ON THE STRUCTURE OF BALANCED INCOMPLETE
BLOCK DESIGNS!

By W.*S. ConnoR, Jr.?
University of North Caroling

1. Summary. In this paper there are developed for the first time analytical
methods for the investigation of the structure of unsymmetrical balanced in-
complete block designs. Two unsymmetrical balanced incomplete block designs
are proved to be impossible, and for such designs in general, inequalities are
found for the number of treatments common to two blocks.

2. Introduction. In the balanced incomplete block design v varieties or treat-
ments are compared in such a manner that each treatment is assigned to r ex-
perimental units. The units themselves are arranged into b more or less homo-
geneous blocks, each containing % experimental units. Any two treatments are
required to occur together in the same block A times, the treatments occurring
in a given block being all different. Hence the design depends on the five pa-
rameters, v, b, r, k, X\. Clearly the following conditions are necessary:

2.1) bk =wvr,r(k — 1) = (v — 1A,

Fisher [1] also showed that for the existence of an actual combinatorial solu-
tion it is necessary that
2.2) b2>v,ork <r.

The work of Yates [2], Fisher and Yates [3], Bose [4], and Bhattacharya [5],

[6], [7] provided solutions for all of the balanced incomplete block designs with
r < 10, except the designs shown in the following table.

TABLE I
Reference number in Fisher and Yates’s Parameters
1938 table

v b r k A

(8) 15 21 7 5 2
(10) 22 22 7 7 2
(12) 21 28 8 6 2
(14) 29 29 8 8 2
(28) 36 45 10 8 2
(30) 46 46 10 10 2
(24) : 46 69 9 6 1
31) 51 85 10 6 1

Hussain [8], [9] proved the nonexistence of the designs (10) and (14), Nandi
[10] showed the impossibility of (8), and Shrikhande [11} proved the nonexistence

1 This work was sponsored by the Office of Naval Research.
* Now with the National Bureau of Standards.
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58 W. S. CONNOR, JR.

of (30). Chowla and Ryser [12], in a sequel to a paper by Bruck and Ryser [13],
gave general results, of which the impossibility of (10), (14) and (30) are special
cases. (Also see Schittzenberger [16].)

Of the designs listed in Table I there remain to be examined (12), (28), (24),
and (31). It is the object of this paper to show that (12) and (28) are impossible,
and to give a proof alternative to Nandi’s of the impossibility of (8). The investi-
gations will incidentally throw much light on the structure of balanced incom-
plete block designs in general.

Before proceeding further, it-is desirable to establish firmly that proofs of the
impossibility of (12) and (28) are really needed. Designs which have » = b and
r = k are called “symmetrical” designs. Associated with every symmetrical
design is a “derived” design, which has the following relation to the symmetrical
design. If the parameters of the symmetrical design are v, b, r, k, and A, then the
parameters of the derived design, which are indicated by asterisks, are

(2.3) =9 — 7, b*=0-—1, r* =7, ¥ =Lk — A=\

If a solution of a symmetrical design exists, then a solution of the derived design
may be obtained by deleting a block and all of the treatments in the block from
the symmetrical design. Such a solution of the derived design is said to be “ad-
joinable,” since the symmetrical design can be built up from it by suitably ad-
joining % new treatments, A to each block, and a block consisting of the new
treatments. There do exist, however, in certain cases nonadjoinable solutions
for the class of designs given by (2.3).

An instructive example is due to Bhattacharya [5]. Associated with the sym-
metrical design v = b = 25,r = k = 9, A = 3, is the derived design v = 16, b =
24, r = 9,k = 6,x = 3. In this case a solution exists for the symmetrical design,
and hence there exists an adjoinable solution for the derived design. Since it is
known that every two blocks of a symmetrical design have A treatments in
common, it follows that no two blocks of an adjoinable derived design can have
more than A treatments in common. If a solution exists for the derived design
which contains two blocks which have more than A treatments in common, then
clearly the solution is nonadjoinable. Bhattacharya gave the following solution
of the derived design for the above case which contains two blocks (starred)
which have four treatments in common, and two blocks (underscored) which
have zero treatments in common.

(1,2,7,8,14,15)  (3,5,7,8,11,13) (2, 3,8,9, 13, 16)
3,5,8,9 12,14)  (1,6,7,9,12,13)* (2, 5,7, 10, 13, 15)
(3,4,7,10,12,16) (3,4, 6,13, 14, 15) (4, 5,7, 9, 12, 15)
(2,4,9,10,11,13) (3,6,7, 10, 11,14) (1,2, 3, 4, 5, 6)
(1,4,7,8,11,16) (24,8, 10,12, 14) (5, 6, 8, 10, 15, 16)
(1, 6,8, 10,12, 13)* (1, 2,3, 11,12, 15) (2, 6,7, 9, 14, 16)
(1,4, 5,13, 14, 16) (2, 5, 6, 11, 12, 16) (1, 3, 9, 10, 15, 16)
(4,6,8,9,11,15)  (1,5,9,10, 11, 14) (11, 12, 13, 14, 15, 16).

(2.4)
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The above considerations show that the existence of a symmetrical design
implies the existence of the corresponding derived design. Also the nonexistence
of a derived design implies the nonexistence of the corresponding symmetrical
design. But the nonexistence of a symmetrical design does not imply the non-
existence of the corresponding derived design, since a nonadjoinable solution
may nevertheless exist. In particular the nonexistence of designs (14) and (30)
of Fisher’s tables does not rule out the possible existence of nonadjoinable solu-
tions for (12) and (28). In the next section there will be established a fundamental
theorem which besides being useful for establishing the impossibility of the two
last mentioned designs, has intrinsic interest in as much as it gives a helpful
insight into the structural nature of balanced incomplete block designs.

3. A fundamental theorem. Before considering the theorem, we shall prove
the following useful Lemma. :

Lemma 3.1. If | A | is the determinant defined by

o B ...B el,v+] "'el,v+t
B o ...B €2,541 ce oyt
(3‘1) I A | = B ﬁ R 4 oo+l €yt y
€411 Cui1,2 ° * *€uily Cyiletl CC ol
€pit,l Cott,2 *° "Cuitw Cpgtotl " Coti,utt
then
(3.2) 4] =[a+ @— DB (a—8""|B],

where By is of order { X t, and the elements of B, are

bu = (@ + (v — D)B)(a — Bestjorr — (@ + (v — 1)B)
. ; €iptulotii + B Z_:l €0y ; €yiiyi -

To prove the lemma let the following operations be carried out on the rows
and columns of | 4 | :
(i) Multiply the last ¢ columns by

[a + (@ — DB« — 8],

and write an offsetting factor outside.

(i) Addrows 1,2, ---,» — 1 to row v.

(iii) Take the factor [@ + (v — 1) B8] out of row v.

(iv) Multiply row » by 8 and subtract this product from rows 1, 2, +.-,
v — 1.

(v) Take the factor (@ — B8) out of rows 1,2, «-- , v — 1.
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(vi) Subtract rows 1, 2, ---, v — 1 from row v.

(vii) Subtract suitable multiples of columns 1, 2, - - - , v from columns » + 1,
v+ 2, ---,v -+ ¢80 as to make the elements which are both in the first v rows
and also in the last ¢ columns equal to zero, and the lemma follows.

Consider the ‘““incidence” matrix N of the design, that is,

Ny ,c nlb.l
(3.3) N :

where the rows represent treatments, the columns represent blocks, and n,; =
1 or 0 according as the 7th treatment does or does not occur in the jth block.
Since every treatment is replicated r times,

b
(34) Z:l Ny =71, (7: = 1; ttty U),
Jo-
and since every treatment must occur A times with every other treatment,
b
(35) Zlnl'inui =) ("': u=1 -, T u)-
]-
Hence,
r A A
T
(3.6) NN ' ={ . . R
A r

where N’ denotes the transpose of N. Clearly,
(3.7) | NN’ | = rk(r — )"

Choose any ¢ < b blocks of the design. Let the submatrix of N which corre-
sponds to these ¢ blocks be denoted by N, . Let §;, be the number of treatments
common to the sjth and uth chosen blocks (j, w = 1,2, --- , t). Then the ¢ X ¢
symmetric matrix

(3.8) 8¢ = NoNo = (1)

is defined to be the structural matriz of the t chosen blocks. The jth row or column
of 8, corresponds to the jth chosen block and the successive elements of the
Jth row or column give the number of treatments which this block has in com-
mon with the 1st, 2nd, - - -, tth chosen blocks.

Let the columns of N be permuted so that the first ¢ columns correspond to
the ¢ chosen blocks. Then let the incidence matrix be extended by adjoining ¢
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new rows, so that the jth adjoined row consists of zero elements except the jth,
which is unity. We thus get

(39) v= [N 0]’

where I, is the identity matrix of order ¢, and 0 is the ¢ X (b — ¢) zeromatrix,
Then

, NN’ N,
(310) NlNl = ’ ¢
No Ig
By application of Lemma 3.1, we obtain
(3.11) [ NN1| = k= — N7 G
where

cij=(r—k (T —N), cu=x —18u

(j # u)’ (j) U = 1:"') t);
and (2.1) has been used in replacing (r + (v — 1A) by &.
The matrix C; given by (3.11) is a symmetric matrix whose elements are in
(1, 1) correspondence with the elements of the structural matrix S; of the chosen
blocks. In fact we can write

(3.13) Ci= NeE¢ + r(r — NI — 78,4,

(3.12)

where E, is the singular ¢ X ¢ matrix all of whose elements are unity.

The matrix C; is defined as the characteristic matriz of the t chosen blocks. The
jth row or the jth column of C corresponds to the jth chosen block of the design.

When P is a matrix with real elements of order s X t, £ 2> s, it is well known
that | PP’ | > 0. Hence if b > v + ¢, then | NiN} | > 0. Further, since the ele-
ments of N; are integers, if b = v <+ ¢, then | N1N1 | is a perfect integral square.
Finally if b < v + ¢, then | N\N1| = 0. Hence we get the following fundamental
theorem. )

TreoreM 3.1. If C is the characteristic matriz of any set of t blocks chosen from
a balanced incomplete block design with parameters v, b, r, k, \ then

i [Ci|Z20ift<b—uy,

@) |Ci|=04t>b— v and

(i) k@)™ (¢ — NP Coy | is @ perfect integral square.

To illustrate the kind of information which is contained in this theorem, con-
sider the design with parameters» = 9,k = 6,b = 24,9 = 16,and A = 3. Let
the treatments be denoted by letters, and consider whether it is possible to fill
up four blocks in such a way that each block will have three treatments in com-
mon with each of the other three blocks. One way in which this can be done is
as follows:

(3.14) (ABCDEF), (ABCGHI), (ABDGJK), (ACDGLM).
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We can now ask whether these four blocks can form part of the completed
design. To answer this question, apply Theorem 3.1. Now,

cij = —N{r—Fk)=18,
and ‘
Ciu = No — r8;, = —9, (u # 7).
Hence,
|Cs| = 273 (—-9) <0,

and by (i) of Theorem 3.1 it follows that (3.14) is impossible, and in fact that
any set of four blocks of the type considered cannot form a part of the com-
pleted design. .

Now we shall indicate some simple consequences of Theorem 3.1. By letting
t = 1it is easy to prove Fisher’s inequality (2.2). By letting { = 2 we obtain

(3.15) | Cof = (r — \)(r — k)* — (\k — $ur)* >0,

whence we obtain the
CoROLLARY 3.1. }mk 47— A —K)]>8u> — (r —\ — k). For the

symmetrical designs, that is, the designs with » = F, it follows from Corollary
3.1 that 8; = A, so that any two blocks of such a design have exactly A treat-
ments in common, a result which was first noticed by Fisher. For example, for
the design with parameters r = 9,k = 6,b = 24, v = 16, and A = 3, Corollary
3.1 gives the bounds

(3.16) 4> 8;u >0,

and Bhattacharya’s solution (2.4) given before actually contains two. blocks
(starred) which have four treatments in common, and also another two blocks
(underscored) with no treatments in common.

4. The structure of balanced incomplete block designs of the series v =
ke + 1), b = ¥k + I)(R + 2),r = k + 2,and & = 2. It is the object of
this section to develop several lemmas about the relations between blocks of any
design belonging to this series. The first two lemmas do not depend on Theorem
3.1, but subsequent lemmas are based on it.

Consider an initial block B;, which contains the % treatments a,, -« -, as.
It is desired to know how the a; are distributed among the remaining (b — 1)
blocks. Let there be n; blocks which contain ¢ of the treatments a;. Then the
following relations are necessary:

) X n=b—1=thk+9),
(4.1) =
(i) kZ%m,- = k(r — 1) = k(k + 1),
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and
(iii) i} (¢ — Dn; = k(k — 1),

Consider - .
(4.2) Q= ‘2: (¢ —1)E = 2n,,
where n;, (¢ = 0, - -+ , k), is a positive or zero integer. Now
(4.3) Q=g)i(i—l)n,-—ZZZOini-l—2{§)m=0.
Since 7 > 0 and n; > 0, it follows from (4.3) that each term of @ is zero. Hence
(4.4) n;=0fori=0and%k >1i> 2

From (4.4) and (i) and (ii) of (4.1) we obtain
LeMmmA 4.1. Any block of the design has two treatments in common with 3k(k — 1)
other blocks, and one treatment in common with 2k other blocks.
Next consider two initial blocks, B; and B:, which contain treatments as
follows:
31:01 e 07“1 cr e Oy
(4'5) 32;01 e 07b1 e bk—7 .

The treatments 6; (¢ = 1, --- , y; v = 1, 2) are the v treatments which B; and
B, have in common. It is desired to determine how the treatments of B; and
B; may be distributed among the remaining (b — 2) blocks.

The remaining (b — 2) blocks are of several types depending on how the
treatments of B; and B; occur in them. If v = 2, the 6, and 6, occur together
twice in B; and B; and cannot occur together again in any other block. The types
of blocks are defined in

DEerintTION 4.1. T'ype 1. The block contains two treatments from each of B
and B, . It is of subtype 11 or 12 according as one 0; does not, or does occur as one
of the two treatments.

Type 2. The block contains two treatments from one of By and B, , but only one
treatment from the other. It is of subtype 21 or 22 according as one 6; does not, or
does occur as one of the lreatments.

Type 8. The block contains one treatment from each of By and Bs. It is of sub-
type 31 or 32 according as one 8, is not, or s the treatment.

Consider the pairs which must be formed among the treatments of B, and B,.
Certain pairs occur in B; and B, leaving the following pairs to occur in the
remaining (b — 2) blocks:

Type of pair I Number of pairs
(l) a,-b,- l Nny = 2(’6 -_ 7)2

(i) a:a; or bgb, np=k—-v)k—-—v—1)
(111) 6.a; or 6:b; ny = 2y(k — v)
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Denote the number of blocks of type & (I = 1,2, 3; % = 1, 2) by ;. Then
from the above considerations the following equations are necessary.

(a) 4zn + 2 + 224 + za =m,
(b) 2z + za * = Ng,
(e) 2215 + 22 = ng,
(4.6) (d) T2 + Za + 32 = vk,
(e) 4xy + 21 + 3zn + T + 22y = 2(k + 1)(k — ),

&) zu4t+ 2o+ zat et zat ze=3ikk+3) — 1.

The equations of (4.6) may be solved to determine the number of blocks of
types 11, - -+, 32. Then remembering that -z is the number of blocks of
type 1, we obtain

Levma 4.2, With respect to 2 initial blocks which have vy, (v = 1, 2) treatments
in common, there exist [(k — v)(k — v 4+ 1) 4+ kv — 3k(k + 3) — 1] blocks of
type 1, 2y(k — «) blocks of type 2, and [k(2 — v) — 2y(1 — v)] blocks of type 3.

Now consider several structural matrices for 5 blocks. The first structural

matrix to be considered is
1k 1 2
k 2
8D = 1

B

which is a symmetric matrix. The element 84 is unknown, and it is desired to
know what values are admissible for S, if the five blocks which have S{° for
their structural matrix are to form a part of the completed design. Of course,
the admissible value is 1 or 2, or both.

Associated with S§” is the characteristic determinant, | C{”|. Consider the
elements of C{" . For the series of designs under consideration, r — k = 2 and
r — A = k. Hence, ¢;; = 2k and ¢;, = k — 2 or —4, according as $;, = 1 or 2,
where j and u refer to the jth and uth blocks of the set of 5 blocks being con-
sidered. The element ¢4 is unknown and it is desired to know whether k — 2 or
— 4 or both are admissible for ¢4 if the 5 blocks being considered are to form a
part of the completed design.

Evaluation of | C{” | by Lemma, 3.1 yields

E e

4.7

&= NN

(4.8) |82 | = 2k + 2)*(2k — cw)[2(k — D)ess + (* — 28)].
Now by Theorem 3.1 it is necessary that | C{” | > 0. If ¢is = —4 we obtain
(4.9) kE—10 >0,

whence it follows that cs cannot be —4 and hence 84 cannot be 2 unless & > 10.
If cs = (K — 2) we obtain

(4.10) k—42>0,
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whenee it follows that ¢s;s cannot be (k — 2) and hence S84 cannot be 1 unless
k > 4. These results are contained in
LemMma 4.3.
() If k < 4, then there cannot xist 5 blocks with S
(i) If 4 < k <9, then in S5, 8 =.1.
(i) If & > 10, then both values of S« are admissible in Sg”.
Let the second structural matrix to be considered be

1 .
U as structural matriz.

Fc 112 2
k111
(4.11) 8P = E 11
kS

k

Using Lemma 3.1 we find that the value of the determinant of the associated
characteristic matrix is

(4.12) | O | = 4(k + 2)"(2k — cw)[(k — Dess + 2(k — 4)],

(1)
5

which by Theorem 3.1 is nonnegative. Reasoning as for S5~ we obtain

LemMa 4.4,

() If k < 8, then there cannot exist 5 blocks with S
(i) If k > 3, then in 857, 8 = 1.
Consider a third structural matrix

k

2 as structural matriz.

1
k

i

(4.13) S§P =

SN BN

4
o

NN = DN

Using Lemma 3.1 we find that the value of the determinant of the associated
characteristic matrix is
18| = 4k + 2)[~(k — 1)cis

— (k — 2)(k + 8)cws + (& — 2)(K* — &k — 18)],

(1)
5

(4.14)

which by Theorem 3.1 is nonnegative. Reasoning as for S5, and observing by
placement of the treatments in the blocks that the design with k¥ = 2 cannot
contain five blocks with the structural matrix S§3), we obtain

LemMma 4.5.

() If k < 3, then there cannot exist 5 blocks with S

(i) If k > 3, then in S5, 85 = 2.

5. The impossibility of balanced incomplete block designs (8) and (28) of
Fisher and Yates’s table. In this section the proof of the impossibility of the
designs (8) and (28) of Table 1 is completed. These designs belong to the series
considered in Section 4 and correspond respectively to k = 5 and k£ = 8.

) as structural matriz.
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For ¢t = b we obtain from (3.8) the structural matrix S; of the design. From
Lemmas 4.1 and 4.2 it follows that there exist two rows (blocks) of S, which
are as follows:

k11 1...1 1...1 2...2 2...2
G "y 1...1 [ 2...2 2...2 1...1,
k

where the partitions break up the matrix S, into submatrices 4, B, C, D, and
E, in left to right order. According to Lemma 4.1, rows 1 and 2 both contain
$k(k — 1) 2’s and 2k 1’s. Now since blocks 1 and 2 intersect in one treatment,
it follows from Lemma 4.2 that there exist 1(k — 1)(k — 2) blocks of type 1,
2(k — 1) blocks of type 2, and k blocks of type 3. Hence, it is necessary that 4
contain 3 columns, that B, C, and E each contain (k¢ = 1) columns, and that D
contain $(k — 1)(k — 2) columns.

Consider how the third row of S, may be filled up. By Lemma 4.1 it must
contain 3k(k — 1) 2’s and 2k 1’s. Since block 3 intersects block 1 in one treat-
ment, it follows by considering blocks 1 and 3 as initial blocks that the number
of blocks of types 1, 2, and 3 must be as given in the preceding paragraph. Also
block 3 intersects block 2 in one treatment, so the same result holds for blocks
2 and 3 as initial blocks. Unfortunately these conditions are met by numerous
arrangements of the 1’s and 2’s in row 3. In fact, it follows from Lemmas 4.1
and 4.2 that if there are (k — j — 1) 2’s in row 3 of B, then there are 7 2’s in
row 3 of C, [3(k — 1)(k — 2) — j] 2's in row 3 of D, and j 2’s in row 3 of E,
(j= 0, --- ’k— 1)-

Consider Siy2, the structural matrix for the following (¢ + 2) blocks: the
blocks of A, the j blocks of C which have 2 in row 3, and the (¢ — j — 1) blocks
of E which have 1 in row 3, that is,

% 1 1§1--.1:2...2
E 1{2.--2{1---1
k 2...2 1..1
(52) Sk+2= F G ’
H

where F and H have k in the main diagonal, and are symmetric matrices. The
other elements of F, G, and H are so far unknown and will be determined below.
Comparison of the structure of Sy, With the structures of S{* of (4.7), 82 of
(4.11), and S5” of (4.13) shows that Lemmas 4.3, 4.4, and 4.5 apply. Hence the
elements of F are 1, the elements of @ are 2, and the elements of H are 1, for
K< 10.

Corresponding to S is the characteristic matrix Ciyo . It is useful to compute
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(5.3) [Ciyz| =
@) =2 (=il —2) - F—D=d) e (=4
@) (- D= 4) e (=8 k=2 - E-2)
@) H=8) o, o (=) k=2 - (k-2
GF TGSy TR TTTTTTTED
& — 2) (2k) i (b —2)
D=2 @) (=) oo (=4
TR P B
G- @) k-2
(k:—Z) (Ic-;2) (2k)

Using Lemma 3.1 repeatedly we obtain
(5.4) | Ciga| = J(G — & + 2)(k — 6)(k + 2)°""

Now by (ii) of Theorem 3.1, | Cr42 | = 0. From (5.4) it is clear that { C442 | = 0
when and only when j = 0 or (k — 2), or k = 6.

Let & = 8. Then from (5.4), either j = 0 or j = 6. If j = 0, then consider
SSY for blocks 1, 2, 3, and any 6 blocks of E of 5.1. Then from (3.11),

(5.5) | VYWY | = 2%,

where the 9 chosen blocks of Ni¥ are the blocks which have S as structural

matrix.

If j = 6, then consider S§* for blocks 1, 2, 3, and the six blocks of C of (5.1)
for which the third row contains 2. Then
(5.6) | V)WY | = 2%,
where the 9 chosen blocks of N\ are the blocks which have S5® as structural
matrix.

The determinant | (N{?)(W$?) |, ¢ = 1, 2, is not a perfect integral square.
But from (iii) of Theorem 3.1, it must be a perfect integral square. Hence the

Tueorem 5.1. The balanced incomplete block design with parameters r = 10,
E=8,b=45v = 36, and A = 2 s impossible.

Although a similar argument might be given for £ = 5, an easy proof is as
follows. Consider

5 1

(5.7) S 5

QU D) =

1
2
S |’
5
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where 83 is unknown but is either 1 or 2. The corresponding characteristic
determinant is

(5.8) [Ci] = (7)(10 — cs)(13 cx + 38).

By Theorem 3.1, it is necessary that | Cs] > 0.1t follows that czs = & — 2 = 3.
Hence, 8 = 1 and blocks 1, 3, and the four blocks of C of (5.1) have the struc-
tural matrix

5 1 1

1 5 1
(59) Se = ) )

11 5

The corresponding characteristic determinant is

(5.10) | Cs| = 7°-5°,
and from (3.11),
(5.11) | NWN3 | = 5%,

where the 6 chosen blocks of N; are the blocks which have Sg as structural
matrix. The determinant | N1V | is not a perfect integral square, which contra-
dicts (iii) of Theorem 3.1. Hence, the

TraeoreM 5.2. The balanced incomplete block design with parameters r = 7,
E=250b=21v =15 and A = 2 is impossible. This result was obtained by
Nandi [10] by a different method.

6. The impossibility of the balanced incomplete block design (12) of Fisher
and Yates’s table. This design is the member of the series of section 4 which has
k = 6. From (5.4) it is seen that (¢ — 6) is a factor of | Cyy2 | . Hence the argu-
ment used for ¥ = 8 will not apply for £ = 6.

Consider (5.1) in which two rows of S; are given. Assume that there do not
exist five blocks having for their structural matrix

6 1 .- 1
1 6 “ee 1
(6.1) ' 840 = '
1 1 “own 6

This assumption will be contradicted. For the assumption to be true it is neces-
sary for row 3 of C to contain exactly three 2’s. For if it contains less than three
+2’%s then it contains at least three 1’s, which we may for definiteness take to be



BALANCED INCOMPLETE BLOCK DESIGNS 69

in columns 1, 2, and 3 of C. But then blocks 1 and 3 of 4, and 1, 2, and 3 of C
form 8§, by Lemma 4.4. If row 3 of C contains more than three 2’s, then by
Lemma 4.3, blocks 1 of A and any 4 blocks of ¢ which have 2 in row 3 form
S5”. Hence, there exist three blocks such that the first three rows of S, are as

shown below.

6 1 1 11111 11111
6 1 11111 22 2 2 2
6.2) 6 | 111 2 2 22 211
6
6
6

Denote the element in row ¢ and column j of submatrix B of S; by (%, ). Then
for S not to exist, it is necessary in B that

(6.3) (4,2) = (4,3) =(5,3 =2

But then blocks 1, 2, 4, 5, and 6 of S, form Si” with S5 = 2, which contradicts
Lemma 4.4. Hence, the

LemMA 6.1. If the design exists then there exist five blocks having S5 of (6.1)
for their structural matriz.

Without loss of generality, let S;~ be the leading principal minor matrix of
order 5 in S;. Let S, be partitioned as in (5.1). Then row 3 of B contains at
least two 1’s and cannot contain more than three 2’s. Hence, row 3 of C cannot
contain fewer than two 2’s. If row 3 of C contains % 2’s, then by Lemma 4.2,
row 3 of E contains (6 — u) U’s, (u = 2, ---, 5).

Cask 1. Row 3 of C contains either two or three 2’s. Then row 3 of E con-
tains at least two 1’s. Let S3¥ be the structural matrix for the three blocks of
A, any two blocks from C which have 2 in row 3, and two blocks from X which
have 1 in row 3. Then

(4)
B

)
[ I
SN

(6.4) 0 =

S = DN
S NN~ =N

lca»—amw)—u—w

where the partitions separate the blocks from A, C, and E, in that order. The
elements in rows 4, 5, and 6 and not in the main diagonal of S5 are uniquely
determined by Lemmas 4.3, 4.4, and 4.5.

CasE 2. Row 3 of C contains either four or five 2’s. Let 8> be the structural
matrix for the three blocks of A and any four blocks of C which contain 2 in
row 3. Then
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6 1
6

Y =
S NN -

(6.5) 8?2 =

S NN =
S == DN BN e
Oy i ek pd DD DD

where the partition separates the blocks from A and C.

An easy computation shows that (iii) of Theorem 3.1, that is, the perfect
integral square condition, does not rule out either Case 1 or Case 2.

We shall however use the notion of “rational congruence” to prove the im-
possibility of this design. Let a symmetric matrix A and a matrix B be non-
singular matrices of order n with rational elements, and let z and y be column
vectors with n variables each. Then if there exists a transformation z = By
which carries the quadratic form f = z’Ax into the form g = y’B’ABy, we say
that f and g are rationally congruent forms, and likewise we say that the matrices
A and ¢ = B’AB are rationally congruent matrices.

Consider the Hasse invariant

> on—1
6.7) ¢ (f) = (= 1, =Da), I (Di, —Dasa)s,
where p is a prime, D; is the leading principal minor determinant of order 7 in
the coefficient matrix A of f, and (a, b), is Pall’s [14] generalization of the Hil-
bert norm-residue symbol. For properties of this symbol, see, for example, [11].
Let ¢ = the index of the form, and d = the square-free integer part of the deter-
minant of the form. Then we have

TaeoreM 6.1. Two forms f and g are rationally congruent if and only if they
have the same values for their invariants n, i, d, and c, for every p. These invariants
are not independent of each other but satisfy certain relations which will not be
stated here. For a proof of this important theorem consult the book by Jones [15].

Instead of considering the rational congruence of quadratic forms, we may
consider the rational congruence of their coefficient matrices. Thus if f = z'Ax,
we may write ¢,(A4) instead of ¢,(f).

Now consider C5¥ and C5?, which correspond respectively to 8P of (6.4) and
Ss? of (6.5). Multiply the last two rows and columns of Cs? by —1. The result
is ¢V, Hence C{? is rationally congruent to Ci”, and it follows that considera-
tion of Case 1 only is sufficient.

Let N, be the matrix of (3.9) which has the 7 blocks of S5V of (6.4) as chosen
blocks. Now we may regard NiNi and I, the identity matrix of order b, as the
coefficient matrices of quadratic forms. Since

(6.8) NT(NNDWTY = 1,

NN " and I are rationally congruent. From (6.7), ¢,(I) = +1 for p odd. Hence
it is necessary that
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(6.9) (NN = +1.
We may evaluate c,(N1N1) for a general N; by a method similar to that in
[11] or [13] and obtain
ep(NiND = (=1, 7 = ADED(G )\ pyo?

(6-10) ol b~v—1
“(r— A k)p— (v; r)p (”: k)p (”: r— Np(— 1, —Ds)p Ho (Dv+h "’Dv+1'+1)p ’
o

for p an odd prime. For the N, under consideration,

(6.11) (NN = (3, 2),(7, 2),(5, —1),
for p an odd prime, and for p = 3,
(6.12) cs(NWNy) = —1.

From (6.9) and (6.12), Theorem 6.1 is contradicted, and hence we obtain
THEOREM 6.2. The balanced incomplete block design with parameters r = 8,
E=6,b=28v =21 and A = 2 13 tmpossible.
I wish to express my thanks to Professor R. C. Bose, under whose guidance
this research was carried out.
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