41 1235-1248.

16. DISTRIBUTION STATEMENT (of this report)

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS

Quasi-stationary random variables; Strong law of large numbers;
Almost sure convergence of infinite series.

20. ABSTRACT $\langle X \operatorname{sub} 1\rangle$

Under second moment assumptions and weak dependence conditions on a sequence of random variables $\left\{x_{i}\right\}$, Gaposkin (1975) has established almost sure convergence of the series $\sum_{1}^{\infty} \lambda_{k} X_{k}$ under certain restrictions on the rate of convergence to 0 of the constants $\left\{c_{k}\right\}$. Similarly, Móricz (1977) has established conditions for the almost sure convergence to 0 of the sequence $\lambda_{n} \sum_{1}^{n} X_{k}$. In the present paper, some extensions of these results are obtained. $(\operatorname{lambda} \operatorname{sub} n)(\operatorname{sim} / r o m 1$ to n of X sunk)

$$
\begin{aligned}
& \text { of these results are obtained. } \\
& \langle C \text { sub }\rangle \\
& \text { from } 1 \text { tombda sub } n)(\operatorname{sem} \text { from } 1 \text { to } n \text { of } x \text { sunk) }
\end{aligned}
$$

