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1. Introduction. In the van der Waals/Cahn-Hilliard theory ([20], [19], [4]) of
phase transitions, the density distribution of a two-phase fluid is based on a free-
energy that depends not only on the density u(x), but also on the density gradient
Vu(x). We shall consider this theory, but only with a relatively simple dependence
on Vu, and only as restricted to isothermal situations; precisely, we shall allow for a
free-energy (per unit volume) of the form

W(u(x)) + (t|Vm(x)|2.

Here W(u) is the coarse-grain free-energy and gives the energy when the density is
uniform, while a > 0 is a constant related to the surface energy (cf. [4]).

If we assume that the fluid occupies a fixed container Q, with Q an open region
in R", and that there are no other contributions to the energy, then the total energy
E(u) corresponding to a density distribution u is given by

E(u)= f {W(u(x)) + a\Vu(x)\2} dx.
Jsn

Further, if the total mass of fluid in Q is m, then the density distributions under
consideration are subject to the constraint

Lu{x)dx — m. (1.1)

Our problem is to characterize the stable distributions of fluid in Q; that is, taking
Gibb's definition of stability, we wish to characterize those density distributions u
that minimize E(u) subject to the constraint (1.1).

What makes this problem interesting is that—for a two-phase fluid—W(u) is not
a convex function of u, but instead has the form shown in Fig. 1. Indeed, when
a = 0 and the average density r = m/vol(Q) lies between a and /? (cf. Fig. 1), the
global minimizers u are piecewise-constant functions with u[x) = a in some subset
T of Q and u{x) = /? in the remainder of Q. The volume of T is determined by the
constraint (1.1) and must have a given value, Vo say, but T is otherwise arbitrary, any
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measurable set T with volume v0 generates—in the above sense—a global minimizer.
Thus solutions can be very complicated, with an arbitrary number of transitions
between a and /?.

It is our purpose here to show—for regions of relatively simple shape—that the
presence of "surface energy" through the additional term a\Vu\2 rules out such com-
plicated behavior, even for arbitrarily small values of the constant o.

For n = 1 (R" the underlying space) a theorem of this type was obtained by Carr,
Gurtin, and Slemrod [7], who showed that all local minimizers are monotone. This
theorem was predated by work of Chafee [9], Casten and Holland [8], and Matano
[16] for the unconstrained problem: Chafee proved that for n = 1 all unconstrained
local minimizers are constant-, the other authors extended Chafee's result to arbitrary
n, but convex or annular Q.

W (u)

W (u)

Fig. 1. The coarse-grain free-energy W(u)
and its derivative IV'(u) for a two-phase fluid.

That results of this type cannot be expected for regions of arbitrary shape is clear
from work of Matano [16], who established the existence of nonconstant local mini-
mizers for the unconstrained problem in certain nonconvex regions. Matano's analy-
sis extends to the constrained problem in regions £2 of the form shown in Fig. 2: for
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such regions this problem (with a small) can have local minimizers which are close to
a in some compartments and close to /? in others, with the choice of compartments
essentially arbitrary (cf. also [17, Example 6.6], [13]).

The first class of regions we consider are (not necessarily circular) cylinders. We
show in Sec. 3 that for such regions all local minimizers are monotone in the axial
direction.

In Sec. 4 we discuss regions with various degrees of rotational symmetry. We
show that for balls, spherical shells, discs, and annuli, all rotationally-symmetric
local minimizers are constant. We show further that:

(i) for Q a disc or annulus and u a local minimizer, the set on which ue > 0 is
connected, as is the set with ug < 0;

(ii) for Q a disc and u a global minimizer, there is at least one direction in which
u is monotone.

We also show—for Q an arbitrary bounded open set—that local minimizers belong
to L°°(Q).

Fig. 2. A region Q which can have minimizers close to a in some
compartments and close to /? in others, with the choice of compartments
essentially arbitrary.

In Sec. 5 we establish results which are valid not only for local minimizers but more
generally for stationary points of E. Stationary points at which E is not a local min-
imum correspond to unstable equilibria and might be important when studying cor-
responding evolution problems, that is, problems associated with the Cahn-Hilliard
equation ([3], [5]). Indeed, preliminary numerical experiments seem to indicate that
the system undergoes patterns qualitatively similar to unstable equilibria before set-
tling down to a stable pattern. Moreover, within a given time span of experiments,
it may happen that only unstable patterns are observed. Thus the study of the struc-
ture of nonminimal stationary points may, under certain circumstances, be of equal
importance to that of local and global minimizers.

Stationary points u of E are solutions of the corresponding Euler-Lagrange equa-
tion and natural boundary condition:

Au = f(u) in Q, du/dn = 0 on dQ. (yT)

Here /(«) = W'(u) + fi, the constant /u being the Lagrange-multiplier corresponding
to the constraint, while du/dn = Vw • n with n the outward unit normal on dQ. We
prove that for /' bounded below and Q = D x G (or CI = D) with D c Rp sufficiently
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small, all solutions of (yf) are independent of the variables (xi xp) that describe
D.

Although we make no assumptions concerning the size of the constant o, we shall
never allow a = 0, nor will we study the limit a —► 0; for that reason, we simplify
the underlying equations by choosing length scales so that a = \.

2. Existence and regularity. Some preliminary lemmas. We assume that the en-
ergy W(u), the container Q c R\ and the total mass m e R are prescribed. For
convenience, we define the average density r by r = m/|Q|, where |£2| denotes the
«-dimensional Lebesgue-measure of £1 To avoid repeated hypotheses we assume,
once and for all, that

(Al) Q is a bounded, open region with C3 boundary, or the cartesian product of
such regions;

(A2) W e C2+;'(m0, «i) with -oo < w0 < "i < +°o and 0 < y < 1;
(A3) there exist numbers a,b e (uq, U\), a < r < b, such that

sup W' < inf W', sup W' < inf W'.
(u0.r) (b.ui) (u0,a) ('"•"i)

Convention. We extend W to all of R by defining W(u) — +oo for u ^ (u0, U\).
Remarks, (i) We do not require that m, uq, and u\ be > 0, as there is no added

difficulty in allowing negative values.
(ii) Condition (A3) is satisfied if, for example, W is a convex function (W need

not be strictly convex), or if (uq, u\) — R and

lim W(s) — -oo, lim W(s) - -t-oo.
SlUo st»l

Condition (A3) will be used to derive an L°° bound for local minimizers and to
establish the existence of a global minimizer (see the two theorems of this section);
this condition is not needed for any of our other results.

(iii) For the physical model illustrated in Fig. 1, (A3) is satisfied provided we take
a = b = r when r < a0 or r > B0;

(2.1)a — ao, b = Po when < r < /?0.

(iv) Our hypotheses allow W' to be linear, so that the results in Sees. 3 and 4
apply also to the second eigenfunction of the Laplacian under Neumann boundary
conditions.

By (A3),
W(s) > -C, - C2|s| (V5 € R), (2.2)

with C|, C2 > 0. It follows immediately from (2.2) and the boundedness of that
E(u) is well defined on //'(Q), with values ranging in the interval (-00,-foo].

As noted in Sec. 1, we are concerned with the following variational problem:
{&) minimize

£(w)=/ U|vw|2+^(")} <2j)
subject to

Lu = m. (2.4)
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We shall use the following terminology:
(i) u is admissible if u <E Hx{Q) and satisfies the constraint (2.4).

(ii) u is a global minimizer if u is admissible and E(u) < E(v) for all admissible
v.

(iii) u is a local minimizer if u is admissible and there is a neighborhood 1/ of u
in Hl{Q) such that E{u) < E(v) for all admissible

Theorem. There exists a global minimizer.
Proof. The Poincare-Wirtinger inequality implies that

yW>A2(Q){/ w2-m2/|Q||

for all admissible u, with ^(£2) the lowest nonzero eigenvalue for -A (Neumann
boundary conditions on dQ), and this inequality and (2.2) imply that, on the space
of admissible functions, E is bounded below with E(u) —> +oo as ||m||//i(0) —> oo.
Finally, (2.2) and Fatou's lemma imply that E is weakly lower-semicontinuous on
//'(fi). These observations and a standard argument yield the existence of a global
minimizer. □

The next result shows that local minimizers must take values between the constants
a and b of (A3) (cf. 2.1).

Theorem. Let u be a local minimizer. Then
(i) u e L°°(Q); in fact,

a < u(x) < b for almost every x e (2.5)

(ii) u e H3(Q) n C3+>,(Q), and there is a constant /u such that

Au = W'(u) + n in Q; (2.6)
(iii) For any 8 with 0 < S < 1, u is C2+s up to smooth subsurfaces of 3Q and

satisfies
du/dn = 0 on dQ. (2.7)

Proof. Some simple terminology makes the proof transparent. Let u e H^Q).
Then c is a nontrivial value for u if the sets

{x G Q: u{x) > c}, {xgQ:m(x)<c} (2.8)

have strictly-positive measure. Assume so, and let v, w e //'(Q) be defined by

v(x) = max{w(x), c}, w(x) = min{w(x), c}; (2.9)

then v is u chopped below at c, while w is u chopped above at c.
Consider (i) and let a < r be as in (A3). Let u be a local minimizer and assume

that u < a on a set of nonzero measure. Then, by the constraint, a and r are
nontrivial values of u. A further consequence of the constraint is that u remains
a local minimizer when a linear function is added to W, or equivalently, when a
constant is added to W; thus, in view of the second of (A3), we may, without loss
in generality, assume that

W'< 0 on (u0,a), W'> 0 on (r, U\). (2.10)
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Choose e > 0. Then there are nontrivial values aE and rE of u with aE e {uo.a),
rE 6 (r, U\) such that, letting uE denote the function u chopped below at aE and above
at rE,

/ uE = u, \\u - w£||//i(0) < £• (2-11)
Ja Jo.

Moreover,

[ \Vue\2 < [ \Vu\2, f W(ue) < [ W{u),
J n J n J n Ja

with the latter relation a direct consequence of (2.10). This yields E(ue) < E{u),
a contradiction since e was arbitrarily chosen. A similar contradiction arises when
u > b on a set of nonzero measure.

The results (ii) and (iii) are direct consequences of the following: (a) the L°°
estimate of (i); (b) the weak Euler-Lagrange equation for (2.3) and (2.4), namely,

L{Vu-Vt] + W^ri + nti} = 0 (VrjeHl{Q)) (2.12)

with pi a Lagrange multiplier; (c) the Regularity Lemma which we state below and
prove in the Appendix; (d) standard regularity theory. □

Regularity Lemma.1 Let g e and suppose that u e HX{Q.) satisfies

[ Vu-Vri= f gn
J n J q

Then u € //3(C2).
Remarks, (i) It is clear that (i) of the above theorem requires only that Q be a

bounded open set.
(ii) Consider the model illustrated in Fig. 1. In view of (2.5) and Remark (iii)

given at the beginning of the section, for r < a0 or r > fi0 the only local minimizer
is the constant u(x) = r.

(iii) The usual method of proving the above theorem is based on an assumption
of the form

\W'{u)\ <CX + C2\u\" (2.13)
with Ci,C2 > 0 and 1 < p < (n + 2)/(n - 2). Note that the standard example
W(u) = cu4 + du2 violates this assumption when n > 4, while our assumption (A3)
covers this case.

We use the term variation for any function <p e //'(Q) that satisfies

L<p = 0; (2.14)

and, for u e and ip a variation, we write

J{u){<p)= [ {\V<p\2 + W"(u)cp2}. (2.15)
Jn.

'Assumption (Al) is tacit. While the Regularity Lemma is standard for smooth domains, it does not seem
to be known for cartesian products of smooth domains, which are of interest here.
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The function J(u)(-) is the second variation of E at u and, as is well known, for u a
local minimizer and (p a variation,

J{u)(<p) > 0. (2.16)

We close this section with some useful definitions and identities. For any function
(p e we write

^+(^) = {x e <P(X) > Q~(<P) = {x £ Q: <p(x) < 0}, (2.17)

and define

P* = \{<P ± WW- (2-18)
Then

(p = (p++ (p~, (p+> 0, <p~ < 0, (»±e//1(Q). (2.19)
We will repeatedly use the following version of Green's formula (cf., e.g., [11;

Lemma 1.5.3.7]): for w e H2(Q), v e Hl(£l) (and Q consistent with (Al)),

f (Aw)v = - [ (Vw ■ Vv) + f v(dw/dn). (2.20)
Jo Jci Jd a

This formula is valid, since the cartesian product of smooth domains has a Lipschitz
boundary.

Finally, we note that if Q = D x G, D c Rp, and if g is C2 up to smooth subsurfaces
of dQ, then dg/dn = 0 on 3Q implies

on DxdG for k = 1,2,..., p. (2.21)dn V dxkJ
Indeed, (2.21) is a direct consequence of the fact that, on D x dG for k — 1,2p,
d/dxk is a tangential derivative, while the normal n is independent of (X\,X2, ■■■,xp).

3. Structure of local minimizers for cylinders. In this section we shall discuss the
behavior of local minimizers when the domain Q is a cylinder in R". For convenience,
we let the X\-coordinate define the axis of the cylinder; then Q = (0, L)xG with L > 0
and G c R"1.

Theorem. Let Q be a cylinder. Then all local minimizers are monotone in the axial
direction.

Proof. Let u be a local minimizer and define (p = du/dxi, so that, by (2.6),

A <p — W"{u)<p. (3.1)

Further, let dQ. - e? uS* with I? = {0, L} x G the end faces and J?* = (0, L) x dG the
lateral surface. Then, because of (2.7) and (2.21), <p satisfies the boundary conditions

(p = 0 on i?, dtp/dn = 0 on 5?. (3.2)

Assume that u(x) is not monotone in xj. Then (p changes sign on £2, and neither
of (p*- (cf. (2.18)) is identically zero; hence we may define cp* e Hl(Q) through

cp* = <p+ + a<p~ (3.3)
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with a chosen so that

Let

then, by (3.2),

Also,

f <p* = 0. (3.4)Ja

(p** = <p+ + or (p~; (3.5)

<p* = (p** = 0 on?. (3.6)

(p*)2 = ^**, \V(p*\2 — Vcp ■ V^**; (3.7)
we may therefore use (2.15), (3.1), and Green's formula (2.20) to conclude that

J(u)(<p*)= f (3-8)ha dn
and hence, by (3.2) and (3.6), that

J(u)(<p*) = 0.
Thus and by (2.16), <p* minimizes J(u)(ip) over all variations hence tp* satisfies

Acp* = W"{u)(p* + constant in Q, (3.9)
d<p*/dn = 0 on9Q. (3.10)

By (3.1) and (3.9),
A<p* = W"{u)(p* in Q. (3.11)

Thus, in view of (3.6) and (3.10), cp* satisfies a second-order linear elliptic equation in
£2 and is consistent with Dirichlet and Neumann boundary conditions—both null—
on i?. We may therefore use the unique continuation theorem (cf. [6]) to conclude
that cp* and (hence) (p vanish identically. This contradiction completes the proof. □

4. Structure of minimizers in regions with rotational symmetry. For Q a ball, each
spherically symmetric field on Q is necessarily constant on <9Q. Similarly, on a cylin-
der a field with cylindrical symmetry is constant on the boundary of each cross-section
perpendicular to the axis of the cylinder. The next result is a general proposition for
fields of this type. For convenience, let us agree to call a function y/ locally constant
on a set A if \p is constant on each connected component of A.

Theorem. Let u be a local minimizer.
(i) If u is locally constant on <9Q, then u is constant in Q.

(ii) If Q = B x G, B c Rp, 2 < p < n - 1, and if, for each {xp+\ x„) e G, u(x),
as a function of (x, ,xp), is locally constant on dB, then u{x) is independent of
(x\,..., Xp).

Proof. We shall prove only (ii). The proof of (i) is completely analogous.
For x in the closure of Q, we write x = (xB,Xa), xB e B, Xc € G. Choose k,

1 < k < p, let (p — du/dxk, and let nk denote the A th component of the outward unit
normal n on d£l. Then, since n^ = 0 on B x dG, while u(xb,Xg), for each fixed Xg,
is locally constant in xB on dB,

f <p= f unk = f f
J Q J ()Q J G J d

unk = 0,
dB
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and <p is a variation.
Next, on dB x G, tp = du/dx^ is a linear combination of tangential and normal

derivatives of u{xb,xg) with respect to Xb on dB. But the former vanishes because
u is locally constant on dB, and the latter vanishes because of the natural boundary
condition (2.7); hence

(p = 0 on dBxG. (4.1)
Further, by (2.21), d(p/dn = 0 on B x dG. Thus (2.15), (3.1), (2.20), and (4.1) imply
that J(u)(<p) — 0; hence arguing as in Sec. 3, we conclude that tp = 0. □

This theorem has an obvious counterpart for balls {x: 0 < |x| < rx} and for
spherical shells {x: 0 < r0 < |x| < n}. (In R2, ball=disc, spherical shell=annulus.)

Corollary. Let u be a local minimizer.
(i) If Q is a ball or a spherical shell, and if u(x) depends on x only through |x|,

then u is constant.
(ii) If £2 = B x G, B c Rp, 2 < p < n - 1, with B a ball or a spherical shell, and if

u(x) depends on (xj xp) only through its absolute value, then w(x) is independent
of (Xi,...,Xp).

We now limit our attention to R2 and, in particular, assume that

Cl = {(r, 6): r0 < r < rh 0 < 6 < In)

with (/; 9) polar coordinates, so that Q is a disc (r0 = 0) or an annulus (r0 > 0). Let
ug = du/dd, ur = du/dr. From the corollary, if u with ue = 0 is a local minimizer,
then u is constant. The next theorem deals with the more interesting case ug ^ 0;
there we use the notation (2.17).

Theorem. Let Q c R2 be a disc or annulus, and let u be a local minimizer with
Ue ̂  0. Then

(i) each of the sets Q±(ug) is connected;
(ii) on each of the circles comprising dQ., u has exactly one local maximum and

exactly one local minimum.
Proof, (i) Since u{r, 0) — u(r, 2n), it is clear that each of the sets Q"*1 = Q±(Me) is

nonempty. Choose a connected component T+ from £2+ and a connected component
T- from and define

A = n\(r+ur'-).
To prove that are each connected, it suffices to show that A = 0.

With this in mind, let
(ug(r,0), M)er+,

(p*{r,6) = I aUe{r,d), (r,e)er~,
{ 0, (r, 6) e A,

with a > 0 chosen so that fn (p* — 0. Then steps exactly analogous to those used in
Sec. 3 lead to the conclusion that <p* satisfies (3.11). Thus A ^ 0 implies <p* = 0 in
Q, a contradiction; hence A — 0.

(ii) Since <p*—as defined above—satisfies (3.10) and (3.11), the zeros of <p* on dQ
form a nowhere dense subset of dQ hence (i) implies (ii). □
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Remark. By the theorem of Hartman and Wintner [12], the zeros of tp* (= Ug)
form a locally finite family of C1 curves. Combining this result with the above
theorem, we can further show that the set of zeros of <p* is a simple C1 curve for Q
a disc and is a disjoint pair of simple C1 curves for Q an annulus. Moreover, using
Kelvin's transformation and the condition dcp*/dn - 0 on d Q, we see that these
curves intersect dQ orthogonally. In particular, (p* has exactly two zeros on each of
the circles comprising dQ.

Theorem. Let u be a global minimizer with Q c R2 a disc. Then Q has a diameter
PQ such that

(i) u is symmetric with respect to PQ\
(ii) u is monotone in the direction parallel to PQ\

(iii) ue > 0 on one side of PQ, ue < 0 on the other side;
(iv) u takes its maximum at one of P, Q and its minimum at the other.
Proof. The existence of a diameter PQ consistent with (i) and (iii) follows from

the theory of symmetric rearrangement (cf. [14], [15]).
More precisely, let u* be a circular rearrangement of u\ that is, u* is a measurable

function on Q. with the following properties:
(i) u* is symmetric with respect to some diameter P'Q' of Q;

(ii) u*g > 0 on one side of P'Qu*e < 0 on the other;
(iii) for each a e R and r e (0, r\ ],

Hr{{x e Cr \ u*(x) > a}) = Hr{{x G Cr: u{x) > a}),

where Cr — {x e R2: \x\ — r} and fir is one-dimensional Lebesgue measure on Cr.
Condition (iii) asserts that u* and u are equimeasurable on each circle Cr and hence
also on Q. Thus by standard results in the theory of rearrangements (cf. [14] and
references therein)

[ |Vh*|2 < [ |Vw|2 and [w{ut)=[ W(u);
Jo. in in in

hence
E{u*) < E(u).

But u is a global minimizer; thus E(u*) = E{u) and

[ |Vw*|2 = [ \Vu\2.
in in

Thus, by [14, Corollary 2.35], u = u* modulo rotation. In fact, to verify that Corol-
lary 2.35 of [14] applies, we must check the following: (a) u e C'(Q); (b) there is a set
N c [0, r\] of measure zero such that for each r e [0, r{]\N, the set {9: ug(r,8) = 0}
is finite. (Although Corollary 2.35 requires that u be analytic, a careful study of the
proof shows that the above conditions are sufficient.) Condition (a) is satisfied since
u satisfies the Euler-Lagrange equation (2.6). To prove (b) it suffices to show that
there is a set ./V c [0, r\] of measure zero such that, for each r e [0, /'i]\Ar, the circle
Cr and the C1 curve (lefl: ug(x) = 0} intersect transversally. But this is an easy
consequence of Sard's theorem. Hence we may apply [14, Corollary 2.35] to verify
that u — u* modulo rotation, which proves (i) and (iii).
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Choose coordinates so that PQ is parallel to the x2-axis and let (p - du/dx2. Then,
by (iii) and (2.7), <p > 0 on dQ, so that, using the notation (2.17),

(p = 0 on 3Q n dQ.~(<p). (4.2)

To establish (ii) it suffices to show that <p does not change sign in Q. Assume, to
the contrary, that (p changes sign in Q, and let rp* be as defined in (3.3). Then, since
u is a local minimizer, we conclude, with the aid of (3.5), (3.8), and (4.2), that

0 <J(u){<p*)=f <P~.%■ (4.3)Ja a dn
Let y = du/dx 1, so that, by (i), fQi// = 0 and ^ is a variation; hence, using (2.15)

and (3.1) (with (p replaced by y/),

0 <J(um=f (4.4)JdCl dn

Thus, in view of (4.3) and the identity <p2 + y/2 = |Vw|2, it follows that

0 < J{u){<p*) + J(u)(y,) = \ J \VU\2. (4.5)
On the other hand, since Q is a disc of radius rx and du/dn = 0 on d Q, we have the
identity

^-|Vw|2 = |Vm|2 ondSl (4.6)
dn r\

Clearly, (4.3)-(4.6) are compatible only if

Vu = 0 on da, (4.7)

J(u)(<p*) = 0. (4.8)
By (4.7), <p* = 0 on dQ; thus (4.8) and an argument analogous to that used in Sec.
3 imply that <p* and (hence) <p vanish in Q. This contradiction proves (ii).

Assertion (iv) follows at once from (ii) and (iii). □

5. Structure of stationary fields for bodies with small dimensions. In this section
we discuss stationary fields, that is, solutions u of the elliptic Neumann problem:

Au — f(u) in Q, ~ — 0 on dQ. (yV)dn
Problem (yV) characterizes critical points of the function E over H{(Q), in which

case / = W', and critical points of E over

{we//'(Q): f u = m},

in which case / = W' + n with pi a Lagrange multiplier. For the results discussed here
the particular form of W is irrelevant; aside from a certain boundedness assumption,
we need only assume that

fecl(u0,ui). (A2')
(The term solution of will be reserved for solutions u e //3(Q) with uq < u(x) <
u 1 for all x e Q.)
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We begin with a result which shows that—for inf /' not too negative—all solutions
of (JV) are constant. To state this and future results precisely, let 0 = X\{D) <
X2{D) < A3(D) < denote the eigenvalues of the problem

Av + Av = 0 in A dv/dn — 0 on dD. (5.1)

The following proposition seems well known, but we could not find a reference;
for completeness we present a proof.

Proposition.2 Let inf /' > -A2(fi). Then all solutions of (yV) are constant.
Proof. Let u satisfy (yf). Then

Lf(u) = 0.

If f(u(x)) = 0 for all x e Q, then, by (JV), u is constant. We may therefore assume
that f(u(x)) ^ 0. Then there isace (uq, u\) and points X\,X2 <E Q such that

f(c) = 0, u(xi) < c < u(x2).

Put <p = u - c and define (p* and (p** through (3.3)—(3.5). (Since neither of the
functions <p± vanishes identically, (3.4) defines a e R.) Then, by (3.4),

f |V^*|2 > A2(Q) [ cp*2.Jn Jn
Thus, since dcp**/dn =0on3Q, (3.7) yields

- [ <p**f{u) = -[ cp**Au= [ \V<p*\2>hm [ ((Pi2,
Jn Jq J n Jq

-<p**f{u) < k(p**(p = k(cp*)2,
where k — - inf /'; hence

k f (^)2>A2(Q) [ [<p*)2-Jq Jsi
But k < A2(Q). Thus fn(<p*)2 = 0, so that u = c. □

The foregoing proposition would be easier to apply if the hypothesis on inf /' were
expressed in terms of diam(Q), the maximum diameter of Q, rather than in terms
of A2(Q). For that reason we state the following estimate of Payne and Weinberger
[18] (cf. [2, Theorem 3.24]): for any convex domain D c R",

A2(Z>) > ^2/diam(£))2. (5.2)

Using (5.2) we can show that—for /' bounded below3 and Q convex and small—all
solutions of (yV) are constant.

Corollary. Let Q be convex and assume that

7r2/diam(Q)2 > - inf/'.

2Cf. [10], who establish a general result for systems, a result which, when specialized to a single equation,
asserts that if sup |/'| < then all solutions of (JV) are constant.
3Note that for the physical model described in Fig. 1, /' = W" is bounded below.
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Then all solutions of (SK) are constant.
We now extend this result to regions Q of the form

Q.-D or Cl = DxG, dD and dG of class C3; (5.3)

we show that for D small, solutions u of (yF) are independent of position in D.

Theorem. Suppose that Q has the form (5.3) and that

k2{p)>-inif (5.4)
with p the dimension of D. Then each solution u(x\,X2,...,xn) of (yV) is indepen-
dent Of (X\,X2, .. •, xp).

Proof. Let Vp and Ap, respectively, denote the gradient and Laplacian with respect
to (jci, xp) holding {xp+\,..., xn) fixed. Further, let {v*.} be an orthonormal system
of eigenfunctions for (5.1), with vk corresponding to the eigenvalue = ^{D). Fix
(xp+i,.. .,x„) in G and consider u(x) as a function u(xi xp) of (xi,.. .,xp) E D.
Then, since du/dn — 0 on d Q, it follows that

du/dn = 0 on dD. (5.5)

Writing u = YlkLi ckvk f°r the eigenfunction expansion of u, and using (5.5) and the
fact that k\ = 0, we find that

/i OO /» /» oo

/(APu)2 = J2ck4- / |VpW|2 = -/ uApu = Y2
Jd k=2 Jd Jd k=2

and hence that
[ (Apu)2>h{D) [ \Vpu\2.

JD JD

Let y>i = du/dXi, i = 1,2p. Then, by (5.5),

clh.

(5.6)

[{A pu)2 = -[ Vpu • Vp{Apu) = - Y] [ ViApij/i
J D J D /—] D=±{-iyi+L^}- <")

Next, let </// = du/dxi, i = 1,2,...,p. Then, by (2.21), dy/i/dn — 0 on D x dG, and
we may conclude from this and {yV) that

t L=tM'^ - L }
= E/ [ f'(u)\Vpu\2. (5.8)

~T JdDxG (Jn JQ.i= 1

Combining (5.7) and (5.8), we get

[ (Apu)2 < - [ f'(u)\Vpu\2 < (-inf/') [ \Vpu\2,
Jn Jn Jn

and this, (5.4), and (5.6) yield the desired conclusion. □
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Remarks, (i) In view of (5.2), when D is convex the condition (5.4) may be
replaced by

7r2/diam(Z))2 > -inf/'.

(ii) A typical example to which the above theorem applies is a cylindrical region
of the form Q = (0, L) x G. The conclusion of the theorem may then be interpreted
as follows: (a) for a thin plate (i.e., for L sufficiently small) stationary states are
independent of the length variable x\ e (0, L); (b) for a thin rod (i.e., for G sufficiently
small) stationary states depend only on x\.

Acknowledgment. We gratefully acknowledge H. F. Weinberger for useful discus-
sions. This work was supported in part (MEG) by the Army Research Office and the
National Science Foundation.

Appendix. Proof of the Regularity Lemma. The conclusion of the Regularity
Lemma is well known for regions Q with of class C3; we therefore confine our
attention to product domains £2 = D x G.

Let D be a bounded domain in Rp with dD of class C3. Further, let 0 = l\ <
^2 < ^3 < • • ■ denote—for the Neumann problem—the eigenvalues of -A on D,
and let {<pj} designate a corresponding L2(Z))-orthonormal system of eigenfunctions.
Such a system exists and forms an orthonormal basis for L2{D)\ for convenience, we
call {A,, <pi} a Neumann system for D. Each function g e L2(D) admits the unique
expansion

g = J2ci(Pi- (Al)
where the c's are real numbers; for convenience, we write Sk(g) for the formal sum

sk{g) = ^+^i)kc}. (A2)

The following additional notation will be useful:

N\D) = Hl{D); Nk(D) = {g£Hk{D):dg/dn = OondD}, k = 2,3;

given positive functions r, s on a set A, we say that r is equivalent to s on A if there
exist constants C\, C2 >0 such that

r{a) < Cis(a) < C2r(a) (Va e A).

Lemma 1. Choose k e {1,2, 3}. Then
(i) given g = e L2{D),

g € Nk(D) sk(g) < 00;

(") II ' IIHk(D) is equivalent to (5^)'/2 on Nk{D).
Proof. Since Acp, — kjcpj, we may use Green's formula to derive the following

relation between the inner products on L2(D) and Hl(D):

(w, i)= (1 + A/)(w, (Pi)u(D) (Vw € H\D)).

Thus the functions <J>, = (1 +A,)-form an orthonormal basis for Hl(D), and the
expansion (Al), for g e Hl(D), holds also in H[(D). Moreover, for any g e L2(D),
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5] (g) represents the formal sum of squares of the Fourier coefficients (g, it is
therefore clear (from standard Hilbert-space theory) that Lemma 1 holds for k = 1.

Suppose now that k — 2. Let Y be the space of all finite linear combinations of (pi,
and let 3?2(D) denote the closure of Y in H2(D). Then, as Y c N2(D) and N2(D)
is a closed subspace of H2(D),

9?2{D) c N2(D). (A3)

Let Q denote the operator Qw = -Aw + w. Using standard a priori estimates for the
problem

Qw = h in D, dw/dn = 0 on dD, (A4)

we see that the function ||(2(-)llz.2(£>) is equivalent to || • ||//2(0) on Y. Let g e Y. Then
g = Jlavi is a finite sum and

WQsWlhd) =s2{g).
Thus (i) and (ii) of Lemma 1 hold with N2(D) replaced by 312{D). To complete the
argument for k — 2 we must show that

3?2{D) = N2(D). (A5)

Since
QS = +*i)ci<Pi

for g € 3?2(D), it is clear from (i) of the lemma with N2(D) replaced by 3?2(D) that
Q maps 9?2(D) onto L2(D). On the other hand, the uniqueness theorem for (A4)
shows that Q is one-to-one from N2(D) to L2(D). Hence (A5) is valid.

The proof for k — 3 follows, as above, from the equivalency of || • ||//3(£)) and
H\(D) on N^(D). (We have such an estimate, since dD is C3.)

Now let Q = D x G (D c Rp, G C R"-'') with 3D and dG of class C3.

Lemma 2. Let k be a positive integer. Then

L2{D-Hk{G))nL2{G-,Hk(D)) = Hk{n).

Proof. It suffices to show that if g and dkg/dxk (i = 1,2 n) belong to L2(Q),
then g € Hk(Q,). But this follows from the coerciveness theorem of Aronszajn and
Smith (cf. [1, Theorem 11.10]). □

Let and {a,, y,}, respectively, be Neumann systems for D and G, and
write (piVj for the function on Q with values <Pi(x)i//j(y), x e D, y e G. Then the
collection 38 of functions of the form (p, if/j is an orthonormal basis for L2{Q), and
any function g e L2(Q) admits an expansion of the form

8
i.j

Further, an argument analogous to that used in the proof of Lemma 1 for k = 1 yields
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Lemma 3. 38 is an orthogonal basis for Hl(Q), and, for g = J2, j Cij<PiVj £ L2(Cl),

g € Hx (Q) <=> 1 + A/ + otj)cfj < oo.
i.j

Proof of the Regularity Lemma. It clearly suffices to show that, given g e //'(Q),
if u € HX(Q.) satisfies

(M> ?/)//|(Q) = {s> rl)L2(n) 0^? €//'(fl)), (A6)

then w e //3(Q). (Indeed, replace g in the statement of the Regularity Lemma by
g - u.) Thus choose u, g e //1 (O) consistent with (A6), and let

" = J2 d>j<P>Vj- S = cij(PiV/j-
i.J i.j

The choice r/ = (pjif/j in (A6) yields, with the aid of Green's formula,

cij — (1 + + Ctj)djj.

On the other hand, since g e Lemma 3 implies that

y~^( 1 + hj + aj)cfj < oo;
i.j

hence
YX1 + hi + aj)3dfj < oo,
i.j

so that, in particular,

1 + hi)3dfj < oo, Y,( 1 + ajfdjj < oo.
i.j i.j

The first of these inequalities implies that u £ L2(G\H3(D)), the second that u €
L?{D\ H^(G)). Thus, appealing to Lemma 2, we //3(Q). □
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