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1. Introduction. Let Xx, X2,... be random variables on some probability
space (Q, SS, P) satisfying

(1.1) E(Xx) = 0,       E(Xn\Xx,...,Xn.x) = 0,       n^2,

with probability 1. Define

(1.2) Sn = Xx+---+Xn.

A sequence of random variables {Xk} satisfying (1.1) will be called absolutely
fair (a term introduced by Feller in VI. 12 of his book [5]).

The partial sums {Sn} of an absolutely fair sequence of random variables form a
martingale, that is

(1.3) E(Sn\Sx,...,Sn.x) = Sn.x,       mi    (S0=0),

with probability 1. In fact, a sequence of partial sums of random variables whose
expectations exist is a martingale if and only if (1.1) is true (see e.g. VI.12 of Feller's
book [5], or 11.7 of Doob's book [4]), and then we have E(Xn)=0 for all «.

Also, if E(S2)<co for all «, the sequence of squares of partial sums of an
absolutely fair sequence of random variables is a submartingale, that is

(1.4) E(S2\S2X,...,S2.X)^S2.X,

with probability 1, for f(x) = x2 is a continuous convex function of the real variable x.
The following theorem is well known (see e.g. VII.8 of [5]).

Theorem 1. Let {Xk} satisfy (1.1) and define {Sn} by (1.2). If bx<b2< ■ ■ •-* oo
and

(1.5) 2bk-2E(Xg)<cc
i

then

(1.6) lim bñxSn = 0,    with probability 1.
n-» ec

As a corollary we get the law of large numbers for martingales: if 2f n~2E(X2)
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<oo then «_1Sn^0 with probability 1, a statement which was first proved by
Kolmogorov for sums of mutually independent random variables.

Given the condition (1.5) we also have that
00

(1.7) 2 bk1Xk converges with probability 1,
i

by the martingale convergence theorem (see e.g. Theorem 1, p. 236 of [5]). Further,
(1.7) and Kronecker's lemma imply Theorem 1 of this section, a fact which we are
not going to exploit here.

One of the aims of this paper is to prove Theorem 1 and some generalizations
of it using only a generalized form of Kolmogorov's inequality for martingales
(see e.g. [5, p. 235] for Kolmogorov's inequality for martingales). This is done in
§2 (Inequalities 1, 2 and 3; Theorems 2 and 3).

Let {vn} be a sequence of positive integer valued random variables on (Q, 88, P).
Define the randomized sum

(1.8) SVn = Xx+---+XVn.

In §2 again, we are going to prove some strong laws of large numbers for randomized
partial sums {SVJ of absolutely fair random variables (Theorem 4).

Let again {Xk} be an absolutely fair sequence of random variables satisfying
also

(1.9) E(X2) = cr\,       E(X2 \XX,..., Xk_x) = ol,       k^ 2,

with probability 1, where ox, c2,... are nonnegative constants. Define

(1.10) öl = c\+ ■ ■ ■ +o2.

Let SSj be the Borel field of o> sets, weu, determined by conditions on Xx,..., X¡.
Then (1.1) and (1.9) imply

(LU) E(S2-Ô2\<%}) = Slx-Ô2_x,       j > 1,

with probability 1. In other words, if (1.1) and (1.9) are true, the process
{Sf-v2, ä8},jSn} is a martingale. Conversely, if (1.1) is true and if {Sf-62, 8$„jSn}
is a martingale then (1.9) is true. In particular, (1.9) is true if the A^'s are mutually
independent, with zero expectations and finite variances. Condition (1.9) also
implies that E(X2) = c2, k^ I, and £{JIÏ Xf) = UÏ E(Xf).

Doob [4, pp. 382-384] shows that the central limit theorem is applicable to sums
of random variables {Xk} satisfying (1.1) and (1.9) much as it is to sums of mutually
independent random variables and remarks that this fact was first observed by
P. Levy. We are going to show that the central limit theorem is applicable to
randomly selected sums of an absolutely fair sequence of random variables too,
provided (1.9) is true. This statement is going to be made precise and proved in
§3 (Theorems 6 and 8). Also in §3 we are going to show that, when properly
normed, partial sums of an absolutely fair sequence {Xk} satisfying (1.9) form a
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mixing sequence with their limiting unit normal distribution (this terminology
and statement is going to be made precise there; Theorems 9 and 13), a fact which
implies some further results about randomly selected partial sums of these random
variables (Theorems 10, 12, 14 and 15). Theorems 16 and 17 of §3 are also con-
sequences of this mixing property of partial sums of absolutely fair random
variables.

2. Some inequalities for submartingales and martingales and some strong laws of
large numbers for martingales.

Inequality 1 (a generalization of Kolmogorov's inequality for submartingales).
Let {Yk} be a submartingale sequence of random variables and Yk^0 for all k.
lf{ck} is a nonincreasing sequence of positive constants, then for any positive integers
m and « with m< « and arbitrary x > 0,

(2.1) P{ max eg Yk ä x) ^ - ft (d ~ ti + i)E( Yk) + c2E( Yn)\-

If in (2.1) all ck = 1 and m = 1, we get Kolmogorov's inequality for submartingales
[5, (8.6), p. 235].

Proof of Inequality 1. For fixed x>0 let Ar, r=m, m+l,..., n, be the cu set,
eu e £2, for which c2 Fr(cu) is the first c2 F;(cu) with cf Y,(oS) ̂ x. That is, we have

Af = {cu : c2 YT(oS) ̂  x},       r = m,

AT = {w : c2Yj(oS) < x,m ^ j < r; c2Yr(m) 2: x},       m < r ^ «.

Obviously, the ^4/s are disjoint co sets (mutually exclusive events) and we have

(2.2) PS max c2kYk fc *) - T P(Ak).

Define

(2.3) J= 2 (c2k-c2k + x)Yk + c2Yn.
k = m

Thus, in order to prove (2.1), we have to show

(2.4) 2 P(A¿ = I EW-
k = m x

Now, because we assume Yk ä 0 for all k, we have

(2.5) E(J) ^ 2 E(J\Ar)P(Ar).
r = m

Also, for «i^rS«,

(2.6) E(J\Ar) ^ 2 (c2-c2k + x)E(Yk\Ar) + c2E(Yn\Ar).
k = r

So far this proof differs only notationally from Rényi's proof of the Hájek-
Rényi inequality in [6] to the extent that in his case Yk of (2.3) is equal to the
square of the sum of k mutually independent random variables.
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Now we verify

(2.7) E(Yk\Ar) ̂  E(Yr\Ar) ^ x/c2,       m S r S k S «•

The last inequality of (2.7) follows from the definition of Ar and, if yr is the indi-
cator function of the w set Ar,

E(Yk\Ar) = ^ E(XrYk) = ~ E(E(XrYk\ Yx,..., Yr))

= PJÄJ E(X'E(Y«\ Yi'-> Y» = pjÂT) E(x'Y) = E(Yr\AJ>

on using the submartingale property of the sequence {Yk}. This, through (2.6)
and (2.5), implies (2.4) and Inequality 1 is proved.

Inequality 2 (a generalization of Kolmogorov's inequality for martingales).
Let {Xk} be a sequence of random variables satisfying (1.1) and define {Sn} by (1.2).
If E(S2) < co for all «, and {cn} is a nonincreasing sequence of positive constants,
then for any positive integers m and « with m<« and arbitrary e>0,

(2.8)

Fjmax ck\Sk\ à e\ S -2 ( 2 (cl-c2k + x)E(S2k) + c2E(S2)
XmSkSn J        e"  [k^m

1     f m n
= -2{c2 2 E(X2)+    2   <*£(*£)

£     v       fc-1 Jc = m+1

In case the Xks are mutually independent (2.8) is known as the Hájek-Rényi
inequality (see e.g. [6]), and then the equality of the two expressions on the right-
hand side of (2.8) is obvious. If in (2.8) all ck= 1 and m= 1, we get Kolmogorov's
inequality for martingales ([5, p. 235] ; also [4, p. 315]), and if the Xks are mutually
independent, the original Kolmogorov inequality.

Proof of Inequality 2. {Sn} is a martingale sequence and {S2} is a submartingale
sequence for we assume £(S2)<oo. Let Yk = S% and x = e2 in (2.1) and the first line
of (2.8) follows. The second form of the right-hand side of (2.8) is implied by the
absolute fairness of the sequence {Xn}. To see this, we consider

(2.9) E(S2k) = E(E(S2k\Xx,..., Xk.x)),       k = 1,..., «    (X0 = 0).

Now

E(Sk\Xx,..., Xk-X) = £{(Sfc_! + Xk)2\Xx,..., Xk.x}

= Sk-x + L(Xk\Xx,..., Xk-X)

by (1.1), k = l,...,n (5"0 = 0), and then (2.9) implies

(2.11) E(St) = E(S2.x) + E(X2),

and the second form of the right-hand side of (2.8) follows.
As a byproduct of (2.10) we note that it shows that the sequence {S2} is a sub-

martingale. Also, if we assume that the absolutely fair sequence {Xk} satisfies the

(2.10)
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(2.14)

hypothesis (1.9) too and if â2 is as in (1.10), then (2.10) shows that the sequence
{Si - ô2} is a martingale, that is

(2.12) E(S2k-ô2k\Xx,...,Xk_x) = S2k.x-ô2_x,       k>l,

with probability 1.
Inequality 2 can be generalized to an arbitrary sequence of random variables

as follows.
Inequality 3. Let {£fc} be a sequence of random variables with E(\i;k\r)<oo,

r a fixed positive integer. Define

(2.13) r. - 2 fÄ-^ßli»» •••»&-i)l      ¿o = 0,
1

and assume E(V2)<co. If the sequence {ck}, m, « and e are as in Inequality 2, then

Pf max ck\Vk\ ̂  ,\ Sift (c|-c,2 + 1)£(Ft2) + c2F(Fn2))

m

c2 2 £{[&-£(&I£i,•••, 4-t)]2}

+  2 c2kE{[?k-E(ek\tx,...,ik_x)]2}
fc = m + l

Proof of Inequality 3. The summands of Vn have the property (1.1), that is they
are absolutely fair random variables. Replace {Xk} by {& —/¿(&|fi,..., fk-i)} and
{Sn} by {Fn} in Inequality 2. The second form of (2.14) follows from an argument
concerning E(Vk) similar to that concerning E(S2) in (2.9), (2.10) and (2.11) above.

Letting « -> oo and assuming 2? c\E(X2) < oo in (2.8), we get

(2.15) lim P/supcfc|Sk| ^ e\ = 0,
m->co      LmSfc J

and, equivalently,

(2.16) lim cnSn = 0,   with probability 1.
n-» oo

This, with ck=bkx, is the statement of Theorem 1 of §1.
It is perhaps of some interest to note here that if {A^^} is a sequence of mutually

orthogonal random variables with E(Xk) = 0 and E(X2) finite for all k, then n~xSn
->0 with probability 1 if 2" ""2 log2 nE(X2) <co [4, p. 158], a condition which
can be replaced by 2f «_2F(A'2)<oo if we also assume that the sequence {Xk} of
mutually orthogonal random variables is absolutely fair. In fact, we do not need
then the orthogonality assumption any more. Thus, as far as the strong law of
large numbers is concerned, absolutely fair random variables behave like mutually
independent ones, while mutually orthogonal random variables require more severe
restrictions on their variances in order to have the strong law of large numbers
hold.
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Theorem 1 can be generalized to an arbitrary sequence of random variables as
follows.

Theorem 2. Let {Çk} be a sequence of random variables and assume, for a fixed
positive integer r, that E(\Çk\r)<co. Define Vn as in (2.13). If E(V2)<oo, bx<b2
<■••-> oo, and

(2.17) 2 bk2E{[ek-E(ek\Íx,..., $k_x)]2} < co,
1

then

(2.18) lim b-xVn = 0,    with probability 1.
TI-* CO

Theorem 2 can be proved from Inequality 3 exactly the same way as Theorem 1
above from Inequality 2.

Theorem 3. Retain the assumptions of Theorem 2 about the sequences {fn} and
{Vn}, and assume, for a fixed positive integer r, that E{fk\$x,..., ik-x}=pk, constants
for k = 1, 2,.... Let prk^0 if r is an odd positive integer, and let 2" = i p) -> °o as
« —> oo and r even or odd. If

(2 19) f E^-^ < oo

then

(2.20) lim ||-4=1,    with probability I.
n-oo ¿i pk

Theorem 3, with cte = (2ï f*J)~\ follows from Inequality 3 exactly the same way
as Theorem 1 from Inequality 2.

If r=l and the sequence {ffc} is absolutely fair to start with, then Theorem 2
reduces to Theorem 1. Theorems 2 and 3 are well known for partial sums of
mutually independent random variables. The assumption E{£rk\Hx,..., Çk-X}=pk,
k= 1, 2,... (Io=0), of Theorem 3 implies E{£k} = pk, k=l,2,... and also that
£(n? = i e]) — Tíf= i E(tfj). This is certainly true in case of independent random
variables but it does not, of course, imply independence.

Conditions (2.17) and (2.19) imply the convergence of

(2.21) fbk1[ek-E(ek\êx,...,èk-i)}   and   T U>>ï)    ^"^i i   \ i     /

respectively, with probability 1.
This follows immediately from the martingale convergence theorem, for the

partial sums of the infinite series of (2.21) form a martingale.
Let {vn} be a sequence of positive integer valued random variables on (Q, 38, P),

and let vn -^ oo with probability 1 as « -> oo. Define SVn as in (1.8). Similarly, define
randomized partial sums for the series occuring in Theorems 2 and 3, (1.7), and
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(2.21). Then, given the conditions of Theorems 1, 2 and 3 respectively and vn -+ oo
with probability 1 as « -> oo, we have

Theorem 4.  With probability 1 the following statements are true:

(2.22) lim b;xSv„ = lim b;xFVn = 0,
n-» oo n-»co

(2-23) iim|L^ = i;

a/io, the randomized partial sums of (1.7) and (2.21) converge with probability 1
(we «aye e.g. 2ï" ¿V 1^fc converges with probability 1 as « —> oo), g/i>e« i«e conditions
(1.5), (2.17) ami (2.19).

Proof of Theorem 4. We are going to show here that, under the conditions of
Theorem 1 and assuming vn -»■ oo with probability 1 as « -> oo, we have
limn_00 KxSv% =0 with probability 1. The statement of Theorem 4 about its other
random variables can be proved exactly the same way.

Consider the co-set

Bx = {cu : b~xS^n -t> 0, vn -*■ co as « -> oo},

and select an element cu from Px. There exists then an e(cu)>0 such that for every
« we can find an integer k(n) ^ « and

(2-24) l*CA(»l = ••
As « -> oo, an ordered set of infinitely many integers £(«) is produced and k(n) -> oo.
Let us put mn=vk(n)(w), where cu £ Bx. Then «in -> oo as « -* oo. By (2.24), we have

|¿A»| ^ .,
for the sequence {¿^»^(cu)}, and co is an element of

B2 = {cu : ¿V 1-S'n -(> 0, vn —> oo as « -> oo}.

Thus BxçB2, and P(52) = 0 by Theorem 1.
The proof of Theorem 4 suggests the following general theorem.

Proposition. Let {Zn} be a sequence of random variables for which the strong law
of large numbers holds, that is, limn_ CBZn = 0 with probability 1. Let {vn} be a sequence
of positive integer valued random variables and let vn —> oo with probability 1 as « —> oo.
Then the randomized sequence of random variables {ZVJ also satisfies the strong law
of large numbers, that is lim,,^*, ZVn =0 with probability 1.

3. The central limit theorem for the sum of a random number of absolutely fair
random variables. Let Xx, X2,... be a sequence of random variables on some
probability space (D, J1, P) and define {Sn} by (1.2). We say the sequence {Xk}
satisfies the central limit theorem with norming factors {bn} if

(3.1) lim P{SJbn ix} = cp(x),
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where 0(x) is the unit normal distribution function and the bn's are positive real
numbers.

Let {vn} be a sequence of positive integer valued random variables on (O., 88, P).
It is frequently of interest to know whether SVn as defined in (1.8) is approximately
normal for large «. This question is answered by the following special case of a
theorem of Anscombe [1] which we now formulate as needed in this paper.

Theorem 5 (Anscombe). Let {Xk} satisfy the central limit theorem with norming
factors {bn} and assume that for any positive e and r¡, there exist a positive c and an
integer n0 such that ifn^n0 then

(3.2) Pi max   \Sn-Sm\ ^ ebn\ < r¡.
L|m-n|^nc J

Then, ifvn/n converges in probability to 1,

(3.3) lim P{SJbVn Sx}= <D(x).
rt-* co

First we are going to prove here

Theorem 6. Let {Xk} be an absolutely fair sequence of random variables and assume
ck = af >0, k^2, in (1.9). Ifvn/n converges in probability to 1 then

(3.4) lim P{SJv\'2<jx Sx} = <D(x).
n-* oo

Proof of Theorem 6. Using the language of (3.1) it follows from Doob's discussion
[4, pp. 382-384] that the above sequence {Xk} satisfies the central limit theorem
with norming factors {nll2ax}; that is, we have

(3.5) lim P{Sn/nll2ax S x} = <D(x).
n-*oo

Thus, according to Theorem 5, in order to have (3.4) we will only have to verify
that our sequence {AJ of absolutely fair random variables with E(Xk\Xx,..., Xk_x)
= a\>0,k^l (A0 = 0) satisfies the hypothesis (3.2).

Let [x] denote the integral part of the real number x and consider

Pf  max    \Sn-Sm\ ^ enll2<rx\
\\m~n\^nc J

= Pf        'max \Sn-Sm\ ^ enll2<jx\
l[n(l-c)]SmS[n(l+c)] J

(3-6) < p.
lSmS[n(l+c)J

1        ™,„        „
:„2 ^lO^n- iS'tnd+c)]) } —    2      2 {£(Stn(1+c)]) — £(Sn)},c nox e rivx

where the last inequality follows from Kolmogorov's inequality for martingales
((2.8) with all ck= 1 and m= 1), and the last equality follows from the martingale
property of {Sn}. Taking into consideration that E(S2n(X+c)x) — E(S2) = [cn]of, it
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follows now that (3.2) is satisfied for the sequence {Xk} of Theorem 6, and this
completes its proof too.

It is clear that the assumption vjn converges in probability to 1 in Theorem 6
can be replaced by the assumption vjf(n) converges in probability to 1, where
/(«) is an arbitrary real valued function which increases monotonically to oo as
« -> oo. We could, for example, take/(«) = A«, where A is a positive constant, and
then we would have vjn converges in probability to A instead of 1 in Theorem 6.

Now we formulate a theorem of P. Levy [4, p. 383].

Theorem 7 (P. Levy). Let {Xk} be an absolutely fair sequence of random variables
satisfying (1.9). Define ô2n as in (1.10) and assume ô2>0. If for large « the random
variables {XJôJ are infinitesimal in the sense o/HI.4 of [4], then

(3.7) lim P{SJân í x} = <D(x).
n-* oo

The following theorem is a generalization of Theorem 6.

Theorem 8. Let {Xk} be an absolutely fair sequence of random variables satisfying
(1.9) and the conditions of Theorem 1. Assume also that the following conditions are
satisfied: ôn —>- oo as « —> oo such that

(3.8) limlimsupg[n(i+c)1 = 1,
c-»0     n-*ao On

and

(3.9) vjn converges in probability to I as n -> oo.

Then

(3.10) lim P{SJÔVn S x} = 0(x).
n-. oo

Proof of Theorem 8. Our sequence {Xk} satisfies the central limit theorem with
norming factors {aj (Theorem 7). According to Theorem 5 we only have to show
that the condition (3.2) is satisfied. A look at the last line of (3.6) and condition
(3.8) shows that it is so.

Again, the assumption (3.9) can be replaced by one which says vjf(n) converges
in probability to 1, where/(«) is an arbitrary real valued function which increases
monotonically to oo as « —»■ oo.

Now it is of interest to know whether Theorems 6 and 8 are true when vjn
converges in probability to a positive random variable A having a discrete (or
perhaps not necessarily discrete) distribution, instead of converging to a positive
constant. The answer to this question is in the affirmative for the sequence of
partial sums {Sn} of absolutely fair sequences satisfying (1.9) is a mixing sequence
with the limiting unit normal distribution <P(x), as will be seen in Theorems 9
and 13.

In general terminology, Rényi [9] calls a sequence of random variables {-nj a
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mixing sequence with the limiting distribution function £(x) if for every event
Be38 with P(B)>0 and for every real x which is a point of continuity of £(x)
we have

(3.11) lim P{Vn S x\B} = F(x),
n-* co

where, in general, P(A\B) is the conditional probability of A given B (Ae38,
Be38) and is defined by P(AB)\P(B), P(B)>0.

Let {Xk} be a sequence of random variables, define {Sn} by (1.2), and let this
sequence satisfy the central limit theorem with norming factors {bn}, that is to say
we have (3.1). There exists then a positive integer «0 such that P{Sn/bn S x} > 0 for
«^«0. It follows then from Theorems 1 and 2 of Rényi's paper [9] that in order to
prove that {Sn/bn} is a mixing sequence with the limiting unit normal distribution
<I>(x), it is sufficient to show

(3.12) lim P{Sn/bn S x\Sk/bk Sx}= 0>(x)
n-* oo

for any k 2: «0.

Theorem 9. 7er {X,) be an absolutely fair sequence of random variables satisfying
(1.9) with o2 = oz>0,j^2. Then for any ktn0, where n0 is such that

P{Sn/nil2ox g x} > 0      fornZ «0,

we have

(3.13) lim P{SJnll2ax S x | Sk/kll2ax S x} = 4>(x),
n-+oo

that is the sequence {Sn/n1,2ax} is mixing with the unit normal distribution 0(x).

Proof of Theorem 9. We have already remarked that our sequence of random
variables satisfies the central limit theorem with norming factors {nll2ax}, that is
we have (3.5). Therefore there exists a positive integer n0 as postulated in the
statement of this theorem. In order to verify (3.13) we need the following lemma (see
e.g. [3, p. 254]).

Lemma 1. If S„ and en are random variables such that limn_ x 7{Sn Sx} = F(x) at
every point of continuity x of the distribution function F(x), and en converges in
probability to zero, then limn_M P{8n+enSx} = F(x).

It follows from Lemma 1 and (3.5) that

(3.14) lim FííAn-S*)/«1'2^ g x} = 0(x).
n-»oo

Now we would like to show

(3.15) lim {P(Sn-Sk)lnll2ax S x\Sk/kll2ax S x} = <D(x).
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Define the probability space (Q, », P*) with P*(P)=P(P| Sg£x), SeJ and
S*=Sk/kx,2<jx, and consider the characteristic function

E{exp(it(Sn-Sk)/nx'2ax)\sn
(3.16)

= F(F{exp (it(Sn - Sk)/nx '2o-x | Xx,..., Xn. x} \ S*).

The equality of these two forms follows from the fact that the a-field of cu-sets
determined by conditions onIj,...,I„_i contains the cr-field of cu-sets determined
by conditions on S£, k<n.

Now the right-hand side of (3.16) is equal to

/i(exp (¿'^^^"-^{exp (itXJnx'2ox)\Xx,..., Xn_x} | Sfc*)

= {l-t2l2n + o(t2/n)}n-k-+exp (-t2/2)     asn->oo.

In line two of above argument we used the condition (1.9) with a2 = a2>0,
j^2, in £(exp (itXn)\Xx,..., Xn_x) = 1 -^cr2r2-t-o(f2) and then we applied, mutatis
mutandis, the equality (3.16) repeatedly. Letting « ->■ oo we see that (3.15) is true.

Applying again Lemma 1 with 8n = (Sn — Sk)/nxl2ox and en = Sk/nxl2ox on the
probability space (Q, 3S, P*), (3.13) follows through (3.15) and Theorem 9 is
proved.

Using Theorem 9 we can generalize Theorem 6 as follows.

Theorem 10. Ler {Xk} be an absolutely fair sequence of random variables satisfying
the condition (1.9) with o\ = o\ > 0, k ä 2. If vjn (or vjf(n), where /(«) is an arbitrary
real valued function which increases monotonically to oo as « —> oo) converges in
probability to a positive random variable, having a discrete distribution, as n —> oo,
then

(3.17) lim P{SvJvll2ox ûx} = <D(x).
n-* oo

Proof of Theorem 10. Theorem 9 tells us that the sequence {Sn/«1'^} is mixing
with the unit normal distribution. Mixing sequences of random variables have the
remarkable property that in the limit they are independent of any random variable
(Rényi, statement (2.8) of [9]). Thus, as a consequence of Theorem 9, we have

Corollary 1. Retain the assumptions of Theorem 9 a«c/ let 8 be any random
variable. IfP{8g,y}>0, then

(3.18) lim P{SJnxl2ox á x | S g y} = <D(x).
n-* co
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For the sequence of random variables of Theorem 10 we already verified the
Anscombe condition (3.2) in the argument (3.6), using Kolmogorov's inequality
for martingales. These two facts (Corollary 1 and the verified condition (3.2))
together with Rényi's proof of his Theorem 2 in [10] imply Theorem 10 as follows.
Replace the assumption that the sequences of random variables in question are
mutually independent by the one that they are absolutely fair and satisfy (1.9)
with a% = a\>0, k^2. Replace Lemma 4 of Rényi's proof of his Theorem 2 in
[10] by Corollary 1 above. This carries us till statement (13) of his proof, and a
statement (13) type version in our situation follows from the already verified
condition (3.2) for our partial sums {Sn}. The rest of Rényi's proof of his Theorem 2
of [10] remains valid, mutatis mutandis, for Theorem 10 of this paper and this
completes its proof too.

The lines of proof of Theorem 10 suggest the following general statement.

Theorem 11. Let {r]n} be a mixing sequence of random variables with the limiting
distribution function F(x), that is relation (3.11) holds. Let vjf(n), where /(«) is as
before, converge in probability to a positive discrete random variable X as n^-co.
Let the sequence {r¡n} satisfy the Anscombe condition (3.2). Then

(3.19) lim P{Vvn Sx} = F(x),
n-* co

for every real x which is a point of continuity of F(x).

The proof is again analogous to the one given by Rényi in [10] for Theorem 2.
Theorem 10 can be generalized as follows.

Theorem 12. Retain the assumptions of Theorem 10 about the sequence {Xk}.
Then the statement (3.17) holds ifvjn (or vn/f(n) with /(«) as before) converges in
probability to a positive, not necessarily discrete random variable X as « -> co.

The proof of this theorem will be given at the end of this section.
Next we generalize Theorem 8 the way we generalized Theorem 6 in Theorem 10.

In order to do so we need the following generalization of Theorem 9.

Theorem 13. 7er {Xn} be an absolutely fair sequence of random variables satisfying
(1.9) and the conditions of Theorem 1. Define â\ as in (1.10) and assume also that
ôn -^ oo as n -> co. Then for any k ^ «0, where n0 is such that P{Sn/ân ¿ x} > 0 for
n ̂  «o, we have

(3.20) lim P{SJÔn S x I Sk/èk S x} = <D(x),
n-» oo

that is the sequence {Sn/ôn} is mixing with the unit normal distribution function O(x).

Proof of Theorem 13. Our sequence of random variables satisfies the central
limit theorem with norming factors {ân} (Theorem 7). There exists, therefore, a
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positive integer w0 as postulated in the statement of this theorem. From the proof
of Theorem 8 it follows that in order to verify (3.20) it is sufficient to verify

(3.21) lim P{(Sn-Sk)/ân S x I Sk/Ôk S x} = <D(x),
n-» oo

for any k^n0.
Using the condition (1.9) and the method of proof of Theorem 9 we get, on

neglecting error terms,

fa(t) = E{exp(it(S,-Sk))\Sk}

= (l-t 2a2/2)£{exp (it(Xk + , + ■■• + X, _ J) | Sk},      j > k.

So, approximately, we have

log fa(t) - log fa-x(t) = -t2o2/2,       k < j S n.

Adding these equations, we get

log¿n(/) = log £{exp (it(Sn-Sk)) \Sk}= -Ç    2   CT>2 = "T «"^

Therefore, approximately, we have

(3.22) logfa(t/ân)= -(t2/2)(l-â2k/âl).

Now given that the sequence {Xk} of Theorem 13 satisfies the central limit
theorem with norming factors {£„} (Theorem 7), the neglected error terms in
(3.22) are uniformly small in t and in the {Xk/an} distributions involved as « ->■ oo,
and log faXt/ôn) -*■ —t2/2 as « and an ->■ oo, for any k^n0. This verifies (3.21) and
Theorem 13 is proved.

Having this result the following generalization of Theorem 8 is immediately
available.

Theorem 14. Retain the assumptions of Theorem 8 about the sequence {Xk} and
its condition (3.8). Ifvjn (or vn/f(ri), where /(«) is as before) converges in probability
to a positive random variable X, having a discrete distribution, as « -> oo, then (3.10)
holds.

This theorem can be proved directly exactly the same way as Theorem 10, or
we can look at it as a special case of Theorem 11 (in proving Theorem 8 we
observed that the Anscombe condition (3.2) is satisfied in this case and Theorem 13
ensures mixing of the sequence {Xk} with the distribution function <t>(x)).

A not entirely trivial generalization of Theorem 14 is as follows.

Theorem 15. Retain the assumption of Theorem 8 about the sequence {Xk}. Let the
sequence {ôn} be slowly oscillating in the sense of Karamata; that is to say,

ôn = n"L(n),       a > 0,

where for any c>0, L([cn])/L(n) ->■ 1 as « -> co. Ifvjn (or vjf(n) withf(n) as before)
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converges in probability to a positive, not necessarily discrete random variable X as
« -> oo, then (3.10) holds.

The proof of Theorem 15 is similar to that of Theorem 12 whose proof will be
given after the following preliminary results (Theorems 16 and 17).

Theorem 16. Let {Xk} be an absolutely fair sequence of random variables satisfying
(1.9) and the conditions of Theorem 1. Let ôn —> oo as « —> oo. Then given any event
AeSS with P(A)>0, we have

lim E{S2/ôl\A} = 1,       as « -> oo.
n-*eo

In case the random variables {Xk} are mutually independent, Theorem 16 is a
special case of Theorem 6 of J. Mogyoródi in [8] and its proof differs only notation-
ally from that of his Theorem 6. As a matter of fact we have here E{S2/â2}
= )-Z x2 d(&(x)= 1 and Fn(x) converges to <I>(x) as « ^ oo, where Fn(x) is the
distribution function of the random variable SJôn (Theorem 7). These two facts
carry us through, mutatis mutandis, when proving our Theorem, till after the first
statement after statement (15) in Mogyoródi's proof of his above mentioned
theorem. According to Theorem 13 of this paper we also have Fn(x\A) -> ^(x),
and Mogyoródi's last lines of proof remain valid, mutatis mutandis, in our case
too.

Theorem 16 is a generalization of J. Mogyoródi's Theorem 6 in [8] in the sense
that we talk about absolutely fair random variables instead of mutually independent
ones but, it is also more restricted than his theorem for we restrict ourselves to the
unit normal distribution function <S>(x) as our limiting distribution function of
Fn(x). This is because we proved the mixing property for the sequence {SJaJ
with the unit normal distribution function only (Theorem 13). The question of
mixing of a martingale sequence of random variables {SJ with any possible limiting
distribution function F(x) is still open. Should it be true however that partial sums
of absolutely fair random variables were mixing with any possible limiting distri-
bution function F(x) in the sense of Rényi's definition (3.11), then Mogyoródi's
Theorem 6 in [8] would also remain true for them.

Theorem 17. Let {$k} be any sequence of random variables with E($x)=px,
and write E(ik\iu ..., Çk-X) = pk, for k=l,2,..., |0=0. Put Xk=ijk-pk (now
{Xk} is an absolutely fair sequence) and let these Xks satisfy the condition (1.9) and
also the conditions of Theorem 7. Let B be any event having positive probability. Then
there exists an integer n0 = n0 (B) such that for «^«0,

P< max
llSfcSn I* ■új2{P(B)}x>2,

where e is arbitrary positive number.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1968] ON THE STRONG LAW OF LARGE NUMBERS 273

Theorem 17 is a Kolmogorov type inequality for martingales. In case the random
variables {Çk} are mutually independent, it is a special case of Theorem 7 of
Mogyoródi in [8]. The content of the paragraph preceding Theorem 17 concerning
the relation between Theorem 16 and Mogyoródi's Theorem 6 of [8] remains valid
regarding the relation between Theorem 17 and Mogyoródi's Theorem 7 of [8]
too.

Proof of Theorem 17. The proof of Theorem 17 is similar to that of Theorem 7
of Mogyoródi in [8]. We are going to introduce some notation here and will
only give those lines of proof afterwards which differ from his appropriate ones.

Let Sk = J_x A;. The summands of Sk form an absolutely fair sequence and the
partial sums {Sk} form a martingale sequence. Let y be the indicator of the event
B. Let Ak, k = 2,...,«, be the event

\Sj\ < eân,       j= 1,2, ...,k-\    and    \Sk\ S e&n,

and let Ax be the event \SX\ irá,. Further, let ak be the indicator of the event Ak.
The lines of the first paragraph of Mogyoródi's proof remain true when using the
language and notation of Theorem 17. Now we write the random variable ßf of
Mogyoródi's proof in terms of our notation as

2
k=l

ßi = X, 2 <*kSk,       j = 2, 3,..., «,

and are going to show that E(ßjßi) = 0 for j<i.
Consider

(3.23) E(ßßd = eS^X, 5 «ä) (*i ̂ 2 «a) j < t.

The right-hand side of (3.23) can be written as

E\ \xi 2 "fc^ll^i 2 akSk) \xx,.-.,Xi_x

[x} 2 «All 2 aAfE{X,\Xx,..., X^x}

= 0,       for the sequence {A¡} is absolutely fair.

Thus, when the )3/s are defined in terms of absolutely fair random variables, the
above argument replaces paragraph 2 of Mogyoródi's proof.
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Next we consider

E(ßj) = El X:
(i-i \ :2 «a)

/;-i \5

?l 2 "A) xx,..., Xj-X

(3.24) = E

=   „?

(2akSk)

11-1 \S
12 akSkj

E{Xf\Xx,...,Xj_x}

i-i
= a2  2  E(a2S2k).

k = l

The fourth line of (3.24) follows from the property of X/s that they satisfy the
condition (1.9), and its last line is the result of the fact that «¡^=0 if i'// Also,
because of the submartingale property of the sequence {S2}, we have

Therefore,

(3.25)

E{S2\S?,...,S2}^Sk2,       k<n.

E(a2S¿) ï E{a2kE(SZ\S2x,..., S¿)}

= E{E(SÎ\Sx2,...,Sk2)\Ak}P(Ak)

= E(S2\Ak)P(Ak).

Putting (3.24) and (3.25) together we get

(3.26) E(ß2) =£ c2 2 E(S2\Ak)P(Ak) ï o2E(S2) = a2â2.

The above argument leading up to (3.26) and the statement (3.26) itself takes the
place of paragraph 3 in Mogyoródi's proof of his Theorem 7 in [8] in our case.
The lines of his proof after paragraph 3, leading up to and including his statement
(17) remain valid for Theorem 17 of this paper too, and the last few lines of his
proof hold true in the sense of our Theorem 16. This completes the proof of
Theorem 17.

Proof of Theorem 12. Theorems 13, 16 and 17 together with Mogyoródi's
proof of his Theorem 3 in [6] imply Theorem 12 as follows. Replace Theorem 4
(a theorem of Rényi [9]) in Mogyoródi's paper [8] by Theorem 13 (or by Theorem
9) of our paper. Also replace Theorems 6 and 7 of Mogyoródi's paper [8] by
Theorems 16 and 17 of our paper, respectively, and repeat the argument of his
proof of Theorem 3 in [8], mutatis mutandis, for an absolutely fair sequence of
random variables which also satisfy (1.9), quoting when necessary Theorem 13 or
16 or 17, as the case may be, instead of the replaced ones.
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