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Abstract. A path in an edge-colored graph, where adjacent edges may be colored the same,

is a rainbow path if no two edges of it are colored the same. For any two vertices u and v

of G, a rainbow u− v geodesic in G is a rainbow u− v path of length d(u,v), where d(u,v)
is the distance between u and v. The graph G is strongly rainbow connected if there exists

a rainbow u− v geodesic for any two vertices u and v in G. The strong rainbow connection

number of G, denoted by src(G), is the minimum number of colors that are needed in order

to make G strongly rainbow connected. In this paper, we first give a sharp upper bound for

src(G) in terms of the number of edge-disjoint triangles in a graph G, and give a necessary

and sufficient condition for the equality. We next investigate the graphs with large strong

rainbow connection numbers. Chartrand et al. obtained that src(G) = m if and only if G is a

tree, we will show that src(G) 6= m−1, and characterize the graphs G with src(G) = m−2

where m is the number of edges of G.
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1. Introduction

All graphs in this paper are finite, undirected and simple. Let G be a nontrivial connected

graph on which there is a coloring c : E(G) → {1,2, · · · ,n}, n ∈ N, of the edges of G,

where adjacent edges may be colored the same. A path is a rainbow path if no two

edges of it are colored the same. An edge-colored graph G is rainbow connected if any

two vertices are connected by a rainbow path. Clearly, if a graph is rainbow connected,

it must be connected. Conversely, any connected graph has a trivial edge-coloring that

makes it rainbow connected; just color each edge with a distinct color. Thus, we define

the rainbow connection number of a connected graph G, denoted by rc(G), as the smallest

number of colors that are needed in order to make G rainbow connected. Let c be a rainbow

coloring of a connected graph G. For any two vertices u and v of G, a rainbow u−v geodesic

in G is a rainbow u−v path of length d(u,v), where d(u,v) is the distance between u and v.

The graph G is strongly rainbow connected if there exists a rainbow u− v geodesic for any

pair of vertices u and v in G. In this case, the coloring c is called a strong rainbow coloring
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of G. Similarly, we define the strong rainbow connection number of a connected graph G,

denoted by src(G), as the smallest number of colors that are needed in order to make G

strongly rainbow connected. A strong rainbow coloring of G using src(G) colors is called a

minimum strong rainbow coloring of G. Clearly, we have diam(G) ≤ rc(G) ≤ src(G) ≤ m

where diam(G) denotes the diameter of G and m is the number of edges of G.

The topic of rainbow connection number is fairly interesting and recently a series of pa-

pers have been written about it. The reader can see [7] for a monograph and [8] for a survey

on this topic. The strong rainbow connection number is also interesting and, by definition,

the investigation of it is more challenging than that of rainbow connection number. How-

ever, there are very few papers that have been written about it. In this paper, we do research

on it. In [3], Chartrand et al. determined the precise strong rainbow connection numbers

for some special graph classes including trees, complete graphs, wheels, complete bipartite

(multipartite) graphs.

Recently, Ananth and Nasre [1] derived the following hardness result about the strong

rainbow connection number.

Theorem 1.1. [1] For every integer k ≥ 3, deciding whether src(G) ≤ k, is NP-hard even

when G is bipartite.

So, for a general graph G, it is almost impossible to give the precise value for src(G).
And we aim to give upper bounds for it according to some graph parameters. In this paper,

we will derive a sharp upper bound for src(G) in terms of the number of edge-disjoint

triangles (if exist) in a graph G, and give a necessary and sufficient condition for the equality

(Theorem 3.1).

In [4], the authors investigated the graphs with small rainbow connection numbers, they

showed a sufficient condition that guarantees rc(G) = 2 and gave a threshold function for a

random graph G = G(n, p) to have rc(G(n, p)) ≤ 2.

Theorem 1.2. [4] Any non-complete graph with δ (G) ≥ n/2+ logn has rc(G) = 2.

Theorem 1.3. [4] p =
√

logn/n is a sharp threshold function for the property rc(G(n, p))≤
2.

In [3], the authors derived that the problem of considering graphs with rc(G) = 2 is

equivalent to that of considering graphs with src(G) = 2.

Proposition 1.1. [3] rc(G) = 2 if and only if src(G) = 2.

In Section 4.2 of [7], Li and Sun did research on graphs with large rainbow connection

numbers, and showed that rc(G) 6= m− 1 and characterized the graphs with rc(G) = m−
2. In this paper, we aim to investigate the graphs with large strong rainbow connection

numbers. In [3], Chartrand et al. obtained that src(G) = m if and only if G is a tree. We will

show that src(G) 6= m−1 and characterize the graphs with src(G) = m−2 by showing that

src(G) = m−2 if and only if G is a 5-cycle or belongs to one of two graph classes (Theorem

4.1).

We use V (G), E(G) for the set of vertices and edges of G, respectively. For any subset

X of V (G), let G[X ] denote the subgraph induced by X , and E[X ] the edge set of G[X ];
similarly, for any subset E1 of E(G), let G[E1] denote the subgraph induced by E1. Let G

be a set of graphs, then V (G ) =
⋃

G∈G V (G), E(G ) =
⋃

G∈G E(G). A rooted tree T (x) is

a tree T with a specified vertex x, called the root of T . The path xT v is the unique x− v



On the Strong Rainbow Connection of a Graph 301

path in T , each vertex on the path xT v, including the vertex v itself, is called an ancestor

of v, an ancestor of a vertex is proper if it is not the vertex itself, the immediate proper

ancestor of a vertex v other than the root is its parent and the vertices with parent v are its

children or sons. We let Pn and Cn denote the path and cycle with n vertices, respectively.

If P : u1,u2, · · · ,ut is a path, then the ui − u j section of P, denoted by uiPu j, is the path

ui,ui+1, · · · ,u j. Similarly, for a cycle C : v1, · · · ,vt ,v1, we define the vi −v j section, denoted

by viCv j, of C, and C contains two vi − v j sections. Note the fact that if P is a u1 − ut

geodesic, then uiPu j is also a ui −u j geodesic where 1 ≤ i, j ≤ t. We use l(P) to denote the

length of a path P. For a set S, |S| denotes the cardinality of S. In a graph G with at least one

cycle, the length of a shortest cycle is called its girth, denoted by g(G). In an edge-colored

graph G, we use c(e) to denote the color of an edge e, and for a subgraph G1 of G, we use

c(G1) to denote the set of colors of the edges in G1. We follow the notation and terminology

of [2].

2. Basic results

We first give a necessary condition for an edge-colored graph to be strongly rainbow con-

nected. If G contains at least two cut edges, then for any two cut edges e1 = u1u2, e1 = v1v2,

there must exist some 1 ≤ i0, j0 ≤ 2, such that any ui0 − v j0 path must contain the edges

e1,e2. So we have:

Observation 2.1. If G is strongly rainbow connected under some edge-coloring, and e1,e2

are two cut edges, then c(e1) 6= c(e2).

The following lemma will be useful in our discussion.

Lemma 2.1. If src(G) = m−1 or m−2, then 3 ≤ g(G) ≤ 5.

Proof. Let C : v1, · · · ,vk,vk+1 = v1 be a minimum cycle of G with k = g(G), and ei = vivi+1

for each 1 ≤ i ≤ k, we suppose k ≥ 6. We give the cycle C the same strong rainbow coloring

as in [3]: If k is even, let k = 2ℓ for some integer ℓ≥ 3, c(ei) = i for 1≤ i≤ ℓ and c(ei) = i−ℓ
for ℓ+1 ≤ i ≤ k; If k is odd, let k = 2ℓ+1 for some integer ℓ≥ 3, c(ei) = i for 1 ≤ i ≤ ℓ+1

and c(ei) = i− ℓ− 1 for ℓ+ 2 ≤ i ≤ k. We color each other edge with a fresh color. This

procedure costs ⌈ k
2
⌉+(m− k) = m− (k−⌈ k

2
⌉) ≤ m−3 colors totally.

We only consider the case k = 2ℓ(ℓ≥ 3), since the case for k = 2ℓ+1(ℓ≥ 3) can be done

similarly. Let P : u = u1, · · · ,v = ut be a u−v geodesic of G. If there are two edges of P, say

e′1, e′2, with the same color, then they must be in C. Without loss of generality, let e′1 = v1v2.

We first consider the case that e′1 = v1v2, and v1 = ui1 ,v2 = ui1+1 for some 1 ≤ i1 ≤ t. Then

we must have e′2 = vℓ+1vℓ+2 where vℓ+1 = u j1 , vℓ+2 = u j1+1 for some i1 + 1 ≤ j1 ≤ t or

vℓ+2 = u j2 , vℓ+1 = u j2+1 for some i1 +1 ≤ j2 ≤ t. If vℓ+1 = u j1 , vℓ+2 = u j1+1 for some i1 +
1 ≤ j1 ≤ t, then the section v2Pvℓ+1 of P is a v2 −vℓ+1 geodesic, and so it is not longer than

the section C′ : v2,v3, · · · ,vℓ+1 of C, then the length of v2Pvℓ+1, l(v2Pvℓ+1)≤ ℓ−1, is smaller

than the length of the section C′′ : v2,v1,vk, · · · ,vℓ+1 of C. So the sections v2Pvℓ+1 and C′

will produce a smaller cycle than C (this produces a contradiction), or v2Pvℓ+1 is the same as

C′ (but in this case, the section C′′′ : v1,vk, · · · ,vℓ+2 of C is shorter than v1Pvℓ+2 which now

is a v1 − vℓ+2 geodesic, this also produces a contradiction). If vℓ+2 = u j2 , vℓ+1 = u j2+1 for

some i1 +1 ≤ j2 ≤ t, then the section v1Pvℓ+2 of P is a v1−vℓ+2 geodesic, so it is not longer

than the length of the section C′ : v1,vk,vk−1, · · · ,vℓ+2 of C and its length, l(v1Pvℓ+2)≤ ℓ−1,

is smaller than that of the section C′′ : v1,v2, · · · ,vℓ+2 of C. So the sections v1Pvℓ+2 and C′
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will produce a smaller cycle than C, this also produces a contradiction. So P is strongly

rainbow. The remaining two subcases correspond to the case that v1 = ui1+1, v2 = ui1 , and

with a similar argument, a contradiction will be produced. Then the conclusion holds.

Note that we have proved the above lemma by contradiction: we first chose a smallest

cycle C of a graph G, then gave it a strong rainbow coloring the same as in [3], and gave

a fresh color to any other edge. Then for any u − v geodesic P, we derived that either

one section of P was the same as one section of C and then found a shorter path than the

geodesic, or one section of P and one section of C produced a smaller cycle than C, each of

these two cases would produce a contradiction. This technique will be useful in the sequel.

u2u1

u3u4u5

C1

C2

g(G) = 3g(G) = 5

u1
u2

u3
C1

C2

g(G) = 4

u1 u2

u3

u4u5

C2

C1

C2

C1
C1

C2

C1

C2

u1 u2

u3u4

u1
u2

u3

u4

u1 u2

u3

u4

v4

v2

Figure 1. The graphs for Observation 2.2.

The following observation is obvious and we omit its proof.

Observation 2.2. Let G be a connected graph with at least one cycle, and 3 ≤ g(G) ≤ 5.

Let C1 be the smallest cycle of G, and C2 be the second smallest cycle (if exists) of G. If C1

and C2 have at least two common vertices, then we have:

(1) if g(G) = 3, then C1 and C2 have one common edge as shown in Figure 1;

(2) if g(G) = 4, then C1 and C2 have one common edge, or two common adjacent

edges, or C1 and C2 are two edge-disjoint 4-cycles, as shown in Figure 1;

(3) if g(G) = 5, then C1 and C2 have one common edge, or two common adjacent

edges, as shown in Figure 1.

The following observation is easy and very useful in the sequel.

Observation 2.3. For any two vertices u, v ∈ G, we have the following:

(1) if T is a triangle in a graph G, then any u− v geodesic P contains at most one edge

of T ;

(2) if g(G) = 4 and C1 is the smallest cycle of G, then any u−v geodesic P contains at

most one edge or two adjacent edges of C1;
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(3) if g(G) = 5 and C1 is the smallest cycle of G, then any u−v geodesic P contains at

most one edge or two adjacent edges of C1.

3. A sharp upper bound for src(G) in terms of edge-disjoint triangles

In this section, we give an upper bound for src(G) in terms of their edge-disjoint triangles

(if exist) in a graph G, and give a necessary and sufficient condition for the equality.

Recall that a block of a connected graph G is a maximal connected subgraph without any

cut vertex. Thus, every block of a graph G is either a maximal 2-connected subgraph or a

bridge (cut edge). We now introduce a new graph class. For a connected graph G, we say

G ∈ G t , if it satisfies the following conditions: C1: each block of G is a bridge or a triangle;

C2: G contains exactly t triangles; C3: each triangle contains at least one vertex of degree

two in G.

By definition, each graph G ∈ G t is formed by (edge-disjoint) triangles and paths (may

be trivial), these triangles and paths fit together in a treelike structure, and G contains no

cycles but the t (edge-disjoint) triangles. For example, see Figure 2, here t = 2, u1, u2, u6

are vertices of degree 2 in G. If a tree is obtained from a graph G ∈ G t by deleting one

vertex of degree 2 for each triangle, then we call this tree a D2-tree, denoted by TG, of G.

For example, in Figure 2, TG is a D2-tree of G. Clearly, the D2-tree is not unique, since in

this example, we can obtain another D2-tree by deleting u1 instead of u2. On the other hand,

we can say that any element of G t can be obtained from a tree by adding t new vertices of

degree 2. It is easy to show that the number of edges of TG is m−2t where m is the number

of edges of G.

u2

u1

u3

T1

T2

u4

u5 u6

u7

u8

G TG

u1

u3

u4

u5

u7

u8

Figure 2. An example of G ∈ G t with t = 2.

Theorem 3.1. If G is a graph with m edges and t edge-disjoint triangles, then

src(G) ≤ m−2t,

the equality holds if and only if G ∈ G t .

Proof. Let T = {Ti : 1 ≤ i ≤ t} be a set of t edge-disjoint triangles in G. We color each

triangle with a fresh color, that is, the three edges of each triangle receive the same color,

then we give each other edge a fresh color. For any two vertices u,v of G, let P be any u−v

geodesic, then P contains at most one edge from each triangle by Observation 2.3, and so P
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is strongly rainbow under the above coloring. As this procedure costs m−2t colors totally,

we have src(G) ≤ m−2t.

Claim 1. If the equality holds, then for any set T of edge-disjoint triangles of G, we have

|T | ≤ t.

Proof. We suppose that there is a set T ′ of t ′ edge-disjoint triangles in G with t ′ > t. Then,

with a similar procedure, we have src(G) ≤ m−2t ′ < m−2t, a contradiction.

Claim 2. If the equality holds, then G contains no cycle but the above t (edge-disjoint)

triangles.

Proof. We suppose that there is at least one cycle distinct with the above t triangles. Let

C be the set of these cycles and C1 be the smallest element of C with |C1| = k. We will

consider two cases:

Case 1. E(C1)∩E(T ) = /0, that is, C1 is edge-disjoint from each of the above t triangles.

Clearly, C1 has at most one common vertex with each of them. In this case k ≥ 4 by Claim

1, and we give G an edge-coloring as follows: we first color the edges of C1 the same

as in [3] (this was shown in the proof of Lemma 2.1); then we color each triangle with a

fresh color; for the remaining edges, we give each one a fresh color. Recall the fact that

any geodesic contains at most one edge from each triangle and with a similar procedure

to the proof of Lemma 2.1, we know that the above coloring is strongly rainbow, as this

procedure costs ⌈ k
2
⌉+ t +(m− k− 3t) = (m− 2t)+ (⌈ k

2
⌉− k) < m− 2t colors totally, we

have src(G) < m−2t, this produces a contradiction.

Case 2. E(C1)∩E(T ) 6= /0, that is, C1 has common edges with the above t triangles, in this

case k ≥ 3. By the choice of C1, we know that |E(C1)∩E(Ti)| ≤ 1 for each 1 ≤ i ≤ t. We

will consider two subcases according to the parity of k.

Subcase 2.1. k = 2ℓ for some ℓ ≥ 2. For example, see the graph (α) of Figure 3, here T =
{T1,T2,T3}, V (C1) = {ui : 1 ≤ i ≤ 6}, E(C1)∩E(T1) = {u1u2}, E(C1)∩E(T2) = {u4u5}.

Without loss of generality, we assume that there exists a triangle, say T1, which contains the

edge u1u2, and let V (T1) = {u1,u2,w1}, G′ = G\E(T1). If there exists some triangle, say

T2, which contains the edge uℓ+1uℓ+2, we let V (T2) = {uℓ+1,uℓ+2,w2}.

C1

T1

T2

T3

T1

T2

u1 u1

u2
u2

u3u3

u5

u4

u5

u6

u4
C1

(α) (β)

w1
w1

w2

w2

Figure 3. The graphs for the two examples in Theorem 3.1.

We first consider the case for ℓ = 2, see Figure 4. We first give each triangle of G′ a fresh

color; for the remaining edges of G′, we give each of them a fresh color; for the edges of

T1, let c(u1w1) = c(u2u3), c(u2w1) = c(u1u4), c(u1u2) = c(u3u4). Then it is easy to show
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that there is a u− v geodesic which contains at most one edge from any two edges with the

same color for u,v ∈ G, and so the above coloring is strongly rainbow. As this procedure

costs m−2t −1 < m−2t colors totally, we have src(G) < m−2t, a contradiction.

We next consider the case for ℓ ≥ 3. Let G′′ = G\(E(T1)∪E(T2)). We give G an edge-

coloring as follows: We first give each triangle of G′′ a fresh color; then give a fresh color

to each of the remaining edges of G′′; for the edges of T1 and T2, let c(u1w1) = c(u2u3),
c(u2w1) = c(u1uk), c(u1u2) = c(uℓ+1uℓ+2) = c, c(w2uℓ+1) = c(uℓ+2uℓ+3), c(w2uℓ+2) =
c(uℓuℓ+1) where c is a new color. Then it is easy to show that there is a u− v geodesic

which contains at most one edge from any two edges with the same color for u,v ∈ G, and

so the above coloring is strongly rainbow. As this procedure costs m−2t−1 < m−2t colors

totally, we have src(G) < m−2t, a contradiction.

Subcase 2.2. k = 2ℓ+1 for some ℓ ≥ 1.

We first consider the case for ℓ ≥ 2. For example, see the graph (β ) of Figure 3, here

T = {T1,T2}, V (C1) = {ui : 1 ≤ i ≤ 5}, E(C1)∩E(T1) = {u1u2}, E(C1)∩E(T2) = {u3u4}.

Without loss of generality, we assume that there exists a triangle, say T1, which contains the

edge u1u2, and let V (T1) = {u1,u2,w1}. If there exists some triangle, say T2, which contains

the edge uℓ+1uℓ+2, we let V (T2) = {uℓ+1,uℓ+2,w2} and G′ = G\(E(T1)∪E(T2)).
We give G an edge-coloring as follows: We first give each triangle of G′ a fresh color;

then give a fresh color to each of the remaining edges of G′; for the edges of T1 and T2,

let c(u1w1) = c(u2u3), c(u2w1) = c(u1uk), c(uℓ+1w2) = c(uℓ+2uℓ+3) and let c(u1u2) =
c(uℓ+1uℓ+2) = c(w2uℓ+2) be a fresh color. With a similar procedure to the proof of Lemma

2.1, we can show that G is strongly rainbow connected, and so src(G)≤ (t−1)+(m−3t) =
(m−2t)−1 < m−2t, this produces a contradiction.

For the case for ℓ = 1, that is, C1 is a triangle, see Figure 4, we color the three edges

(if exist) with color 1, these edges are shown in the figure; the remaining edges of these

three triangles (if exist) all receive color 2; each other triangle receives a fresh color; for the

remaining edges, we give each one a fresh color. It is easy to show that the above coloring

is strongly rainbow, and so we have src(G) < m− 2t in this case, a contradiction. So the

claim holds.

u2u1
T1

1

u3

C1

T2 T3

1

1

w1
w1

T1
1

1

2

2

3

u1 u2

u3u4

C1

3

Figure 4. The edge-colorings for the case that C1 is a triangle and the case that C1 a 4-cycle

in Theorem 3.1.

Claim 3. If the equality holds, then G ∈ G t .

Proof. To show G ∈ G t , it suffices to show that each triangle contains at least one vertex

of degree 2 in G. Suppose that this does not hold, without loss of generality, let T1 be the
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triangle with degG(vi) ≥ 3, where V (T1) = {vi : 1 ≤ i ≤ 3}. By Claim 2, it is easy to show

that E(T1) is an edge-cut of G. Let Hi be the subgraph of G\E(T1) containing the vertex vi

(1 ≤ i ≤ 3). By the assumption of T1, we know that each Hi is nontrivial. We now give G

an edge-coloring: for the t − 1 (edge-disjoint) triangles of G\E(T1), we give each of them

a fresh color; for the remaining edges of G\E(T1) (by Claim 2, each of them must be a

cut edge), we give each of them a fresh color; for the edges of E(T1), let c(v1v3) ∈ c(H2),
c(v1v2) ∈ c(H3), c(v2v3) ∈ c(H1). It is easy to show that, with the above coloring, G is

strongly rainbow connected, and we have src(G) < m−2t, a contradiction, and so the claim

holds.

Claim 4. If G ∈ G t , then the equality holds.

Proof. Let TG be a D2-tree of G. The result clearly holds for the case |E(TG)| = 1. So

now we assume that |E(TG)| ≥ 2. We will show that, for any strong rainbow coloring of G,

c(e1) 6= c(e2) where e1,e2 ∈ TG, that is, each edge of TG receives a distinct color, and so the

edges of TG cost m−2t colors totally. Recall that |E(TG)| = m−2t, then src(G) ≥ m−2t,

by the above claim, Claim 4 holds.

For any two edges, say e1,e2, of TG, let e1 = u1u2, e2 = v1v2. Without loss of generality,

we assume that dTG
(u1,v2) = max{dTG

(ui,v j) : 1 ≤ i, j ≤ 2} where dTG
(u,v) denotes the

distance between u and v in TG. As TG is a tree, the (unique) u1 − v2 geodesic, say P, in TG

must contain the edges e1,e2. Moreover, it is easy to show that P is also a unique u1 − v2

geodesic in G, and so c(e1) 6= c(e2) under any strong rainbow coloring.

By Claims 3 and 4, the equality holds if and only if G ∈ G t . Then our result holds.

In [5, 6], Li and Sun investigated the rainbow connection numbers of line graphs. As

an application to Theorem 3.1, we consider the strong rainbow connection numbers of line

graphs of connected cubic graphs. Recall that the line graph of a graph G is the graph L(G)
whose vertex set is V (L(G)) = E(G) and two vertices e1, e2 of L(G) are adjacent if and only

if they are adjacent in G. The star, denoted by S(v), at a vertex v of graph G, is the set of

all the edges incident to v. Let 〈S(v)〉 be the subgraph of L(G) induced by S(v), clearly, it is

a clique of L(G). A clique decomposition of G is a collection C of cliques such that each

edge of G occurs in exactly one clique in C . An inner vertex of a graph is a vertex with

degree at least 2. For a graph G, we use V2 to denote the set of all the inner vertices of G.

Let K0 = {〈S(v)〉 : v ∈V (G)}, K = {〈S(v)〉 : v ∈V2}. It is easy to show that K0 is a clique

decomposition of L(G) and each vertex of the line graph belongs to at most two elements of

K0. We know that each element 〈S(v)〉 of K0 \K , a single vertex of L(G), is contained in

the clique induced by u that is adjacent to v in G. So K is a clique decomposition of L(G).

Corollary 3.1. Let L(G) be the line graph of a connected cubic graph G with n vertices.

Then src(L(G)) ≤ n.

Proof. Since G is a connected cubic graph, each vertex of G is an inner vertex and the clique

〈S(v)〉 in L(G) corresponding to each vertex v is a triangle. We know that K = {〈S(v)〉 :

v ∈ V2} = {〈S(v)〉 : v ∈ V} is a clique decomposition of L(G). Let T = K . Then T is a

set of n edge-disjoint triangles that cover all the edges of L(G). As there are 3n edges in

L(G), by Theorem 3.1 we have src(L(G)) ≤ 3n−2n = n.
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4. Graphs with large strong rainbow connection numbers

In this section, we will give our result on graphs with large strong rainbow connection num-

bers. We first introduce two graph classes. Let C be the unique cycle of a unicyclic graph

G, V (C) = {v1, · · · ,vk} and TG = {Ti : 1 ≤ i ≤ k} where Ti is the unique tree containing the

vertex vi in subgraph G\E(C). We say that Ti and Tj are adjacent (nonadjacent) if vi and v j

are adjacent (nonadjacent) in C. Then let

G1 = {G : G is a unicyclic graph, k = 3, TG contains at most two nontrivial elements},

G2 = {G : G is a unicyclic graph, k = 4, TG contains two nonadjacent trivial elements and

the other two (nonadjacent) elements are paths.}.

Theorem 4.1. Let G be a connected graph with m edges. Then we have:

(i) src(G) 6= m−1,

(ii) src(G) = m−2 if and only if G is a 5-cycle or belongs to G1 or G2.

Proof. In [3], the authors obtained that src(G) = m if and only if G is a tree. So src(G) ≤
m−1 if and only if G is not a tree. In order to derive our conclusion, we need the following

claim:

Claim 5. If src(G) = m−1 or m−2, then G is a unicyclic graph.

Proof. Suppose that G contains at least two cycles. Let C1 be the smallest cycle of G and

C2 be the second smallest one. Let |Ci| = ki(i = 1,2). By Lemma 2.1, we have 3 ≤ k1 ≤ 5

and k2 ≥ k1. We will consider two cases according to the value of |E(C1)∩E(C2)|.

Case 1. |E(C1)∩E(C2)| = 0, that is, C1 and C2 have no common edge. There are three

subcases:

Subcase 1.1. k1 = 3, that is, C1 is a triangle.

By Observation 2.2, we must have |V (C1)∩V (C2)| ≤ 1. We first give C2 a strong rainbow

coloring using ⌈ k2
2
⌉ colors the same as in [3]; then give a fresh color to C1, that is, the edges

of C1 receive a same color; for the remaining edges, we give each of them a fresh color.

With a similar procedure to that of Lemma 2.1 and by Observation 2.3, we can show that

the above coloring is strongly rainbow. As this costs 1+ ⌈ k2
2
⌉+(m− k2 −3) colors totally,

we have src(G)≤ 1+⌈ k2
2
⌉+(m−k2−3) = (m−2)− (k2−⌈ k2

2
⌉)≤ m−3, a contradiction.

Subcase 1.2. k1 = 4, that is, C1 is a 4-cycle.

If |V (C1)∩V (C2)| ≤ 1, we first give C2 a strong rainbow coloring using ⌈ k2
2
⌉ colors the

same as in [3]; then we give two fresh colors to C1 in the same way; for the remaining

edges, we give each of them a fresh color. With a similar procedure to that of Lemma 2.1

and by Observation 2.3, we can show that the above coloring is strongly rainbow. As this

costs 2 + ⌈ k2
2
⌉+(m− k2 − 4) colors totally, we have src(G) ≤ 2 + ⌈ k2

2
⌉+(m− k2 − 4) =

(m−2)− (k2 −⌈ k2
2
⌉) ≤ m−3, a contradiction.

Otherwise, by Observation 2.2, it must be the graph of the three graphs with g(G) = 4

on the right-hand side in Figure 1. We let c(u1u2) = c(u3u4) = a,c(u2u3) = c(u1u4) =
b,c(u1v2) = c(u3v4) = c,c(v2u3) = c(u1v4) = d, where a,b,c,d are four distinct colors;

for the remaining edges, we give each of them a fresh color. This procedure costs m− 4

colors totally. As now both C1 and C2 are the smallest cycle of G, by Observation 2.3, any

geodesic contains at most one of the two edges with the same color, and so src(G) ≤ m−4,

a contradiction.

Subcase 1.3. k1 = 5, that is, C1 is a 5-cycle.
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By Observation 2.2, we must have |V (C1)∩V (C2)| ≤ 1. We first give C2 a strong rainbow

coloring using ⌈ k2
2
⌉ colors the same as in [3]; then we give three fresh colors to C1 in the

same way; for the remaining edges, we give each of them a fresh color. With a similar

procedure to that of Lemma 2.1 and by Observation 2.3, we can show that the above coloring

is strongly rainbow. As this procedure costs 3+ ⌈ k2
2
⌉+(m− k2 −5) colors totally, we have

src(G) ≤ 3+ ⌈ k2
2
⌉+(m− k2 −5) = (m−2)− (k2 −⌈ k2

2
⌉) ≤ m−3, a contradiction.

Note that for each above subcase, by Observation 2.3, the cycle produced during the

procedure while we use the similar technique to that of Lemma 2.1 cannot be the cycle C1

and must be smaller than C2, then a contradiction will be produced.

Case 2. |E(C1)∩E(C2)| ≥ 1, that is, C1 and C2 have at least one common edge, and so C1

and C2 have at least two common vertices. There are also three subcases:

C1

1
1

1

2

2
P

′ P
′

C1

1
1

1

2

2

3

C1

P
′

1

1

2

2 3
3

C1

P
′

1 2

2 31

3
4

(a′) (b′)

(c′) (d′)

Figure 5. The graphs for Case 2 of the claim.

Subcase 2.1. k1 = 3, that is, C1 is a triangle. By Observation 2.2, C1 and C2 have one

common edge as shown in Figure 1. Let V (C1) = {ui : 1 ≤ i ≤ 3} and V (C2) = {vi : 1 ≤
i ≤ k2} and vk2+1 = v1, where v1 = u1,v2 = u2. Let P′ be the subpath of C2 that does not

contain the edge v1v2. We now give G an edge-coloring as follows:

For the cases l(P′) = 2,3, we first color the edges of C1∪C2 as shown in Figure 5 (graphs

a′ and b′); then we give each other edge of G a fresh color. This procedure costs m−3 colors

totally. Then it is easy to show that any geodesic cannot contain two edges with the same

color, and so src(G) ≤ m−3, which produces a contradiction.

For the remaining case, that is, l(P′) ≥ 4 and k2 ≥ 5, we first give the cycle C1 a color,

say a, that is, the three edges of C1 receive the same color. Then in C2, if k2 = 2ℓ for some

ℓ ≥ 2, then let c(v2v3) = c(vℓ+2vℓ+3) be a new color, say b; if k2 = 2ℓ+ 1 for some ℓ ≥ 2,

then let c(v2v3) = c(vℓ+3vℓ+4) be a new color, say b. For the remaining edges, we give each

of them a fresh color. This procedure costs m−3 colors totally. For any two vertices u,v, if

P is a u− v geodesic, by Observation 2.3, P cannot contain two edges with color a; for the

two edges with color b, with a similar argument to that of Lemma 2.1 (Note that now, by

Observation 2.3, the cycle produced during the procedure cannot be C1 and must be shorter

than C2, then a contradiction will be produced), we can show that P contains at most one of

them. So P is strongly rainbow and src(G) ≤ m−3, which produces a contradiction.
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Subcase 2.2. k1 = 4, that is, C1 is a 4-cycle. By Observation 2.2, C1 and C2 have one

common edge, or two common adjacent edges, as shown in Figure 1.

If C1 and C2 have one common edge, say u1u2 (see the graph of the three graphs with

g(G) = 4 on the left-hand side in Figure 1), we let V (C2) = {vi : 1 ≤ i ≤ k2}, where v1 =
u1,v2 = u2. We let c(v2v3) = c(u4v1) = a, c(v2u3) = c(v1vk2

) = b, c(v1v2) = c(u3u4) = c.

For the remaining edges, we give each of them a fresh color. This procedure costs m− 3

colors totally. For any two vertices u,v, P is a u− v geodesic, then by Observation 2.3, P

contains at most one of the two edges with color c; for the two edges with color a (b), it is

easy to show that there exists one u− v geodesic which contains at most one of them. So

we have src(G) ≤ m−3, which produces a contradiction.

Otherwise, then C1 and C2 have two common adjacent edges, say u1u2,u2u3 (see the

graph of the three graphs with g(G) = 4 in the middle of Figure 1). We let V (C2) = {vi :

1 ≤ i ≤ k2}, where v1 = u1,v2 = u2,v3 = u3. Let P′ be the subpath of C2 which does not

contain the edges u1u2,u2u3.

For the cases l(P′) = 2,3, we first color the edges of C1∪C2 as shown in Figure 5 (graphs

c′ and d′); then we give each other edge of G a fresh color. This procedure costs m−3 colors

totally. Then it is easy to show that any geodesic cannot contain two edges with the same

color, and so we have src(G) ≤ m−3, which produces a contradiction.

For the case l(P′)≥ 4, that is k2 ≥ 6, we let c(u4v1) = c(v3v4) = a, c(v1v2) = c(v3u4) = b;

for the edge v2v3, we give a similar treatment to that of Subcase 2.1 and let c(v2v3) = c; we

then give each other edge of G a fresh color. This procedure costs m−3 colors totally. For

any two vertices u,v, let P be a u− v geodesic, then by Observation 2.3, P contains at most

one of the two edges with color b. For the two edges with color a, it is easy to show that there

exists a u− v geodesic which contains at most one of them. With a similar argument to that

of Lemma 2.1 (Note that now, by Observation 2.3, the cycle produced during the procedure

cannot be C1 and must be shorter than C2, then a contradiction will be produced), we can

show that any geodesic contains at most one edge with color c. So we have src(G)≤ m−3,

which produces a contradiction.

Subcase 2.3. k1 = 5, that is, C1 is a 5-cycle. By Observation 2.2, C1 and C2 have one com-

mon edge, or two common adjacent edges, as shown in Figure 1. The following discussion

will use Observation 2.3.

If C1 and C2 have one common edge, say u1u2 (see the graph of the two graphs with

g(G) = 5 on the left-hand side in Figure 1), we let V (C2) = {vi : 1 ≤ i ≤ k2}, where v1 =
u1,v2 = u2, and let c(u4u5) = c(v2v3) = a, c(v1u5) = c(v2u3) = b, and c(v1v2) = c(u3u4) =
c; for the remaining edges, we give each of them a fresh color. This procedure costs m−3

colors totally. With a similar argument to the above, we can show that src(G) ≤ m− 3,

which produces a contradiction.

Otherwise, then C1 and C2 have two common adjacent edges, say u1u2,u2u3 (see the

graph of the two graphs with g(G) = 5 on the right-hand side in Figure 1). We let c(v1u5) =
c(v3v4) = a, c(v1v2) = c(v3u4) = b, and c(v2v3) = c(u4u5) = c; for the remaining edges, we

give each of them a fresh color. This procedure costs m− 3 colors totally. With a similar

argument to above, we can show that src(G) ≤ m−3, which produces a contradiction.

With the above discussion, Claim 5 holds.

Let G be a unicyclic graph and C be its unique cycle, |C| = k where 3 ≤ k ≤ 5. We now

investigate the strong rainbow connection number of G.

Case 1. k = 3.
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Subcase 1.1. All Tis are nontrivial. We first give each edge of G\E(C) a fresh color, then let

c(v1v2) ∈ c(T3), c(v2v3) ∈ c(T1), c(v1v3) ∈ c(T2). It is easy to show that, with this coloring,

G is strongly rainbow connected, and so src(G) ≤ m−3.

Subcase 1.2. At most two Tis are nontrivial, that is, G ∈ G1. At first we consider the case

that there are exactly two Tis which are nontrivial, say T1 and T2. We first give each edge

of G\E(C) a fresh color, then let c(v1v2) = c(v2v3) = c(v1v3). It is easy to show that, with

this coloring, G is strongly rainbow connected, and now src(G) ≤ m− 2. On the other

hand, by Observation 2.1 and the definition of a rainbow geodesic, we know that in a strong

rainbow coloring, c(T1)∩ c(T2) = /0 and c(v1v2) does not belong to c(T1)∪ c(T2). So we

have src(G) = m− 2. With a similar argument, we can derive that src(G) = m− 2 for the

case that at most one Ti is nontrivial. So src(G) = m−2 if G ∈ G1.

Case 2. k = 4.

Subcase 2.1. There are at least three nontrivial Tis, say T1,T3,T4. We first give each edge of

G\E(C) a fresh color, then let c(v1v2)∈ c(T4), c(v3v4)∈ c(T1), c(v1v4)∈ c(T3) and we give

the edge v2v3 a fresh color. It is easy to show that, with this coloring, G is strongly rainbow

connected, and so src(G) ≤ m−3.

Subcase 2.2. There are exactly two nontrivial Tis, say Ti1 and Ti2 .

Subsubcase 2.2.1. Ti1 and Ti2 are adjacent, say T1 and T2. We first give each edge of G\E(C)
a fresh color, then let c(v2v3) ∈ c(T1), c(v1v4) ∈ c(T2) and we color the edges v1v2 and v3v4

with the same new color. It is easy to show that, with this coloring, G is strongly rainbow

connected, and so src(G) ≤ m−3.

v1

v2

v4
v3

T3 u1

u
′

1
u
′′

1

Figure 6. The graph for Subsubcase 2.2.2.

Subsubcase 2.2.2. Ti1 and Ti2 are nonadjacent, say T1 and T3. We can consider Ti as a

rooted tree with root vi (i = 1,3). If there exists some Ti, say T1, that contains a vertex, say

u1, with at least two sons, say u′1,u
′′
1 (see Figure 6). We first color each edge of

⋃

i=1,3 Ti ∪
{v1v2} with a distinct color, this costs m−3 colors, then we let c(v1v4) = c(v1v2),c(v2v3) =
c(u1u′1),c(v3v4) = c(u1u′′1). It is easy to show that this coloring is strongly rainbow and we

have src(G) ≤ m− 3. If G also belongs to G2, we first give each edge of G\E(C) a fresh

color, then let c(v1v2) = c(v3v4) = a and c(v2v3) = c(v1v4) = b where a and b are two new

colors. It is easy to show that, with this coloring, G is strongly rainbow connected, and so

src(G) ≤ m−2. On the other hand, src(G) ≥ m−2 = diam(G), and so src(G) = m−2.

Subcase 2.3. There is at most one nontrivial Ti. Then with a similar argument to Subsubcase

2.2.2, we can derive that src(G) = m−2 if G also belongs to G2.

By the discussions of Subsubcase 2.2.2 and Subcase 2.3, we can derive that src(G) =
m−2 if G ∈ G2.
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Case 3. k = 5.

If there is at least one nontrivial Ti, say T1, then we give each edge of G\E(C) a fresh

color, and let v3v4 ∈ c(T1), c(v1v2) = c(v4v5) = a and c(v2v3) = c(v1v5) = b where a and

b are two new colors. It is easy to show that, with this coloring, G is strongly rainbow

connected, and now we have src(G)≤m−3. On the other hand, we know src(G) = m−2 =
3 if G ∼= C5 from [3].

By Lemma 2.1 and Claim 5, we derive that if src(G) = m− 1 or m− 2, then G is a

unicyclic graph with a unique cycle of length at most 5. By the discussion from the above

Case 1 to Case 3, we know that if G is a unicyclic graph with a unique cycle of length at

most 5, then src(G) 6= m− 1. So src(G) 6= m− 1 for any graph G. Furthermore, we have

src(G) = m− 2 if and only if G is a 5-cycle or belongs to one of Gis (1 ≤ i ≤ 2). So the

theorem holds.
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