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Abstract
Paul Michael Newman Doctor of Philosophy
The University of Sydney March 1999

On the Structure and Solution of
the Simultaneous Localisation and

Map Building Problem

This thesis is concerned with the simultaneous localisation and map building
(SLAM) problem. The SLAM problem asks if it is possible for an autonomous vehicle
to start in an unknown location in an unknown environment and then to incremen-
tally build a map of this environment while simultaneously using this map to compute
absolute vehicle location. The map and robot location estimates obtained from a suc-
cessful SLAM system provide essential information upon which high level tasks such
as path planning are predicated. A practicable solution to the SLAM problem is of
inestimable value in the quest to create a truly autonomous mobile robot.
The thesis has three principal theoretical contributions. The first is the eluci-

dation of the structure of the SLAM problem. This is achieved by the analysis of
a conventional and well known SLAM algorithm using global coordinates called, in
this thesis, the Absolute Map Filter or AMF. Using this algorithm, three convergence
theorems central to the SLAM problem are proved for the first time. They prove
that the uncertainty in the estimated map decreases monotonically and achieves a
defined lower bound. Futhermore, in the limit as the number of landmark observa-
tions increases, the relationship between landmarks becomes perfectly known. These
proofs constitute the second theoretical contribution of the thesis. The third principal
theoretical contribution of this thesis is the development of a novel SLAM solution
capable of solving the SLAM problem in real time. This algorithm is called the Geo-
metric Projection Filter or GPF. Rather than estimate the location of landmarks in
global coordinates it estimates the relationships between individual landmarks. The
convergence properties of this algorithm are derived and compared with those of the
conventional AMF algorithm.
An implementation of the GPF and the AMF is provided on a custom built

subsea vehicle. The performance of the two filters are compared and shown to have
the properties predicted by the preceding theoretical analysis. This implementation
constitutes the fourth principal contribution of the thesis. It shows that the GPF can
be used as the basis of a substantive real time deployment of a mobile robot in an
initially unknown environment.
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Chapter 1

Maps and Models

1.1 Introduction

This chapter is concerned with the models that may be employed to represent a mobile

robot and its environment in order to solve the SLAM problem. The chapter begins

with a brief overview of the Kalman filter. This is followed by a section discussing

system models. The form of vehicle, landmark and observation models used in this

thesis are defined. Attention is then turned to the manner in which environmental

maps are represented. Two alternatives are discussed - absolute and relative maps.

The qualities and relationships between these two map types are investigated and the

manner in which the vehicle can be included or integrated into the map is explained.

The chapter concludes with a succinct summary of the important qualities of the

models and map types considered by earlier sections.

1.2 The Kalman Filter in Navigation

The Kalman filter is a recursive least squares estimator. It produces at time k a

minimum mean squared error estimate x̂(k|k) of a state vector x(k). This estimate

is obtained by fusing a state estimate prediction x̂(k|k− 1) with an observation z(k)

of the state vector x(k). The estimate x̂(k|k) is the conditional mean of x(k) given
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Figure 1.1: The Kalman filter

all observations Zk = [z(1), · · · z(k)] up until time k.

x̂(k|k) = E
[

x|Zk
]

(1.1)

where Zk is the sequence of all observations up until time k.

The great popularity and widespread use of the Kalman filter has resulted in a

substantial corpus of literature regarding the derivation, implementation and prop-

erties of the Kalman filter. The Kalman filter equations are stated in Appendix A

of this thesis and will be invoked in following chapters without proof. For a more

thorough derivation of the Kalman filter and detailed discussion reference should be

made to [24, 25, 34, 20].

Figure 1.1 shows the role of the Kalman filter in the SLAM problem. The mobile

robot moves through an environment taking observations of its relative location with

respect to landmarks within the environment. These observations are used to simul-

taneously estimate the location of the vehicle xv(k) and the landmarks pi, i = 1 . . . N .

In Figure 1.1, the estimated state vector x is assumed to contain both the vehicle and

landmark estimates.

The navigation filter in Figure 1.1 depends on three key models: the vehicle model
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which describes the dynamics and kinematics of the mobile robot, the landmarks

model, and the sensor model which relates the observation z(k) to the state vector

x(k).

1.3 System Models

This section introduces and discusses the form of the vehicle, landmark and observa-

tion models employed by this thesis.

Without prejudice, the observation, vehicle and landmark models employed in

this thesis are taken to be linear and synchronous. Although vehicle motion and

the observation of landmarks is almost always non-linear and asynchronous in any

real navigation problem, the use of linear synchronous models does not affect the

development of analysis of the SLAM algorithms discussed other than to require the

same linearisation assumptions as those normally employed in the development of an

extended Kalman filter [34, 20].

1.3.1 Vehicle Models

The general form of a vehicle model can be written as

xv(k + 1) = Fv [xv(k),uv(k + 1), k + 1] + vv(k + 1)

The vector u(k+1) is a control input at time k+1. This vector typically comprises

steer angle and velocity inputs.

The mobility, kinematics and dynamics of the robot are captured mathematically

within a vehicle model Fv . The discrete time vehicle model describes the evolution

of the vehicle state vector xv from time k to time k + 1.

The unmodelled aspects of the vehicle behaviour are lumped into a random vector

vv which, as required by the Kalman filter algorithm, is assumed to be a zero mean
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and temporally uncorrelated sequence [39]

E [vv ] = 0

E
[

vv(i).vv(j)
T
]

=







Qv(k) if i = j = k

0 otherwise

where Qv(k) is the covariance of vv at time k.

For purposes of theoretical development, the vehicle state vector xv(k) uniquely

determines the location and other properties of the vehicle at time k. The vehicle

state vector may contain any number of other vehicle parameters including velocity

and acceleration for example. However, for the purpose of this thesis, the state vector

is limited to quantities defining only the position and orientation of the vehicle in two

dimensions.

The vehicle model used in this thesis is a linear time invariant model and is given

by Equation 1.2.

xv(k + 1) = Fvxv(k) + uv(k + 1) + vv(k + 1) (1.2)

Nonlinear models can be accommodated by using the Extended Kalman Filter as

stated in the Appendix A.3.

1.3.2 Landmark Models

Landmarks are fixed and conspicuous features within the environment. Landmarks

can have many physical forms; corners, planes, rough surfaces, poles, natural or

artificial terrain features can all be considered landmarks if they are repeatedly and

reliably observed by a sensor.

Exactly what constitutes a landmark is driven by the physics of the observing

sensor - landmarks are conspicuous through the eyes of the observing sensor. This

sensor-centric definition of a landmark means that it is not always possible to readily
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associate a landmark with visually perceived features.

Mathematically, landmarks are represented as a vector of parameters that define

the location and other properties of the landmark. This thesis generally employs the

simplest of all landmark models: a landmark is a stationary, point like entity in two

dimensions. A point landmark is defined by two parameters specifying its position

in cartesian space with respect to some global coordinate frame. A point landmark

is visible from all viewing angles. Section 1.6 considers ways in which more complex

landmarks can be incorporated into the maps and models employed throughout this

thesis.

The ith point landmark in the environment will be denoted as pi and will be

defined as follows

pi =





xi

yi





The relationship between the point landmark state at times k + 1 and k is trivial.

The landmark is stationary and so

pi(k + 1) = pi(k) = pi (1.3)

Importantly, and in contrast to the vehicle model, there is no additive uncertainty

term in the landmark model. Equation 1.3 implies that although the precise location

of a landmark may be uncertain, this uncertainty does not increase with time.

1.3.3 Observation Models

The general observation model for the ith landmark is written as

zi(k) = Hi[xv(k),pi, k] +wi(k)
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where zi(k) is the observation vector at time k and Hi is the model of the observation

of the ith landmark. The vector zi(k) is a observation of the landmark location pi

relative to the robot’s location xv(k). This type of observation will be referred to as

a vehicle-landmark observation or a VLM observation.

The model is not assumed to be perfect and unmodelled sensor characteristics and

noise corruption are lumped into a observation error vector wi(k). The observation

error vector is again taken to be a temporally uncorrelated and zero mean random

sequence :

E [wi] = 0

E
[

wi(i).wi(j)
T
]

=







Ri(k) if i = j = k

0 otherwise

where Ri(k) is the observation error covariance matrix at time k.

For much of the analysis within this thesis a linear observation model is employed

which is written as

zi(k) = Hpipi −Hvxv(k) +wi(k), (1.4)

where Hpi is the partitioned landmark observation model. This formulation of the

observation equation makes the relative nature of the observation explicit.



1.4 Maps 7

1.4 Maps

A map consists of a set of landmarks with defined locations and properties. The set

of landmarks within a map may be known or uncertain and in the SLAM problem

they are initially completely unknown.

Maps can generally be defined in two forms: Absolute and Relative Maps. Section

1.4.1 discusses the qualities of absolute maps in which all landmarks are registered

in a single global coordinate frame. Section 1.4.2 presents a less conventional map

formulation, the relative map, in which only the relationships between individual

landmarks are described. The relationship between the two map types will then be

investigated.

It is important to note that the maps discussed in this section are built for nav-

igation purposes only. The maps need not correspond to a ‘human’ description of

the environment as it only contains sensor-centric landmarks as described in Section

1.3.2.

1.4.1 Absolute Maps

An absolute map has a very simple form and is illustrated in Figure 1.2. An absolute

map is a set of landmarks, the locations of which are registered in one common, global

coordinate frame. An absolute map with N landmarks is written in vector form as

pa =

















p1

p2

...

pN

















and is called the absolute map vector.
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Figure 1.2: A simple three landmark absolute map.

1.4.2 Relative Maps

A relative map stores the relationships between landmarks. These relationships are

stored in ‘relative map states’. The relative map state between landmarks pi and

pj is written pr(i,j) where pi and pj are termed the end landmarks of the relative

map state. Relative map states are to be considered as a transformation between

absolute landmark locations. Accordingly a relative map is a set of transformations

between many different landmarks. When the landmarks are point landmarks these

transformations are simply the vector subtraction of two absolute landmark locations

pr(i,j) = pj − pi

Using this definition relative map states are vectors describing the displacement be-

tween point landmarks described in a common coordinate frame. This form of relative
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Figure 1.3: A simple three state relative map.

states will be referred to as an ‘aligned cartesian relative map’ or ACRM states. This

understanding of relative states is similar to that in [13] in which relative states

between sub maps are manipulated.

An environment containing N landmarks can be described by a relative map

containing at least N − 1 at most N(N−1)
2

relative map states. The relative map is

written in vector form as

pr =

















...

pr(i,j)

pr(j,k)

...

















and is called the relative map vector. In general, relative maps contain redundant

information. As shown in Figures 1.5 and 1.4, the relationships between N landmarks

is defined using a minimum of N − 1 relative states. However, in general a relative

map will contain more than N − 1 relative map states and will therefore intrinsically

have a degree of redundancy.
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Figure 1.4: A relative map with no redundant information. With four landmarks
only three relative map states are required to define the relationship between any of
the landmarks.
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Figure 1.5: A relative map with three redundant states. In general a relative map
contains redundant information.
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A relative map can be imagined to be a frame like structure with the struts being

relative map states and the joints being landmarks. This frame is not fixed in space

and can be rotated and translated as a whole. Although the absolute position of the

nodes can be changed by such transformations the relationships between each of the

nodes are unchanged.

It is possible to use non-cartesian transformations to describe the relationships

between landmarks. Such a scheme is illustrated in Figure 1.6. Instead of using

aligned cartesian coordinate frames a polar representation is used. The angles αi,j,k...

subtended between point landmarks are stored along with the distances between

them δi,j, δj,k etc. This relative map formulation has the advantage that no external

p
2

p
3

p
1

Landmarks

α 231

α 123

α 312

δ32

δ13

δ 12

Figure 1.6: A simple relative map using polar map states between three landmarks

orientation information is required unlike the case when ACRM states are used.

Different landmark types facilitate different relative states. A discussion of the

definition of relative states existing between landmarks possessing a more complex

geometry than point landmarks is given in Section 1.6. However, the exact nature of
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relative map states are unimportant so long as they uniquely define a transformation

between landmarks.

1.5 The Relationship Between Absolute and Rel-

ative Maps

This section discusses the relationship between absolute and relative maps. An un-

derstanding of this relationship is important in understanding how these two different

maps can be used to solve the SLAM problem.

The relationship between absolute and relative map states is shown graphically

in Figure 1.7 for an environment populated with five landmarks. The absolute and

relative map states define a network with the absolute map states as vertices or

nodes of the network and relative map states as edges. This network is called the

‘map-network’. It simultaneously represents the absolute and relative map.

1.5.1 Transforming from Absolute to Relative Maps

The transformation from an absolute map to a relative map is a transformation from

vertex to edge space. Such a transformation is represented by the map-network’s

incidence matrix Ω.

Every network has a unique incidence matrix that transforms vertex to edge space.

An element Ωi,j of this matrix is either −1,1 or 0 depending on whether the i
th edge

leaves, enters or is unrelated to the jth vertex. Multiplication of the absolute map

state vector by Ω will yield a relative map state vector.

pr = Ωpa (1.5)

This is an important relationship and the transforming action of Ω is illustrated in

Example 1.1.
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Figure 1.7: An abstraction of the relationship between relative and absolute map
states.

Example 1.1 Consider an absolute map containing three landmarks as shown in

Figure 1.3. The absolute map vector is given by

pa =











p1

p2

p3











where the incidence matrix Ω is given by

Ω =











−I I 0

0 −I I

I 0 −I











To derive the relative map pr the absolute map vector pa is transformed by the inci-
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dence matrix Ω

pr = Ωpa

Therefore,

pr =











−I I 0

0 −I I

I 0 −I





















p1

p2

p3











=











p2 − p1

p3 − p2

p1 − p3











which is a relative map containing relative map states between the three landmarks.

In Example 1.1, the transformation from an absolute map to a relative map removes

absolute location information. The vector pr contains no information on where the

three landmarks are, only how they are located relative to each other.

1.5.2 Transforming from Relative to Absolute Maps

The incidence matrix is rank deficient and in general not square. Therefore an inverse

of Ω can not generally be found for transforming a relative map into an absolute map.

Put another way, the lack of absolute position information in a relative map means

that without external information it is impossible to deduce the absolute location of

any one landmark.

In many applications it is necessary to be able to obtain the landmark locations

in global or absolute coordinates. To achieve this, beginning with a relative map,

requires an external piece of information - the absolute location of one landmark ps.

In general the transformation from a relative map to an absolute map is written
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as

pa = G(pr,ps)

where ps is the absolute position of a ‘seeding’ landmark.

Given the absolute location of one landmark the relative map states can be com-

bined to yield the absolute location of all the landmarks. Recall that relative map

states are transformations between absolute landmark locations. Given the absolute

location ps of landmark pi the absolute location of landmark pj is found by ap-

plying the transformation represented by the relative map state pr(i,j). Hence the

transformation from relative to absolute maps involves ps undergoing a sequence of

transformations defined by the relative map states themselves. This process involves

traversing a path through the network of map states shown in Figure 1.7 stepping

from vertex to vertex (the absolute landmark locations) by way of relative map states.

Example 1.2 illustrates the transformation of a relative map to an absolute map

and is a continuation of Example 1.1.

Example 1.2 No amount of manipulation of the columns of pr will yield the point

landmarks p1, p2 and p3 as a combination of pr(1,2), pr(2,3) and pr(3,1). In order to

reconstruct an absolute map pa, pr must be seeded with a location of a landmark ps.

Let

p1 = ps
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be such a (arbitrary) seeding. The re-construction of pa now proceeds as follows











p′1

p′2

p′3











=











ps

ps + pr(1,2)

ps + pr(1,2) + pr(2,3)











=











p1

p2

p3











which because of the substitution p1 = ps is the original absolute map of Example 1.1.

The transformation encoded by the relative map states are simply vector additions

because of their commonly aligned cartesian nature.

In general, for any single landmark, a relative map will contain the transformations

to more than one other landmark - vertices in the map state network are multiply

connected in a redundant relative map. Therefore, more than one path through the

network exists between landmarks. This means that in general the absolute location

of a landmark can be deduced in more than one way by application of a different

series of transformations.

Example 1.3 illustrates the use of two different transformation sequences to trans-

form a relative map to an absolute map using the current example thread.

Example 1.3 Given the seeding vector ps to p1 the absolute map can be written as











p′1

p′2

p′3











=











ps

ps + pr(1,2)

ps + pr(1,2) + pr(2,3)










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or as











p′1

p′2

p′3











=











ps

ps + pr(1,2)

ps − pr(3,1)











The significance of multiple relative map to absolute map transformations is discussed

in Section 1.5.3.

1.5.3 Consistency of Relative Map Estimates

An estimated relative map will possess errors and inaccuracies. A consequence of

this imperfection is that when transforming a relative map into an absolute map the

deduced absolute landmark locations are dependent on which of potentially many

sequences of relative transforms is applied. Such a situation is shown in Figure 1.8.

The two solutions for the location of the third landmark with respect to the first two

are mutually inconsistent. With this insight the following definition is made:

A relative map is consistent if all possible transformations to an absolute

map yield unique and unambiguous absolute landmark locations.

p
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-p
31

p
1

p
2

p
3

p
12

+p
23

Figure 1.8: The existence of mutually inconsistent relative map inverses
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Equivalently, if the sequential application of the transformations represented in a map-

network loop yields the identity transformation then the relative map is consistent.

In the case of the two dimensional ACRM states used in this thesis, the above

consistency implies that the relative states must form closed polygons around map-

network loops. For example the three relative states in Figure 1.8 do not form a

closed polygon and this relative map is therefore inconsistent.

The consistency condition that must be fulfilled for a relative map estimate to

be useful highlights the fundamental differences between relative and absolute maps.

Beginning with a set of landmarks randomly distributed on a plane, transformation

by the map-network incidence matrix Ω will always yield a consistent relative map.

This is true regardless of the actual values of the initial absolute landmark state

vectors. The relative states constituting a relative map cannot be so freely assigned.

Randomly chosen relative states will form an inconsistent relative map incapable of

transformation to absolute form. Unlike the absolute map, a consistency constraint

must be applied to a relative map before it can be used to deduce absolute location

information.

This situation is directly analogous to random casting of points (representing

absolute landmarks) and lines (representing relative states) onto a plane. It is always

possible to create a network with the points as vertices - the creation of a relative

map from an absolute map. However, in general randomly cast lines will not form

closed polygons - the analogous relative map is inconsistent and cannot be uniquely

transformed to absolute form.

1.6 Complex Landmarks

In general an environment will contain more than simple point landmarks. More

complex landmarks can easily be incorporated into an absolute map by simply defin-

ing more landmark state vector parameters. For example, a line segment may be

represented by an augmented vector of centroid position, length and orientation.
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In the case of point landmarks, relative map states can be represented as cartesian

vectors between landmarks. The reconstruction of an absolute map from a point

landmark relative map is a trivial matter of vector addition. Example 1.2 illustrates

this transformation. However, when landmarks are modelled as lines, planes and

other geometrical entities of greater complexity, more complex relative states must be

defined. Relative map states are transformations between absolute landmarks. Any

transformation that transforms one absolute landmark to another without ambiguity

can be used as a relative map state. For example the relative states between a line

and a polygonal landmark could be defined as a set of vectors from the line ends to

the vertices of the polygon.
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Figure 1.9: A possible relative map state definition between line and polygonal land-
marks. The relative map state between the landmarks is the augmented set of vectors
between the line ends and the polygon vertices.
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1.7 Relating Vehicle State Vectors to Maps

The SLAM problem requires both estimation of the map and of the vehicle location.

This section describes how the vehicle location can be incorporated in or related to

absolute and relative maps.

1.7.1 Relating xv to an Absolute Map

When an absolute map exists it is convenient to express the vehicle state vector in

the same absolute coordinate frame as the landmarks. This allows the formation of

a single vehicle-map absolute state vector xa where

xa =





xv

pa



 .

Both the vehicle and landmarks are described in a single absolute coordinates frame.

1.7.2 Relating xv to a Relative Map

When a relative map exists a vehicle may be treated as a moving node in the map-

network. The VLM observations the vehicle takes of landmarks are themselves relative

states. Whenever a landmark observation becomes available it is treated as a relative

state and the vehicle is ‘linked’ into the relative map. This process is illustrated in

Figure 1.10.

The absolute position of a vehicle linked into a relative map can be deduced in the

same way as absolute landmark locations are obtained. A series of transformations

are applied to a seeding vector with the last transformation being the relative vehicle-

landmark observation.
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Figure 1.10: Linking the vehicle into a relative map using vehicle-landmark (VLM)
observations.

1.8 Summary

This chapter has explained the role of the Kalman filter in the SLAM problem. Vehi-

cle, observation and landmark models which will be used extensively in the following

chapters were defined and formulated. The definition and role of maps within the

SLAM problem have been discussed and two important forms of map introduced -

relative and absolute maps. The qualities and relationships between these maps have

been derived and illustrated by example. The salient characteristics and properties

of the two map types are summarised below.

• Absolute maps encode the absolute position of landmarks.

• Relative maps encode the relationship between landmarks and the constituent

relative map states represent transformations between landmarks.

• A relative map can be viewed as a network with landmarks as vertices and

relative map states as edges. This network is defined by the incidence matrix
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Ω and is called the ‘map-network’.

• The map-network incidence matrix, Ω, may be used to transform an absolute

map to a relative map.

• Given external absolute position information, sequential application of relative

map state transformations allows the transformation of a relative map to an

absolute map.

• When estimating a relative map the estimate must be constrained to contain

closed polygons of relative map states to ensure map consistency. No such

constraints need to be applied to an estimate of an absolute map.

These characteristics have a deep significance in the development and analysis

of autonomous navigation algorithms presented in Chapter 3 and Chapter 5. They

provide the inspiration for a novel and efficient SLAM algorithm.



Chapter 2

SLAM Using An Absolute Map

2.1 Introduction

This chapter discusses an estimation-theoretic solution to the SLAM problem - the

Absolute Map Filter. The Absolute Map Filter or AMF builds an absolute map.

The filter uses a Kalman filter to estimate a state vector containing both vehicle and

landmark states in a global coordinate frame.

Following a discussion of the history of the filter, the vehicle, observation and

landmark models employed by the filter are defined. Sections 2.4.2 and 2.4.3 build

on work by Csorba [14] and prove for the first time, three key convergence properties

of the AMF. These proofs show that, contrary to widespread belief, the uncertainty

in the estimated absolute map converges monotonically to a defined lower bound.

Furthermore, in the limit as the number of landmark observations increases the rela-

tionship between landmarks becomes perfectly known.

These important proofs offer invaluable insight into the structure and solution of

the SLAM problem. The adverse scaling of computation with map size discussed

in Section 2.5 is a significant impediment to the adoption of the AMF as a generic

SLAM solution. However, the insight gained from its study is the inspiration behind

the development of the relative map filter discussed in Chapter 5. Section 2.6 presents
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a simulation of the AMF and serves to illustrate the salient qualities and properties of

the filter derived in earlier sections. Finally, Section 2.8 summarises the contributions

of the chapter and provides a concise synopsis of the AMF.

2.2 The Absolute Map Filter -AMF

The AMF was first published in a seminal paper by Smith, Self and Cheeseman [42]

which built on earlier vision based work by Ayache and Faugeras [3] and Chatila

and Laumond [12]. This paper was followed by a series of related work developing a

number of aspects of the essential SLAM problem ( [36] and [27] for example).

This work identified an inevitable cross correlation in landmark estimates stem-

ming from a common error in vehicle position estimates. Importantly, it was high-

lighted that the estimation of these correlations is crucial to a consistent SLAM

solution. It was also recognised that the filter suffered a scaling problem with a

computational effort and storage requirements of order N2 (at best) where N is the

number of estimated landmarks.

This section details the state vectors and system models employed by the AMF.

The role and importance of vehicle, landmark and observation models in the SLAM

problem have been discussed in detail in Sections 1.3.1, 1.3.2 and 1.3.3 respectively.

Therefore the models employed by each filter will be stated with no further discussion.

2.2.1 State Vector

Figure 2.1 illustrates the manner in which the AMF represents the environment and

the state of a mobile vehicle within it. The absolute map filter employs an augmented

state vector containing both the state of the vehicle and the state of all landmarks.
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This state vector is denoted xa

xa(k) =

















xv(k)

p1

...

pN

















(2.1)
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Figure 2.1: In an environment populated with N landmarks, the AMF state vector
includes the vehicle state xv and all landmark states pi , i = 1..N

2.2.2 Vehicle Model

The state of the vehicle xv at time k evolves as

xv(k + 1) = Fvxv(k) + uv(k + 1) + vv(k + 1) (2.2)
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where Fv is the vehicle state transition model and uv(k) is the vehicle control input.

The term vv(k) is a random vector of temporally uncorrelated process noise errors

with zero mean and covariance Qv(k).

2.2.3 Landmark Models

The linear discrete time model for the ith landmark is written as

pi(k + 1) = pi(k) = pi i = 1 . . . N (2.3)

Importantly, there are no noise terms in the landmark model.

2.2.4 Observation Model

The vehicle is equipped with a sensor that can obtain observations of the relative

location of landmarks with respect to the vehicle (VLM observations). Without

prejudice, observations are assumed to be linear and synchronous. The observation

model for the ith landmark is written in the form

zi(k) = Hixa(k) +wi(k) (2.4)

= Hpipi −Hvxv(k) +wi(k) (2.5)

where wi(k) is a vector of temporally uncorrelated observation errors with zero mean

and variance Ri(k).

The observation model for the ith landmark is written in the form

Hi =
[

−Hv · · · 0 · · · Hpi · · · 0 · · ·
]

(2.6)

=
[

−Hv Hmi

]

(2.7)

This structure reflects the fact that the observations are ‘relative’ between the vehicle

and the landmark, often in the form of relative location, or relative range and bearing.
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Note also that the observation of each landmark invokes a different observation model

according to Equation 2.6.

2.3 The Estimation Process of the AMF

The augmented state transition model for the complete system may now be written

as

















xv(k + 1)

p1

...

pN

















=

















Fv(k) 0 . . . 0

0 Ip1
. . . 0

...
...
. . . 0

0 0 0 IpN

































xv(k)

p1

...

pN

















+

















uv(k + 1)

0p1

...

0pN

















+

















vv(k + 1)

0p1

...

0pN

















(2.8)

xa(k + 1) = Fv(k)xa(k) + uv(k + 1) + vv(k + 1) (2.9)

where Ipi
is the dim(pi) × dim(pi) identity matrix and 0pi

is the dim(pi) × dim(pi)

null matrix.

Given a state estimate x̂a(k|k), Equation 2.9 is used to produce a state prediction

x̂a(k + 1|k) at time k + 1 and a covariance prediction Pa(k + 1|k) according to

x̂a(k + 1|k) = Fv(k)x̂a(k|k) + uv(k) (2.10)

Pa(k + 1|k) = Fv(k)Pa(k|k)F
T
v (k) +Q(k). (2.11)

At time k+1 an observation zi(k+1) of the i
th landmark becomes available. Equation

2.4 is used to form an observation prediction ẑi(k + 1|k) and innovation νi(k + 1)

ẑi(k + 1|k) = Hi(k)x̂a(k + 1|k)

νi(k + 1) = zi(k + 1)− ẑi(k + 1|k)
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together with an associated innovation covariance matrix given by

Si(k + 1) = Hi(k)Pa(k + 1|k)H
T
i (k) +Ri(k + 1). (2.12)

The observation zi(k+1) is used to update the predictions, forming the new estimates

x̂a(k + 1|k + 1) and Pa(k + 1|k + 1) at time k + 1:

x̂a(k + 1|k + 1) = x̂a(k + 1|k) +Wi(k + 1)νi(k + 1) (2.13)

Pa(k + 1|k + 1) = Pa(k + 1|k)−Wi(k + 1)Si(k + 1)W
T
i (k + 1) (2.14)

where the gain matrixWi(k + 1) is given by

Wi(k + 1) = Pa(k + 1|k)H
T
i (k)S

−1
i .

2.4 The Structure of the AMF

In this section proofs are provided for the following three key results underlying the

structure of the SLAM problem.

1. The determinant of any submatrix of the map covariance matrix decreases

monotonically as observations are made successively.

2. In the limit, as the number of observations increases, the landmark estimates

become fully correlated.

3. In the limit, the covariance associated with any single landmark location esti-

mate is determined only by the initial covariance in the vehicle location estimate.

These three results describe, in full, the convergence properties of the map and its

steady state behaviour. In particular they show that:
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• The entire structure of the SLAM problem critically depends on maintaining

complete knowledge of the cross correlation between landmark estimates. Min-

imizing or ignoring cross correlations is precisely contrary to the structure of

the problem.

• As the vehicle progresses through the environment the errors in the estimates

of any pair of landmarks become more and more correlated, and indeed never

become less correlated.

• In the limit, the errors in the estimates of any pair of landmarks becomes fully

correlated. This means that given the exact location of any one landmark, the

location of any other landmark in the map can also be determined with absolute

certainty.

• As the vehicle moves through the environment taking observations of individual

landmarks, the error in the estimates of the relative location between different

landmarks reduces monotonically to the point where the map of relative loca-

tions is known with absolute precision.

• As the map converges in this manner, the error in the absolute location of every

landmark (and thus the whole map) reaches a lower bound determined only by

the error that existed when the first observation was made.

The following proofs draw on the Kalman equations, properties of positive semi-

definite matrices and the structure of Pa which is discussed in Section 2.4.1. These

proofs build substantially upon the work of Csorba [14] and can also be found in [17]
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2.4.1 The Structure of the Map Covariance Matrix

The state covariance matrix propagated by the AMF has an important structure

which is illustrated in Equation 2.15

Pa(i|j) = E
{

x̃a(i|j)x̃
T
a (i|j)|Z

j
}

= E















































x̃v(i|j)

p̃1 (i|j)
...

p̃N (i|j)

















[

x̃T
v (i|j) p̃

T
1 (i|j) · · · p̃T

N (i|j)
]∣

∣

∣
Zj































=

















Pvv(i|j) Pv,1(i|j) · · · Pv,N(i|j)

PT
v,1(i|j) P1,1(i|j) · · · P1,N(i|j)
...

...
. . .

...

PT
v,N(i|j) P

T
1,N(i|j) · · · PN,N(i|j)

















(2.15)

where Pvv is the vehicle covariance submatrix, Pv,i is the covariance between the i
th

landmark and vehicle and Pi,j is the covariance between the i
th and jth landmarks.

The partition lines in 2.15 allow identification of the absolute map covariance matrix

Pmm as the bottom right block matrix.

Pa(i|j) =





Pvv(i|j) Pvm(i|j)

PT
vm(i|j) Pmm(i|j)



 (2.16)

The structure of Pa is has a very important role in the following convergence proofs.

2.4.2 Convergence of the Map Covariance Matrix

Theorem 2.1 The determinant of any submatrix of the map covariance matrix de-

creases monotonically as successive observations are made.

The AMF is initialised using a positive semi-definite (psd) state covariance matrix

Pa(0|0). The matrices Q and Ri are both psd, and consequently the matrices Pa(k+
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1|k), Si(k + 1),Wi(k + 1)Si(k + 1)W
T
i (k + 1) and Pa(k + 1|k + 1) are all psd. From

Equation 2.14, and for any landmark i,

detPa(k + 1|k + 1) = det(Pa(k + 1|k)−Wi(k + 1)Si(k + 1)W
T (k + 1))

≤ detPa(k + 1|k). (2.17)

The determinant of the state covariance matrix is a measure of the volume of the

uncertainty ellipsoid associated with the state estimate. Equation 2.17 states that

the total uncertainty of the state estimate does not increase during an update.

Any principal submatrix of a psd matrix is also psd (see Appendix B.3). Thus,

from Equation 2.17 the map covariance matrix also has the property

detPmm(k + 1|k + 1) ≤ detPmm(k + 1|k). (2.18)

From Equation 2.11, the full state covariance prediction may be written in the form





Pvv(k + 1|k) Pvm(k + 1|k)

PT
vm(k + 1|k) Pmm(k + 1|k)



 =





FvPvv(k|k)F
T
v +Qvv FvPvm(k|k)

PT
vm(k|k)F

T
v Pmm(k|k).





Thus, as landmarks are assumed stationary and no process noise is injected into the

predicted map states, the map covariance matrix and any principal submatrix of the

map covariance matrix has the property that

Pmm(k + 1|k) = Pmm(k|k). (2.19)

Note that this is clearly not true for the full covariance matrix since process noise is

injected into the vehicle location predictions and so the prediction covariance grows

during the prediction step.
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It follows from Equations 2.18 and 2.19 that the map covariance matrix has the

property that

detPmm(k + 1|k + 1) ≤ detPmm(k|k). (2.20)

Furthermore, the general properties of psd matrices ensure that this inequality holds

for any submatrix of the map covariance matrix. In particular, for any diagonal

element σ2
ii of the map covariance matrix (state variance),

σ2
ii(k + 1|k + 1) ≤ σ2

ii(k|k).

Thus the error in the estimate of the absolute location of every landmark also does

not increase.

Theorem 2.2 In the limit, as successive observations are made, the errors in esti-

mated landmark location become fully correlated.

As the map covariance matrix does not increase, in the limit it will reach a steady-

state lower bound such that

lim
k→∞

[Pmm(k + 1|k + 1)−Pmm(k|k)] = 0 (2.21)

The update stage for the AMF algorithm can be written as

Pa(k + 1|k + 1) = Pa(k + 1|k)−Wi(k + 1)SiW
T
i (k + 1)

= Pa(k + 1|k)−P(k + 1|k)H
T
i S

−1
i HiPa(k + 1|k)

= Pa(k + 1|k) +





M1

M2



S−1
i

[

MT
1 MT

2

]

= Pa(k + 1|k)−





M1S
−1
i M

T
1 M1S

−1
i M

T
2

M2S
−1
i M

T
1 M2S

−1
i M

T
2




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where

M1 = −Pvv(k + 1|k)Hv +Pvm(k + 1|k)H
T
mi

M2 = −Pvm(k + 1|k)
THv +Pmm(k + 1|k)H

T
mi

The update of the map covariance matrix Pmm can now be written as

Pmm(k + 1|k + 1) = Pmm(k + 1|k)−M2S
−1
i M

T
2

= Pmm(k|k)−M2S
−1
i M

T
2 (2.22)

Together, Equations 2.21 and 2.22 require that the matrix M2S
−1
i M

T
2 = 0. As

the inverse of the innovation covariance matrix S−1
i is always psd, this requires that

M2 = 0 or

Pmm(k|k)H
T
mi = Pvm(k|k)

THv (2.23)

Equation 2.23 holds for all landmark observation models i and thus, in the limit, the

block columns of Pmm(k|k) are linearly dependent.

A consequence of this fact is that in the limit the determinant of any submap of

the map covariance matrix, containing at least two landmarks, tends to zero.

lim
k→∞

[detPmm(k|k)] = 0 (2.24)

This means that the landmarks become progressively more correlated as successive

observations are made. In the limit, given the exact location of one landmark the

location of all other landmarks can be deduced with absolute certainty and the map

is fully correlated.

In the specific case where landmarks are similar (all points for example), then the

observation models will be the same Hpi = Hpj and so Equation 2.23 requires that

the block columns of Pmm(k|k) are also identical. Furthermore, because Pmm(k|k)
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is symmetric it follows that for any two landmarks i and j, the elements of the joint

covariance matrix must satisfy

Pii(k|k) = Pjj(k|k) = Pij(k|k) = P
T
ij(k|k) (2.25)

A consequence of this is that the covariance in the estimated relative location of

landmarks tends to zero: Define d̂ij(k|k) to be the estimated relative location of two

landmarks:

d̂ij(k|k) = p̂i(k|k)− p̂j(k|k)

= Gijx̂(k|k)

The estimated covariance Pd(k|k) of d̂(k|k) is computed as

Pd(k|k) = GijPa(k|k)G
T
ij

= Pii(k|k) +Pjj(k|k)−Pij(k|k)−P
T
ij(k|k)

= 0.

Thus, in the limit, Pd(k|k) = 0 and the relationship between the landmarks is known

with complete certainty.

2.4.3 Lower Bounds on the Map Covariance Matrix

The map convergence Theorems 2.1 and 2.2 are concerned only with the relationships

between landmarks. It has been demonstrated that the uncertainty in the relative

locations of landmarks decreases monotonically to zero as successive observations are

made. A consequence of Theorem 2.1 is that the absolute landmark covariances also

do not increase. Theorem 2.2 does not imply that the absolute landmark covariances

also tend to zero. However, the following theorem shows that the absolute landmark

location covariances do reach a (non zero) lower bound.
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Theorem 2.3 In the limit, the lower bound on the covariance matrix associated with

any single landmark estimate is determined only by the initial covariance in the vehicle

estimate P0v at the time of the first sighting of the first landmark.

It is convenient to use the information form of the Kalman filter to examine the

limiting behaviour of the state covariance matrix [34]. For a single landmark, the

state covariance update equation may be written as

P−1
a (k|k) = P

−1
a (k|k − 1) +





−HT
v

HT
p1





T

R−1
1

[

−Hv Hp1

]

. (2.26)

Consider first the case when Qv(k) = 0 so that, for map elements,

P−1
a (k|k − 1) = P−1

a (k − 1|k − 1). (2.27)

Applying Equations 2.26 and 2.27 successively for k observations of a single landmark

results in

P−1
a (k|k) =





P−1
0v 0

0 0



+





kHT
vR

−1
1 Hv −kHT

vR
−1
1 Hp1

−kHT
p1R

−1
1 Hv kHT

p1R
−1
1 Hpi



 .

Invoking the matrix inversion lemma for partitioned matrices,

Pa(k|k) =





P−1
0v P−1

0vH
T
vH

−T
p1

H−1
p1HvP0v H−1

p1HvP0v

[

H−1
p1Hv

]T
+

H
−1

p1 R1H
−T

p1

k



 ,

where H−1
p1 is taken to be the appropriate generalised inverse. In the limit,

lim
k→∞

P(k|k) =





P−1
0v P−1

0vH
T
v

[

HT
p1

]−1

H−1
p1HvP0v H−1

p1HvP0v

[

H−1
p1Hv

]T



 . (2.28)
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Equation 2.28 gives a lower bound on the solitary landmark state estimate variance

as

Pii(∞) =
[

H−1
p1Hv

]

P0v

[

H−1
p1Hv

]T
. (2.29)

Theorem 2.2 requires that the absolute map variances become equal in the limit.

Thus Equation 2.29 also provides a limit for all absolute landmark variances.

Equation 2.29 shows that, in the case where Qv(k) = 0, the limiting map covari-

ance depends only on the initial vehicle location uncertainty P0v . The term H
−1
p1Hv

simply transforms covariance information from the vehicle state space to landmark

state space.

In the case where Qv(k) �= 0, the two competing effects of loss of information,

due to process noise injection and the increase in information content through ob-

servations, determine the limiting covariance. Determining the limit in this case is

analytically intractable. The limiting covariance of the map will generally depend on

P0v ,Q and R, but can never be below the limit given in Equation 2.28.

2.5 Scaling Properties of the AMF

The properties of the absolute map filter described in Sections 2.4.2 and 2.4.3 do

not come without cost. The computation required to implement the AMF is signif-

icant. In particular the need to propagate the state covariance matrix represents a

computational cost of order N2 where N is the number of estimated landmarks. For

small numbers of landmarks this is not an insurmountable issue but environments

containing hundreds or thousands of landmarks present a formidable challenge. The

computational intractabilty of the AMF is a powerful motivation to find alternative

SLAM solutions.

Similarly, the amount of memory required to store the state absolute map filter

covariance matrix Pa grows with N2 . Although the fact that Pa is psd allows the
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storage of Pa in triangular form, this quadratic scaling constitutes another impedi-

ment to the use of the AMF as a generic SLAM solution.

2.6 Simulation of the AMF

This section presents a simulation of the AMF to illustrate its key properties.

The simulation begins with the generation of an elementary environment con-

sisting of point landmarks distributed in cartesian space shown in Figure 2.2. Each

landmark is represented by a square.

A mobile robot, equipped with a range-bearing sensor, moves through the envi-

ronment taking observations of the location of landmarks with respect to itself. The

vehicle model is written as:

xv(k + 1) =











xv(k + 1)

yv(k + 1)

ψ(k + 1)











=











xv(k) + ∆T V (k + 1) cos(ψ(k) + φ(k + 1))

yv(k) + ∆T V (k + 1) sin(ψ(k) + φ(k + 1))

ψ(k) + ∆T sin(φ(k + 1))











,

where V (k + 1) and φ(k + 1) are noisy control inputs of velocity and steer angle

respectively at time (k + 1).

The sensor returns the range, ri, and bearing, θi, to the i
th landmark and has the

following observation model.





ri

θi



 =





√

(xi − xv)2 + (yi − yv)2

arctan
(

yi−yv

xi−xv

)

− ψ



 (2.30)

The observation and vehicle models are non linear and so the AMF is implemented

using the EKF equations given in Appendix A.3. This is no different from using a

linear Kalman filter, other than requiring the usual linearisation assumptions around

the predicted states (see [34] for an extended discussion on linearisation of non-linear
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models). Equation 2.30 is linearised about the state prediction and the jacobian

∇xa
Hi is used in place of linear observation model Hi in the AMF estimation equa-

tions.
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Figure 2.2: The true path of the vehicle and location of five landmarks

Figure 2.2 shows the true trajectory of the vehicle over 400 time steps and the

location of the landmarks. The vehicle executes a roughly rectangular path within

the artificial environment. The vehicle is initialised with perfect certainty in vehicle

heading and a x, y location uncertainty of 0.1m

P0v =











0.12 0 0

0 0.12 0

0 0 0











(2.31)

Figures 2.3 and 2.4 show the error and standard deviations respectively in vehicle

state estimates as a function of time. During turning maneouvers, the uncertainty in

vehicle heading can be seen to increase. When traveling in the x direction uncertainty

in vehicle heading causes an increase in the uncertainty of the y location of the vehicle.

Conversely travel in the y direction causes an increase in the uncertainty of the x
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component of the vehicle location. Importantly, the estimate errors are bounded and

represent the stable operation of the filter.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4
Vehicle x Position Estimate Error

e
rr

o
r 

(m
)

0 50 100 150 200 250 300 350 400
−0.4

−0.2

0

0.2

0.4
Vehicle y Position Estimate Error

e
rr

o
r 

(m
)

0 50 100 150 200 250 300 350 400
−0.1

−0.05

0

0.05

0.1
Vehicle Heading Estimate Error

e
rr

o
r 

(r
a
d
)

time

Figure 2.3: The error in the vehicle state estimates
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Figure 2.4: The standard deviation of the vehicle state estimates

Figure 2.5 shows the observation innovations. The filter can be seen to be produc-

ing a conservative estimate as the innovations are well contained within the innovation

covariance 1σ bounds. The large innovation covariances at the start of the simulation
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are a result of large uncertainties in the location of newly observed landmarks.
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Figure 2.5: Observation Innovations

Figure 2.6 shows the error in estimates of the absolute location of the landmarks

as a function of time. The error plotted, ei, corresponds to the distance between

the estimated and true landmark locations ei = |p̂i − pi|. The figure shows that,

as predicted by Theorem 2.3, these errors do not tend to zero. The final landmark

location estimates inherit a common error from the initial uncertainty in vehicle

position. However, Figure 2.7 shows that the errors in the relative distances between

landmarks do tend to zero and in the limit, the relationships between all landmarks

become perfectly known. The figure illustrates the evolution of the error in the relative

map state between all landmarks and landmark 1, p1.

Figure 2.8 shows the evolution of the determinant of individual landmark estimate

covariances. As was proved in Section 2.4.2 these determinants are monotonically de-

creasing and represent increasing certainty in the absolute location of the landmarks.

Although the determinants are small they are always non zero and indeed have a

lower bound given by detPii(∞) as defined in the proof of Theorem 2.3. This corre-

sponds to the uncertainty that is inherited by all landmarks from the initial vehicle

uncertainty P0v .
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Figure 2.6: The absolute error of the five landmarks.
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Figure 2.7: The error in the length of the relative maps states p̂r(1,j) j = 2 · · · 5

This simulation has highlighted the key properties of the AMF. The use of a

simulation allows analysis of the errors committed by the algorithm which is hard

to achieve in real world environments given a lack of ‘ground truth’ information.

However, Chapter 7, presents an implementation of an AMF filter using real data

collected from a subsea vehicle.
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Figure 2.8: The determinant of landmark estimate covariances

2.7 Data Association and the AMF

The manner in a which a landmark observation is associated with a particular land-

mark is an important element of the SLAM solution. A detailed examination of this

data association problem is given in [4] and [31]. This section describes a simple data

association algorithm which allows an observation z(k + 1) to be associated with a

landmark pi.

Define the quantities

λi = z(k)−Hix̂a(k + 1|k)

Λi = HiPa(k + 1|k)H
T
i +Ri

ǫi = λT
i Λ

−1
i λi.

The term ǫi is the normalised innovation squared of the i
th. This quantity has a χ2

probability distribution with dim(z) degrees of freedom. Therefore, a value ǫmin can

be selected such that the null hypothesis that z(k + 1) is an observation of pi is not

rejected at some confidence level.
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This test is performed for all known landmarks i = 1..N . If only one landmark

can be associated with the observation then z(k + 1) is labeled zi(k + 1) and is used

to update the AMF state vector. If, however, this test results in a observation being

associated with more than one landmark the observation is rejected. An observation

that cannot be associated with any of the N estimated landmarks can be used to

initialise a new landmark into the map. The observation z(k + 1) may however be

a spurious measurement and as such the new landmark is initialised with a tenta-

tive status. A detailed discussion on how unexplained observations may be used to

initialise new landmarks can be found in [17] and in literature concerning Multiple

Hypothesis Testing [26][41][29].

2.8 Summary

This chapter has elucidated the structure of the SLAM problem. It has analysed

the performance of the AMF and shown that a stable and convergent solution to the

SLAM problem does exist.

The AMF is simply a Kalman filter with a time varying observation model and

thus it inherits several optimal properties. In particular the AMF is a minimum

mean squared error estimator. The noiseless landmark model endows the AMF with

a further three important properties which were proved in Sections 2.4.2 and 2.4.3.

These properties are briefly summarised as

• In practice every observation increases the total certainty in the absolute map

and every estimated landmark.

• In the limit as the number of observation increases, the relative errors between

landmark estimates tend to zero.

• The lower limit of map accuracy is a function of initial vehicle uncertainty when

the first landmark is observed.
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These crucial properties depend upon the maintenance of Pa in its entirety. How-

ever, it is also true that the major impediments to a real time implementation of the

AMF stem from the computation involved in the maintenance of this matrix.

Ideally a solution would be found which possesses all the convergence properties of

the AMF but without the scaling issues. This cannot be achieved by simply ignoring

the landmark cross correlations as this ignores the physical structure and topology

of the navigation problem. The fact that in the limit, the relationships between

landmarks become perfectly known and the AMF is convergent, is precisely because

landmark cross correlations are maintained. The landmark cross correlations directly

represent the relationships between the landmark estimates and therefore failure to

maintain these cross correlations is directly contrary to the structure of the SLAM

problem.

If cross correlations between state vector estimates could be eliminated by a careful

re-formulation of the SLAM problem then it is possible to drastically reduce the

computation required by the filter. It is just this approach that is taken in Chapter

5 in the development of an alternative SLAM solution.



Chapter 3

Constrained Estimation

3.1 Introduction

Chapter 2 showed that the errors present in an estimated relative map in general

cause the map to be inconsistent. It was shown that a condition of consistency is

closure of relative transformations around all loops in the map-network. This chapter

derives an estimation theoretic tool that will be used extensively by Chapter 5 to

constrain an estimated relative map such that the consistency condition is met. This

enables the development of a novel and elegant SLAM algorithm.

This chapter derives a generic constrained estimator from first principles [48] and

provides an interesting geometrical interpretation of its operation. The inspiration

for the figures in this chapter stems from [44] which provides excellent illustrations

of the action of estimators in a coordinate free formulation.

3.2 Formulation

In general a set of linear constraints on a random vector x can be written as

Cx = b (3.1)
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where C is a n ×m constraint matrix and b is a vector of dimension m. Equation

3.1 is called the constraint equation and represents m constraint equations in n state

variables. It is assumed that the constraints are sensibly formulated and that at least

one solution for x exists.

Given a prior state estimate denoted x− with covariance P−, it is required to find

posterior estimates x+ and P+ that satisfy the constraint equation. The action of the

estimator is to be weighted by the prior estimate covariance such that state variables

with highest prior certainty are the least perturbed.

3.3 Derivation From the Kalman Filter

The constrained estimator is derived from the standard Kalman filter equations. An

observation equation for the prior state can be written x− as

z = Hx− +w, (3.2)

where w is assumed to be a zero mean and temporally uncorrelated sequence such

that

E [w] = 0

E
[

w.wT
]

= R

= ǫI.

The usual time dependence on k has been dropped because only one constrained

estimate is required. The standard Kalman update equations are now written as

x+ = x− +P−HT
[

HP−HT + ǫI
]−1 [

z−Hx−
]

P+ = P− −P−HT
[

HP−HT + ǫI
]−1
HP−.
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A constraint equation can be understood as a perfect observation. Mathematically

this total confidence can be integrated into the Kalman update equations by allowing

the observation covariance R of the near perfect observation in Equation 3.2 to tend

to 0. In the limit as ǫ → 0

lim
ǫ→0

[

x+
]

= x− +P−HT
[

HP−HT
]−1 [

z−Hx−
]

lim
ǫ→0

[

P+
]

= P− −P−HT
[

HP−HT
]−1
HP− (3.3)

With ǫ → 0, the now ‘perfect’ observation model z = Hx− is replaced with the

constraint equation Cx− = b. Rearranging the R.H.S terms of Equation 3.3 results

in the constrained estimator equations:

x+ = [I−KC ]x− +Kb (3.4)

P+ = [I−KC]P− [I−KC]T (3.5)

where

K = P−CT
[

CP−CT
]−1

(3.6)

The similarity to the standard Kalman filter equations is apparent with the term

[I−KC] appearing in place of [I−WH] and with the absence of an observation noise

covariance matrix R.

The fact that x+ satisfies the linear constraintCx+ = b is easily verified. Equation

3.4 can be rearranged as

x+ = x− +K
[

b−Cx−
]
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Multiplication of both sides by C yields

Cx+ = Cx− +CK
[

b−Cx−
]

= Cx− +CP−CT
[

CP−CT
]−1 [

b−Cx−
]

= Cx− + b−Cx−

= b

and therefore the constraint is met by x+.

3.4 A Geometric Interpretation

This section draws on the theorems of linear algebra to present a powerful geometrical

interpretation of the action of the constrained estimator. Extensive use is made of

the four fundamental spaces of linear algebra R(C), R(CT), N (C) and N (CT). The

definitions of and relationships between these spaces are reviewed in Appendix B and

explored in greater detail in [1].

3.4.1 Orthogonal Decomposition of the Constrained Estimate

The general solution xg to Cx = b can be written as a sum of a particular solution

xpt and all the linearly independent homogenous solutions to the system.

xg = xpt + x0 (3.7)

= xpt + α1v1 + · · ·αwvw

where

Cx0 = 0 (3.8)
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and [v1 · · ·vw] are w basis vectors of the null space of C, N (C) and α1 · · ·αw are

any scalars. The number of independent homogenous solutions w is given by the

dimension of the null space and is given by

w = dim[N (C)] = n− rank(C) (3.9)

The term xpt is any vector that satisfies the equation Cx = b and is called the

particular solution. If C is full rank then N (C) only contains the zero vector and

only one solution of the system exists. If however the dimension of N (C) is not zero

an infinite number of solutions exist and are constrained to lie in a k dimensional

affine manifold or translate of the null space of C. 1

Example 3.1 If a constraint equation is given as

Cx = b

where

C = [a, b, c]

b = d

then

rank(C) = 1

1The solution space for a non trivial system does not contain the zero vector hence is not a sub

space.
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and therefore the rank of N (C) is given by

w = dim[N (C)]

= 2

Therefore, x must lie on a 2 dimensional surface, a fact which is readily verified by

noting that the expanded constraint equation is indeed the equation of a plane in R
3.

The particular solution xpt is any solution to the system and can be found by

applying a right inverse C− of C to b such that

xpt = C
−b

The choice of the right inverse is arbitrary. The most general right inverse [48], the

‘Moore-Penrose’ inverse, is used which is given by

C+ = CT (CCT )−1 (3.10)

and has the following property:

C+ = argmin
C−

‖xpt‖
2 . (3.11)

Equation 3.11 implies that the Moore-Penrose inverse yields the ‘shortest’ particular

solution to the system. This solution is therefore orthogonal to the surface of solutions

of Cx = b and hence also orthogonal to the null space of C. This solution vector is

therefore the perpendicular distance between the null and solution spaces. Equation

3.7 can now be seen to represent the whole of the solution space of Cx = b as a sum

of two orthogonal vectors, one in the null space and one orthogonal to the null space.

This interpretation is shown graphically for the planar constraint example given in

Example 3.1 in Figure 3.1. Comparing the constrained estimator gain
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Cx=b

N(C)

0

x
pt

x
0

Figure 3.1: The orthogonal decomposition of the solution to an under constrained
linear system Cx = b.

K = P−CT
[

CP−CT
]−1

(3.12)

with the Moore-Penrose pseudo inverse when the prior covariance is the identity

matrix it can be seen that the term Kb in Equation 3.4 is a particular solution to

the constraint equation.

The following two sections illustrate the behaviour of the constrained estimator

by setting the prior covariance P− to the identity matrix. The more general case

when P− is not an identity matrix will be discussed in Section 3.4.3.
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3.4.2 Projecting onto N (C)

Define a matrix P where

P = KC

= CT (CCT )−1C.

P has the following two properties

P2 = P (3.13)

PT = P . (3.14)

A matrix with these properties is a projection matrix. Pre-multiplication of a vector

by a projection matrix yields the projection of the vector x onto R(P). The result of

any matrix multiplication A×B lies in the column space of A as proved in Appendix

B.2. Therefore, by inspection, the column space of P is the column space of CT and

P projects onto this space.

The quantities (I−P) and P are complementary orthogonal projection operators,

i.e the inner product of the projections is zero:

[(I− P)x]TPx = xT (I− P)TPx

= xT (P − P2)x

= 0

Therefore (I − P) projects into the space orthogonal to R(P). By the definition of

the four fundamental spaces of linear algebra this space is N (C), the nullspace of C.

The term [I−KC]x− in Equation 3.4 is now identified as a projection of x− onto the

nullspace of C. If P− is the identity matrix this projection is orthogonal to N (C).
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3.4.3 Constrained Estimation as a Projection Operation

Equation 3.12 can now be described as the addition of two orthogonal vectors: the

projection of x− onto the null space of C and a vector orthogonal to this null space.

These two vectors are respectively homogeneous and particular solutions to the con-

straint equation. They sum to produce a constrained estimate x+ lying on the con-

strained solution surface that is also closest to x−. This combination of orthogonal

vectors is shown pictorially in Figure 3.2.

Cx=b

N(C)

x
-

x
+

C
T
(C

C
T
)-

1
b

(I-P)x -

0

Figure 3.2: Action of the unweighted constrained estimator (P− = I). The null space
and solution manifold depicted are two dimensional representations of arbitrarily high
dimensional surfaces. The projective interpretation holds regardless of dimension.

Figure 3.2 gives a pictorial interpretation of the action of the constrained estimator
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when the prior covariance matrix P− is the identity matrix. In general this will not

be the case.

As in the case where P− = I the term [I−KC]x− lies in the null space of C.

C
[

(I−KC)x−
]

= C
[

I−P−CT
(

CP−CT
)−1
C

]

x−

=
[

C−CP−CT
(

CP−CT
)−1
C

]

x−

= 0

The posterior constrained estimate can be written x+ as the sum of two vectors

x+ = v1 + v2,

where v1 is the null space solution component vector and v2 is a particular solution.

In the unweighted case v1 is orthogonal to v2. In the weighted case these vectors are

orthogonal in information space such that

vT
1 [P

−−1
]v2 = 0 (3.15)

The weighting by P− alters the direction of projection to reflect the prior certainty in

each of the states of x−. The action of the weighted constrained estimator is shown

graphically in Figure 3.3. The figure illustrates how the solution x+ is constructed

from two vectors, one lying in the null space of C and another traversing the space

between the null space and constraint surface.

3.5 Projection onto the Constraint Surface

Examination of Figures 3.2 and 3.3 leads to another projective interpretation. Fig-

ure 3.2 shows the action of the unweighted constrained estimator. The constrained

estimate x+ can be seen to be the orthogonal projection of x− onto the constraint sur-
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Cx=b

N(C)

x
-

x
+

K
b

(I-KC)x
n

0

Figure 3.3: Action of the weighted constrained estimator. The prior covariance alters
the direction of the projection on to the null space of C.

face itself because this surface is parallel to N (C). Similarly, in the prior covariance

weighted case shown in Figure 3.3, the posterior constrained estimate is a weighted

(i.e not orthogonal) projection of x− onto the constraint surface Cx = b.

The matrix [I−KC] has been identified as a projection operator onto the null

space of the constraint matrix C. Equation 3.9 shows that for all non-trivial con-

straints the dimension of N (C) is less than n, the dimension of x−. Therefore, the

projection of the prior covariance matrix P− causes a ‘flattening’ of the uncertainty

ellipsoid onto the constraint surface. This equates to a reduction in the rank of the

covariance matrix across the projection operation. The constrained covariance P+ is
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therefore rank deficient and has the property that

det(P+) = 0. (3.16)

3.6 Non Linear Constraints

The analysis of the previous sections can be applied to the case in which the constraint

equation is non-linear. In this case the constraint equation is written as

C(x−) = b

Linearisation techniques identical to those used in the derivation of the EKF from

the linear Kalman filter (see Appendix A.3 and [20, 34]) can be applied and result in

the substitution of C for ∇x−C in Equation 3.4. The term ∇x−C is understood to

be the Jacobian of C evaluated at x−. The resulting equations define the non-linear

constrained estimator and are given below.

x+ = x− +K
[

b−C(x−)
]

P+ = [I−K∇x−C]P
− [I−K∇x−C]

T (3.17)

where

K = P−∇x−C
[

∇x−CP
−∇x−C

T
]−1

(3.18)

The geometrical interpretation of the linear constrained estimator still holds in the

non-linear case and is illustrated by Figure 3.4 . The constraint surface is now not in

general a hyperplane but a complex surface. The local linearisation of C calculates a

hyper-plane approximation or ‘flat’ to the true constraint surface at the prior estimate

x−. The posterior constrained estimate x+ is acquired by projecting x− onto this flat.

The linearisation assumptions used in the derivation of the nonlinear constrained
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x+

projection onto linearised

constraint surface

state constraint surface

0

x-

Figure 3.4: The operation of the non-linear constrained estimator

estimator result in only first order accuracy in constraint satisfaction. This is in

contrast to the linear case in which the constraints are perfectly met.

3.7 Summary

This chapter derived a constrained estimator from the standard Kalman filter equa-

tions. The estimator applies a set of constraint equations to a prior state estimate x−

and associated covariance P−. The manner in which x− is perturbed is weighted by

P−, reflecting the prior certainty in each state variable. A valuable and interesting

geometric interpretation of the action of this estimator has been developed. By using

fundamental concepts of linear algebra it has been shown that the estimator projects

the prior state estimate onto the surface described by the constraint equations. This

interpretation will be used extensively when the constrained estimator is applied to

the SLAM problem in Chapter 5.



Chapter 4

SLAM Using A Relative Map

4.1 Introduction

This chapter describes two SLAM algorithms. The first algorithm builds a relative

map and is called the Relative Map Filter (RMF). It builds on and formalises earlier

work by Csorba [14]. It is shown that the properties of relative maps deduced in

Section 1.4.2 allow the RMF to estimate each relative map state independently and

in isolation. Furthermore, the errors in the relative map state estimates are uncorre-

lated with errors in the vehicle position estimate. State estimation is achieved using a

Kalman filter of the dimension of the estimated relative map state. The RMF decou-

ples, in a consistent manner, the localisation and map building aspects of the SLAM

problem. Importantly, the computation required by the filter is entirely independent

of map size.

Section 1.5.3 showed that estimated relative maps are prone to geometric incon-

sistency. The relative map built by the relative map filter will not in general be

a consistent representation of landmark locations. This issue was not discussed or

acknowledged by Csorba.

The second half of this chapter presents a novel and original solution to the SLAM

problem. This navigation algorithm constitutes a principal contribution of this thesis
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and is named the Geometric Projection Filter. The Geometric Projection Filter

(GPF) builds a relative map that is guaranteed to be consistent. It inherits all the

computational and storage advantages of using a relative map from the RMF discussed

in Section 4.3.6. The GPF ensures consistency of the estimated relative map by the

application of suitably formulated constraints. These constraints are applied by using

the constrained estimator derived and analysed in Chapter 4. The GPF derives its

name from the interpretation of the action of the constrained estimator as a projection

onto a constraint surface. The constraint surface employed by the GPF represents

the geometric constraints that must be met by a consistent relative map.

4.2 The Relative Map Filter - RMF

This section develops an alternative SLAM algorithm which allows a vehicle moving

in an unknown environment to build and maintain a relative map. This algorithm

will be referred to as the Relative Map Filter (RMF). The nature and qualities of

relative maps were discussed in Section 1.4.2 and the conclusions of this section are

used extensively.

This section begins by specifying vehicle and landmark models employed by the

filter. The RMF observation model and state vectors are then derived from a set

of simultaneous VLM observations. The standard Kalman filter is used to estimate

relative map states yielding the key equations of the RMF. It is shown that the partic-

ular forms of the observation model and state vector employed enable an extremely

efficient implementation of a navigation filter. The structure of the RMF solution

is then discussed, important qualities highlighted, and comparisons drawn with the

AMF. Section 4.3.7 draws on Section 1.5.3 and recognises that the RMF does not

guarantee a geometrically consistent relative map estimate. This is an important

shortcoming of the RMF.

Section 4.4 provides a simulation of the RMF using the same simulated environ-

ment used in Section 2.6 for an AMF simulation.
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In conclusion, the advantages and disadvantages of the RMF are summarised.

The insight gained from the study of the RMF naturally leads to the development

of the new SLAM solution discussed in the second half of the chapter beginning in

Section 4.6.

4.2.1 The Relative Map Filter State Vector

The RMF builds and maintains a relative map which is stored in a state vector pr

pr =





























pr(1,2)

pr(1,3)

...

pr(i,j)

...

pr(N−1,N)





























(4.1)

where pr(i,j) is the relative state between landmarks pi and pj.

4.2.2 Vehicle Model

The state of the vehicle xv at time k is assumed to evolve according to the following

model

xv(k + 1) = Fv(k)xv(k) + uv(k + 1) + vv(k + 1), (4.2)

where uv(k) is the vehicle control input. The noise term vv(k) is assumed to be an

unbiased temporally uncorrelated sequence with variance Q(k).
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4.2.3 Landmark Models

The process model for the ith landmark is written as

pi(k + 1) = pi(k) = pi (4.3)

Once again, as was the case for the AMF, landmarks are modelled as stationary point

features. A consequence of Equation 4.3 is that evolution of the relative map state

between any two landmarks pi and pj can be written as

pr(i,j)(k + 1) = pr(i,j)(k) = pr(i,j). (4.4)

4.2.4 Observation Model

The RMF observation equation is derived from the simultaneous observations of two

point landmarks illustrated in Figure 4.1. Practical issues regarding the simultaneous

observation of landmarks are discussed in Section 4.3.8.

p
i,j

Relative State

Landmarks

Vehicle at  time (k) Vehicle-Landmark

Relative Observation

p
i

p
j

Figure 4.1: A simultaneous observation of two landmarks by a mobile robot.

Continuing with the notation used in Chapter 3, the simultaneous observation of
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two distinct landmarks by a sensor on the vehicle is written as





zi(k)

zj(k)



 =





−Hv Hi 0

−Hv 0 Hj















xv(k)

pi

pj











+





wi(k)

wj(k)



 . (4.5)

The incidence matrix, Ω, for the trivial map network consisting of the landmarks pi

and pj is written as

Ω =
[

−I I
]

. (4.6)

Multiplying both sides of Equation 4.5 by the incidence matrix Ω yields a transformed

observation equation given in Equation 4.7.

Ω





zi(k)

zj(k)



 = Ω





−Hv Hi 0

−Hv 0 Hj















xv(k)

pi

pj











+ Ω





wi(k)

wj(k)



 (4.7)

[

zj(k)− zi(k)
]

=
[

0 −Hi Hj

]











xv(k)

pi

pj











+
[

wj(k)−wi(k)
]

(4.8)

=
[

Hjpj −Hipi

]

+
[

wj(k)−wi(k)
]

(4.9)

The transformation applied in Equation 4.7 yields the relative map observation

zr(i,j) and can be applied to a map containing any number of landmarks. The result

is a set of relative map observations representing the relative locations of landmarks.

The relative state observation, zr(i,j), between landmarks pi and pj can be written
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in terms of the RMF state vector pr.

zr(i,j)(k) =
[

0 · · · hr(i,j) · · · 0
]

pr +wi,j(k)

= Hr(i,j)pr +wi,j(k) (4.10)

where wi,j is the effective noise upon the relative observation zr(i,j). The matrix hr(i,j)

is the observation model for the relative state pr(i,j).

A similar formulation can be obtained for more complex landmarks (other than

point features) by defining a suitable transformation between landmarks as relative

states (see Section 1.6). However, the use of point landmarks yields insight into the

properties of the RMF.

4.2.5 The Estimation Process of the RMF

This section describes how the RMF produces an estimate of a relative map of the

environment and presents the governing equations of the algorithm. A Kalman filter

is used to recursively maintain an estimate of the relative map p̂r and an associated

error covariance matrix Pr. Using Equation 4.4 the prediction stage of the filter is

written as

p̂r(k + 1|k) = p̂r(k|k), (4.11)

ẑr(i,j)(k + 1|k) = Hr(i,j)p̂r(k|k), (4.12)

Pr(k + 1|k) = Pr(k|k). (4.13)

When a relative map observation zr(i,j)(k + 1) becomes available p̂r(k + 1|k) and

Pr(k + 1|k) are updated. Using Equations 4.11 and 4.13 with the standard Kalman
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filter equations, the map update can be written as

p̂r(k + 1|k + 1) = p̂r(k|k) +Wr(i,j)(k + 1)
[

zr(i,j)(k + 1)− ẑr(i,j)(k + 1|k)
]

, (4.14)

Pr(k + 1|k + 1) = Pr(k|k)−Wr(i,j)(k + 1)Sr(i,j)W
T
r(i,j)(k + 1), (4.15)

where

Wr(i,j)(k + 1) = Pr(k|k)H
T
r(i,j)S

−1
r(i,j), (4.16)

Sr(i,j) = Hr(i,j)Pr(k|k)H
T
r(i,j) +Rr(i,j)(k + 1). (4.17)

Assume now that the prior map covariance estimate is block diagonal (Section 4.3.2

will show this condition to always be met). The gain matrix Wr(i,j)(k + 1) is given

by

Wr(i,j)(k + 1) = Pr(k|k)H
T
r(i,j)S

−1
r(i,j)

=








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









Pr(a,b)(k|k) 0 · · · · · · · · ·

0 Pr(e,f)(k|k) 0 · · · · · ·
... 0 Pr(i,j)(k|k) 0 · · ·
...

... 0 Pr(p,q)(k|k) · · ·
...

...
...

...
. . .













































0
...

hT
r(i,j)

...

0























S−1
r(i,j)

=























0
...

Pr(i,j)(k|k)h
T
r(i,j)S

−1
r(i,j)

...

0























. (4.18)

Equation 4.18 implies that if Pr(k|k) is block diagonal then an observation zr(i,j) only

updates the block matrix Pr(i,j)(k|k) and the relative map state p̂r(i,j)(k|k). All other

states and covariances are unaffected. The full state vector and covariance matrices
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can now be dropped from the update equations and replaced with the only affected

state and state covariance. The resulting equations are the governing equations of

the RMF and are written as:

p̂r(i,j)(k + 1|k + 1) = p̂r(i,j)(k|k) +wr(i,j)(k + 1)
[

zr(i,j)(k + 1)− ẑr(i,j)(k + 1|k)
]

,

Pr(i,j)(k + 1|k + 1) = Pr(i,j)(k|k)−wr(i,j)(k + 1)sr(i,j)w
T
r(i,j)(k + 1),

ẑr(i,j)(k + 1|k) = hr(i,j)p̂r(i,j)(k|k),

where

wr(i,j)(k + 1) = Pr(i,j)(k|k)h
T
r(i,j)s

−1
r(i,j),

sr(i,j) = hr(i,j)Pr(i,j)(k|k)h
T
r(i,j) +Rr(i,j)(k + 1).

The recasting of the full state vector update equations to only an isolated relative

state update has a profound effect on the structure of the RMF and the computation

required to implement it in real time. These aspects of the RMF are discussed in

Section 4.3.

4.3 The Structure of the RMF

This section exposes the structure and key properties of the RMF. In particular it is

shown that

1. The RMF decouples the map building and localisation aspects of the SLAM

problem. The RMF can build a relative map without knowledge of the vehicle

location.

2. The relative map covariance matrix remains block diagonal for all time and thus

map state estimates are always uncorrelated.
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3. The determinant of any relative map state covariance matrix decreases mono-

tonically as successive observations of that particular state are made.

4. In the limit as the number of observations increases, the relative map becomes

perfectly known.

5. The lower bound on the uncertainty of the absolute location of landmarks is

given by the vehicle uncertainty at the time of the observation of the first

landmark.

6. The RMF does not in general produce a consistent relative map.

It is instructive to compare these statements and the following proofs with those con-

cerning the structure of the AMF given in Section 2.4. For example, the convergence

of the AMF map to a fully correlated matrix (Theorem 2.2) is equivalent to the third

property of the RMF listed above. This is verified by recalling that a consequence

of Theorem 2.2 is that the relationship between absolute landmarks becomes known

perfectly as the number of observations tends to infinity, i.e a perfect relative map

exists.

4.3.1 The Decoupling of Map Building and Localisation

The relative map observation model given in Equation 4.10 is independent of the

vehicle state xv(k). The RMF estimation equations given in Section 4.2.5 also do

not involve the vehicle state vector. Hence, the RMF requires no knowledge of the

location of the vehicle to build a relative map. This is a fundamental property of the

filter and it represents the decoupling of the localisation and map building elements

of the SLAM problem.

Localisation is achieved by integrating the vehicle into the relative map in the

manner discussed in Section 1.7. The vehicle is treated as a moving relative map

node. It is connected to the ‘stationary’ relative map of landmarks produced by the

RMF by treating the latest VLM observation as a relative map state between the
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vehicle and the observed landmark. A topic of further research involves using these

observations as inputs to a Kalman filter estimating the vehicle location with respect

to any given landmark [33]. This is discussed in Chapter 8.

4.3.2 The Independence of RMF States

Equation 4.18 showed that given a block diagonal, prior state covariance matrix, state

estimates and their associated covariances can be updated in isolation. It follows

therefore, that the posterior covariance matrix estimate following an update will also

be block diagonal. This means that if Pr is initialised in block diagonal form it will

remain block diagonal and therefore Equation 4.18 also holds for all time. Diagonal

initialisation of Pr requires the reasonable assumption that uncertainties in relative

states observed for the first time are independent of uncertainties in existing relative

states.

The ability to update RMF states in isolation is a fundamental property of the

RMF. It captures the mutual independence of RMF states. The errors in an estimate

of the map state p̂r(i,j) are independent from the errors in an estimate of any other

map state p̂r(m,n). Mathematically this corresponds to the off diagonals of Pr, the

state cross correlation estimates, remaining at 0 and Pr maintaining block diagonal

form for all time.

4.3.3 Convergence of the Relative Map Covariance Matrix

Theorem 4.1 The determinant of any relative map state covariance decreases mono-

tonically.

The update of the covariance Pr(i,j)(k|k) following the taking of a relative map

observation zr(i,j)(k + 1) is written as

Pr(i,j)(k + 1|k + 1) = Pr(i,j)(k|k)−wr(i,j)(k + 1)sr(i,j)w
T
r(i,j)(k + 1)
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taking the determinants of both sides and invoking the properties of psd matrices

(see Appendix B.3)

det[Pr(i,j)(k + 1|k + 1)] ≤ det[Pr(i,j)(k|k)]

and in particular

σ2
i,j(k + 1|k + 1) ≤ σ2

i,j(k|k) (4.19)

where σ2
i,j(k|k) is understood to be the variance of any parameter in p̂r(i,j)(k|k).

Equation 4.19 shows that the uncertainty in any relative map state never increases.

4.3.4 A Lower Bound on the Relative Map Covariance Ma-

trix

Theorem 4.2 In the limit, as the number of observations tends to infinity, the rela-

tive map becomes perfectly known.

In the limit as the number of observations taken increases the relative map co-

variance matrix will reach a steady state:

lim
k→∞

[Pr(k + 1|k + 1)−Pr(k|k)] = 0.

Therefore, in the limit, for all landmark pairs (i, j)

Wr(i,j)(k + 1)Sr(i,j)W
T
r(i,j)(k + 1) = 0

⇒ Pr(k|k)H
T
r(i,j) = 0. (4.20)

As Equation 4.20 holds for all landmark pairs (i, j) the limiting value of Pr must be
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0.

lim
k→∞

Pr(k|k) = 0 (4.21)

Therefore in the limit as the number of observations tends to infinity the relative map

becomes perfectly known.

This result is identical to Theorem 2.2 which is concerned with the map matrix of

the AMF. In both filters, in the limit, the relationship between landmarks becomes

perfectly known.

Theorem 2.3 showed that the minimum achievable uncertainty Pii(∞) in the

absolute location of any landmark pi is given by

Pii(∞) = H
−1
pi HvP0v

[

H−1
pi Hv

]T
(4.22)

Theorem 4.2 also showed that in the limit the relative map becomes perfectly known

and therefore given the location of one landmark all other absolute landmark locations

can be determined perfectly. Implicitly then absolute landmark estimates derived

from the RMF achieve, in the limit, the uncertainty given by Equation 4.22. This

limiting uncertainty is wholly determined by the initial vehicle uncertainty P0v . In

this case, the initial vehicle uncertainty P0v corresponds to the absolute seeding

information needed to transform the relative map into absolute form as described in

Section 1.5.2. Equivalently, the absolute location of a landmark could be specified

with an associated uncertainty. In this case, in the limit, all landmark absolute

location estimates derived from p̂r would inherit this seeding uncertainty.

4.3.5 Obtaining Pa from p̂r

The covariance of the absolute locations of the estimated landmarks can be derived

from the estimated relative map. Given an estimate of the ith landmark the location

estimate of the nth landmark can be written as a linear combination of the states
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within p̂r(k + 1|k + 1)

p̂n(k + 1|k + 1) = p̂i(k + 1|k + 1) +Ti,np̂r(k + 1|k + 1). (4.23)

Therefore the covariance of an estimate of the location of the nth landmark given the

variance in the estimate of p̂i can be written as

Pn,n(k + 1|k + 1) = Pi,i(k + 1|k + 1) +Ti,nPr(k + 1|k + 1)T
T
i,n (4.24)

Thus, given the variance of the location of one landmark, the variance in the location

of any other landmark can be deduced by successive application of Equation 4.24.

In the case of ACRM states, Equation 4.24 can be simplified as follows

p̂n(k + 1|k + 1) =p̂i(k + 1|k + 1) + p̂r(i,j)(k + 1|k + 1) + · · ·

· · ·+ p̂r(m,n)(k + 1|k + 1) (4.25)

Pn,n(k + 1|k + 1) =Pi,i(k + 1|k + 1) +Pr(i,j)(k + 1|k + 1) + · · ·

· · ·+Pr(m,n)(k + 1|k + 1) (4.26)

where use has been made of the block diagonality of Pr(k + 1|k + 1). This trans-

formation corresponds to following a path through the map-network by applying

the relative transformations represented by the edges of the network as described in

Chapter 2. Importantly, Ti,n is not in general unique. In a multiply connected map-

network more than one path can be found between any two landmarks. Therefore,

the value obtained for Pn,n(k + 1|k + 1) is dependent on the path taken through the

map-network.

4.3.6 Scaling Properties of the RMF

The dimension of the updated matrix Pr(i,j) is only
[

dim(pr(i,j))× dim(pr(i,j))
]

. The

computation required to perform this update is entirely independent of the total di-
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mension of the complete state vector pr and thus the number of landmarks. Therefore,

the RMF has a constant update time.

The computation required to implement a RMF is not subject to the quadratic

scaling problem of the AMF. This is a substantial and significant advantage of the

RMF over the AMF. The RMF can be used in environments containing any number

of landmarks and the computation time required to estimate a relative map of the

environment will remain constant.

The storage required by the RMF scales linearly with the number of landmarks.

This characteristic stems from the guaranteed block diagonal form of Pr. It is not

necessary to store anything other than the diagonal matrices of Pr. These diagonal

matrices are stored in a matrix P⊕

r

P⊕

r =

















Pr(a,b)

Pr(m,n)

Pr(p,q)

...

















(4.27)

4.3.7 Map Inconsistency and the RMF

Section 4.3.4 showed that in the limit the RMF produces a perfect relative map.

In general however, before this limit is reached, the RMF produces an imperfect

and inconsistent relative map. Section 1.5.3 discussed how imperfect relative map

estimates produce inconsistent absolute landmark estimates. This is a fundamental

problem with the RMF algorithm.

It is possible to resolve inconsistent absolute landmark locations by heuristic meth-

ods such as clustering in which each landmark is referenced in only one relative state.

In some situations these approaches may yield satisfactory results. In these cases the

RMF constitutes an extremely efficient SLAM algorithm with a very low computa-

tional overhead.
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4.3.8 Obtaining Simultaneous Observations

The relative map filter requires relative map state observations to be made. In Sec-

tion 4.2.4 these observations were derived from two simultaneous VLM observations.

For some sensors it may be possible to do exactly this, for example a CCD camera

takes a ‘snap shot’ of the environment in a very short amount of time. From within

the resulting image it is possible to extract more than one landmark and hence a

landmark-landmark relative observation can be made.

For sensors that make observations at a slower rate, for example sonar, vehicle

motion between VLM observations must be taken into account. This in itself is not an

insurmountable problem if a single important condition is met: the estimated vehicle

motion between observations must be uncorrelated for each constructed relative state

observation. This is illustrated in Figure 4.2. If this is not the case then a common

p
1,2 p

2,3

Relative States

Landmarks

Vehicle-Landmark

Relative Observations

Vehicle Motion

Estimate

Vehicle Motion

Estimate

1

2

3

4
v

3,4
v

1,2

Figure 4.2: Constructing relative map observations from multiple way-points. The
vehicle motion estimates must be independent if the relative map states are themselves
to remain independent.

error will be inherited by multiple relative map states - they will become correlated.

The efficiency of the relative map depends upon the absence of correlation between
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vehicle and map state estimates and this condition must not be violated.

Take, for example, the case of a wheeled mobile robot equipped with a compass

(magnetometer) and wheel encoders moving in an environment containing three point

landmarks as shown in Figure 4.2. The vehicle motion vectors v1,2 and v3,4 between

observations can be calculated from these sensors and they are uncorrelated.

If however, rather than a compass the vehicle possesses a gyro, v1,2 and v3,4 will

be correlated. The indicated heading is obtained by integrating the output of the

gyro sensor over time. Therefore, the error in indicated heading at position 1 is also

present at position 3. This results in a common error in the directions of v1,2 and v3,4

and the derived observations of pr(1,2) and pr(2,3) become correlated. This violates

a key assumption of the RMF and destroys the mutual state independence property

upon which the efficiency of the algorithm depends.

4.4 Simulation of the RMF

This section provides a simulation of the RMF using the same artificial landmark set

as used in the AMF simulation in Section 2.6.

A vehicle identical to that used in Section 2.6 moves through the environment

making simultaneous landmark observations from which relative observations are con-

structed. It is assumed that the vehicle possesses a compass-like sensor capable of

determining the heading of the vehicle with temporally uncorrelated errors. This

sensor is used to construct ACRM observations.

Figure 4.3 shows the ten relative map states that exist between the five absolute

point landmarks. The state of the relative map after 10, 50 and 170 observations is

shown by Figures 4.4, 4.5 and 4.6 respectively. Initially the relative map contains few

relative states because few landmarks have been observed. Importantly, the relative

map is highly inconsistent - the map states do not form closed polygons. As more

observations are made the relative map becomes more consistent as witnessed by

Figure 4.6. This verifies Theorem 4.2, which showed that in the limit the relative
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Figure 4.3: A network of 10 relative map states connecting 5 absolute landmarks.
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Figure 4.4: The inconsistent relative map after 10 observations.

map becomes perfectly known and consistent. Figure 4.7 uses the true relative map

states to show how the errors in the length of estimated relative map states decrease

as more observations are made.

Figure 4.8 examines the determinants of the individual state estimate covariances
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Figure 4.5: The inconsistent relative map after 50 observations
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Figure 4.6: The inconsistent relative map after 170 observations

Pr(i,j). The determinants, and hence the uncertainty, in each state are seen to be

monotonically decreasing as predicted by Theorem 4.1. This is also illustrated in

Figure 4.9 in which the evolution of the standard deviation in the x component of

each relative state is examined. The uncertainty in every state estimate component
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Figure 4.7: The error in the length of the estimated ACRM states
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Figure 4.8: The determinants of the covariance matrices of the estimated ACRM
states

is shown to be monotonically decreasing as predicted by Theorem 4.1.

The estimated position of the vehicle has not been shown in this simulation be-

cause it is not possible to find a unique vehicle position estimate from an inconsistent

relative map. However the simulation has shown how relative map observations can

be used to build a relative map which becomes progressively more accurate as more
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Figure 4.9: The standard deviation in the x direction the of estimated ACRM states

observations are made. Furthermore, the map has been built without recourse to the

vehicle model or estimates of vehicle location.

4.5 Summary of the RMF

The first half of this chapter has developed and investigated an alternative SLAM

algorithm which builds a relative map. The key properties of this filter, derived in

previous sections, are now collated.

• The RMF decouples the map building and localisation problems. The errors in

the relative map built by the RMF are independent of the vehicle state.

• The estimated relative map states are mutually independent.

• The uncertainty in the relative map state estimates are monotonically decreas-

ing.

• In the limit, as the number of observations increases, the relative map becomes

perfectly known.
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• The computation required to update the RMF is constant and independent of

map size.

• The memory required by the RMF scales linearly with map size.

• The estimated relative map will in general be inconsistent.

The RMF offers a major advantage over the AMF - freedom from the quadratic

scaling of computation and storage with map size. The RMF can be applied to an

environment possessing any number of landmarks with a constant update computa-

tional requirement.

The RMF is however disadvantaged by the inability to guarantee consistency of

the estimated relative map. Indeed, Theorem 4.2 shows that the relative map only

becomes consistent as the number of observations made tends to infinity. It is this

issue of map inconsistency that is now addressed and resolved by the second half of

this chapter.
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4.6 The Geometric Projection Filter - GPF

The following sections introduce a new navigation filter - the Geometric Projection

Filter or GPF. The GPF is based upon the RMF described in the first half of this

chapter. Like the RMF it produces a relative map as an output. The GPF inherits

the advantageous scaling properties of the RMF as well as the decoupling of map

building and localisation tasks. Unlike the RMF however, the GPF ensures that the

output map is consistent as defined by Section 1.5.3.

The consistency of the estimated relative map is enforced by the application of

the constrained estimator developed in Chapter 4 to an inconsistent relative map

produced by a standard RMF.

 Relative Map

Observation

Construction

RMF
Consistency

Enforcement

Consistent

Relative Map

Estimate

Consistent

Absolute  Map

Estimate

Figure 4.10: The structure of the Geometric Projection Filter algorithm

Figure 4.10 shows the structure of the GPF algorithm in block form. The GPF has

two distinct components. The first half of the filter is essentially the RMF. Relative

observations are passed to the RMF which fuses observations with the relative map

which it builds and maintains.

The second half of the filter ensures geometric or Euclidean consistency within the

relative map. This is done by applying the constrained estimator derived in Chapter

4 to the output of the first stage. As is discussed in Section 3.4.3 the constrained

estimator performs a projection onto a constraint surface. In this case the constraint
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surface represents geometric consistency in the relative map. It is from this ‘Geometric

Projection’ that the GPF derives its name. The output of the second stage of the

GPF is called the constrained relative map. It is denoted as p̂rc and has an associated

covariance Prc.

Figure 4.11 provides a three dimensional depiction of the operation of the Geo-

metric Projection Filter algorithm. The arrows connecting the unconstrained relative

map covariance ellipsoids represent relative map updates performed by the RMF

stage. The action of applying a consistency constraint to the RMF output is shown

as a projection onto a constraint surface. This figure provides a simple visualisation

of the action of the GPF. The state vectors and models used by the GPF are now

defined.

Unconstrained Map

Constrained Map

Constraint Surface

Relative Map Space

Geometric Projection

RMF Update Unconstrained Map

Figure 4.11: Visualising the Geometric Projection Filter
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4.6.1 State Vector

The state vector maintained by the GPF is identical to the RMF. Its elements define

a relative map and it is written as

pr =

















pr(1,2)

pr(2,3)

...

pr(i,j)

















(4.28)

4.6.2 Vehicle Model

The state of the vehicle xv at time k evolves according to a vehicle model Fv such

that

xv(k + 1) = Fv(k)xv(k) + uv(k + 1) + vv(k + 1) (4.29)

where uv(k) is the vehicle control input. The modelling error term vv(k) is assumed

to be a zero mean and temporally uncorrelated sequence with covariance Q(k).

4.6.3 Landmark Models

The GPF maintains a relative map and from Section 4.2.3 the model of a relative

map state between any two landmarks pi and pj is written as

pr(i,j)(k + 1) = pr(i,j)(k) = pr(i,j). (4.30)
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4.6.4 Observation Model

The observation model employed by the GPF is identical to that used by the RMF

zr(i,j) =
[

0 · · · hr(i,j) · · · 0
]

pr +wi,j

= Hr(i,j)pr +wi,j

4.7 The Estimation Process of the GPF

This section presents the governing equations of the GPF. The section begins by

defining a linear constraint equation Cp̂r(k + 1|k + 1) = b, that represents a consis-

tent relative map. Following the formulation of a suitable constraint equation, the

estimation equations used by the filter are stated.

It is understood that the terms b andCmay be time varying even though the time

dependence is not shown explicitly for reasons of notational clarity. The constraint

surfaces of Figure 4.11 are orientated in various manners to represent different con-

straints at different times. Section 4.9.1 discusses the consequences of a time varying

constraint equation.

4.7.1 Constraint Formation

The application of the constrained estimator requires the formation of a constraint

equation. In the case of the GPF this constraint equation represents consistency in a

relative map estimate. Section 1.5.3 concluded that relative states must form closed

polygons with landmarks as vertices. Using ACRM states (defined in Section 1.4.2)

this constraint is easily represented mathematically : the vector sum around any loop

of a relative map must be zero.

A loop, L, of relative states is a sequence of n connected relative states that form
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a loop within the map network such that

L =
[

p̂r(a,·), · · · p̂r(·,q), p̂r(q,r), p̂r(r,a)

]

. (4.31)

For a loop of length n the vector zero sum condition is written as

∑

k=1···n

Lk = 0 (4.32)

where Lk is the k
th relative map state in L. This linear constraint equation may be

written in matrix form as a linear combination of the elements of p̂r

Cp̂r = 0 (4.33)

Equation 4.33 can now be directly substituted into the constrained estimator equa-

tions to produce a consistent relative map and covariance estimates.

To guarantee map consistency each relative state must be mentioned in the con-

straint equation at least once. In the case of ACRM states this involves including

each map state in at least one map-network loop. The estimation and constraint

equations governing the Geometric Projection Filter are now given.

4.7.2 Relative Map Formation

Upon obtaining a relative state observation zr(i,j)(k + 1) between landmarks pi and

pj at time k + 1, the RMF update equations derived in Section 4.2.5 are invoked

p̂r(i,j)(k + 1|k + 1) = p̂r(i,j)(k|k) +wr(i,j)(k + 1)
[

zr(i,j)(k + 1)− ẑr(i,j)(k + 1|k)
]

Pr(i,j)(k + 1|k + 1) = Pr(i,j)(k|k)−wr(i,j)(k + 1)Sr(i,j)w
T
r(i,j)(k + 1)
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where

ẑr(i,j)(k + 1|k) = hr(i,j)p̂r(i,j)(k|k)

wr(i,j)(k + 1) = Pr(i,j)(k|k)h
T
r(i,j)S

−1
r(i,j)

Sr(i,j) = hr(i,j)Pr(i,j)(k|k)h
T
r(i,j) +Rr(i,j)(k + 1)

4.7.3 Constraint Application

This stage takes as input the relative map updated by stage 1 and applies the relative

map consistency constraint Cp̂r(k + 1|k + 1) = b. The result of this stage is a

consistent relative map estimate p̂rc(k+1|k+1) and relative map covariance matrix

Prc(k + 1|k + 1):

p̂rc(k + 1|k + 1) = p̂r(k + 1|k + 1) +K(k + 1) [b−Cp̂r(k + 1|k + 1)] (4.34)

Prc = [I−K(k + 1)C]Pr(k + 1|k + 1) [I−K(k + 1)C]
T (4.35)

where

K(k + 1) = Pr(k + 1|k + 1)C
T

[

CPr(k + 1|k + 1)C
T
]−1

. (4.36)

4.8 The Structure of the GPF

This section examines the structure and key properties of the GPF. The GPF inherits

a limit on the relative map covariance matrix from the RMF which has been derived

in Section 4.3.4. The following sections prove the additional properties resulting from

the application of constraints to the estimated relative map:

1. The GPF is guaranteed to produce a consistent relative map estimate.

2. The application of constraints to an unconstrained relative map can decrease

the uncertainty in individual relative state estimate covariances.
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3. The determinant of the constrained relative map covariance matrix is zero and

represents an inherent redundancy in the relative map estimate.

4.8.1 Relative Map Covariance Bounds

The GPF inherits the lower bounds on the relative and derived absolute map co-

variances from the RMF given by Theorem 4.2 and discussed in Section 4.3.4. In

the limit, as the number of observations made tends to infinity, the relative map be-

comes perfectly known. In the same limit the absolute location of landmarks is only

determined by the initial vehicle uncertainty.

4.8.2 Relative Map Consistency

Given the linear constraint equation Cp̂r = b, Section 3.3 showed that application of

the constrained estimator resulted in a posterior estimate that perfectly satisfies the

constraint equation. In the case of the GPF, satisfaction of the constraint equation is

equivalent to relative map consistency. Therefore, Prc is guaranteed to be a consistent

relative map.

4.8.3 The Effect of Constraint Application Upon Map Con-

vergence

Equation 4.35 can be rewritten as

Prc(k + 1|k + 1) = Pr(k + 1|k + 1)−K(k + 1)Σ(k + 1)K
T (k + 1) (4.37)

where

Σ(k + 1) = CPr(k + 1|k + 1)C
T . (4.38)

The unconstrained map covariance Pr(k + 1|k + 1) ,Σ(k + 1) and K(k + 1)Σ(k +
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1)KT (k+1) are all psd. Taking determinants of both sides of Equation 4.37 leads to

the following inequality:

detPrc(k + 1|k + 1) ≤ detPr(k + 1|k + 1). (4.39)

As any major sub matrix of a psd matrix is also psd, a similar inequality applies to

the individual state covariances

detPrc(i,j)(k + 1|k + 1) ≤ detPr(i,j)(k + 1|k + 1). (4.40)

Thus, the application of the constraint equation can result in a decrease in the uncer-

tainty of all the constrained relative state estimates and hence hasten the convergence

of the filter. There is no decrease in relative state uncertainty when Pr(k+1|k+1) = 0

which is the limit of map certainty derived in Section 4.3.4. A decrease in individual

map state uncertainty as a result of constraint application is a consequence of the

coupling of state estimates. Consider for example, the case of two relative state es-

timates with small uncertainties being constrained to form a loop with a third, very

uncertain state estimate. The application of such a constraint will necessarily result

in a decrease in uncertainty in the third relative map state.

4.8.4 The Singularity of Prc

Section 3.5 discussed the effect of the application of constraints upon a prior covari-

ance matrix. It was shown that the uncertainty ellipsoid represented by this prior

matrix is ‘flattened’ onto the constraint surface. In particular Equation 3.16 shows

that

det(Prc(k + 1|k + 1)) = 0 (4.41)
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Equation 4.41 implies that not all of the relative map states in p̂rc(k + 1|k + 1) are

linearly independent. This is a direct consequence of applying a constraint equation

which, by definition, expresses a linear relationship between the elements of p̂r.

It is important to note that in general not every sub matrix of Prc(k+1|k+1) has

a zero determinant as this would imply that the relative map is perfectly known. The

application of constraints does not remove uncertainty in the relative map estimate

but it does correlate state estimates.

4.8.5 Obtaining Pa from p̂rc

Section 4.3.5 showed how the variance in the absolute position estimates of landmarks

can be derived from the unconstrained relative map estimate p̂r(k+1|k+1). Given an

estimate p̂i(k+1|k+1) and associated covariance Pi,i(k+1|k+1) of the i
th landmark,

the location estimate and covariance of the nth landmark can also be written in terms

of the constrained relative map:

Pn,n(k + 1|k + 1) = Pi,i(k + 1|k + 1) +Ti,nPrc(k + 1|k + 1)T
T
i,n. (4.42)

The term Ti,n represents a linear combination of relative map states that transforms

pi to pn. In general, many paths exist in the map-network between pi and pn and

therefore Ti,n is not unique. However, the consistency of p̂rc(k + 1|k + 1) ensures

that the value obtained for p̂n(k + 1|k + 1) when derived from p̂rc(k + 1|k + 1) is

path independent. It follows therefore, that the deduced value of Pn,n(k+1|k+1) is

also independent of the path taken through the map-network of a constrained relative

map.

4.9 Scaling Properties of the GPF

The storage requirements of the GPF are similar to those of the RMF. However,

temporary memory resources of order N2 where N is the number of relative map
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states in the constrained map are needed to perform the constraint application.

The RMF part of the GPF has a constant computational cost. The second stage

of the GPF, the application of constraints, has a greater computational cost. The

computation required to perform the inversion in Equation 4.34 to constrain the rel-

ative map is of order N3
c where Nc is the number of independent constraint equations

applied i.e the number of rows of C. However, this burden may be ameliorated in

three ways:

1. Careful constraint formation to minimise Nc.

2. Scheduling of constraint application.

3. The use of submaps.

These three key properties of the GPF are now discussed.

4.9.1 Benefits of Well Chosen Constraints

The computation required to perform the constraint application is of orderN3
c . There-

fore there is a very strong incentive to minimise Nc. This is best achieved by using

loops in the map network that contain many relative map states. For example, Figure

4.12 shows a map network containing 5 landmarks and 4 potential constraint loops.

Formulation of the constraint matrix C involving the loops L1,L2 and L3 results in

Nc = 3 . However, the same relative states can be constrained equally well with

Nc = 2 by using the more complex loop L4 in conjunction with L2.

However, given an arbitrary network with n vertices the complexity of finding all

loops within the network is combinatorial in n. For example, it is a simple task to find

loops consisting of only three relative states but this results in large values of Nc as

many individual constraint equations must be formulated . There is a payoff between

effort spent in finding complex loops and performing the inversion of (CPrC
T ). A

complete analysis of this payoff is a subject of further research.
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Figure 4.12: Four potential constraint loops in a 5 landmark map-network

4.9.2 Scheduling of Computation

The ‘switch’ that connects the RMF block to the constraint block in Figure 4.10

represents the fact that constraints need not be applied at every time step. The RMF

runs independently from the projection stage of the GPF, indefinitely processing

relative observations and building a relative map with a constant computation time.

The projection or constraint application only need occur when a consistent map is

explicitly required. For example, a consistent map may be required to estimate the

vehicle location with respect to a particular landmark or for use by a mission/path

planning algorithm.

Therefore, even though the computation required to perform the consistency en-

forcement is of order N3
c , the time at which it is performed is independent from the

processing and fusing of relative map observations. In this sense, the GPF allows

localisation and map building to be run as asynchronous tasks.
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4.9.3 Using Submaps

The states of the unconstrained relative map, the output of the RMF, are uncor-

related. It is thus straightforward to extract any number of individual states and

associated variances from p̂r(k + 1|k + 1) and Pr(k + 1|k + 1) respectively to form

a sub-map p̂⊖r (k + 1|k + 1) with variance matrix P
⊖

r (k + 1|k + 1). It is only this

sub-map that need then be constrained to yield a constrained consistent sub map

p̂⊖rc(k+1|k+1) with covariance P
⊖

rc(k+1|k+1). The consequences of the use of sub-

maps are two fold. Firstly, as less states are used, the number of constraint equations

required to enforce consistency decreases and hence Nc can also be reduced. Sec-

ondly, the reduced size state covariance matrix causes a reduction in the computation

required in the multiplication of P⊖

r by [I−KC].

The GPF constraint equations can now be rewritten with simplified notation, to

give a constrained relative sub map estimate p̂⊖rc(j|j) at time j as a function of an

unconstrained sub map estimate p̂⊖r (i|i) at time i, i ≤ j:

p̂⊖rc(j|j) = p̂
⊖

r (i|i) +K
[

b−Cp̂⊖r (i|i)
]

, (4.43)

P⊖

rc(j|j) = [I−KC]P
⊖

r (i|i) [I−KC]
T , (4.44)

where

K = P⊖

r (i|i)C
[

CP⊖

r (i|i)C
T
]−1

(4.45)

p̂⊖r (i|i) ⊆ p̂r(i|i) (4.46)

P⊖

r (i) ⊆ Pr(i|i).

4.10 Extending the Geometric Projection Filter

This section discusses ways in which the GPF can be extended to operate with nonlin-

ear constraints and to incorporate external information into the estimation process.
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4.10.1 Non-Linear Constraints

It is possible that the nature of the relative states employed by the RMF do not

lend themselves readily to a linear constraint equation. In this case a more general

constraint equation of the form

C (p̂r) = b (4.47)

may be used. In this case the non-linear form of the constrained estimator given in

Chapter 4 in Section 3.6 is used. This involves the linearisation of the non-linear

constraint equation about the unconstrained relative map estimate. The application

of consistency constraints can then be thought of as a projection or p̂r(k|k) onto this

linearised constraint surface as shown in Figure 3.4. However the conditions imposed

upon p̂r by application of Equation 4.47 will only be met with first order accuracy

[48].

4.10.2 Incorporating External Information

The constraint equation Cp̂r = b can be used to fuse external information with the

relative map. Take for example the case of three connected but imperfect relative

state estimates in Figure 4.13.

Assume external information becomes available that the true relative state pr(2,3)

is given by the vector v. The constraint equation can be formulated to include this

information:

Cp̂r = b (4.48)





I I I

0 I 0















p̂r(1,2)

p̂r(2,3)

p̂r(3,1)











=





0

v



 (4.49)

where I is the dim(pr(i,j))× dim(pr(i,j)) identity matrix.
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Figure 4.13: Three connected and imperfect relative map state estimates

The external information can be derived from any source. For example, it may

be known that the vehicle is operating in an enclosure of known size. Therefore the

external information may represent the known width and breadth of the workspace.

In terrain aided navigation some limited a priori information may be available, such

as the distance between major natural landmarks. The GPF provides a way in which

this information can be optimally fused with sensor observations.

It should be noted that the constraints regarding external information could just

as well be applied to the absolute map produced by the AMF. However the GPF

provides an intrinsic means to achieve this.

4.11 Simulation of the GPF

This section describes a simulation of the GPF to illustrate its behaviour, merits

and difficulties. This simulation continues from the simulation of the RMF. The
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inconsistent relative maps built by the RMF in Section 4.4 are constrained to produce

consistent relative maps. Reference should be made to the figures of Section 4.4 to

illustrate the effect of constraint application on the map building problem.

Constraints are formed using all five landmarks, i.e a sub map is not used. The

constraints formed represent a zero vector sum around map network loops containing

three relative states. Figures 4.14, 4.15 and 4.16 show the state of the constrained
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Figure 4.14: The consistent constrained relative map at k=10.

relative map after 10, 50 and 170 observations respectively. These figures clearly show

consistent relative maps containing closed polygons of relative map states.

Figure 4.17 plots the evolution of the determinant of the state covariances of the

constrained map if constraints are applied at every time step. The uncertainty in each

state is clearly monotonically decreasing. Comparison with Figure 4.8 highlights the

smoothing effect of the constraint application. This can be viewed as a smearing of un-

certainty across the constrained relative state estimates as discussed in Section 4.8.3.

Figure 4.18 shows the difference in the state covariance determinants between the

constrained and unconstrained maps. The quantity [detPr(i,j)(k|k)−detPrc(i,j)(k|k)]

is always greater than zero in accordance with the conclusion of Section 4.8.3 and
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Figure 4.15: The consistent constrained relative map at k=50.
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Figure 4.16: The consistent constrained relative map at k=170.

Equation 4.40. Figure 4.19 shows the standard deviation in the x direction compo-

nents of the relative map state estimates. As for the RMF the standard deviations are

monotonically decreasing but their trajectories are notably smoother than in Figure

4.9. This is also a consequence of the application of constraints spreading informa-
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Figure 4.17: The evolution of relative state estimate covariances.
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Figure 4.18: The difference in the determinants of estimated map state covariance
matrices between constrained and unconstrained relative maps.

tion throughout the constrained relative map. Figure 4.20 shows the magnitude of

the actual error in the length of the estimated relative map states as a function of

time. The errors can be seen to be converging to zero and once again the trajectory

of each state error is smoother than in Figure 4.7. Figure 4.21 shows the calculated

location of the vehicle using the constrained relative map. The vehicle can be seen to
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Figure 4.19: Evolution of the standard deviation of the x component of estimated
ACRM states in a consistent relative map.
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Figure 4.20: Evolution of the error in the length of estimated ACRM states in a
consistent relative map

follow the same rectangular path seen in the AMF simulation.

This simulation has illustrated the map building abilities of the GPF. Starting with

unconstrained relative maps the application of simple loop closure constraints results

in perfectly consistent relative maps. The convergence properties of the constrained
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Figure 4.21: Estimated vehicle position from the consistent relative map

map have been shown to be in accordance with theoretical predictions. Finally,

consistent relative maps were used to produce estimates of vehicle location by using

VLM relative observations as relative states between landmarks and the vehicle.

4.12 Summary of the GPF

The GPF is a new solution to the SLAM problem. It is a versatile and efficient

algorithm with several advantages over the RMF and AMF filters. In summary,

• The GPF builds a relative map which has the same vehicle independence prop-

erties as the map built by the RMF.

• The GPF builds a relative map that is guaranteed to be consistent.

• The computation required to fuse observation data by the GPF is constant and

equates to the running of a standard RMF.

• The GPF can extract and use a sub map of arbitrary size from the full relative

map.
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• The application of constraints can decrease the uncertainty in individual state

estimates.

• The computation required to build a consistent map and localise with respect

to this map is a function of the size of the map and the form of the constraints

used to enforce consistency. The use of smaller maps reduces the computation.

Similarly the use of a few complex constraints, relating many relative states,

significantly reduces the computation required.

Both the degree of computation required by the filter and the time at which it

is undertaken are controllable parameters. The use of sub maps allows the GPF to

be applied in environments containing any number of landmarks. The computation

required by the GPF is a function of the size of the constrained sub map which is

dictated by the extent of a local region of interest. Hence the GPF can provide the

basis of a real time, consistent solution to the SLAM problem.

4.13 Data Association and Relative Maps

The manner in which a relative map observation is associated with a particular relative

map state is similar to the data association algorithm discussed in Section 2.7 for the

AMF.

The following quantities are defined:

λi,j = zr −Hr(i,j)p̂r(k|k)

Λi,j = Hr(i,j)Pr(k|k)H
T
r(i,j) +Rr(i,j)

ǫi,j = λT
i Λ

−1
i,j λi,j

The term ǫi,j is normalised innovation squared for the observation of the relative map

state pr(i,j) and has a χ
2 probability distribution with dim(zr) degrees of freedom. The

data association algorithm now progresses in an identical manner to that described in
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Section 2.7 with the formulation and testing of an appropriate null hypothesis against

all known relative states.

Data association using relative maps is potentially a hard problem. Consider a

simple scenario in which a mobile robot moves through an environment containing

equally spaced point landmarks. The relative map states between these landmarks

are identical and the application of the above algorithm in the absence of any other

information will result in multiple associations of a single relative map observation.

This problem is avoided if absolute landmark and vehicle locations and uncertainties

are deduced from the relative map. In this case the AMF data association algorithm

can be used. However, the computation involved in achieving transformation coun-

teracts the computational advantages of estimating a relative map. Achieving reliable

data association with a relative map is a topic of further research. This is discussed

in Chapter 8.

The structure of the relative map has important consequences in terms of robust-

ness to error in the data association process. In the AMF the incorrect assignment

of a observation-landmark pairing can lead to filter instability and gross inaccura-

cies in location estimates. The potentially drastic errors committed by such an error

immediately propagate throughout the map.

The estimated relative map is not immune to the effects of poor data association;

the effects are however, limited to the estimate of a single relative state because

relative map states are updated in isolation.

A constrained relative map estimated by the GPF at time k in no way affects

future unconstrained or constrained relative maps - the projection step of GPF is not

recursive. Therefore gross errors in relative states resulting from incorrect data asso-

ciation are only propagated to other state estimates during the constraint application

phase. Hence, if at some point the corrupted state can be identified it can simply

be omitted from all future sub maps before projection or can be re-initialised. The

errors committed by incorrect data association will be manifested in p̂r and p̂rc. A

method in which large and unexpected changes in these vectors are detected could
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be used to identify which unconstrained relative map state is in error. This concept

is a topic of future research.



Chapter 5

Oberon - A Subsea Navigation

Research Vehicle

5.1 Introduction

This chapter describes the underwater vehicle Oberon built by the author to act as a

research vehicle for this thesis and continuing research programs at the University of

Sydney. Oberon is shown in Figure 5.1. Oberon emerged from a desire to build a low

cost and quick to launch subsea platform upon which navigation and control tech-

niques could be researched with ease. The low cost constraint necessitated designing

for shallow water operation. The engineering costs (financial and time) associated

with construction and design of equipment capable of submersion to pressures of

more than a few atmospheres are substantial. Given that ambient pressure has no

effect on the complexity of the navigation problem - it is no easier to navigate at 10m

dive depth than at 1000m - Oberon was designed to have a maximum submersion

rating of only 20m. This low pressure rating enabled the use of very low cost and

non-specialist components.

For an autonomous subsea vehicle to be of commercial value it must generally

be capable of working at depths of at least 100m. There are many vehicles in both
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the research and commercial domains capable of this and much greater dive depths.

These vehicles span a wide range of degrees of autonomy [18][7][52]. At one end of the

scale are remotely operated vehicles or ROVs. Ranging in size from a few kilograms

to several tonnes ROVs are controlled by a human operator and find frequent appli-

cation in the oil and natural gas industries. At the other end of the scale lie research

vehicles like Odyssey II [6] capable of deployment under the polar ice cap and operat-

ing autonomously with no human intervention for extended periods of time. Owing

to their largely autonomous nature such vehicles are generically named autonomous

underwater vehicles or AUVs. As in air and land vehicles, there is presently a consid-

erable effort within the research community in trying to achieve bona fide autonomous

subsea navigation using only naturally occurring environmental features [38].

In many ways the hardware required for such ‘bootstrap’ autonomous subsea

navigation exists in the form of contemporary ROVs and AUVs. A goal of this

research is to develop the technology required to augment existing subsea hardware

with a reliable and robust autonomous navigation competency. Oberon was built to

this end.

5.2 Mechanical Aspects

Oberon has two rolled aluminium pressure hulls each of 350mm diameter. The lower

hull houses high current power electronics while the upper hull contains processors

and internal sensors. The two hulls are joined by a wide bore rubber hose through

which connecting cables run. The dual hull design was intended to shield the sensitive

instruments in the top hull from possible noise effects stemming from large current

and voltages present in the power electronics. The hulls are mounted within an

aluminium tube space frame that is both light and strong. As well as protection, this

frame provides an easy means by which additional external sensors and lights can be

attached without risking a compromise of pressure hull integrity. The vehicle has a

very strong righting moment due to a large ballast plate secured to the base of the
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Figure 5.1: Oberon during a field trial in the Tasman Sea

space frame. This ballast accounts for a large percentage of Oberon’s 110kg mass.

Each end of the upper hull is capped by a transparent plastic dome. These domes

provide a porthole for a CCD camera and allow viewing of a set of LCDs driven by

the processor. The domes were fabricated from extremely cheap skylights causing a

massive saving in production costs. However, such a strategy could only be used in a

shallow water vehicle design.

Oberon is equipped with five bi-directional thrusters. Two thrusters allow move-

ment in the horizontal x−y plane and the other three control motion in the z direction

as well as roll and pitch.

In retrospect, this was not the best deployment of thrusters. The large righting

moment of the vehicle prevents significant excursions about the pitch or roll axis. In

effect the vehicle is constrained to move in a 2 1
2
D fashion analogous to the motion of
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an airship or blimp. A more useful deployment of thrusters would allow de-coupled

motion in the x and y directions. At the time of writing modifications are being

considered which would amend this flaw. The motors were originally intended for use

as a quiet propulsion system for leisure fishing boats. Before installation they were

retrofitted with a high pressure seal to allow operation in depths of up to 20m.

5.3 Electrical Aspects

Oberon receives power from the surface by way of a 17mm diameter umbilical cable.

Although this coupling casts doubt on whether it could be classed as an AUV, the

presence of an umbilical was not seen as an impediment to Oberon’s ability to act

as a navigation research platform. The umbilical supplies just under 100V d.c to

the lower hull in full load conditions 1. This 1.5kW supply is derived from 240V

a.c mains power or a generator at the surface by way of an isolation transformer and

power rectifier. The lower hull contains a set of DC to DC converters transforming the

100V input power to 28V, 12V and 5V rails. The 28V power supply feeds into a ring

of power amplifiers to drive the motors and also powers the two vehicle sonars (see

Section 5.5). Initially the back e.m.f generated by the de-acceleration of the thrusters

caused an over voltage shutdown of the 28V DC to DC converters. This problem was

remedied by placing an intelligent power dump circuit across the output terminals

of the 28V converters. Essentially this circuit acts as a ‘super zener’ with hysterisis.

When the line voltage rises above 30V the circuit shorts the rails through a 1.5Ω

power resistor until the line voltage drops to 28V once more. The 12V supply was

used to supply power to the vehicle lights and the onboard colour CCD camera. The

5V rail provides up to 50W of ‘quiet’ power supply to the processors and sensors in

the upper hull. Figure 5.2 provides a simplified schematic of the electrical components

within Oberon.

Figure also 5.2 shows an important component of the power supply system - the

1This choice of supply voltage was in part due to Australian safety standards.
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Figure 5.2: The Power Distribution System Within Oberon

leak detection circuitry. Upon the detection of water, fluid detection diodes 2, one

in each hull, de-energise the coil of a relay and so cut off the 100V supply to the

vehicle. This circuitry undoubtably avoided irreparable damage to the vehicle on

several unfortunate occasions.

2These ingenious devices detect a change in the optical impedence at the surface of a LED caused

by water or other fluid.
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5.4 Computational Hardware

5.4.1 Embedded Computational Hardware

Oberon’s onboard computer system is based on Transputer technology. It was known

at the inception of the subsea program that Transputers would cease to be supported

and produced by the electronics industry within a few years. However, legacies of

previous projects made a significant quantity of these processors and compatible I.O.

boards readily available at no cost. A policy was adopted in which Transputers

would be used in the early stages of the project with a view to replacing them with

contemporary hardware when the project matured (see Section 5.7).

In many ways Transputers provide an ideal platform on which to develop a real-

time system. They are inherently parallel machines designed to be coupled to other

processors via four high speed serial ports. They posses an architecture strongly

reflecting the principles and concepts laid down by the CSP standard [21]. The

support for synchronous inter-process and inter-processor communication is provided

in the silicon of the processor itself. The scheduler required to arbitrate the running

of parallel processes is also manifested in the hardware of the Transputer processor.

In all Oberon possesses four floating point Transputers in its upper hull, each

providing a computational power comparable to a 75MHz Intel 486 processor. Each

processor is dedicated to a specific aspect of the vehicle’s operation. The task assign-

ment is shown in Figure 5.3.

The A/D conversion board was used to sample various sensors with 12 bit precision

at 10kHz (see Section 5.5). Figure 5.3 also shows the Transputer and associated

hardware used to control the Imagenex sonar unit which is discussed in Section 5.5.1.

The Transputers communicate with the surface base station along three ‘twisted

pairs’ within the umbilical at 10Mbps using RS422 differential line drivers. These

twisted pairs are simply a buffered extension of one of the high speed inter-processor

serial links on T0. At start up, executable code is downloaded to the Transputer via
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Figure 5.3: The assignment of tasks individual Transputers within the processor rack

this link and distributed across the Transputer network.

The standard RS232 serial ports connected to T0 provide another means of achiev-

ing surface communication. The RS232 signal is converted to RS422 and passed

through the umbilical on another set of twisted pairs. This hardware allows commu-

nication at speeds of up to 19200bps and was used during the infancy of the project

before it was possible to use the umbilical Transputer link for base station to vehicle

communications.

5.4.2 Base Station Computational Hardware

The base station is a mobile cabinet containing the isolation transformer and rectifier

as well as two PCs. The mobility and self contained nature of the base station

was of great benefit during field trips. It allowed quick deployment of the vehicle
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and provided a weather-proof housing for equipment not designed for use in field

environments. The PCs are used for system status display and, when required, user

control of the vehicle by joystick. One of the PCs hosts a frame grabber which is used

for elementary vision processing and visual target tracking. The input to this card

is a video co-axial cable running through the umbilical which is also connected to a

small video monitor for visual feedback on the behaviour and operation of the vehicle.

A more detailed discussion regarding the distribution of processing tasks across the

entire system can be found in Section 5.6.2.

5.5 Sensors

This section describes the diverse collection of sensors that equip Oberon. They offer

a means by which to measure and observe the state of the vehicle in a fully three

dimensional workspace.

Sonar is without doubt the most valuable of all subsea sensors. Sensors commonly

used in the ‘in air’ domain such as vision and laser based systems are hard to use in

subsea applications because of the large attentuation of electromagentic (e.m) waves

by sea water. However attempts have been made to use low frequency magnetic waves

[40] and gravitometry [23] in the subsea domain. Although much slower than e.m

based sensors, subsea sonars can offer comparable resolution to air borne millimeter

wave radar owing to the small wavelength of acoustic pulses in water[47][46][10].

Much research has been applied to the understanding of subsea acoustics and its use

in sensing devices (see [2][5][9][10][19] and [16] for representative examples).

Recent advances in signal processing and acoustic manufacturing have enabled

several small, relatively low cost yet high performance sonar units to become com-

mercially available. Two such sensors are presently installed on Oberon.
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5.5.1 Imagenex 640kHz Fan Beam Imaging Sonar

This unit, made by Imagenex of Canada, was acquired and installed on Oberon during

the early stages of the subsea program at Sydney University. Shown mounted on the

vehicle in Figure 5.5 the unit allows a 1.8o by 30o fan shaped beam to be directed

through a full 360o around an axis running along the cylindrical sensor body. The

sensor output is a stream of ‘pings’. Each ping is a distance vs. echo energy profile

along the principal axis of the sonar beam. Figure 5.4 shows a series of pings plotted

in cartesian coordinates. With the sonar held vertically in a test tank, the sonar head

was instructed to scan over a small arc. The vertical peak in the figure corresponds

to the sharply defined sonar profile of a tall and narrow metal pole. The significant

amplitude echoes beyond this pole are reflections from the test tank wall.

Figure 5.4: The sonar profile of a vertical pole in a test tank using the Imagenex
sonar

Figure 5.5 shows the sonar mounted on the front of Oberon. The original design of

the submersible provided a means to rotate the entire Imagenex sensor. This allowed

the beam of the sonar to be pointed at all but a few points in space, allowing the

vehicle to sense its surroundings in three dimensions. A more detailed discussion of
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the inverse kinematics of this system is provided in [37]. The motor, gearbox and

encoder responsible for the actuation of this second degree of freedom can be seen

at the end of the triangular mounting frame in Figure 5.5. The Imagenex sonar unit

and its rotation are controlled by an external waterproof box shown in Figure 5.6

and visible on the port side of Oberon in Figure 5.1. The box contains a Transputer

and serial interface hardware as well as a HCTL 1100 motion controller with power

amplifier.

Figure 5.5: The Imagenex sonar mounted on Oberon. The sensor itself can rotate
the transducer head at the tip of the sonar body. The entire cylindrical sensor can
be rotated by enabling the fan shaped emmited beam to be directed in almost any
direction.

The Imagenex unit suffers from particularly slow operation. To scan over 180o up

to a range of 20m takes over 100 seconds. A less serious problem was the vulnerability

to damage of the sensor mounting and actuation mechanism during field trials. It was

decided that many of the intended navigation research paths could not be followed

using the Imagenex as a primary sonar sensor. However, at the conclusion of the initial

development and construction of Oberon another similar but much faster sonar had

become available. This new ‘SeaKing’ sonar, made by Tritech of the United Kingdom,

is descibed in Section 5.5.2. Upon the purchase of a SeaKing sonar the second degree
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Figure 5.6: The Imagenex control box. This self contained module can be connected
to a PC or the vehicle and allows the development of sonar processing algorithms
independently of the submersible.

of freedom mechanism was removed from the vehicle and the Imagenex sonar was

affixed to the front of the vehicle. As such the Imagenex was constrained to scan

as shown by Figure 5.7 and used for depth sounding and obstacle detection in the

forward and down directions.

5.5.2 Sea King Dual Frequency Scanning Sonar

The SeaKing sonar is identified as a black cylinder at the top front of Oberon in

Figure 5.1. It produces narrow 1.2o or 3o wide pencil beams at 0.6MHz or 1.2MHz

respectively. These two beams can be switched between at will and can be rotated

continuously through 360o. The type of data returned by the SeaKing is similar in

form to that returned by the Imagenex sonar. For each scan line, a distance vs.

echo-amplitude array (of programmable resolution) is transmitted at 115kbps from a

standard RS232 interface port. The angular resolution for these scan lines is 1/16th

of a degree. The most important asset of the SeaKing sonar is its scanning speed.

Scanning over 180o up to a range of 5 meters takes a little over 1 second. It was the

impact of this fast scan rate on the potential to perform real-time navigation that

drove the installation of this second sonar.

Figure 5.8 shows a typical set of pings collected over a 360o arc during a field trial.
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Figure 5.7: The co-operative scanning modes of the Imagenex (front) and SeaKing
(top) sonars

Lighter areas in the figure correspond to stronger echoes. The submersible was at a

depth of 4m and moving along a small canyon, the walls of which can be seen as large

light grey patches at the edges of the figure. Two small man-made sonar features

appear as bright arcs in otherwise acoustically quiet areas.

5.5.3 Gyro

A mid range quality fibre optic gyro is used to measure yaw rates of the vehicle. The

voltage output of this sensor is proportional to the angular rate about the z-axis and

can be integrated to give an indicated heading. Inevitably the sensor output is imper-

fect and noise corrupted. The integration of this signal results in a Brownian drift of
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Figure 5.8: Example field trial data collected by the SeaKing sonar

indicated heading. It can be shown that the expected error variance is proportional

to time [45]. As a consequence the indicated position must be periodically reset using

information from an external sensor.

5.5.4 Depth

A small pressure sensor is mounted on the lower hull bulk head. The voltage output

of this sensor is directly proportional to ambient water pressure and hence allows

estimation of dive depth. In conjunction with the use of the Imagenex sonar, both

depth and altitude control can be achieved with a simple PID controller.

5.5.5 Camera

A Pulnix color CCD camera is mounted on a RS232 controlled pan tilt unit inside

the front dome of the upper hull. The PAL video output of this camera is sent up a

video co-axial cable embedded in the umbilical. This camera has been used for some
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elementary vision processing and control tasks [49] and may play a significant role in

future research.

5.6 Software

This section describes the software and underlying architecture that binds the de-

scribed hardware into a versatile and useful research vehicle. The system software

naturally partitions into two types - embedded low level code running on the Trans-

puters and higher level graphically orientated code running on the base station com-

puters. The code running on the Transputers provides an efficient, low overhead

interface to the vehicle hardware. In many respects this code can be considered to

be a rudimentary operating system. The software running on the base station PCs

provides a graphical user interface (GUI) to the vehicle and displays sensor data in

an easily interpreted manner.

5.6.1 Communications and OberonSuite

At the core of the software that controls and monitors Oberon is a custom made

communications suite called OberonSuite. This tool allows transparent routing of

inter-process communications by building on the conventional TCP/IP stack appara-

tus supported by almost all operating systems. An important feature of OberonSuite

is its ease of use. It allows a medley of stand alone applications to be integrated into

a suite of communicating programs with the addition of only a few lines of code. The

use of the TCP/IP protocol means that these applications can reside on separate ma-

chines. Although OberonSuite was written with the Windows NT operating system

in mind, the C++ classes it exports are not specific to this operating system and

they have been used to mesh Windows95 and Unix applications on both 16 and 32

bit platforms.

OberonSuite allows a communications network to be formed from discrete appli-
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cations. Data packets of any size and meaning can be sent between members of this

network on a point to point basis or can be broadcast across the entire network.

OberonSuite exports a ‘CMessage’ class which intelligently wraps generic data and

encodes network routing information. This wrapper class interfaces seemlessly to

the class responsible for sending and receiving CMessage communications - CMes-

sageCommSocket. This class is derived from standard C++ socket classes and in-

terfaces the CMessage class to the streamed packet protocol of TCP/IP. The base

station PCs use the Windows NT operating system and as such, the CMessageComm-

Socket class has optional additional features that take advantage of the windows

‘event driven’ paradigm. An application using OberonSuite can configure its instance

of CMessageCommSocket to provide a so-called ‘call back’ when data is received from

another application. A ‘call back’ event calls a user defined function and can be used

to provide application specific message processing. The event driven nature of the

system means that there is no computational cost associated with the time between

reception of CMessages. The CMessageCommSocket class also allows applications to

create message filters. For example, an application concerned with processing sonar

data may wish to receive messages from a process controlling a sonar but not from a

process broadcasting depth estimates. In this case the sonar processing application

may register to receive only messages broadcast from the sonar controller.

OberonSuite binds applications into a hub network. At the center or hub of the

network lies the CommHub application. This application is responsible for the routing

of messages and managing the connection and disconnection of member applications.

It provides visual feedback on the status of the network including average data flow

rates, names of connected processes and the names of the messages each process

is interested in receiving. Figure 5.10 shows a typical network topology used in

the control of the submersible Oberon. The applications shown in this figure are

discussed further in Section 5.6.2. It should be noted that the classes and tools within

OberonSuite are not specific to the Oberon research project and are applicable to any

suite of applications requiring asynchronous communications.
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Figure 5.9: Typical transport times across a TCP/IP network using OberonSuite

Figure 5.9 shows the volume vs. transport time properties for CMessages sent

between two applications, one on a Pentium 233MHz and the other on a Pentium II

266MHz. A CMessage of fixed length N was volleyed between applications 100 times

and the average one way transport time calculated. Note that the transport time is

almost independent of data volume for messages with less than 1000 bytes of data

and then becomes linear for greater message lengths. This characteristic stems from

the 1ms overhead of the underlying TCP/IP stack. Messages under 1kb in size are

dispatched in a single packet whereas larger messages are split into multiple packets

each invoking the standard 1ms overhead.

5.6.2 GUI Software and Win32 Support Utilities

Figure 5.10 shows the ensemble of applications that are typically used during a field

trial. Each application was written with Visual C++ and runs on Windows NT. The

application labeled ‘Principal Systems Display’ or PSD displays information such as

a time history graph of thruster settings and heading and depth estimates. System

parameters such as PID controller gains and set points can be set from this program.
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User input via a 5 axis joystick is processed by this application and allows control of
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Figure 5.10: The suite of programs commonly assembled with the OberonSuite com-
munications classes used to control and monitor the vehicle during field trials.

the camera’s pan tilt unit and direct control of the motion of the vehicle. The PSD

also performs some rudimentary processing of the Imagenex sonar data (see Section

5.5.1) and displays the results in real time. Figure 5.11 is a screen capture of the

PSD during operation. The lower right window is displaying processed Imagenex

sonar data. The upper left window shows a time history of motor set points while

the upper right window shows the estimated yaw or heading of the vehicle. The

vehicle has just undertaken a sharp change in yaw following a change in heading set

point and suffered a significant amount of overshoot as a result of a poorly tuned PID

controller.

The DataLogger application is essentially a system stethoscope. It listens in on all

network traffic and writes all CMessages to a custom file. This file can then be read by

a ‘playback application’; the previously recorded messages are re-transmitted across

the network. This allows the exact events of a field trial to be replayed for repeatable
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Figure 5.11: A screen capture of the Principal Systems Display application.

off-line analysis. To all other applications this ‘playback’ is indistinguisable from real

life operation of the vehicle.

The SonarProcessor application performs more sophisticated analysis and display

of Imagenex sonar data (see Section 5.5.1). During the early stages of the project

Oberon possessed only this single sonar. The installation of the much faster SeaKing

sonar (Section 5.5.2) at a later date assumed many of the Imagenex sonar’s tasks

and was controlled by a new custom application. A screen capture of the Imagenex

control application is shown in Figure 5.12. The lower window shows a time history

plot of the pings received from the sonar when ‘pinging’ the ocean floor and the

vehicle remained at a constant depth.
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Figure 5.12: The Imagenex Sonar Processor Application.

5.6.3 Embedded Software

This section describes the software implemented on the Transputers onboard Oberon.

This code was written in standard C with a few embellishments to support the parallel

nature of Transputer hardware. Figure 5.13 shows the various processes running on

the Transputers.

The processes all communicate using the CMessage protocol described in Section

5.6.1. However, instead of using a TCP/IP stack the synchronous communications

hardware of the Transputers is used to manage the transmission and reception of data.

All data either being sent to or coming from the base station via the umbilical passes

through a ‘hub’ process which is essentially a combined multiplexer and demultiplexer.

The Virtual Sensor Interface Process or ‘VSI’ is an onboard vehicle status resource.

As soon as sensor information becomes available it is deposited in the VSI where a

system status structure is updated and the reception time is recorded. At any time,
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Figure 5.13: Embedded Transputer processes. The “CH“ symbol indicates a connec-
tion to the communications hub. These connections were not drawn for the purpose
of clarity.

any process can query the VSI’s latest estimate of a particular vehicle parameter. For

example the Analog to Digital Processor sends an estimate of the current heading to

the VSI at 30Hz. The yaw PID controller retrieves this information to drive the vehicle

to a desired heading. The Imagenex Sonar Processor may also request this heading

information to correct for vehicle motion when estimating the location of obstacles

and landmarks. The VSI provides a fast access data ‘blackboard’ that removes the

risk of deadlock - a common spectre in situations comprising multiple synchronous

communicating processes.

5.7 Summary and Further Work

As with all research vehicles, in the light of field trials, Oberon is subject to a constant

stream of re-appraisals and performance assessments. Where possible these critisisms



5.7 Summary and Further Work 121

lead to system modifications or the additional of new components and form part of

the ongoing subsea research and development program at the University of Sydney.

Some of the imminent modifications and system upgrades are now briefly described.

Onboard Processor Upgrade In the closing stages of this research the Transput-

ers were replaced with a ‘state of the art’ Compact PCI system. This specialised

embedded system comprises a 200MHz x86 Intel processor [50] and a small hard

drive. This installation removed much of the complex software that was used

to communicate between the 16 bit Transputer communications library and the

Win32 API. Although the onboard software architecture remained unchanged,

all interprocess communications were rewritten to use the OberonSuite protocol

and classes. This move to modern hardware greatly increased the reliability of

the system.

Camera Replacement It is intended to replace the current camera with a subsea

fish eye camera. This will allow a greater field of view and facilitate the replace-

ment of the plastic upper hull domes with metal end caps. This will in turn

allow a greater maximum dive depth.

Compass Installation It is intended to fit a magnetometer to the vehicle to allow

direct sensing of the vehicles orientation without having to rely on the indicated

heading derived from the gyro.

This chapter has described the mechanical, electrical and software engineering

aspects of the robot submersible Oberon. It is not intended to be an exhaustive

description of the vehicle and its systems but rather to provide an overview of its key

features and components. This chapter also serves to chronicle the development of

the vehicle over the three year period of research which culminates with this thesis.



Chapter 6

Experimental Field Results in

Underwater Navigation

6.1 Introduction

This chapter presents experimental results obtained using the Oberon platform and

sonar sensors discussed in Chapter 5. Broadly, this chapter consists of two parts.

First it discusses practical issues regarding interpretation and processing of sonar

data collected from Oberon’s two sonar units. Secondly it presents experimental

results of an implementation of the Geometric Projection Filter that is described in

Chapter 5. These results are compared with the estimates produced by an AMF

using the same data set.

Section 6.2 describes algorithms used to extract point landmarks from a continuous

stream of sonar data. Section 6.3 describes an experimental setup in which the GPF

and AMF are implemented. The observation and vehicle models are also defined.

Section 6.4 presents results of an implementation of the GPF in the environment

described in Section 6.3. Section 6.5 compares these results with those obtained

using the AMF. In conclusion, Section 6.6 summarises the chapter and highlights the

similarities and differences between the AMF and GPF implementations.
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6.2 Interpreting Sonar Data

This section explains how the Imagenex and SeaKing Sonars are used to detect land-

marks within the environment.

Both sonars produce a ‘ping’ consisting of a series of Ns echo amplitude bins

usually with 8 bit resolution. Figure 6.1 shows such a ping taken with the SeaKing

sonar. The two sonars are configurable to sense objects up to a maximum range ofW

meters (W < 250m) . The nth echo amplitude bin is mapped to a discrete distance

rn from the transducer head according to:

rn = nδr

where

δr =
W

Ns

It is required to use this echo-amplitude/distance information to detect landmarks

and obstacles within the environment. Figure 6.1 shows a ‘ping’ taken in shallow

water a few meters away from a natural reef. Two clear peaks are discernible; the

first peak corresponds to transient ‘ringing’ of the ceramic transducer in the sonar

head following the emission of the sonar pulse. This ringing is detected by the acoustic

receiving circuitry and produces a phantom return. During processing of the ping this

phenomenon is accounted for by implementing a so called ‘blind’ (or blank) time in

which echoes closer than a predetermined distance are discounted. The blind time is

a function of the duration and strength of the transmit pulse. In the case of Figure

6.1 the transmit pulse was set to close to maximum settings which accounts for the

very pronounced phantom return. The second peak corresponds to a reflection from a

natural reef roughly 7 m away from the sensor. A vertical dotted line marks this peak

as a principal return. The terms ‘principal return’ or ‘principal reflection’ are used to

describe the first significant echo detected in a ping. Whether a peak is significant or
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not is determined by passing the ping echo data through an algorithm described in

Section 6.2.1. Note that in this ping there are around 4 bits of noise in the signal.
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Figure 6.1: A ping of a reef in shallow water. The reef is a little over 7 m distant
from the sonar.

Figure 6.2 shows the ping echo obtained when operating in a 50m by 20m swim-

ming pool. The wall of the pool is 5m from the sonar and the corresponding peak is

a prominent feature of the figure. Note the substantial echoes that occur after this

peak. These peaks are multi-path reflections off the walls of the pool and the vehicle

itself. The hard, smooth and flat ceramic tiles of the pool form a ‘hall of mirrors’

around which the transmitted acoustic pulse ricochets. 1

6.2.1 Principal Return Detection

Given the presence of multi-path echoes and significant noise, it is important to de-

velop a reliable algorithm capable of extracting the principal reflector from imperfect

pings. Figure 6.6 is a flow diagram of the algorithm used to achieve this.

1Figure 6.2 shows a secondary reflection to have a greater strength than the principal wall reflec-

tion. This is due to incorrect settings of the time varying gains within the sonar which correct for

the energy dissipation of the sonar pulse with distance travelled.
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Figure 6.2: The echo amplitude for a ping within a swimming pool
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Figure 6.3: The output of the FIR filter for the ping shown in Figure 6.2. The FIR
sums over a moving kernel of width k which in this case was set to 5.

The algorithm starts by setting bins below a predetermined noise threshold Te to

zero. Then a k-tap FIR (finite impulse response) low pass digital filter is applied. This

filter removes large amplitude, high frequency noise. Essentially the FIR averages

over the past k echo bins. If this quantity is greater than a threshold value TΣ the

(n− k/2)th bin is taken as the beginning of the principal reflection. Figure 6.3 shows
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the output of the FIR filter for the ping shown in Figure 6.2.

Figure 6.4: Principal returns detected in a 50m by 20m swimming pool.

Figures 6.4 and 6.5 show the results of applying the algorithm to a sequence of

pings in the swimming pool and in an ocean test. These sequences of pings form

‘scans’ of the environments. Artificial landmarks (see Section 6.2.3) were placed in

both environments. Bright areas correspond to areas of greater echo magnitude and

indicate the presence of an acoustic reflector. The short wavelength of the beam

results in strong reflections from objects over a wide range of angles of incidences.

Coupled with the narrow beam shape results in a ‘visual-like’ representation of the

environment when displayed as in Figures 6.4 and 6.5. The principal returns for each

ping (if one is found) are displayed as bright white crosses.

The principal returns are seen to cluster around artificial landmarks described

in Section 6.2.3 which are annotated on the scan plots. In the case of the ocean

scan a strong return from the umbilical can also be seen. The natural reef structure

present in the ocean trials has an extremely rough surface and as such is a very diffuse

reflector. A consequence of this is that the principal reflectors accurately trace the
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Figure 6.5: Principal returns detected near a natural reef.

shape of the reef. In contrast, when in the pool which is bounded by smooth ceramic

tiles, principal reflectors are only found for angles of incidence close to zero or near

corners. The apparent skewing of the pool outline in Figure 6.4 is a consequence of

a rotation of the vehicle during the scan.

6.2.2 Extracting Point Landmarks

This section describes an algorithm developed in order to extract point landmarks

from a sequence of sonar pings. Figure 6.7 illustrates the component stages of this

algorithm. Point landmarks are sought which have the following two characteristics

when observed with the sonar:

Spatial Distinctiveness The landmark should not be close to other strong sonar

reflectors. This reduces the likelihood of the landmark becoming occluded or

indistinguishable at different viewing angles.

Spatial Compactness The landmark should be small to approximate to a point.
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Figure 6.6: The architecture of the principal return extraction algorithm

When observed by a range bearing sonar this corresponds to a narrow bearing

range over which the landmark can be observed.

Pings received from the sonar are first processed as described in Section 6.2.1

resulting in a stream of principal returns. As these principal returns become available

they are accumulated in a buffer Bp. When a predetermined number, n, have been
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Figure 6.7: The execution of the landmark extraction algorithm. Curved boxes rep-
resent the results of different stages.

stored, the buffer is differentiated. This forms an edge buffer Be such that the i
th

element of Be is

Bi
e = Bi

p −Bi−1
p

where Bi
p is the i

th principal return range. The edge buffer Be is used to identify reflec-

tions from spatially distinct reflectors. Point landmarks appear as narrow (spatially

compact) and steep edged (spatially distinct in range) valleys in the edge buffer. The

‘Range Valley Detection’ box in Figure 6.7 represents the detection of such valleys.

The ‘valleys’ are then gated to ensure they are not too wide (a large non point-like

reflector) or too narrow ( a result of a spurious ping) and successful landmark can-

didates are stored in a ‘Potential Landmark Buffer’. A simple clustering algorithm

can be run through this buffer to ensure that only arbitrarily spatially distinct land-

marks are transferred to the output buffer of the algorithm. This algorithm proved
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to be robust, requiring little processor time when written in C++ and implemented

in real time. Other landmark detection algorithms exist for example the Constant

False Alarm Rate (CFAR) algorithm [15] but are beyond the scope of this thesis.

6.2.3 Artificial Landmarks

In order to develop and test navigation algorithms it is useful to be able to place

artificial landmarks in the robot’s environment. To this end, simple and portable

artificial landmarks that could be quickly deployed were constructed. Consisting of

two bent aluminium sheets and a fisherman’s buoy, these landmarks are visible from

all angles of incidence. Figure 6.8 shows two modes of artificial landmark deployment.

In ocean trials the leftmost mode is used - the landmark is anchored to the ocean

floor by a lead weight and spherical buoy holds the landmark in a vertical mode.

In pool tests still, current free water allows a second mode to be used as shown on

the right hand side of Figure 6.8. Here a cylindrical ‘lamp shade’ is mounted on top

of a surface float below which the sonar target is suspended. The ‘lamp shade’ is a

strong reflector of laser light emitted from a scanning laser sensor. The range-bearing

observations returned by the SICK laser can be used to determine the absolute 2D

position of sonar targets.

6.3 An Implementation of the GPF and AMF

This section describes the experimental setup used to verify the behaviour of the GPF

and compare it to the performance of the AMF using data collected from Oberon.

The vehicle and observation models used in both filters are then defined.

6.3.1 Experimental Setup

The experiment was carried out in an Olympic sized swimming pool. Six artificial

landmarks of the kind described in Section 6.2.3 were placed in a ring formation shown
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Figure 6.8: Landmark deployment

in Figure 6.9. The vertical lines in Figure 6.9 are swim lane markings on the floor tiles

of the pool. The horizontal lines correspond to distance markings on the side of the

pool. The landmarks were placed at the intersection of these markings to enable their

true location to be estimated by line of sight.2 It is important to note that this process

is prone to considerable error and thus there is a lack of certainty in the ‘ground truth’

of the experiment. This makes an error analysis of the SLAM algorithm, similar to

that applied to the simulations in Chapters 3 and 5, difficult to achieve. However,

the stability and covariance convergence of the SLAM algorithm can be illustrated

despite this lack of precise ground reference. The SeaKing sonar continuously scanned

through 360o every 3 seconds, detecting acoustic reflectors up to a maximum distance

of 20m away from the sensor. During this time the indicated heading from the gyro

was logged. Figure 6.10 shows the view of the artificial landmarks as seen by Oberon’s

on board camera. The pool lane markings that were used to survey the location of

the landmarks can be clearly seen.

2An on going technical problem with the laser system described in Section 6.2.3 prevented its use

in the field trip in which this data was collected.
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Figure 6.9: The surveyed location of six artificial landmarks in a large swimming pool

The SeaKing data was passed through the ‘principal return’ and ‘point landmark’

extraction algorithms described in Sections 6.2.1 and 6.2.2 respectively. The range

and bearing to detected point landmarks and time of detection were written to file

for later processing.

6.3.2 Vehicle Model

The vehicle was commanded to execute a ‘move then stop’ path passing through 11

way points over a period of just over 15 minutes. The following vehicle model is used

to capture this motion.

xv(k + 1) = xv(k) + ∆v(k + 1) + vv(k + 1)
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Figure 6.10: An underwater view of two of the six artificial landmarks taken with a
black and white camera inside the ROV, Oberon.

where

∆v(k) =











∆k k ∈ U ,

0 otherwise.

where vv is a zero mean and temporally uncorrelated random vector sequence of

covariance Qv(k) where

Qv(k) =











Qk k ∈ U ,

0 otherwise.

The set U contains the time indexes at which the vehicle moves between the 11 way

points.

U = [46, 91, 118, 127, 165, 198, 234, 280, 330, 371].
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The term ∆k represents a commanded change in vehicle location after the k
th point

landmark observation. For example after the 46th observation the vehicle is com-

manded to move by ∆v(46). At time k = 47, the time of the next observation, the

vehicle is stationary once more. The uncertainty in the response of the vehicle to the

motion commands is represented by a large process noise covariance matrix Qv(k),

during maneouvers. When the vehicle is stationary no process noise is injected into

the system and the vehicle model simplifies to xv(k + 1) = xv(k) for all k not in U .

6.3.3 Observation Models

The observations of bearings to landmarks are taken with respect to a global direction

(ACRM observations). This was achieved by using the indicated vehicle heading data

from the gyro as though it were compass data. It was assumed that the integrated

gyro would not drift significantly over the length of the experiment. The indicated

heading ψ was assumed to have the following observation model:

ψ(k) = ψt(k) +wψ(k) (6.1)

where ψt is the true vehicle heading and wψ is a zero mean, temporally uncorrelated

random vector. Figure 6.11 shows that this approximation is reasonable over the

time period of the experiment. The periods in which the vehicle was stationary can

be clearly seen and the indicated heading remains approximately constant during

these times. The time axis of Figure 6.11 corresponds to the nth point landmark

observation, i.e. when the 400th landmark observation was made, the vehicle was

pointing in the 0o direction.

Over longer periods of time the indicated heading will execute a random walk as

a consequence of integration of noise on the raw gyro output. In longer experimental

runs it would therefore be required to use a compass or magnetometer to reliably

sense vehicle heading.

Using the algorithm presented in Section 6.2.2 observations of the range and bear-
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Figure 6.11: The indicated orientation of the vehicle at the time of the nth point
landmark observation. Note that it is not possible to readily identify all 11 stationary
way points because the change in vehicle orientation between consecutive way points
is small in some cases.

ing to an artificial landmark are obtained as shown in Figure 6.12. The angular obser-

vation θi of the bearing to the i
th landmark is referenced to common global direction.

The orientation of the vehicle with respect to this datum is given by the the indicated

vehicle heading ψ. The uncertainty in the range and bearing observation to the ith

feature is given by σ2
ri and σ

2
θi respectively. The term σ2

θi also includes the uncertainty

in the indicated vehicle heading associated with the term wψ(k) in Equation 6.1.

The relative map states employed are of ACRM form. It is required therefore to

transform two polar landmark observations to a cartesian relative map observation
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zr(i,j). The vector ε is defined with covariance Rε such that

ε =

















rj

θj

ri

θi

















Rε =

















σ2
rj 0 0 0

0 σ2
θj 0 0

0 0 σ2
ri 0

0 0 0 σ2
θi

















The observation zr(i,j) is given by

zr(i,j) = Hε(ε) +wr(i,j) (6.2)
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where

Hε(ε) =





rj cos θj − ri cos θi

rj sin θj − ri sin θi



 (6.3)

The observation covariance Rr(i,j) of the observation error term wr(i,j) is given by

Rr(i,j) = ∇εHεRε ∇εH
T
ε (6.4)

where

∇εHε =







− cos(θ1) r1 sin(θ1) cos(θ2) −r2 sin(θ2)

− sin(θ1) −r1 cos(θ1) sin(θ2) r2 cos(θ2)






(6.5)

Equation 6.4 is used to determine the appropriate ACRM observation noise covari-

ance, Rr(i,j), each time such an observation is formed from two VLM observations.

6.3.4 Data Association

The association of VLM observations to one of the six landmarks was not done from

within the framework of the filter. The logged observations were post processed and

associated to individual landmarks using a map containing the approximate distances

between landmarks. In a full implementation of the AMF and GPF, the data asso-

ciation task must be fully integrated into the navigation algorithm. Inclusion of this

algorithm is beyond the scope of this thesis and is a topic of future research.

6.4 Results From a GPF Implementation

This section presents results of an implementation of the Geometric Projection Filter.

Particular attention is given to the map building aspects of the filter. The results

described in this analysis are based on data logged from a 15 minute long field trial
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and subsequently post processed.

Following an explanation of the manner in which the results are presented, the

way in which constraints are dynamically formed is discussed. The states of the

unconstrained and constrained relative maps estimates are shown after 10, 50, 100 and

400 observations. The estimates of both relative maps are shown to be convergent

by plotting the evolution of state estimate covariance matrices. The hastening of

map estimate convergence through the application of consistency constraints in the

projection stage of the GPF is clearly shown. Finally, the vehicle is incorporated into

the relative map allowing estimation of vehicle location.

6.4.1 The Perfect Relative Map

Figure 6.13 shows all the possible relative states that exist between the six artificial

landmarks placed in the pool. A fully connected map-network with n vertices contains

n(n−1)
2
edges and therefore Figure 6.13 shows the existence of 15 relative map states.
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Figure 6.13: All 15 of the possible relative states between the six artificial landmarks
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6.4.2 The Enumeration of Relative Map States

Table 6.1 provides a legend for interpreting the experimental results presented in

the following sections in graphical form. Each of the 15 possible relative states is

enumerated. The states are elements of the relative map state vector. Table 6.1

enumerates these states. For example, state 12 corresponds to pr(3,6), the relative

location of landmarks 3 and 6.

State Number Relative State State Number Relative State
1 pr(1,2) 9 pr(2,6)

2 pr(1,3) 10 pr(3,4)

3 pr(1,4) 11 pr(3,5)

4 pr(1,5) 12 pr(3,6)

5 pr(1,6) 13 pr(4,5)

6 pr(2,3) 14 pr(4,6)

7 pr(2,4) 15 pr(5,6)

8 pr(2,5)

Table 6.1: Relative State Enumeration

6.4.3 Dynamic Constraint Formation

The implementation of the GPF in this section uses a similar constraint formulation

to that employed in the GPF simulation in Chapter 5. The relative map-network is

searched first for loops consisting of three relative states between landmarks that are

included in the defined submap. A constraint is formed expressing a zero vector sum

around these loops. Table 6.2 shows how the constraints used to produce a consistent

relative map are formulated dynamically. As more relative states are added to the

relative map more three element loops equations are found and used to constrain

the relative map. The time step parameter k corresponds to the total number of

processed ACRM observations.



6.4 Results From a GPF Implementation 140

Parameter k=10 k=50 k=100 k= 406

No. relative map states 5 6 8 15
Landmarks in sub map [1,2,3,4,5,6] [1,2,3,4,5,6] [1,2,3,4,5,6] [1,2,3,4,5,6]
No. possible constraints 2 2 5 20
No. constraints used 2 2 5 20
Landmarks in loops [1,2,5,6] [1,2,5,6] [1,2,4,5,6] [1,2,3,4,5,6]
No. constrained states 5 5 8 15

Table 6.2: The GPF parameters at k = 10, 50, 100, 406

6.4.4 Evolution of the Relative Map

This section illustrates the evolution of the unconstrained and constrained relative

maps as succesive ACRM observations are taken. The figures show evolution of the

relative maps at the four time steps k = 10, 50, 100, 406 used in Table 6.2. These

particular time steps illustrate both the early development of the map and its final

state at the end of the experiment.

Figures 6.14 and 6.15 show the unconstrained and constrained relative maps after

10 ACRM observations have been taken (k = 10). At this point five relative map

states exist. The unconstrained relative map is noticeably inconsistent whereas the

constrained map contains closed polygons and the relative map states meet at common

points.

Figures 6.16 and 6.17 show how the standard deviations in the x direction of each

relative state decrease as more observations are taken. In Figure 6.16 only one state

undergoes a reduction in uncertainty at each time step as the RMF updates relative

map state estimates in isolation. In Figure 6.17 however, because all five relative

states are constrained, each relative state undergoes a reduction in uncertainty at

every time step. This is a consequence of the application of constraints as described

in Section 4.8.3. The constraint application causes all states to become correlated and

high certainty in some states propagates to less certain states during the projection

phase of the GPF. A similar effect can be seen in Figures 6.18 and 6.19. In both

figures the determinants of Pr(i,j) and Prc(i,j) are monotonically decreasing showing



6.4 Results From a GPF Implementation 141

0 2 4 6 8 10 12

0

2

4

6

8

1 2

5

6

Unconstrained Relative Map 

x (m)

y
 (

m
)

Figure 6.14: The unconstrained relative map after 10 observations
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Figure 6.15: The constrained relative map after 10 observations
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Figure 6.16: Standard deviations on the x and y direction components of the uncon-
strained relative map states after 10 observations
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Figure 6.17: Standard deviations on the x and y direction components of the uncon-
strained relative map states after 10 observations

an increase in state certainty. In Figure 6.19 however, all determinants decrease

at every time step because of the coupling of relative states by application of loop

consistency constraints.

Figure 6.20 shows that the determinants of Prc(i,j) are always less than or equal
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Figure 6.18: The evolution of the determinants of Pi,j in unconstrained relative map
up until the 10th observation.
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Figure 6.19: The evolution of the determinants of Pi,j in constrained relative map up
until the 10th observation.

to that of Pr(i,j). Once again, this is a consequence of the propagation of information

from well known to less certain states during the final stage of the GPF algorithm.
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Figure 6.20: The evolution of the difference in determinants of Pi,j between con-
strained and unconstrained maps. Note that this quantity is never negative showing
that the certainty in the constrained map states is always greater than or equal to
that that in the unconstrained map.

Figures 6.21, 6.22, 6.23, 6.24, 6.25 and 6.26 show the state of the unconstrained

and constrained relative maps at k = 50, 100 and 406. As the number of ACRM

observations increase, the errors in the unconstrained relative maps become less pro-

nounced. However, even after 406 observations the unconstrained relative map is

still clearly inconsistent. The constrained relative maps are, as expected, perfectly

consistent.
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Figure 6.21: The unconstrained relative map after 50 observations.
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Figure 6.22: The constrained relative map after 50 observations.
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Figure 6.23: The unconstrained relative map after 100 observations.
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Figure 6.24: The constrained relative map after 100 observations.
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Figure 6.25: The unconstrained relative map after 406 observations.
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Figure 6.26: The constrained relative map after 406 observations.
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Figures 6.27 and 6.28 show the evolution of the standard deviations in the x

and y components of unconstrained estimates p̂r(i,j). Both σx and σy in p̂r(i,j) are

monotonically decreasing when that state is observed. The differing uncertainty in

each direction reflects the action of the non linear observation model which varies the

confidence in each cartesian component of the ACRM observation zr(i,j) according to

the bearing and range to the two landmarks pi and pj.

As predicted by Equation 4.40, the corresponding standard deviations in the con-

strained map exhibit smoother trajectories as each decreases with every observation.

The application of constraints can therefore be seen to hasten the convergence of in-

dividual state estimates. Similarly, a comparison of Figures 6.31, 6.32 and 6.33 show

the effect of the application of consistency constraints upon the determinants of the

state estimate variances. Both Figure 6.31 and 6.32 show monotonically decreasing

uncertainty in the state estimates. However, the trajectories of the constrained state

determinants are notably smoother and steeper than those of the unconstrained map.

Figure 6.33 graphs the evolution of the quantity ∆ = det(Pr(i,j))− det(Prc(i,j)) with

time. This quantity is always non-negative and is further validation of Equation 4.40

and the smoothing effect of constraint application.

6.4.5 Vehicle Location Estimation

Figure 6.34 shows the location of the vehicle deduced from the constrained relative

maps created as the vehicle moved through the environment. Initially the vehicle

is located at (5, 3) and moves east before turning north for an excursion to the top

of the ring of targets. In the absence of a ground truth it is hard to quantify the

absolute accuracy of the vehicle position estimates, however the vehicle path does

correspond to the observed path taken by the vehicle during the field test. The figure

also shows the 1σ bounds on the absolute location estimate of the landmarks. These

were deduced using the method described in Section 4.8.5. The uncertainty in the
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Figure 6.27: Standard deviations on the x direction component of the unconstrained
relative map states up until the 406th observation.
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Figure 6.28: Standard deviations on the y direction component of the unconstrained
relative map states up until the 406th observation.
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Figure 6.29: Standard deviations on the x direction component of the constrained
relative map states up until the 406th observation.
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Figure 6.30: Standard deviations on the y direction component of the constrained
relative map states up until the 406th observation.
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Figure 6.31: The evolution of the determinants of Pi,j in the unconstrained relative
map up until the 406th observation.
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Figure 6.32: The evolution of the determinants of Pi,j in the constrained relative map
up until the 406th observation.
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Figure 6.33: The evolution of the difference in determinants of Pi,j between con-
strained and unconstrained maps up until the 406th observation. Note that this
quantity is never negative showing that the certainty in the constrained map states
is always greater than or equal to that that in the unconstrained map.

absolute location of p̂1 was initialised as

P1,1 =





0.3 0

0 0.3



 .

The variance in all other landmark locations were calculated by transforming this

uncertainty across the map network. The covariance ellipses in Figure 6.34 are cir-

cular reflecting the dominance of P1,1 over the uncertainty in the relative map states

themselves. After the 406th ACRM observation, as a consequence of Theorem 4.2, the

uncertainty in the individual relative states is very small. As such, the final uncer-

tainty in all absolute landmark location estimates are determined by the uncertainty

in the absolute information used to ‘seed’ the transformation of the map from relative
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to absolute form (see Section 1.5.2).
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Figure 6.34: Estimated vehicle and landmarks location

6.5 A Comparison to an AMF Implementation

This section presents results from an implementation of the AMF using the same

data set employed in Section 6.4. The principal purpose of this section is to allow

comparison between the maps built by the GPF and the AMF. A more detailed

investigation into the behaviour of the AMF in a field environment can be found in

[17] and [11].

The AMF algorithm was initialised with a vehicle position of (5, 3) with an un-

certainty given by

P0v =





0.3 0

0 0.3



 .
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Figure 6.35: Innovations in range and bearing.

The filter was run for 406 time steps using the same input data as was used in the

GPF . Figure 6.35 shows the range and bearing innovations over this time period. The

large uncertainty injected into the system during maneouvers appear as large spikes

in the innovation covariances. The filter is a conservative estimator as the innovation

traces lie well within the 1σ innovation covariance bounds. However, Figure 6.35

shows that the filter is consistent and non-divergent.

6.5.1 Evolution of the Absolute Map

Figure 6.36 shows the evolution of the landmark covariance matrix determinants. As

expected they are monotonically decreasing and reach a lower bound determined by

the initial uncertainty in the vehicle. Part of the final AMF state vector covariance

matrix Pa is reproduced below. It corresponds to the covariance between landmarks
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Figure 6.36: Evolution of the determinants of Pi,i

4,5 and 6.

P(4:6),(4:6)(406|406) =




























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−0.0017 0.3410 −0.0017 0.3404 −0.0024 0.3400
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−0.0031 0.3404 −0.0031 0.3429 −0.0026 0.3408
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


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This sub matrix of Pmm is clearly highly correlated as a consequence of Theorem 2.2.

The terminal uncertainty in each landmark location is greater than the initial uncer-

tainty in the vehicle location P0v as was proved by Theorem 2.3. All the landmarks

inherit the initial uncertainty of the vehicle.



6.5 A Comparison to an AMF Implementation 156

6.5.2 Comparison of Vehicle Location Estimates

Figure 6.37 shows the estimated trajectory of the vehicle and the final uncertainty of

the landmark positions. The ellipsoids around the landmarks are 1 σ bounds on the

location estimates of the landmarks.
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Figure 6.37: Estimated vehicle position and landmark locations

An important comparison can now be made between Figures 6.34 and 6.37. The

AMF can be seen to be ‘correcting’ the vehicle location estimates following uncertain

maneouvers. For example, the trajectory following the move to coordinates (6.5, 8)

corrects the estimated vehicle position following an inaccurate state prediction from

the vehicle model. In the AMF, the effect of the vehicle model, which in this case was

a poor representation of the real world, can clearly be seen in the estimated vehicle

path. This is not the case in the path generated by the GPF. The location of the

vehicle in Figure 6.34 was generated purely from VLM observations and no recourse

was made to the vehicle model. However, if the VLM observations were very noisy,

this noise would be manifested in vehicle location estimates in the absence of the

smoothing effect of a vehicle model. A method by which the vehicle independent
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map building of the GPF can be integrated with a vehicle model to enable robust

localisation is a topic of further research.

6.5.3 Comparison of Map Estimates
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Figure 6.38: The difference in length of enumerated ACRM states directly estimated
by the GPF and those deduced from the AMF estimated map by differencing.

Figure 6.38 is a comparison between the relative states formed by the GPF and

the relative map states deduced from the AMF absolute map. The figure shows the

magnitude of the difference in length between the enumerated relative states. The

average error is just over 10cm. The states in greatest error involve observations of the

third landmark p3. It is not possible to identify with certainty which of the two filters

is responsible for this error. However the third landmark was frequently observed after

the vehicle moved to (6.5, 8). The trajectory of the vehicle in Figure 6.37 immediately

after this move indicates the vehicle model provided a poor prediction of the vehicle

position at this time. This error is corrected by ensuing VLM observations but will

cause an error in the estimates of the location of p3. Thus, the error in the AMF-



6.6 Summary 158

derived relative map can be explained as a consequence of a poor model of the vehicle

behaviour at the time of the first observation of p3.

6.6 Summary

This chapter has provided a practical demonstration of the operation of the GPF.

The filter was run using data collected with the subsea vehicle Oberon described in

Chapter 6. Observations of ACRM states were derived from VLM observations taken

when the vehicle was stationary and a gyro indicated heading. The estimated relative

maps were shown to be convergent. The ultimate uncertainty in the absolute position

of the landmarks was shown to be given by the uncertainty in the absolute position

of a ‘seeding’ landmark position estimate used to transform the consistent relative

map to absolute form.

The GPF results were compared with those obtained from an implementation of

the AMF. The differences in the relative distances between estimated landmarks were

shown to be small. The estimated vehicle path was also shown to be similar in the

GPF and AMF implementations. However, a poor vehicle model used in the AMF was

shown to cause an error in the absolute position estimate of one particular landmark.

This error stemmed from the observation of this landmark following a poorly modelled

vehicle translation. This error did not occur in the GPF implementation due to the

independence of the map building process from the vehicle model.

This chapter has presented a simple implementation of the GPF and is a first

step towards a full and substantial implementation of this SLAM solution. Future

implementations will require the integration of the data association task with the GPF

itself. Similarly, an important task of future research is to implement the GPF in

natural environments using algorithms capable of extracting natural landmarks from

a naturally occurring complex scene [51]. These topics are discussed further in Section

7.3. The elucidation of the structure of the SLAM problem is a key component of this

thesis. This is achieved by a thorough analysis of the properties of the AMF. This



6.6 Summary 159

analysis provides an understanding and exposition of the very essence of the SLAM

problem. The insight gained is then used as a spring board to the development of

new and alternative solutions to the SLAM problem.



Chapter 7

Conclusions and Further Work

7.1 Introduction

This chapter summarises the theoretical, analytical and practical contributions made

by this thesis. Section 7.2 provides a summary of contributions. Section 7.2.1 sum-

marises the investigation of the structure of the SLAM problem through an analysis

of the AMF. Section 7.2.2 discusses the contributions made in terms of alternative

solutions to the SLAM problem, in particular the GPF. Section 7.2.3 discusses the

implications of the implementation of the GPF in this thesis and its comparison with

the AMF. Finally, Section 7.3 identifies areas of future research both in the further

development of the GPF and in the SLAM problem in general.

7.2 Summary of Contributions

7.2.1 The Structure of the SLAM Problem

A significant contribution of this thesis has been to elucidate the structure of the

SLAM problem. This was achieved by thorough investigation of the properties of the

AMF, providing for the first time a rigorous mathematical analysis of the convergence

properties of this solution. It was shown that the correlations between landmark and
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vehicle estimates are crucial to the convergence and stability of a SLAM solution.

Three theorems central to the SLAM problem were proved:

• The uncertainty in every landmark location is monotonically decreasing.

• In the limit, as the number of observations increase, the map matrix Pmm

becomes fully correlated and the relationships between the landmarks becomes

perfectly known.

• The limiting landmark estimates uncertainty is determined by the initial vehicle

uncertainty.

The AMF scales quadratically with map size and complexity. Although this im-

pedes the use of the AMF as a generic SLAM solution in real time applications, it

proves that a solution to the SLAM problem exists. Investigation of the properties of

the AMF yields invaluable insight into the structure of the SLAM problem and pro-

vides the understanding and inspiration to develop alternative practicable solutions

to the SLAM problem.

7.2.2 Alternative SLAM Solutions

This thesis focused on the investigation and development of alternative SLAM so-

lutions. Two filters, both of which build a relative map, were introduced. Definite

advantages were shown to exist when using relative rather than absolute maps in

terms of the computation required to fuse observations with prior state estimates.

The RMF

The development of the RMF began with the derivation of a relative map state

measurement from two VML observations. The resulting observation model was

integrated into the standard Kalman filter equations to yield a generic form of the

relative filter first proposed by Csorba [14]. The RMF was shown to have the following

properties:
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• The RMF decouples the map building and location problems. No knowledge of

the vehicle is required to build the relative map.

• The RMF estimated states are independent and therefore are updated in isola-

tion.

• The uncertainty in each map state estimate decreases monotonically.

• In the limit, as the number of landmark observations increases, the relative map

becomes perfectly known.

• The minimum achievable uncertainty in estimates of landmark locations are

given by the initial uncertainty of the vehicle or an external estimate of the

location of a single landmark.

• The RMF has constant update time.

• The memory requirements of the RMF scale linearly with map size and com-

plexity.

It was also shown in a simulation of the RMF that the relative maps estimated by

the RMF are, in general, inconsistent. Relative map inconsistency prevents deduction

of an unique and unambiguous absolute map from the map estimated by the RMF.

This shortcoming of the RMF is remedied by the Geometric Projection Filter.

The GPF

The GPF is a major contribution of this thesis. It is a novel solution to the SLAM

problem which has the potential to be developed into a real time algorithm.

The GPF algorithm consists of two parts. The first part is a simple RMF which

uses landmark observations to build a generally inconsistent relative map estimate.

The second half of the algorithm applies a consistency constraint to this map. The

GPF was shown to have the following characteristics:
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• The GPF builds consistent relative maps.

• The GPF inherits map/vehicle independence from the RMF.

• The GPF inherits the lower bound on relative map covariance from the RMF.

• The GPF inherits the lower bound on absolute landmarks location estimate

uncertainties from the RMF.

• In practice, the application of constraints within the GPF causes the uncertainty

in each state estimate to decrease at each time step.

The computation required by the GPF is determined by the size of the constrained

sub map, the complexity of the constraint equation applied and the frequency at

which a consistent relative map is required.

The GPF allows control over what degree of computation is undertaken and when

it occurs. The use of sub maps allows computational resources to be concentrated

on specific areas of interest in the map rather than updating all map estimates as

is the case in the AMF. The two halves (RMF and projection) of the algorithm are

asynchronous in the sense that consistency constraints need not be applied at every

time step. Hence, it is possible to schedule the computation required to produce an

absolute map from the map maintained by the RMF half of the algorithm.

7.2.3 SLAM Algorithm Implementation and Comparison

An implementation of the GPF was presented using data collected from a subsea

vehicle designed and built by the author. A practicable SLAM solution is essential to

the operation of AUVs in unknown environments. The implementation of the GPF

described in this thesis is an initial step towards achieving this goal. A comparison

was undertaken of the maps and estimated vehicle paths obtained by use of the AMF

and GPF navigation filters. Although the absence of a ground truth prevented a

comparison of the filter estimates with the true state of the world, the presented
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results supported the theoretical predictions of the GPF and AMF. In particular, the

relative map estimates were shown to be convergent with monotonically decreasing

uncertainty. The application of consistency constraints was shown to always produce

a consistent relative map estimate. Furthermore as predicted, the constraining stage

of the GPF hastened the convergence of individual relative map state estimates. The

differences in the relative maps produced by the AMF and GPF were shown to be

small and can be explained by a poor vehicle model employed in the AMF filter. The

presence of this error in the AMF estimates served to highlight the independence of

relative map estimates from the vehicle model.

An insightful geometric interpretation of the action of the constrained estimator

was developed through application of linear algebra theory. This enabled the inter-

pretation of the constraint application stage of the GPF as a weighted projection of

the unconstrained relative map.

7.3 Future Research

This section identifies future areas of research that may augment the properties of

the GPF and further the progress towards a generic and robust SLAM solution.

7.3.1 Further Development of the GPF

Sensor Management

The data association problem has not been tackled in this thesis. An efficient method

capable of robustly associating observations with landmarks using only a relative map

estimate remains an area of active research. It is possible that by the maintenance

of a ‘focus of attention’ upon at least one landmark the data association problem

maybe simplified. The term ‘focus of attention’ implies the actuation of a sensor or

the control of sensor data processing such that a particular landmark can always be

observed. By fixating on a static landmark it is possible to immediately discount many



7.3 Future Research 165

of the possible observation - landmark associations. Of course, any one particular

landmark may become obscured or fall beyond the sensor range and so it will be

required to perform a ‘handoff’ of focus of attention from landmark to landmark as

the vehicle progresses through its environment.

Vehicle Localisation

In its current form the GPF integrates the vehicle into the estimated relative map

by using a single VLM observation and therefore vehicle location estimates are vul-

nerable to poor and spurious sensor readings. This sensitivity could be removed

(and significant advantages gained) by the development of a recursive vehicle state

estimator employing a vehicle model, coupled to the output of the GPF.

It is possible to envisage the maintenance of an estimate of vehicle location with

respect to an individual landmark in the map network. An immediate implication

of this would be the ensuing propagation of errors in the relative map estimate to

the vehicle location estimate. Importantly however, the vehicle independence of the

GPF map would prevent errors in the vehicle estimate from being transferred to the

estimated relative map.

Map Management

Given an arbitrarily complex and multiply connected network it is combinatorialy

hard to find all the loops within the network. However, the map network presented to

the constraining stage of the GPF is built incrementally over time. It is hypothesised

therefore, that it is possible to develop an algorithm that generates the minimum

number of constraint equations needed to guarantee relative map consistency each

time a new relative state is initialised. This recursive algorithm would form a list of

suitable constraints without having to perform a combinatorial search.
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Proof of AMF and GPF Equivalence

A proof of the equivalence of the map estimates resulting from application of the AMF

and GPF algorithms would be a valuable addition to the already proved properties

of the GPF. In general the two maps will not be identical because of the injection

of vehicle process noise in the AMF. However, in the limiting case when the vehicle

model is known perfectly it is hypothesised that the two maps will be identical.

7.3.2 Future SLAM Research

SLAM remains an active area of research in the robotics community. Many problems

still need to be solved before a mobile robot can provably operate in an entirely

unknown environment and research continues on many fronts. Two approaches are

of particular interest. First is an information theoretic formulation of the SLAM

problem [28]. Such a formulation may allow active sensing strategies to be developed

that maximise the information content of the map or vehicle estimates. Secondly, the

efficient and consistent use of submaps may allow a ‘divide and conquer’ approach

to be adopted in which landmark estimates are only manipulated in local regions of

interest and hence allow computation to be significantly reduced.

Many potential applications of SLAM require operation in natural, non-man made

environments. The successful deployment of a robot in such an environment would

constitute a general solution to the mobile robot navigation problem, however this

remains an elusive goal. It requires the integration and co-ordination of four key

competencies - natural landmark identification, data association, map management

and the SLAM algorithm itself. Much successful research has been undertaken within

each of these individual areas in isolation [29],[32],[8]. The problem that must now

be solved is how to fuse the algorithms and knowledge resulting from this endeavour

into a system capable of robustly solving the navigation problem in real time. Until

this fusion is accomplished, Simultaneous Localisation and Map Building remains a

challenging and fascinating problem.



Appendix A

The Kalman Filter

The Kalman filter allows the recursive calculation of the minimum mean squared
error estimate of a state vector x denoted x̂. This section states the equations and
forms of models central to the linear and non-linear Kalman Filter. The derivation
of these equations can be found in many texts [20][35][34] and is not repeated here.

A.1 System Models

A.1.1 Process Model

The state vector to be estimated evolves according to a linear discrete time process
model:

x(k + 1) = F(k)x(k) + u(k + 1) + vv(k + 1), (A.1)

where u(k + 1) is the control injected at time k + 1. The term v(k + 1) represents
uncertainty in the model F and the control u and is assumed to be a zero mean and
temporally uncorrelated random sequence with covariance Q.

E[v(k)] = 0

E[v(i).v(j)T ] =

{

Q(k) if i = j = k,

0 otherwise.

A.1.2 Observation Model

Observations are made at discrete time intervals. Denoted as z(k) they are related
to the state x at time k by the following the observation equation.

z(k) = H(k)x(k) +w(k) (A.2)
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H is the observation model and transforms R
dim(x) → R

dim(z). Physically H(k) is
a model of the sensor being used to observe the state x(k). The term w(k) repre-
sents observation noise and represents unmodeled characteristics of the sensor and
inevitable noise corruption . The observation noise is assumed to be a zero mean,
temporally uncorrelated random sequence with covariance R(k).

E[w(k)] = 0

E[w(i).w(j)T ] =

{

R(k) if i = j = k,

0 otherwise.

A.2 The Linear Kalman Filter

The Kalman Filter estimates the statistics of a random variable with dynamics mod-
eled by a process model given a stream of observations modeled by an observation
model. The filter produces the minimum mean squared error estimate of x.
The state estimate at time p given all observations up until time q where q ≤ p

is written x̂(p|q). An important property of the minimum mean squared estimate
calculated is that it is equivalent to the conditional mean of x conditioned upon the
sequence of observations Zq

x̂(p|q) = E [x(p)|Zq] (A.3)

The Kalman filter also propagates an estimate of the state covariance matrix
defined as

P(p|q) = E
[

[x̂(p|q)− x(p)][x̂(p|q)− x(p)]|TZq
]

Like many estimators the filter has a prediction and correction stage with the
correction stage more usually referred to as the update stage. The equations used to
implement these two stages are now stated.

A.2.1 Prediction Stage

At time k + 1 assume that an estimate of the state at time k and a state covariance
estimate exist and are written as x̂(k|k) and P(k|k).The predicted state, state error
covariance and observation are then calculated as follows.

x̂(k + 1|k) = F(k)x̂(k|k) + u(k + 1) (A.4)

P(k + 1|k) = F(k)P(k|k)F(k)T +Q(k + 1) (A.5)

ẑ(k + 1|k) = H(k + 1)x̂(k + 1|k) (A.6)
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A.2.2 Update

At this point information contained in a new observation z(k + 1) is used to update
the predicted statistics of the estimated state. The update equations are now stated.

x̂(k + 1|k + 1) = x̂(k + 1|k) +W(k + 1)ν(k + 1)

P(k + 1|k + 1) = P(k + 1|k)−W(k + 1)Sνν(k + 1)W
T (k + 1)

where

ν(k + 1) = z(k + 1|k)− ẑ(k + 1|k)

Sνν(k + 1) = H(k + 1)P(k + 1|k)H
T (k + 1) +R(k + 1)

W(k + 1) = P(k + 1|k)HT (k + 1)Sνν
−1(k + 1)

The prediction is seen to be corrected by some amount proportional to the error
between predicted and actual observations. The constant of proportionalityW(k+1)
is the Kalman gain. This gain is a function of the prediction uncertaintyP(k+1|k) and
the observation uncertainty R(k+1). If R(k+1) is large compared to the prediction
uncertainty thenW will be small essentially placing more ‘faith’ in the process model
than the observation. If on the other hand, R(k+1) is small compared to P(k+1|k)
then W(k + 1) will be large placing more importance on the corrective term. The
term ν(k+1) is the innovation and represents the error between expected(predicted)
and actual observations. Its covariance is given by Sνν(k + 1).

A.3 The Non-Linear or Extended Kalman Filter (

E.K.F)

The Non-Linear or Extended Kalman Filter ( E.K.F) is an extension of the linear
Kalman filter and allows non linear observation and process models to be incorporated
into the estimation frame work.
The EKF linearises the observation and process models about the predicted ob-

servation and predicted state vector estimate respectively. A full treatment of this
procedure can be found in [43][20] and [34].
The state vector to be estimated evolves according to a non linear process model:

x̂(k + 1) = F(x(k),u(k + 1), k + 1) + vv(k + 1)

and observations are made using a non linear observation model:

ẑ(k) = H(x(k), k) +w(k).

The terms w and vv have the same meaning as in Section A.1.
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A.3.1 EKF Prediction Equations

The prediction equations for the EKF are written as follows

x̂(k + 1|k) = F(x̂(k|k),u(k + 1), k + 1)

P(k + 1|k) = ∇Fx̂P(k|k)∇F
T
x̂
+Q(k + 1)

ẑ(k + 1|k) = H(x̂(k + 1|k), k + 1)

The term ∇·x̂ is understood to be the jacobian of (·) with respect to x evaluated
at x̂(k + 1|k) where

∇Fx =
∂F

∂x
=







∂F1

∂x1

· · · ∂F1

∂xm

...
...

∂Fn

∂x1

· · · ∂Fn

∂xm







A.3.2 EKF Update Equations

Following the prediction, the new observation z(k+1) is fused with the prior estimate
by application of the following equations

x̂(k + 1|k + 1) = x̂(k + 1|k) +W(k + 1)ν(k + 1)

P(k + 1|k + 1) = P(k + 1|k)−W(k + 1)Sνν(k + 1)W
T (k + 1)

where

ν(k + 1|k) = z(k + 1)− ẑ(k + 1|k)

Sνν(k + 1) = ∇Hx̂P(k + 1|k)∇H
T
x̂
+R(k + 1)

W(k + 1) = P(k + 1|k)∇HT
x̂
Sνν

−1(k + 1)

The term ∇Hx̂ is understood to be the Jacobian of the observation model H
evaluated at x(k + 1|k).



Appendix B

Linear Algebra

B.1 The Four Fundamental Spaces of Linear Alge-

bra

The four fundamental spaces of linear algebra given a n×m matrix C, are:

• R(C)⇒ the R
n space spanned by the columns of C

• R(CT)⇒ the R
m space spanned by the rows of C

• N (C)⇒ the null space of C

• N (CT)⇒ the null space of CT

The following orthogonality properties hold between the four spaces

R(C) ⊥ N (CT)

R(CT) ⊥ N (C)

A detailed examination of the properties of these four spaces can be found in [1].
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B.2 Matrix Transformations

Any matrix A transforms a vector x into its column space R(A).

Ax = b










a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n





















x1

x2
...
xn











=











a1,1x1 + a1,2x2 · · · a1,nxn

a2,1x1 + a2,2x2 · · · a2,nxn

...
am,1x1 + am,2x2 · · · am,nxn











= x1











a1,1

a2,1
...

am,1











+ x2











a1,2

a2,2
...

am,2











· · ·+ xn











a1,n

a2,n

...
am,n











b is seen to be a linear combination of the columns of A and so lies in the column
space of A.

B.3 Properties of Positive Semi-Definite (psd) Ma-

trices

Given the psdmatrices A(m×m) and B(m×m), the following important properties
hold:

• AB is psd

• A+B is psd

• A−B is psd

• A−1 is psd

• CACT is psd for any C(m× n)

• det(A+B) ≥ det(A) + det(B)

• Any major sub matrix of A is also psd

An extensive list of the properties of psdmatrices can be found in [30] and [22].
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