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. Abstract:

During the last four years research on lower level computa-

%tional complexity has yielded a rich set of interesting results

| which have revealed deep and unexpected connections between various

. problems and thus brought new unity to this area of computer sci-

%ence. This work has also yielded new techniques and insights which

" are likely to have further applications, and it has identified some

évery central problems in the quantitative theory of computing. The

' purpose of this paper is to give the reader an overview of these

jdevelopments, an insight into some of these results and applica—>

;tions, as well as an appreciation of the unity and structure which

- has emerged in this area of research.

tl. Introduction

In theoretical computer science we can identify several su-

per problems whose solution is bound to contribute extensively to

;our understanding of the quantitative aspects of computations and

. could be of considerable practical value. Among these problems we

certaiﬂly must include the problems dealing with :

E:

1. The quantitative differences between deterministic and
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nondeterministic computations.
2. The time and memory trade-offs in computations.
3. The computational speed gained by adding new operations to
random access machines, such as multiplication. |
4. The change in descriptive power of formal languages as we
add new features (operations).
The first problem area could also include the related problem of
characterizing the quantitative differences between parallel and

sequential computations as well as understanding the gquantitative

. differences between "finding a proof" and "verifying that a given

proof is correct" in a formal system.
Considerable research effort has been dedicated to problems
of this type during the last decade as part of a systematic devel-

opment of the theory of computational complexity. The real pro-

' gress, though, in this area of research has come since 1970. Dur-

- ing the last four years research in this area has yielded a rich

set of new results which have revealed unexpected and deep connec-

tions between different problems, including the four mentioned

- above. These results have brought new unity to the study of the

- computational complexity of feasible problems and have identified

and isolated specific problems on whose solution many others de-

~ pend. Furthermore, these results have yielded some powerful new

techniques, interesting applications outside of computer science,

and even insights about the nature of theoretical computer science.
In this paper we will try to give the reader an overview of

these developments, an insight into some of these results and their

applications as well as an appreciation of the unity and structure

- which has emerged in this area of research.
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2. Feasible computations and nondeterminism

From the early research on effective computability emerged in
the first half of this century a consensus about the precise mean-
iné of the concept "effectively computable". This consensus is ex-
pressed in Church's thesis which in essence asserts that: a func-

tion is effectively computable (or simply computable) if and only

if there exists a Turing machine which computes it.

Clearly, the class of effectively computable functions con-
tains functions which are practically computable as well as func-
tions which require arbitrarily large amounts of computing time

(or any other resource by which we measure computational complexity)

. and thus these functions cannot be practically computed. So far

? there has not emerged any real consensus as to which functions are
E in principle practically computable. It is also not cleax whether
? the concept of practically computable functions is in any sense

' fundamental and whether it has a mathematical invariance comparable

" to the class of effectively computable functions.

At the same time, there is already a general agreement that a

- process whose computation time (on a Turing machine) cannot be

- asymptotically bounded by a polynomial in the length of the input

~data is not a practical computation. For example, any function for

iwhich every Turing machine computing it requires at least a number

of steps exponential in the length of the input is not practically

' computable. Thus we shall define below a computation to be feasi-

ble iff it can be computed in polynomial time on a Turing machine.

- This definition of feasibility of computations, besides being in-

. tuitively acceptable, has some very nice mathematical properties

and shows a very rugged invariance under changes'of the -underlying

computing model. The last point will be particularly emphasized

in Chapter 5 when we study random access machines with different



sets of operations.
To make these concepts precise and to simplify our notation,

we will consider all through this paper the computational problem

-of "accepting languages or solving suitably encoded problems with

"ves" and "no" answers, such as "Does the binary input string rep-
resent a prime number in binary notation?" or "Does the given reg-
ular expression designate the set of all finite binary sequences?"

In all these problems the length of the input sequence is the num-

- ber of symbols in the sequence and we express the amount of com-

puting resource used in terms of the length of the input sequence.

Convention: A computation is feasible iff it runs in polynomial

time (in the length of the input) on a deterministic Turing ma-
chine.

To be able to talk about the class of all feasible computa-
tions we introduce

Definition: Let PTIME, or simply P, designate the family of lan-

guages accepted in.polynomial time by deterministic Turing machines.

It is easily seen that the class of feasible computations,
PTIME, includes a wide variety of languages and solutions of prob-
;ems and that it is quite invariant under changes of computing mod-
els. We will return to the last point when we discuss random ac-
cess machines in a later section and encounter the same polynomial-
ly bounded classes. On the other hand, there are véry many other
problems and languages about which we do not know whether they are
feasible, that is, no polynomial time bounded algorithms have been
discovered for them, nor has it been shown that such algorithms do
not exist. Many of these problems are of considerable practical
importance, and substantial effort has been expended to find deter-
ministic polynomial time bounded algorithms for them.

A wide class of such important practical problems has the
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. property that they can be computed in polynomial time if the com-

| putations can be nondeterministic. Remember that a nondeterminis-

tic Tm may have several possible transitions from a given state,
and it accepts a string w if there.is a sequence of moves; start-
ing with the initial configuration with iﬁput w and ending with a
configuration in which the finite control is in a final state: The
amount of resource used to accept w is the minimum over all such
accepting sequences.

Thus a nondeterministic Turing machine can guess a solution
and then verify whether it has guessed correctly. For example,

consider the set
'L ={w] w € 1(0 U 1)* and w does not denote a prime number},

It is not known whether I is in PTIME but it is easily seen that
L can be accepted in polynomial time by a nondeterministic Tm
which guesses an integer (a binary sequence in 1(0 U 1)* not longer
than w) and then tests deterministically whether the integer di-
vides w .

To give another, more theoretical computer science oriented
example, let Ri and Rj be regular expressions over the alphabet
consisting of 0,1,+,U and the delineators ( , ) and let L(Ri) de-
note the set of sequences designated by Ri‘ Since we have not per-
mitted the use of the Kleene star, * , in the regular expressions,
we see that we can only describe finite sets and that the longest
string in the set cannot exceed the length of the expression. Fur-

thermore, the language
Lp = {Ri,Rj)l L(R;) # L(Ry)}
can easily be recognized in polynomial time by a nondeterministic

Tm which guesses a binary sequence w whose length does not exceed

+
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the length of the longest expression Ri or Rj' and then verifies
that i L(Ri) or L(Rj) but not in both. So far no deterministic
polynomial time algorithm has been discovered for this problem.

., The multitude of problems and languages of this type has led
to the definition of the corresponding nondeterministic class of
languages.

Definition: Let NPTIME, or simply NP, denote the family of lan-

guages accepted in polynomial time by nondeterministic Turing

“machines.

To emphasize the importance of this class of problems or
languages we list some such problems. In all these problems
we assume that we have used a straightforward and simple encoding
of the problem. For a detailed discussion of such problems see
[6,16].

1. Given_Ri,Rj regular expressions over 0,1,-,U,(,).
Determine if the sets of sequences denoted by Ri and Rj are differ_
ent,i.e.if L(Ri) # L(Rj).

2. Given a formula of the propositional calculus invdlvihg
ohly variables plus connectives (or a Boolean expression in con-
junctive normal form). Determine if it is Ltruel!for some assign-
ment of the values 'false' and 'true' to its variables. |

3. Given a (directed) graph G determine if the graph has
a (directed) cycle which includes all nodes of G.

4, Given a graph G and integer k determine if G has
k mutually adjacent nodes.

5. Given an integer matrix C and integer vector d deter-
mine if there exists a 0-1 vector x such that Cx = 4.

6. Given a family of sets and a positive integef k. Deter-

mine if this family of sets contains k mutually disjoint sets.
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7. Given a (n+l)tuple of integers (al,az,...,an,b). Does

there exist a 0-1 vector x such that Zaixi = b?

. It is easily seen that all of these problems are in NPTIME by
a straightforward "guessing and verifying"-method. On the-other
hand, no deterministic polynomial time algorithm is known for any of
these problems. This list of problems can easily be extended and it
is clear that it contains many practical problems for which we would
very much like to have deterministic polynomial time algorithms [16,
1]. The question whether such aigorithms exist is by now known as
the

P = NP?
problem and it has to be considered as one of the central problems
in computational complexity [6].

Intuitively, we feel that P # NP, though all attempts to
prove it have failed. Aé we will show below, to prove that P = NP
we do not have to show that every problem in NP has an equivalent
solution in P. All we have to show is that any one of the seven
previously listed problems has a deterministic polynomially time
bounded algorithm. This simplifies the P = NP? problem considera-
bly, but it still seems quite unlikely that such a deterministic
polynomial time algorithm could exist. Of course, a proof that any
one of these seven problems is not in P would prove that P # NP.‘

On the other hand, the exciting thing is that if P = NP
then its proof is very likely to reveal something fundamentally new
about the nature of computing.

To emphasize this fact, recall that prime numbers have been
studied for over two thousand years without discovering a fast (i.e.
deterministic polynomial time) algorithm for their testing. Since

the set of binary strings representing primes is .in NP, this is just

¢

i
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one more instance of the P = NP problem [26]. As an illustration we
recall that in 1903 F. Cole showed that

287 _ 1 = 193707721 x 76183825287

+

and claimed that it had taken him "three years of Sundays" to show

that 267

- 1 was not a prime, as conjectured before. It is also
striking how easily one can check whether the giQeﬁ«factorization
is correct, thus dramatically illustrating the difference between
"finding a solution" and "verifying its correctness", which is the

essence of the P = NP problem. For related problems see [10,11].

A very important property of the class NP was discovered by

 S.A. Cook [6] when he proved that there exists a language L in NP

such that if there exists a deterministic polynomial time algorithm
for the recognition of L , then P = NP and we can effectively find
(from the deterministic polynomial time algorithm for L ) determin-
istic polynomial time algorithms for every L' in NP.

To make these concepts precise we define complete languages in
NP as those languages to which all other languages in NP can be
"easily" reduced. Note that the concepts of complete languages and
reducibility will be used repeatedly in this study and that they
play important roles in recursive function theory and logic [36].

Definition: A language L 1is NP-complete (or complete in NP) iff

I. is in NP and for all Li in NP there exists a function fi ’

computable by a deterministic Tm in polynomial time, such that
w 1is in Li iff fi(w) is in L.

Proposition--2.l: If L is a NP-complete language then L is in P

iff P = NP.
Proof: To see this note that P = NP implies that L 1is in P. On

the other hand, if L is in P then there exists a deterministic

i
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Tm, M , which in polynomial time accepts L . For any other Li in
NP there exists, by definition of NP-completeness, a deterministic

Tm Mi which computes a function fi such that

»

w € Li iff fi(w) € L.

Let M be the deterministic Tm which on input w applies Mi

D (i)
to compute fi(w) and then applies M on fi(w) to test whether
fi(w) is in L . Clearly, the deterministic Tm MD(iI accepts L,
and operates in polynomial time since Mi and M do. Thus Li is

in P, which completes the proof.

Next we prove that NP-complete languages actually exist by con-
structing a "universal NP" language Ly ; This language is somewhat
artificial but it reveals very clearly why NP-complete problems ex-
ist and demonstrates a technique which has many other applications;
After this proof we show that there are also "natural' NP-complete
languages. As a matter of fact, all the previously listed problems

1-7 are NP-complete.

Theorem 2.2: There exist NP-complete languages.

Proof: We will show that Ly defined below is NP-complete. Let

3|Mj |t |

Ly = {#M,#CODE (x X, ...X ) # X;X,...X 1s accepted by

2 172

the one-tape, nondeterministic Tm Mi in time t }

where M, is given in some simple quintuple form, |Mi| designates

lx2...xn) is a

fixed, straightforward, symbol by symbol encoding of. sequences over

the length of the representation of Mi and CODE (x

alphabets of arbitrary cardinality (the input and tape alphabet of
Mi ) into a fixed alphabet, say {0,1,#}; with the provision that
|CODE(xj)| > cardinality of the tape alphabet of - Mi .

It is easily seen that a four-tape nondeterministic Tm M' can

i
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accept L in linear time. We indicate how M' uses its tapes:

U
on the first sweep of the input M' checks the format of the input,
copies Mi from the input on the first working tape and 3lMﬂ t

on the second working tape. The third working tape is used to re-
cord the present state of Mi (in a tally notation) during the step-
by-step simulation of Mj . It is seen that with the available in-
formation on its working tapes M' can simulate Mi on the input
in time ,2|Mi|t (for an appropriate, agreed upon representation of

Mi ). Thus M' operates in non-deterministic linear time and ac-

cepts L Therefore, L is in NP and the assumption P = NP im-

[
plies that L

U

U is accepted by a deterministic Tm M' operating in

deterministic time nP. Then for any nondeterministic Tm Mi work-

ing in time n? we can recursively construct a Tm M operating

o (i)
in polynomial time as follows:

1. for input X XyeeoX Mo(i) writes down

. 3|M; [n9
#Mi#CODE(xlkz...xn)#

2. Md(i) starts the deterministic machine M' on the sequence
in (1) and accepts the input X Xgee X, iff M' accepts its
input.

Clearly, Mi and Mo( are equivalent, furthermore Mb(i) operates

i)
in time less than

213/m; [n? + | 4m, #CODE (x1x,...x ) [ 1P < cnP9,

1%2
Thus Mo(i) operates in deterministic polynomial time, as was to be

shown.

The previous proof shows that if LU is in P then we can re-

cursively obtain for every M, running in time n9 an equivalent

deterministic Tm running in time O[npq]. Unfortunately, for a

given Tm we cannot recursively determine the running time and thus
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we do not know whether Mi runs in polynomial time or not. Even if
we know that Mi runs in polynomial time we still can not recursive=
ly determine the degree of the polynomial.

' Our next result shows that, nevertheless, we can Qet a general

translation result. For a related result see [9].

Theorem 2.3: P = NP iff there exists a recursive translation o and

a positive integer k , such that for every nondeterministic Tm Mi'

which uses time Ti(n) >n , M is an equivalent deterministic

o (i)
Tm working in time O[Ti(n)k].

Proof: The "if" part of the proof is obvious. To prove the "only

if" part assume that P = NP. We will outline a proof that we can
recursively construct for any Mi , running time Ti(n) > n, an
equivalent deterministic Tm Mb(i) operating in time O[Ti(n)k] for
a fixed k . |

In our construction we use two auxiliary languages:

B.l
1

{#w#t| M, accepts w im less than t time}

B n
i

(4w M, on input w takes more than t time},

Clearly, the languages Bi' and L* - Bi" can be accepted in non-deter-
ministic linear time. Therefore, by our previous result, we can

recursively construct two deterministic machines Mi' and Mf“ which

accept Bi' and I* - Bi" respectively, and operate in time O[np].

Now we obtain Mi" from M{“: MiP recognizes Bi". Mi" is a deter-
ministic polynomial time bounded Tm since if I* - Bi" is in NP, it

is in P (by hypothesis), and P is closed under complements.

From Mi' and Mi" we can recursively construct the determinis-

tic Tm M » which operates as follows:

o(i)

: t
l. For input w Mo(i) finds the smallest t, such that #w#

is not in Bi". This is done by checking with Mi" successively

t

bwi, Wi, wid,... .

14
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2. Mo(i) starts Mi' on input #w# and accepts w iff
t
Mi' accepts #w# 0,

Clegrly, Mo(i) is equiValent to M, and Mq(i) operates in time
T, (n)

o[ L fP] = O[T, (n
=1 '

Pty

By setting k = p+l , we have completed the proof.

We conclude by observing that Ly is an NP-complete problem,
as defined above.

Next we assert that theére exist very many natural NP-complete

problems and that finding fast algorithms for some of them is of

considerable practical importance.

We will prove that

j are regular expressions over

Ollr'lUl( ;) and L(Ri) 7£ L(RJ)}

is NP-complete. We have chosen to use this language since the proof
utilizes a technique of describing Turing machine computations by
means of regular expressions and this technique has interesting fur-

ther applications.

Theorem 2.4: LR is NP-complete and so are all the languages asso-

ciated with the problems 1-7.
Proof: We prove only that the first problem on our list is NP-
complete; for the other proofs see [16].

The proof that LR is NP-complete relies heavily on the fact
(proven below) that regular expressions can be used to describe the
"invalid computations"” of nondeterministic Tm's. More?éxplicitly,
for every nondeterministic Tm Mi operating in polynomial time

there exists a deterministic Tm which for input XyXge oo Xy in polyno-



mial time writes out a regular expression.describing the invalid
computations of Mi on input X XgeeoX o Note that the input
Xy Xoe e X, is accepted by M, iff there exists a valid M; computa-
tioﬁ on this input, which happens iff the ;et of invalid Mi compu-
tations on X XgeeeX, is not the set of all sequences (of a given
length). Thus the test of whether XyXge e X is accepted by Mi can
be reduced to a test of whether the regular expression, describing
the invalid computations of Mi on X Xg..eX o does not describe
all sequences (of a given length). This implies that if Lp is in
P then P = NP and thus we see that LR is NP-complete.

We ﬁow give the above outlined proof in more detail. Let Mibe
a one~tape, -nondeterministic Tm which operates in time nk (we as-
sume without loss of generality that Mi halts after exactly nk

steps). Let S be the set of states of M, 9, the unique start-

ing state, de the unique accepting final state, and let I be the

tape alphabet of Mi . An instantaneous description of Mi is a
sequence in ZI*(Z x S)I* which indicates the tape content of Mi’ the
state M, is in, and which symbol is being scanned. VCOMP(xlxz...xn)

denotes the set of valid computations of Mi on input XyXgeeeX o A

valid computation consists of a sequence of instantaneous descrip-
tions

$ 1D # ID, # ... # ID

# ID2 3

1

such that:
k

_ n -n
a) IDl = (xl,qo)x2x3...xnb

k--t—l

b) Ian e :tz x CHIbL

c) ID.

541 follows from IDj, 1 < Jj £ k-1 by one move of M. .

Note that for all i [ID.| = n* .

Define T as )
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I =X UZI xS U-{#}
and let the invalid set of computations be given by

2k k
. NVCOMP (x rp tnoEl

- VCOMP (x

lx2...xn) lx2...xn).

We show next that there exists a deterministic Tm, MD , which
constructs for every input X Koo o X in polynomial time a regular ex-
expression using only -,U, denoting the set of sequences NVCOMP. To

see this note that NVCOMP consists of:

o
il

1 set of sequences which do not start correctly

el
Il

2 set of sequences which do not end correctly

Pl
Il

3 set of sequences which do not have a proper transition
from IDj to IDj+l .
Thus
NVCOMP (%X« ..X ) = Ry U R, U R,.
Let x designate anyy , Y # X, v € I . Note that the regular ex-

pression for x has length of the order of the size of ' , i.e. a

constant. Then

2k. k 2k . _k 2k, k 2k, k-
R, = Ir® MU pmogo rt tTrolyorx ot Rty urhd g
1 | 1'% 2
2k, k

R, = {I = (8 x {gH}* "™ *
2 £

12k_3 o ko3 2k o
Ry = U I U IP0,0,0,T [T”-CORRECT (0,0,0,) 1T ]

p=0 01705103 er

where CORRECT(010203) is the set of correct M, trénéitions in one
move from 010,03 + in the following instantaneous description.
These triples are sufficient to specify the transitions, since
in a single move only theAsquare'being scanned may be modified and
the only other possible change in the ID is the position of the
read/write head. Since the head moves at most one square, the set

CORRECT suffices to charactrrize valid transitions. For example if

the Tm in state g , upon reading a 0 may either print a 1 or a 0
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and move right, then
CORRECT (olcq,q)o3) = { (o 10 (03,q) ), (011(03,q))}
CORRECT ((0,9)0,,04) = {(0(0,,9)04),(L(g,,q)04)}

*’CORRECT(cloz(O,q)) = {(01020),(01021)}.

It is easily seen that for any given Tm CORRECT is a finite set
depending only on the alphabet and on the transition rules of the
machine, but not on the input. |

A straightforward computation shows that Rl!J RzlJ R3 can be

written out for input x ce e X by a deterministic Tm in polynomial

1%2
time in n. Thus the desired MD exists.

If LR is in P then we have a deterministic Tm MC which in

polynomial time accepts (Ri,Rj), provided L(Ri) # L(Rj). But then

combining MD with this M. we get a deterministic polynomial time

Tm which for input X Xye e X writes out (using My )

_NVCOMP(xlxz...xn)

and then checks (using MC } whether the expressions are unequal.
Clearly, the reqgular expressions are unequal iff there is a valid

computation of Mi ON X XoeeeX y but that happens iff Mi accepts

n

this input. Since MD and MC operate in deterministic polynomial

time, the combined machine accepting L(Mi) also operates in deter-

ministic polynomial time. Thus LR in P implies P = NP. Clearly,

P = NP implies that LR is in P since it is easily seen that L

is in NP. This completes the proof.

R

For the sake of completeness, we mention that it is not known

whether the language
LP = {w| we€l(0U l1l)* and w designates a composite number}

is an NP-complete problem, It is easily seen that Lj is in NP, as

P

stated before. A somewhat harder proof shows that, surprisingly,
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L, = {w| w € 1(0 ) 1)* and w designates a prime}

is also in NP [26]. Thus the "guess and verify" method can be used
to @esign (nondeterministic) polynomial time algorithms to test whe-
ther an integer is or is not a prime. Since LP and EP (or EP =

(0 U1l)* - LP) are in NP, and for no NP-complete problem L is it
known that L is in NP, it seems unlikely that either Lj or Lp
could be NP-complete.

Note that, if we could show for an NP-complete problem L that
I is not in NP, then we would have a proof that P # NP, since L' in
P implies that L' is in P and thus in NP. A proof of this sort
could possibly show that P # NP without giving any insight into the
actual deterministic time complexity of the class NP. Our current
understanding of these problems is so limited that we cannot rule
out either of the two extremes: a) that P = NP and we need only
polynomial time bounded deterministic algorithms, or (b) that there
exist L in NP which require an exponential amount of time for
their recognition.

As stated before, it appears that a proof that P = NP will have
to reveal something new about the nature of computation. Similarly,
a proof that for all L in NP, I is in NP, which could happen even
if P # NP, would have to reveal something unexpected about the pro-

cess of computation. To emphasize this, consider again the set of

unequal regular expressions over O,l,-,(),( ;)
Ly = {(Ri,Rj)l L(R;) # L(Rj)} .

As observed before, LR is easily seen to be in NP. On the other
hand, it seems impossible (with' our.current state of knowledge about
computing) that this computation could be carried out in determinis-

tic polynomial time. Similarly, it seems impossible that the set of

pairs of equal regular expressions,
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Lp o= {(Ri,Rj)l L(R;) = L(Rj)},
could be in NP, since in this case we would have to give a proof in
nondeterministic polynomial time that there does not exist any se-

quence on which R, and Rj differ. This appears to be a completely

 different situation than the proof that L, is in NP and we do not

R

know any methods which can exploit the power of nondeterminism to
yield such a proof.

It may be shown that L has the same "completeness" property

R=
with respect to NPc, i.e. the set of languages 'L such that I* - L
is in NP, as LR has With respect to NP; we will discuss such "com-
plete" sets throughout the paper.

We conclude this section by observing that if P # NP and NP is
not closed under complementation, that then P and NP show a good low
complexity level analogy to the recursive and recursively enumerable

sets; P corresponding to the set of recursive sets and NP to the

set of recursively enumerable sets.

‘3. Memory bounded computations

In the study of the complexity of computations there are two

natural measures: the time or number operations and the tape or

. memory space used in the computation. It is strongly'suspected that

there exist interesting and important connections between these two
complexity measures and that a central task of theoretical computer
science is to understand the trade-offs between then [23].

In this section we discuss the problem of how much memory or
tape is required for the recognition of the classes P and NP and
some related problems. It will be seen that this study again leads
us very quickly to some interesting open problems and reveals some
interesting analogies with previous problems which will be further

pursued in the chapter dealing with random access machines.
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In analogy to the time bounded Tm computations we define memory
bounded complexity classes.

Definition: Let PTAPE (NPTAPE) denote the family of languages ac-

cepfed by deterministic (nondeterministic) Turing machines in poly-
nomial tape.

Clearly, a Turing machine operating in polynomial time can vis-
it only a polynomially bounded number of different tape squares and

therefore we have
P C PTAPE and NP C NPTAPE,

Furthermore, any nondeterministic Tm Mi operating in time nk can
make no more than nk_different choices. On polynomial tape a de-
terministic Tm can successively enumerate all possible an sequen-
ces of choices Mi can make and for each sequence of choices simu-
late deterministically on polynomial tape the corresponding Mi

computation. Therefore we obtain

Proposition 3.1: NP C PTAPE,

On the other hand, it is not known whether there exists an L
in PTAPE which is not in NP. Intuitively, one feels that there must
be such languages since in polynomial tape a Turing machine can per-
form an exponential number of operations before halting. At tﬁé
same time, nobody has been able to prove that this exponentialrnumfa
ber of operations, restricted to polynomial tape; can be utilized
effectively to accept something not in NP,

Thus we are led to another central problem in computational
complexity: 1is NP = PTAPE or possibly P = PTAPE?

At the present time we have to conjecture that NP # PTAPE,since‘
nothing in our knowledge of memory bounded computations suggests
that PTAPE computations could be carried out in polynomial time.
Furthermore, NP = PTAPE would have, as we will see later, some very

strong and strange implications.
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As stated in the previous chapter, it is not known whethef
P = NP, and this is a very important problem in complexity theory as
well as for practical computing. The situation for tapé bounded com-
putétions is different [31].

Theorem 3.2: Let L(n) > logn be the amount of tape used by a non-

deterministic Tm Mi . Then we can effectively construct an equiva-
lent deterministic Tm Mc(i) using no more than [L(n)]2 tape.
From this result we get immediately

Corollary 3.3: PTAPE = NPTAPE,.

In the last chapter we will give a new proof (without using
Savitch's result) that PTAPE = NPTAPE, as part of our characteriza-
tion of the computational power of multiplication in random access
machines.

NeXt we will show that PTAPE has complete problems, just as NP
did, and thgs to show that NP = PTAPE we only have to show that one
specific language in PTAPE is also in NP,

Definition: We say that a language L 1in PTAPE is tape complete

iff for every Ly in PTAPE there exists a deterministic polynomial

time computable function fi such that
w € Li iff fi(w) € L,

From this we immediately get

Proposition 3.4: NP = PTAPE (P = PTAPE) iff there exists a tape

complete problem in NP (P).

We now show that tape complete problems exist. In order to em-
phasize the similarities with the NP case, we consider the following
two languages:

- t -
Lyp = {#M; #CODE (x;%,...x ) # | M, accepts x;%,...x  using no

more than 2+|Mi]+CODE(x .. .X )+t tape squares}

1%2
L = {Ri| R, is a regular expression over 0,1,U,-,*,(,) and

L(R;) # (0 U 1)%)
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Theorem 3.5: L and L* are tape complete languages. Thus

uT R

NP = PTAPE (P = PTAPE) iff L € NP (P) iff LX¥ € NP (P) .

uT R

Proof: It is easily seen that L is accepted on the amount of

uT

tape needed to write down the input, if we permit nondeterministic

operations. Thus LUT is in PTAPE. Furthermore, if L, is in PTAPE
k

then there exists a deterministic Tm Mi which accepts Li in n

tape, for some k . But then there exists a Tm, Mc(i) , which for
input xlxz...xn writes ’

k -
#M, $CODE (X, X0+ X ) #7 | CODE (%) %5.ex )| = 2 = |M;]

2

on its tape in deterministic polynomial time. Designate the func-

tion computed by M by fi . Then w 1is in L, iff fi(w) is

o (i) i
in LUT , and we see that LUT is tape complete.
To prove that Lﬁ is tape complete observe that a nondetermin-

istic Tm can guess a sequence and then on linear amount of tape (us-

ing standard techniques [19]) check that the sequence is not in R..

Thus L§ is in PTAPE; as a matter of fact LE is a context-sensitive

language, as is LUT . Now we again will exploit the power of regu-
lar expressions to describe invalid Tm computations efficiently.

For a Tm M, which operates on nk tape, we define

VCOMP(xlxz...xn) = #IDl#IDz#"’#IDHALT#

just as in Chapter 2, with |IDj| = nk. Since we now have the Kleene

star available in our regular expressions, we define

NVCOMP = T'* - VCOMP,
Thus

NVCOMP (X)X 5. .X ) = RlU R, ¥ Ry o

where Rl p R2 and R3 represent the sets of strings which do not

start right, which do not end right, and where there is an incorrect

transition from ID; to ID;.q respectively. The details are
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rquite similar to the proof in Chapter 2 and we write down the ex-
pressions for Rl' R2 and R3 to indicate the use of the * , which
was not available in the other proof. It should be pointed out that
Mi could perform an exponential number of steps before halting and
therefore we cannot use the techniques of the previous proof. This
proof makes an essential use of the Kleene star. Again x denotes

any v , vy #x and y in I =3 U {#} U I x s, dg the initial

state and d the final -state.

o
I

1 = (FU#IG ) U (x090) [, U x, (%5 U xg[.. . UF].. 0T

vl
n

(T - Zq.)*
2 f X

R, = I'*0.0.0.7" ~ 1r3 - CcorrRECT(0.0.0.)]T*
19293

3 1°273
where CORRECT(010203) is a correct sequence of the next ID if in the
previous ID in the corresponding place appears 010503

It is easily seen that a deterministic Tm exists which for input
XiXgeeo X, writes out the regular expression Rl U R, U R3 on its

tape in deterministic polynomial time. If we denote this function

by fi we see that
w 1is accepted by M, iff £, (w) = R, U RzlJ R4 # T*

since w 1is accepted by Mi 1ff there exists a valid computation of
Mi on w , but this happens iff NVCOMP(w) # TI'*. This concludes the

proof that LUT

NP = PTAPE (P = PTAPE) iff Lﬁ or. LUT in in NP (P).

and LE are tape complete languages and we see that

It should be pointed out that Lﬁ is just one example of tape
complete problems about regular expressions. We can actually state
a very general theorem which characterizes a large class of such
problems (or ianguages) [9], which shows that, for example,

{R| R regular expression and L(R) # L(R*)}

{R| R regular expression and L(R) is cofinite}
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are two such tape complete languages; many others can be constructed

using this result. It is interesting to note that

' LR = {(Ri,Rj)] Ri’Rj regular expressions over 0,1,U,-,( , )

and L(R,) # L(Rj)}
is an NP-complete problem and if we added the expressive power of

the Kleene star, * , the language

Lﬁ = {(Ri,Rj)| Ri’Rj regular expressions over O,l,U,f,*,( )

and L(R;) # L(Rj)}

became a tape complete language. Though we cannot prove that NP #
PTAPE, we conjecture that they are different, and therefore the
Kleene star made the decision problem harder by the difference, if
any, between NP and PTAPE.

It should be noted that without the Kleene star we cannot de-
scribe an infinite regular set and with -,U,* all regular sets can
be described. From this alone we would suspect that the decision

problem (recognition of) L*¥ should be harder than for L Whether

R R’
it really is harder, and by how much, remains a fascinating and an-
noying open problem,

To emphasize a further analogy between NP and PTAPE we take a
qguick look at logic. Recall that all the expressions in proposition-
al calculus which for some assignment of variables become true form

an NP-complete - language. Thus we have

Theorem 3.6: The problem of recognizing the satisfiable formulas of

the propositional calculus is an NP~complete problem [6]. Similarly,
the set of true sentences (tautologies) of the propositional calcu-
lus is a complete language for NP.

The next simplest theory, the first order propositional calcu-
lus with equality (1EQ) is a language that contains quantifiers but

no function symbols or predicate symbols other than =. The following



result characterizes the complexity of this decision problem.

Theorem 3.7: The problem of recognizing the set of true sentences

b for the first order predicate calculus (lEQ) is complete in PTAPE.

Proof: See [22].

Again we see that the difference in complexity between these

s’

two decision problems is directly related to the difference, if any,
between NP .and PTAPE.

Next we take a look at how the computational complexity of the
decisipn problem for regular expfessions changes as we permit fur-
ther operations. We know that all regulaf sets can be described by
regular expressions using the operators U,+,*. At the same time,
regular sets are closed under set intersection and set complementa-
tion. Therefore we can augment our set of operators used in regular
expressions by N and 7 and we know from experience that these two
operators can significantly simplify the writing of regular expres-

sions. The surprising thing is that it is possible to prove that
the addition of these operators makes the decision problems about

regular expressions much harder [21]. 1In particular; as we will see

the addition of the complementation operator makes the decision

problem for equivalence of regular expressions practically unsolva-
ble [34,14,22].

Theorem 3.8: The language

LR = {(Ri,Rj)l Ri’Rj regular expressions over 0,1,-,U,*,7, (,)
and L(R.) # L(R.)}
1 J 2n
-/

cannot be recognized for any k in 22'//k tape. 1In other words,

LR cannot be recognized on tape bounded by an elementary function.
The basic idea of the proof is very simple:  if we can show

that using extended regular expressions (i.e. with +,U,*,71) we can

describe the valid computations of Tm's using very large amounts of
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tape by véry short regular expressions that are easily obtained from
the Tm and its input, then the recognition of ER must require very
large amounts of tape. To see this note that to test whether w is
in L(Mi) we can either run Mi on w , using whatever tape Mi re—
quires, or else write down the regular expression, R = VCOMP (w),
describing the valid computations of M; on w, and then test whe-
ther L(R) = g. Since w 1is accepted by Mi iff there exists a
valid Mi computation in w , if the expression R is very short
and the recognition of ’iR does not require much tape then this last

procedure would save us a lot of tape. This is impossible, since

there exist languages whose recognition requires arbitrarily large

‘amounts of tape and these requirements cannot be (essentially) de-

creased [33,13]). Thus either method of testing whether w is in

L(Mi) must require a large amount of tape; which implies that the

recognition of ER must require a large amount of tape.

The reason why the addition of complementation permits us to
describe very long Turing machine computations economically is also
easy to see, though the details of the proof are quite messy. The
despriptive.power is gained by using the complement to go from regu-
lar expressions describing invalid computations to regular expres-
sions of (essentially) the same length describing valid computa -
tions. For example, consider a Tm Mi which, on any input of
length n , counts up to 2™ and halts. Using the techniques from

the proof of Theorem 3.5 we can write down
NVCOMP(xlx2...xn)

for this machine on cn tape squares, where c¢ 1is fixed for Mi .
But then

INVCOMP (x ...Xn) = VCOMP(XlXZ"°Xn)

1%2
and we have a regular expression of length < cn + 1 < cn, describing

a computation which takes 2" steps, and thus
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VCOMP(xlxz...xn) consists of a single string whose length is > 22n.

Next we indicate how the above regular expression is used to
obtain a short regular expression for NVCOMP(xlxz...xn) of Tm's us-
ing 21 tape squares.

A close inspection of the proof of Theorem 3.5 shows that

NVCOMP (x

1X2"'xn) = Rl\) R2(J R3

and that the length of Rl and R2 grows linearly with n and does
not depend on the amount of tape used by the Tm. Only R3 has to
take account of the amount of tape used in the computation since R3
takes care of all the cases where an error occurs between successive
instantaneous descriptions. In the proof of Theorem 3.5 we simply
wrote out the right number of fape symbols between the corresponding

places where the errors had to occur. Namely we used the regular

expression

nk -1
r

as a "yardstick" to keep the errors properly spaced. The basic
trick in this proof is to have short regular expressions for very
long "yardsticks".

As indicated above, by means of complements we can write a reg-
ular expression for VCOMP(xlxz...xn) of M, which grows linearly in
n and consists of a single sequence of length > 2™, With a few in-
genious tricks and the accompanying messy technical details we can
use this regular expression as a yardstick to keep the errors pro-
perly spaced in a Tm computation using more than 21 tape. Thus a
regular expression which grows linearly in length can describe Tm
computations using 21 tape.

By iterating this process, we can construct for any k a regu-
lar expression whose length grows polynomially in n and which de-

scribes computations of Tm's using more than
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2..k )
2¢/ tape squares for inputs of length n . From this we conclude

by the previously outlined reasoning, that T cannot be recognized

R
by any Tm using tape bounded by an elementary function.

For the sake of completeness we will mention a result [14] about
regular expressions without 7, but with U,+,* and N.

Theorem 3.9: Let

Iy = {(Ri,Rj)I Ri’Rj regular expressions over 0,1,U,,*,0, (,)
and L(R;) # L(Rj)}

yi

requires tape L(n) > 2 .

A

Then the recognition of LR

From the two previous results we see that the additional opera-
tor in regular expressions added considerably to the descriptive
power of these expressions, in that the added operators permitted us
to shorten regular expressions over U,-,* and that this shortening

of the regular expressions is reflected in the resulting difficulty

~

. of recognizing L_ and L7 , respectively. Thus in a sense, these

R R

results can also be viewed as quantitative results about the descrip-
tive powers of regular expressions with different operators.

Finally we note that the rather surprising result that fof un-
restficted regular expressions the equivalence is not decidable in
elementary tape cannot be extended to single letter alphabets [29].

Theorem 3.10: The language

L SLA _

R {(Ri,Rj)l Ri’Rj regular expressions over 1,U,*,*,17,( , )

and L(Ri) = L(Rj)}

can be recognized on

. 2cnlogn
2
L(n) < 22

tape.

In the previous proofs we established the complexity of the re-

cognition of unequal pairs of regular expressions by the following
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‘method: we described valid or invalid Tm computations by regular
expressions and then related the efficiency of describing long Tm
computations by short regular expressions to the complexity of the
decision problem; the more powerful the descriptive power of our ex-
pressions (or languages) the harder the corresponding decision prob-
lem. We can actually state this somewhat more precisely as:

Heuristic Principle: If in some formalism one can describe with ex-

pressions of length n or less Tm computations using tape up to
g¢ength L(n), then the decision procedure for equality of these ex-
pressions must be of at least tape complexity L(n).

For example, if a formalism enables us to state that a Tm ac-
cepts an input of length n using tape at most 2n, and the length
of such an expression is n2, then any procedure that decides equali-
ty of two such expressions will have tape complexity at least ZJEj
In [14] it is shown that regular expressions over 0,1,U,-,ﬂ,* are
such a formalism -- from which Theorem 3.9 follows.

Clearly, this principle also implies that if the formalism is
so powerful that no computable function L(n) can bound the length
of tape used in Tm computations which can be described by expres-
sions 6f length n , then the equivalence problem in this formalism
is recursively undecidable. Thus this principle gives a nice view
of how the expressive power of languages escalates the complexity of
decision procedures until it becomes undecidable because the length
of the Tm computations is no- longer recursively bound to the length
of the expressions describing them. Thus a formalism in which we
can say "the i-th Tm halts", so that the length of this formula
grows recursively in 1 , must have an undecidable decision problemn.
Very loosely speaking, as long as we can in our formalism make as-
sertions about Tm computations, without describing the computations

explicitly, we will have undecidable decision problems. As long as
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we must describe the Tm computations explicitly, the equivalence
problem will be soluble and its computational difficulty depends on
the descriptive power of the formalism.

Some of the most interesting applications of this principle
have yielded the computational complexity of decision procedures for
decidable logical theories. The results are rather depressing in
that even for apparently simple theories the decision complexity
makes them practically undecidable. We cite two such results.

We first consider the decision procedure for Pressburger arith-
metic. We recall that Pressburger arithmetic consists of the true
statements about integer arithmetic which can be expressed by using
successor function S, addition, and equality. More formally, the

theory is given by the axioms of first order predicate logic aug-
mented by: ,
(x =y) >~ ( (x) = 5(y)

S(x) = s(y) » (x =y)
S(x) #0
x+ 0=x
Xx + S(y) = S(x + y)
Ay (0) [(Vx) 2> A6 > (V¥ x)A] where x is not free
in A and A[x](y) means Yy substituted for every occur-
ence of x in A (induction scheme)
The theory can express any fact about the integers that does
not involve multiplication. For example, by writing:
(8...5(0)...) we get a formula that denotes the integer i ;
—
i times

by writing x + x + ... + x where x 1is a formula, we may denote
“ _J _

N~
n times

nx (i.e. multiplication by a constant), by writing (Ix)[s + x = t]

we express the fact that s < t , and by writing



‘C3 X)[(r=s+x+x+ ... +X) V(s=r+x+x+ ...+ x)]
N\

n times n times

we are stating that r = s(mod n)
It is a famous result of Pressburger's [28] that this theory is

decidable: basically the reason is that all sentences of the theory

o

can be effectively put into the form of a collection of different
systems of linear diophantine equations, such that the original sen-
tence is true iff one of the systems has a solution. Since linear
diophantine equations are‘solvable, the theory is decidable. The
transformation into and solution of the equations is costly in terms
of space and time: the best known algorithm [25] has an upper bound

of 2pnlogn

22

on the deterministic time and storage required for a sentence of
length n (p is a constant greater than 1).

Recently it has been shown [7] that any decision procedure will
require at least a super exponential number of stebs. More precisely

e Theorem 3.11: There is a constant c¢ > 0, such that for every (pos-

sibly nondeterministic) decision procedure A for Pressburger

arithmetic, there is an integer n such that for all n > n, there

o' 0
is a formula of length n which requires 22¢1 steps of the proce-
dure A to decide whether the formula is true.

The proof of this result is technically quite messy but again
follows the principle of describing by short formulas in Pressburger
arithmetic long Tm computations, thus forcing the decision procedure
to be complex.

Next we look at a surprising result due to A. Meyer about the

decision complexity of a decidable second order theory [20].

A logical theory is second order if we have quantifiers ranging

over sets in the language. It is weak second order if set quanti-
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fiers range only over. finite sets. All second order theories have,
in addition to first order language symbols, a symbol, e.g. € , to
denote set membership. The weak monadic second order theory of oné
successor has the two predicates

[x = S(y)] (or x =y + 1) and [y € X] -
with the usual interpretation. It was shown to be decidable by
Buchi and Elgot [3],[4]. We shall abbreviate the theory by WS1S,

Ss1s °
Theorem 3.12: Let M be a Tm which, started with any sentence of

L on its tape, eventually halts in a designated halting state iff

s1s
the sentence is true. Then, for any k > 0, there are infinitely

many n , for which M's computation requires more than on

steps and tape squares for some sentence of length n .

In other words, the decision procedure is not elementary recur-
sive.

These asymptotic results actually hold for small n (of the or-
der of the size of the Tm). Since they hold for the amount of tape
used, the same bounds apply to lengths of proofs, in any reasonable
formalism. Therefore, there are fairly short theorems in these
theories (less than half a page long) that simply cannot be proven--
their shortest proofs are too long to write down.

The implications of these "practical undecidability" results
are not yet well understood, but their philosophical impact on our
ideas about formalized theories may turn out to be comparable to the
impact of Goedel's undecidability result.

4. Nondeterministic tape computations and the 1lba problem

It is known, as pointed out before, that PTAPE = NPTAPE and

11

that a nondeterministic L(n)-tape bounded computation (L(n) > logn)
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can be simulated deterministically on L2(n) tape (31]. On the oth-

er hand, it is not known whether we cannot do better than the square

when we go from deterministic to nondeterministic tape bounded com-

putations. As a matter of fact, we do not know whether we cannot

- eliminate nondeterminism in tape bounded computations by just enlarg-

ing the tape alphabet and not the amount of tape uséd.

This problem of how much memory we can save by using nondeter-
ministic computations has been a recognized open problem since 1964
when it first appeared as a problem about context-sensitive langua-
ges or linearly bounded automata [24,18,17,9].

For the sake of completeness we recall that a linearly bounded

automaton is a one-tape Turing machine whose input is placed be-
tween endmarkers and the Tm cannot go past these endmafkers. Thus
all the computations of the lba are performed on as many tape squares
as are needed to write down the input and since the lba can have ar-
bitrarily large (but fixed) tape alphabet, we see that the amount of
tape for any given lba (measured as length of equivalent binary tape)
is linearly bounded by the length of the input word. If the Tm de-
fining the lba operates deterministically we refer to the automaton

as a deterministic lba, otherwise as a nondeterministic lba or simp-

ly an 1lba.

Since the connection between linearly bounded automata and con-
text-sensitive languages is well-known [13], we will also refer to
the languages accepted by nondeterministic and deterministic lba's
as nondeterministic and deterministic context-sensitive languages,
respectively. Let the corresponding families of languages be de-
noted by NDCSL and DCSL, respectively.

Then the lba problem is to decide whether NDCSL = DCSL. It is
also an open problem to decide whether the nondeterministic context-

sensitive languages are closed under complementation. Clearly if
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NDCSL = DCSL then they are closed under complementation, but it
still could happen that NDCSL # DCSL and that the context-sensitive
languages are closed under complementation.

We now show that there exist time and tape hardest recognizable
context-sensitive languages. That is, the family NDCSL has complete
languages and, as a matter of fact, we have already discussed such
languages in this paper.

Recall that

LX =A{Ri| R, regular expressidn over 0,1,U,*,( , ) and

R
L(R) # (0 U 1)*}

and let
LLBA = {#Mi#CODE(xlxz...xn)#lxlxz...xn is accepted by 1lba Mil
Theorem 4.1: 1. DCSL = NDCSL iff L’I; is in DCSL iff L, is in DCSL.
2. L in NDCSL implies L in NDCSL iff L"L"B'A is in NDCSL.

3. DCSL ¢ NP(P) iff LL A is in NP(P) iff L_ is in NP (P).

B R

The proof is quite similar to the previous proofs that LUT and

.L* are complete in PTAPE.

R
It is interesting to note that if LiBA of LE can be recog-

nized on a deterministic lba then all nondeterministic tape computa-
tions using Li(n) > n tape can be replaced by equivalent determi-
nistic computations using no more tape. Furthermore, there is a

recursive translation which maps the nondeterministic Turing ma-

chines onto the equivalent deterministic Turing machines.

Corollary 4.2: DCSL = NDCSL iff there exists a recursive transla-

tion o such that for every nondeterministic Tm Mi which uses
Li(n) > n tape, Mc(i) is an equivalent deterministic Tm using no
more than Li(n) tape.

Proof: The proof is similar to the proof of Theorem 2.3. For de-

tails see [9].
From the above results we see that if DCSL = NDCSL then all
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other deterministic and nondeterministic tape-bounded computations
using more than a linear amount of tape are the same. On the other
hand, we have not been able to force the equality downwardi For
example, we have not been able to show that if all deterministic and
nondeterministic tape-bounded computations using Li(n) > 21 tape
are the same, that then DCSL = NDCSL.

Similarly, it could happen that DCSL = NDCSL but that the logn-
bounded deterministic languages are properly contained in the non-
deterministic logn-bounded computations.

It is worth mentioning that Greibach [8] has recently exhibited
a context-free language which plays the same role among context-free
languages as LLBA does for context-sensitive languages. Namely,
this context-free language is the hardest time and tape recognizable
cfl and there also exist two recursive translations mapping context-
free grammars into Turing machines recognizing the language genera-
ted by the grammar in the minimal time and on the minimal amount of
tape, respectively, though at this time we do not know what is the
minimal time or tape required for the recognition of context-free
languages. |

5. Random access machines

In this section we study random access machines which have been
proposed as abstract models for digital computers and which reflect
many aspects of real computing more directly than Turing machines do.
On the other hand, as it will be seen from the results in this chap-
ter, the study of the computational power of random access machines
with different instruction sets leads us right back to the central
problems which arose in the study of Tm computations. Thus, quite

surprisingly, we will show that the difference in -computing power of

polynomially time bounded RAM's with and without multiplication is

characterized by the difference between PTIME and PTAME for Tm's.
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More specifically, it is known that the computation time of
random access machines without multiplication is polynomially rela-
ted to the equivalent Tm computation time, and vice versa. Thus the
question of whether the deterministic and nondeterministic polynomi-
ally time bounded random access machine computations are the same is
equivalent to the question of whether P = NP for Tmlcomputations, a
problem we discussed before.

In contrast, when we consider random access machines with the
power to multiply in unit time, the situation is completely differ-
ent. We show that for these devices nondeterministic and determin-
istic computation time is polynomially related and therefore for
random access machines with built-in multiplication, P = NP [32,12].
Furthermore, we give a complete characterization of the computation-
al power of these devices: the family of languages accepted in poly-
nomial time by random access machines with multiplication is exactly
PTAPE, the family of languages accepted by Tm's in polynomial tape.
Thus the additional computing power that a random access machine
with multiplication has over such a machine without multiplication
is characterized by the difference between PTIME and PTAPE for Tm
computations. Recall that we do not know whether PTIME # PTAPE and
therefore, multiplication could be simulated in polynomial time by
addition and boolean operations iff PTIME = PTAPE; again, an open
problem which we have already discussed.

For related results about other random access machine models
and for more detailed proofs than given in this paper see [12,32,27].

To make these concepts precise we now describe random access
machines, RAM's, with different operation sets and step counting
functions. Note that we again consider these devices as acceptors.

Definition: A RAM acceptor or RAM with instruction set O is a set

of registers RO,Rl,... each capable of storing a non-negative integer
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in binary representation, together with a finite program of (possi-

bly labeled) O-instructions. If no two labels are the same, we say

that the program is deterministic, otherwise it is nondeterministic.

We call a RAM model deterministic if we consider only deterministic
programs from the instruction set.

Our first instruction set consists of the following:

o)
Ri < Rj (=k) (assignmént)
Ri < <Rj> (indirect addressing)
R, « Rj + R (sum)
R, « Rj = R (proper subtraction)
R, « Rj bool Rk (boolean operations])
if Ri comp Rj label 1 else label 2 (conditional jump)
accepg_—_—
reject

comp may be any of <, <, =, >, >, #. For boolean operations we con-

sider the integers as bit strings and do the operations component-
wise. Leading 0's are dropped at the end of operations: for example

11 nand 10 = 1. bool may be any binary boolean operation (e.g. A,V,

eor, nand, 2, etc.). accept and reject have obvious meanings. An

operand of =k is a literal and the constant k itself should be
used. |

The computation of a RAM starts by putting the input in regis-
ter Ro, setting all registers to 0 and executing the first instruc-
tion of the RAM's program. Instructions are executed in sequence
until a conditional jump is encountered, after which one of the in-
structions with label "label '1" is executed is the condition is sat-
isfied and one of the instructions with label "label 2" is executed

otherwise. Execution stops when an accept or reject instruction is
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met. A string x € {0,1}* is accepted by the RAM if there is a fi-
nite computation ending with the execution of an accept instruction.
The complexity measures defined for RAM's are:

(unit) time measure: the complexity of an accepting computation

is the number of instructions executed in thé'accepting sequence.
The complexity of the RAM on input x is the minimal complexity of
accepting computations.

logarithmic, or length time measure: the complexity of an dc-

cepting computation is the sum of the lengths-of the operands of the
instructions executed in the accepting sequence. When there are two
operandé, we take the length of the longer; when an operand has
iength 0 we use 1 in the sum. The complexity of the RAM on input x
is the minimal complexity among accepting computations.

memory measure: the maximum number of bits used at any time in

the computation. (The number of bits used at a given time is the

" sum of the number of significant bits of all registers in use at

that time.)
Unless otherwise stated, time measure will mean unit time mea-

sure. We shall call RAM's with instruction set Ol RAM. 's, or

1
simply RAM's. For a discussion of RAM complexity measures, see [5]
or [1].

We will consider another instruction set:

O2 is Ol plus the instruction

—

Ri <« Rj . Rk (product)

which computes the product of the two operands (which may be liter-
als) and stores it in R, . RAM's with instruction set O, will be
called MRAM's (M for multiplication).

We denote by PTIME - MRAM and by NPTIME - MRAM, respectively,
the families of languages accepted in polynomiél time by determinis-

tic and nondeterministic MRAM's.
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We shall outline below the proof of the main results about
MRAM's (for more detailed proofs and related results see [12,32,27])

Theorem 5.1: PTAPE D NPTIME - MRAM

Theorem 5.2: PTIME - MRAM D PTAPE.

Thus for MRAM's we have that dete¥ministic and nondeterministic
polynomial time computations are the same.

Corollary 5.3: PTAPE = NPTAPE.

This follows from the fact that the proofs of Theorems 5.1 and
5.2 actually imply that PTAPE D NPTIME - MRAM and that PTIME - MRAM
D NPTAPE. |

We now sketch a procf of Theorem 5.1.

Suppose the MRAM M operates in time nk , where n is the
length of the input. Our Tm simulator T will write out in one of
its tapes a guess for the sequence of operations executed by M in
its accepting computation and check that the sequence is correct.
The sequence may be written down deterministically, by enumerating
all such sequences of length nk in alphabetical order. Since the
number of instructions of M's program is a constant, the sequence
will be of length cnk for some constant ¢ . To verify that such a
sequence is indeed an accepting computation of M we need to check
that one step follows from the previous one when M's program is exe-
cuted -- which is only a problem in the case of conditional instruc-
tions, when we must find out the contents of a register. We shall
define a function FIND(r,b,t) which will return the value of the
b-th bit of register r at time t . Our theorem will be proved if
this function is computable in polynomial tape -- the subject of the
remainder of this part. Note that since we are testing for an ac-
cepting sequence, it does not matter whether we are simulating de-
terministic or nondeterministic machines.

’

First, let us prove that the arguments of FIND may be written
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idown in polynomial tape. Note that in t operations the biggest pos-
| t

.sible number that may be generated is a2 , produced by successive mul-

t
‘tiplications: a, azr a%-a® = a4, at.at = a8,...,a2 ,where a 1is the

t
maximum of =x and the biggest literal in M's program. To address a bit

& t
of it, we need to count up to its length, that is , up to logz(a2 ) =
éztlogza, which may be done in space log2(2tlog2a). In particular, for

k+l will suffice, so that b may be written down in poly-

%t=nk, space n
énomial tape. Clearly, t may also be written down in polynomial tape.
%There is a small difficulty with r: due to indirect addressing M
i‘might use high-numbered registers, even though it uses only a polynomi-
al number of them. However, by using a symbol table, at a cost of a
squaring of the running time, we may assume that a machine operating in

time t wuses only its t first registers. It is clear that in that

§case r may be written down in polynomial tape. Now let us describe

%FIND and prove that it operates in polynomial tape.

? Informally, FIND works as follows: FIND(r,b,0) is easily computed
igiven the input. We shall argue inductively. FIND(r,b,t) will be com-
%puted from previous values of FIND -- clearly the only interesting case
|

%is when r was altered in the previous move. For example, if the move
éaﬁ t-1 was r <« pVs, then FIND(r,b,t) = FIND(p,b,t-1) V FIND(s,b,t—l).
éThis recursion in time does not cause any problems, because we may

;first compute FIND(p,b,t-1) and then reuse the tape for a call of

FIND(s,b,t-1), so that if Qt-l is the amount of tape needed to compute
' FIND's for time up to t-1, we have the recurrence lt = 2t—l + c
;(20 = cnk+l) which has the solution lt = c'nk+l.

In the case of multiplication of two 4-digit numbers, we may
“have to compute up to 2 factors and get the carry from the previous
‘ k
" column in order to obtain the desired bit. Since £ may be 20 r We

‘must be able to take advantage of the regularity of operations in

:order to be able to compute within polynomial tape. Also, the carry
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from the previous column may be quite big: in the worst case, when

L

we multiply (1)2 by (1) the carry may be 2. This is still

manageable, since in time nk, L < an, an accumulator of length nk
will suffice. We also need to generate up to & pairs of bits, mul-
tiply them in pairs, and add them up. This may be done as follows:
we store the addresses of the two bits being computed, compute each
6f the two bits of the product separately, multiply the two results
and update the addresses to get the addresses of the two bits of the
ﬁext product. The product is added to an accumulator and the pro-
cess is repeated until all product terms have been computed. Then
We need the carry from the previous column.

We cannot compute this carry by a recursive call of FIND, be-
cause since the length of the register may be exponential, keeping
track of the recursion would take exponential tape. Instead, we com-
pute the carries explicitly from the bottom up --iie., we first com-
pute the carry at the rightmost column (finding the bits by recur-
sive calls of FIND on pairs and multiplying them), and then, with
that carry and FIND, we compute the carry from the second rightmost
column, and so on. The space needed is only for keeping track of

which column we are at, one recursive call of FIND, one accumulator

and one previous carry holder. Each of these may be written down in
k+1

space n , so that we have the recursion
_ k+1 . _
Ly =2 4 *on with 20 = n
S . . 2k+1 . . . q .
which implies &, < c¢n , and the simulation of multiplication may

t
be carried out in polynomial space. The argument for + is similar

but much easier, since only 2 bits and a carry of at most 1 are in-
volved.
With the above comments in mind it is easy to write out a com-

plete simulation program and see that it runs in polynomial time.

This ends the proof of our theorem, i.e.
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Theorem 5.1: Polynomial time bounded nondeterministic MRAM-recog-

nizable languages are recognizable in polynomial tape by Turing ma-
éhines.

Now we sketch the ideas behind the proof of Theorem 5;2. They
ére basically a set of programming tricks that enable us to do opera-
tions in parallel very efficiently.

To simplify our proof we will use a special RAM model referred
fo as CRAM (for concatenation). A CRAM is a RAM with the ability to
concatenate the contents of two fegisters in one operation,and also
has the operator SUBSTR(A,B) which replaces A by the string ob-
tained from A by deleting the initial substring of the length £,
where & is the length of B.

It can be seen that CRAM computations may be simulated easily
by MRAM's, and that SUBSTR is not essential to the oconstruction.

For any given Tm T operating in pdlynomial tape on input x,
a CRAM can first generate all possible configurations of this Tm
computation (a configuration of T on input x consists of the
state of T, the contents of the work-tape and the positions of T's
heads). From this set of all possible configurations, the CRAM can
obtain the matrix of the relation "follow in one move" -- i.e.’if A
is the matrix of the relation, then aij = 1 iff T passes from the
i-th to the j-th configuration in one move. Clearly, x 1is accept-
ed by T iff age = 1 where A* is the transitive closure of A and
b and e are initial and accepting final configurations respectively.

First we indicate how to compute efficiently the transitive
closure of a matrix A. We suppose that initially the whole matrix
is in a single register. Remember that A* = I vVav A% v A3 N

v A" v ..., where A is n by n and A’ is the i-th power of A in

A b, .

qik k])'

1

the "and-or" multiplication (i.e. if C = A+B, cij=
>k

[

h<s

Moreover, we may compute only the products
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(L VA),(IV A2, (rvadav A)2 = (v A)4,... where the exponent

of (I V A) is a power of 2. Since there are only 1logn of these

ntl _ (I V A)n), transitive closure of n by n matrices can be

((I v A)
done in time 1logn times the time for multiplication. Throughout
this proof, "multiplication" will mean "A" and "multiplication of
matrices", "and-or" multiplication. Also, for simplicity,_we assume
n to be a power of 2. é
To multiply two matrices efficiently, we obser?e that if we have:
several copies of the matrix stored in the same register in a conve- |
nient way,we can obtain all products in a single "A" operation: all

we need is that for all i,j, and k, ajy be in the same bit position |

as bkj' For example, if we have

(row 0 of A)n(row 1 of A)n...(row n-1 of A)n =

n
"'an—l,n—l)

n n
(3,0%0,1°**20,n-1) @1,0%1,1°"°21,n-1) **-®n-1,0%n-1,1
in one register (where (row i)n means n-fold concatenation) and

[(column 0 of b) (column 1 of B)...(column n-1 of B)]n =

[(b b b b b (b b

0,0°1,0°**Pn-1,0) ®o,1P1,1° *Pn-1,27 - Po,n-1--- n—1,n-1”n
in the other, the "A" of the two registers yields all terms aikAbkj‘
Supposing we are able to produce these forms of the matrices easily,
all we have to do is collect terms and add (V) them up. To collect
terms, if we are able to take advantage of the parallel operations at
their fullest,we should not have to do more than logn operations,
since each cij is the sum of n products. Note that in our case
c0,0 is the sum of the first n bits, 00,1 of the next n, and in
general cij is the sum of bits i*n + (j-1)n to ien +.jn -1,

We use the following idea: to add up a row vector of bits, take
the second half of the row, add it in pérallel to the first half and
call the procedure recursively for the new first half. The reader is

encouraged to write a routine, using the mask M' = On/21n/2 to select
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the second half (n is the length of the vector) and prefixing strings
of 0's to registers to get proper alignment. It is possible to design
the algorithm in such a way that this procedure may be done in parallel
for several vectors, stored concatenated to each other in é single
register. In particular if one starts with n2 copies of the mask M',

then the following procedure obtains all terms of the matrix product

C = A B from all the products ay A bkj:
ADDUP : PROC
2
M = (On/2 . ln/2)n
K= n/2

while K >1 do
B=A AM
_ K
A= ((0"+.A) VB) A M
K = K/2
M= (0FM) A M
end

end :ADDUP

. ADDUP uses OKand K/2 as primitive operations, but K/2 = SUBSTR(K,1)
f and 0K may be obtained by successive concatenations of a string with

- itself: after p steps we get a string of 0's of length 2P,

In order to perform matrix multiplication one must be able to ex-

' pand matrices from some standard input form into the two forms we

- needed in forming the product. 1In addition, for transitive closure,

- we must "pack" the result back into standard form. We do not give the
E messy details: the sort of programming is illustrated by ADDUP. Ba-

' sically one uses masks and logical operations to get the required

é bits from their original places, then using concatenations one "slides"

é a number of them simultaneously to where they belong. The masks and

"sliding rules" are updated and the process repeéted. It can be shown

i

~ that all these operations require only time polynomial in the loga-
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;than our exposition of the method for computing transitive closures.
|

.rithm of the size of the matrix. In fact transitive closure of n x n

boolean matrices may be found in O(lognz) CRAM moves.
, We still have to convince the reader that given a polynomial tape

bounded Tm with input x , we can obtain the matrix of the "follow in

'one move" relation easily. We shall do this in an even sketchier way

If a Tm operates on an input of length n in tape nk, there are
k

iat most 0(2cn ) different configurations. Let us take a convenient en-

| 4
‘coding of these in the alphabet {0,1} and interpret the encodings as

'integers. By convenient encoding we mean one that is linear in the

,heads and the state may be easily found, and which may be easily up-

length of the tape used by the machine, where the positions of the

k

{
dated. Then, if we generate all the integers in the range 0 - (2" -1)

(where c¢ depends only on the encoding) we shall have produced en-

écodings of all configurations, together with numbers that are not en-

?codings of any configuration. The reader might amuse himself by writ-

1

.ing a CRAM program that produces all integers between 0 and m = 2P-1

'in time p.

Now, in the operation of the Tm the character under the read-write

"head, the two symbols in the squares immediately to the right and left

of it, the state of the finite control and the position of the input

head uniquely determine the next configuration (i.e. CORRECT(010203)).

This is the sort of localized change that may be checked by bool-

"ean operations. More precisely, it is not hard to write a CRAM rou-

tine that checks that configuration cy follows from configuration cj

in O(R) moves, where & 1is the length of the configurations. More-

over, the operations executed by the program do not depend on the con-

tents of c, or c. -- in particular it may be adapted to check whe-

1 J

it
follows from c still using only O(%) - moves. Now the way to
2k

:ther for vectors of configurations c,, t =0,1,...,p, cjk k=10,1,..p

%5k it

:generate the transition matrix in time O(n

) where n 1is the
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length of the input is: first we generate all integers in the range
0 - (Zn -1), call these configurations c; . Then, as ih thﬁ matrix
pro@uct routine, we form (co)m(cl)m...(cm_l)m where m = 2n and (ci)m
means m-fold concatenation, and (cocl...cm__l)m in O(log m) = O(nk)
operations, and in O(nk) operations determine simultaneously for all

i and j whether cj follows from cy (i.e. obtain a vector of bits
which is 1 iff cj follows from ci). This completes the description
of our simulation algorithm: putting everything together we have a
procedure which runs in polynomial time, since the matrix may be com—‘
puted in O((log 2¢n )2) moves and its transitive closure in

cnk 2
0((log 2 )

) = O(n2k) moves.

This completes the outline of the proof for the special CRAM used.

Let us restate the results of this chapter. We defined a rea-
sonable RAM model -- the MRAM -- that has multiplication as a primi-
tive operation, and proved two important facts about their power as
recognizers:

1) deterministic and nondeterministic time complexity classes are
polynomially related,i.e.PTIME - MRAM = NPTIME - MRAM .

2) time-bounded computations are polynomially related to Tm tape-

Since it can be proven that RAM time and Tm time are polynomially

- related, we also proved

3) RAM running times with and without multiplication are polyno-

'mially related if and only if Tm time and tape measures are polynomi-

ally related, i.e. PTIME = PTAPE iff PTIME - MRAM = PTIME - RAM..

1
This last observation is interesting, since it seems to imply
that the elusive difference between time and memory measures for Tm's
might perhaps be attacked by "algebraic" techniques developed in "low
level" complexity theory.

We also note that RAM's may simulate MRAM's in polynomial time,
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as long as MRAM's operate in polynomial space and time. Therefore
MRAM's are more powerful than RAM's if and only if the unit and lo-
garithmic time measures are not polynomially related -- i.e. if (in

our "polynomial smearing" language) the two are distinct measures.

Many "if and only if" type corollaries follow,in the same vein,
from 1), 2) and 3). For example:

Corollary 5.4: The set of regular expressions whose complements are

Enon-empty (i.e. L§ of section 3) is accepted in polynomial time by a
gdeterministic Tm iff every language recognized by an MRAM in polynomial
jtime is recognized by a deterministic RAM in polynomial time.

: The reader may write down many of these: some of them sound
quite surprising at first.

Minsky suggested [23] that one of the objectives of theoretical
computer science should be the study of trade-offs (e.g. between mem-
ory and time, nondeterminism and time, etc.). Our constructions trade
exponential storage for polynomial time (simulation of Tm's by MRAM's)
and polynomial tape for exponential time in the other simulation.
Whether this trade-off is real or the result of bad programming is
not known, since P = PTAPE? is an open problem. If P #vPTAPE, then

PTAPE would provide us with a class of languages which have a trade-

off property: they may be recognized either in polynomial time or in

. polynomial storage, but not simultaneously.

% Corollary 5.5: PTIME ¥ PTAPE iff there exists a language L which

. can be recognized by MRAM's in polynomial time and polynomial memory,
but not simultaneously.

§ Note that if such an L exists, any tape complete problem may

% be chosen to be it, for example Li. |
As we saw, if MRAM's are different from RAM's, they must use more
éthan a polynomial amount of storage (in our simulation it was an ex-

ponential amount). This suggests asking whether it is sufficient to

have a RAM and exponential tape to get an MRAM's power, or, equiva-



Se kel

i

lently, to look at operations that make RAM - PTIME classes equivalent

to PTAPE. The answer is that almost anything that expands the length

of the registers fast enough will do, as long as we have parallel bit
operations: multiplication, concatenation or shifting all have this
property. In particular, concatenation, tests and parallel bit opera-
tions (no indirect addressing) will do. On the other hand, adding
more and more powerful operations (indirect addressing, shifts by
shift registers, division by 2, SUBSTR, multiplication, integer divi-
sion) do not make the model more.powerful, once we have a fast memory-
augmenting device. The stability of this class of RAM's makes them a
nice characterization of memory-bound complexity classes. We also
think they might be useful for studying parallelism.

Since we believe that P # NP (and therefore PTIME - RAM # NPTIME-

RAM) but PTIME - MRAM NPTIME - MRAM it seems interesting to ask

NP? question in an abstract setting, when we

what happens to the P
allow a fixed but arbitrary set of recursive operations in a single
step. The surprising result [2] is that there are instruction sets

for which P = NP and instruction sets for which P # NP -- in cher
words the problem becomes meaningless when asked in such a general
setting. Since we have argued that P = NP? is a central problem of
theoretical computer science, the result appears to us like a general
warning that, by becoming too formal too soon, we can "generalize away"
the problems of interest to computer science,and wind up with uninter-
esting abstractions.

In particular, a proof that P # NP would have to deal somehow

. with the nitty-gritty combinatorics of the problem. We note that our

technique for proving inclusion among sets -- diagonalization -- 1is
usually insensitive to such details. The requirement that diagonal
arguments be extremely efficient is peculiar to gomputer science, and
the discovery of such a technique méy be as big a breakthrough as the

discovery of priority methods (nonrecursive but r.e. diagonal methods)



s

was in recursion theory.
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