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On the Strucfure of Hopt Algebras

By JOHN W, MILNOR and JOHN C. MOORE*

The notion of Hopf algebra' has been abstracted from the work of Hopf
on manifolds which admit a product operation. The homology H,(M; K) of
such a manifold with coefficients in the field K admits not only a diagonal or
co-product

H.(M; K) — H.(M; K) Q H.(M; K)
induced by the diagonal M — M x M, but also a product
H.(M, K)® H(M; K) — H.(M; K)

induced by the product M x M — M. The structure theorem of Hopf con-
cerning such algebras has been generalized by Borel, Leray, and others.

This paper gives a comprehensive treatment of Hopf algebras and some
surrounding topies. New proofs of the classical theorems are given, as well as
some new results. The paper is divided into eight sections with the following
titles:

Algebras and modules.

Coalgebras and comodules.

Algebras, coalgebras, and duality.

Elementary properties of Hopf algebras.

Universal algebras of Lie algebras.

Lie algebras and restricted Lie algebras.

Some classical theorems.

Morphisms of connected coalgebras into connected algebras.

The first four sections are introductory in nature. Section 5 shows that,
over a field of characteristic zero, the category of graded Lie algebras is iso-
morphic with the category of primitively generated Hopf algebras. In §6, a
similar result is obtained in the case of characteristic p # 0, but with graded
Lie algebras replaced by graded restricted Lie algebras. Section 7 studies
conditions when a Hopf algebra with commutative multiplication splits either
as a tensor product of algebras with a single generator or a tensor product of

S A ol ol

* The first author was an Alfred P. Sloan Research Fellow, and the second was partially
supported by the Air Force Office of Scientific Research during the period that this work
was being done.

1 The term hyperalgebra is used by Cartier, Halpern, and others for the same concept.
Our Hopf algebras differ from those defined by Borel in that the complication or diagonal
map is considered as part of the structure.
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Hopf algebras with a single generator. It is here that one finds the funda-
mental theorem of Hopf, Leray, and Borel. Section 8 introduces and studies
mildly a canonical anti-automorphism defined for connected Hopf algebras. For
the Steenrod algebra, this operation was essentially introduced by Thom
(Compare Milnor [6]).

In addition to the main body of the paper, there is an appendix on the
homology of H-spaces with coefficients in a field of characteristic zero.

1. Algebras and modules

For convenience we assume that we have chosen a fixed commutative ring
K. Tensor products will be taken over K, and the tensor product of two K-
modules A and B will be denoted by A Q B. Similarly Hom (4, B) will denote
the morphisms of A into B in the category of K-modules.

A graded K-module A is a family of K-modules {A,} where the indices =
run through the non-negative integers. If A, B are graded K-modules, a
morphism of graded K-modules f: A — B is a family of morphisms {f,} such
that f,: A, — B, is a morphism of K-modules.

If A and B are graded K-modules, then A ®Q B is the graded K-module
such that (AQ B), = @, ;-. A;QB;, andif f: A— A’, g: B— B’ are morphisms
of graded K-modules, then (fQR¢g): AQB — A’ X B’ is the morphism of graded
K-modules such that (f & 9), = Birjn [: R g5

If A is a graded K-module, we denote by A* the graded K-module such
that A¥ = Hom (A,, K). If f: A— B is a morphism of graded K-modules, then
f*: B*— A* is the morphism of graded K-modules such that f; = Hom (f,, K).
Here we use the convention that a module and the identity morphism of the
module will be denoted by the same symbol.

Sometimes K itself will be considered as a graded K-module which is the
0-module in all degrees except 0, and the ring K in degree 0. Recall that
AR K= A= K A where A and K both denote either K-modules or graded
K-modules.

1.1. DEFINITIONS. An algebra over K is a graded K-module A together
with morphisms of graded K-modules : A A — A4 and 7: K — A such that
the diagrams

ARARA2% 44
(1) [owa ¢
ARA —F% 4

and
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KQA—1%4 a4
/
~\ /¢
(2) A
AP
KA A% Sa0a

are commutative. The morphism @ is called the multiplication of the algebra
A, and 7 is called the unit of A.

A multiplication in a graded K-module A4 is a morphism @: A @ A — A.
For this to be the multiplication of an algebra condition, (1) says that it must
be associative; while the existence of 7 together with the commutativity of
diagram (2) says that this multiplication must have a unit.

For convenience we introduce the twisting morphism T: AQB—BRX A
where A and B are graded K-modules, and T is the morphism such that
T(a®b)=(-1)bRa for ac A,,bc B, and p + ¢ = n. The algebra A is
commutative if the diagram

AR A
L
T > A
l /¢
AR A
is commutative. Classically such an algebra was called anti-commutative.

If A and B are algebras over K, then A & B is the algebra over K with

multiplication the composition

A®B®A®B—A®—T@-B—+A®A®B®B¢—A®ﬂaA®B

and unit
K=-KQK™M2”, 4@B.

A morphism of algebras f: A — B is a morphism of graded K-modules such
that the diagrams

AQAA 4 K4,

lf f lf lf 1f

BRB-%B K-*.B

are commutative. Observe that an algebra A is commutative if and only if
p: AR A— A is a morphism of algebras.
An augmentation of an algebra A is a morphism of algebrase: 4 — K.
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An algebra A together with an augmentation ¢, is called an augmented (or
supplemented) algebra. If A is an augmented algebra, we denote by I(A) the
kernel of e: A — K. Observe that I(4), = A, for ¢ > 0, and I(A), is the kernel
of ¢, A,— K. Theideal I{4)in A is called the augmentation ideal of A. Observe
that as a graded K-module 4 may be considered as the direct sum

A = image 7 P kernel ¢,
or identifying K and image 7,

A=—KPIA4).
Here we use the fact that e7: K — K is the identity morphism of K.

1.2. DEeFINITION. If A is an algebra over K, a left A-module is a graded
K-module N together with a morphism @,: AKQ N — N such that the diagrams

AQARQN 28 4@ N

lso,i ®N lsoN
AR N  __, N,
KQN—2Y 40N
/
N\ /o~
N

are commutative.
If N, N’ are left A-modules, a morphism f: N— N’ of left A-modules is
a morphism of graded K-modules such that the diagram
AQN 22N
lA & f lf
AQ N' 22, N
is commutative.
If f, 9: N— N’ are morphisms of left A-modules, then (f + ¢g): N— N'is

the morphism of left A-modules such that (f 4 ¢),=f, + 9o M, — M,;, a
morphism of K-modules.

The kernel of f is the left A-module such that as a graded K-module
(Ker f), = Ker (f,), and the cokernel of f is the left A-module such that as a
graded K-module (Coker /), = Coker (f;). Making a few routine verifications,
one sees that the category of left A-modules is an abelian category.

The notion of right A-module M is defined similarly using a morphism of
graded K-modules @,: M Q A — M. The right A-modules also form an abelian
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category.
If M is a right A-module, and N is a left A-module the tensor product of
M and N is the graded K-module M &), N such that the sequence

MRQARQN- LN MO S N— s M®, N— 0
is an exact sequence of graded K-modules.

If M — M-— M — 0 is an exact sequence of right A-modules, and Nisa
left A-module, then

MRJI/AIN—MJIS/AN—M'QqN—0
is an exact sequence of graded K-modules.

Similarly if M is a right A-module, and N'— N — N" — 0 is an exact
sequence of left A-modules, then

MRIASNN —MJI/AN—MJI,AN"—0
is an exact sequence of graded K-modules.
In particular if A is an augmented algebra, we have that K is a right A-

module via the augmentation e: A — K. Thus if Nis a left A-module, we have

defined K@, N and K&, N = N/I(A)N where I[(A)N is the image of the
composition

IARQN— AQNLN.
1.3. DEFINITION. The algebra A over K is conmnected if 7: K— A, is an
isomorphism.
Notice that any connected algebra A has a unique augmentatione: A — K,
and that K—— A, — K where ¢, = K.

1.4. PROPOSITION. If A is a connected algebra over K, and N is a left
A-module, then N = 0 if and only if KR, N = 0.

ProOF. Certainly if N= 0, then K ®, N = 0. Suppose, on the other hand,
that K®, N = 0. This is equivalent to saying that I{A) @ N — N is an epi-
morphism. Now since A is connected, I(A), = 0; and then if N, = 0forq < k,
we have ({A)®@ N), =0 for ¢ <k + 1, and it follows that N, =0 for
q¢ =k + 1. Since (I(A) ® N), = 0 = N,, we have proved the proposition.

1.5. COROLLARY. If A is a connected algebra over K and f: N'—>N is a
morphism of left A-modules, then f is an epimorphism if and only if
KR.AKQ N — KR, N is an epimorphism.

ProoF. Certainly if f is an epimorphism, sois K ), f. Suppose K R, fis
an epimorphism. Let N" be the cokernel of f. We have exact sequences
N >N—-N"—-0, and KQ N KX/ N—-KK,N"—0. Since KK, f
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is an epimorphism, K @, N” = 0, and it follows from the preceding proposition
that N” = 0 which proves the corollary.

If C is a graded K-module, then A Q) C is a left A-module called the ex-
tended A-module of C with g0t A Q AR C — A Q C the morphism

c 25 e®C

ARAR —ARC.
If Nisa left A-module, and f:C — Nis a morphlsm of graded K-modules,
ARSf

then the composition AQC —— ARQ N LN N is a morphism of left
A-modules.

Observe that K®, (A4 R C) = C, and that the morphism K &, (A X C) —
K@, N under the conditions above is just the composition of morphisms of
graded K-modules

c o N— KRN
1.6. PROPOSITION. If A is a connected algebra over K, C is a graded
K-module, N is a left A-module, and f: C — N is a morphism of graded
K-modules, then the composition

AQC-A2T A NL N

18 an epimorphism of left A-modules if and only if the composition

cl.N—K®Q.N
18 an epimorphism of graded K-modules.

Proor. The proposition follows at once from Corollary 1.5.

In addition to speaking of algebras over K being connected, it is possible
to speak of graded K-modules being connected. If N is a graded K-module, it
is connected if N, ~ K. If A is an algebra over K, and N is a left A-module,
we say that N ig connected if the underlying graded K-module of N is con-
nected. In this case, given an isomorphism 7: K =, N,, there is defined a
unique morphism 7: A — N which is the composition

A= AQK-22" , s NI N.

1.7. PROPOSITION. Suppose the following conditions are satisfied:
(1) A is a connected algebra over K;
(2) N s a connected left A-module;
(3) C= K, N:
(4) A: N— N C is a morphism of left A-modules where
Prsgs AQN®C— NQC
18 the morphism ¢, X C;
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(5) II: N—C isthe canonical epimorphism, and f: C— N is a morphism
of graded K-modules such that I1f = C;

(6) c®RCA=1I: N—C;

(7) (NQe)A= N: N— N; and

(8) the sequence 0 — AR C i®_C_) N C is an exact sequence of left
A-modules.

If J+ A® C — N is the composition A®Q C —-2 , 4@ N2, N then

7 is am isomorphism of left A-modules.

PROOF. By Proposition 1.6, we have that f is an epimorphism. Now define
filtrations on A® C and NQ C as follows: F (AR C) = Em AR C,, and
FANQRC)= Eqép NQ®C,. Let EAARC)and E°(N R C) denote the corre-
sponding associated bigraded modules. We now have E? (AR C) = A, R C,,
and E} (N® C) = N, ® C,. Moreover Af(Em K®C,)C F(N® C) since
Zm (NRC),EF,(NKC). Since Af is a morphism of left A-modules, it
follows that A f(F(A ® C))c F,(N® C) and thus Af induces

EAf):E(ARQRC)—> ENRC) .
Moreover identifying E%(A Q C) with A ® C and E%(N @ C) with N® C, we
have that E%Af ) is just the morphism % ) C which is a monomorphism by
hypothesis 8. This implies that A f is a monomorphism, and proves the propo-
sition, since now f is a monomorphism.

2. Coalgebras and comodules

2.1. DEFINITIONS. A coalgebra over K is a graded K-module A together
with morphisms of graded K-modules

AA—ARA and ¢ A— K
such that the diagrams
A

4 —% ., A4
(1) iA 1A®A
ARA
ARA-222 40404
and
AA—24 kx4
/
AN F
A
VPN
AQALA®: S Aok
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are commutative. The morphism A is called the comultiplication of the co-
algebra A, and ¢ is called the unit of A.
The coalgebra A is commutative if the diagram

is commutative.
If A and B are coalgebras over K, then A B is the coalgebra over K
with comultiplication the composition

280 A QAQBRB-—22T%8  AQBRARB,

AR B
and unit
AQB42  kQK=K.

A morphism of coalgebras f: A — B is a morphism of graded K-modules
such that the diagrams

A2 A4 ALK
lf lf@f lf lk
B2 B®B B, K

are commutative. One can verify without difficulty that a coalgebra A is com-
mutative if and only if A: 4 — A& A is a morphism of coalgebras.

Noticing that we may consider K to be a coalgebra in a canonical way, an
augmentation of a coalgebra is a morphism of coalgebras 7: K— A. If A is an
augmented coalgebra, i.e., a coalgebra together with an augmentation 7, we

denote by J(A) the cokernel of 7. Considering 4 as a graded K-module we have
that

A=KgJ4).

2.2. DEFINITIONS. If Ais a coalgebra over K, a left A-comodule is a graded

K-module N together with a morphism Ay: N— A® N such that the
diagrams
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Aw

N AQN
lAN lAA QN

AQN—2Z8% i4A0 N

AQN—2Y ko N
AN /
NS
N
are commutative.

If N, N’ are left A-comodules, a morphism f: N— N’ of left A-comodules
is a morphism of graded K-modules such that the diagram

N2 A®N

lf lA ®f

N2 AQ N
is commutative.

The category of left A-comodules is immediately seen to be an additive
category. However, due to the fact that A ®, ( ) is right exact and not in
general left exact, it is not an abelian category in general. If A is a flat graded
K-module, then the category of left A-comodules is abelian.

The notion of right A-comodules is defined using a morphism of graded
K-modules Ay: M— M@ A. The category of right A-comodules has similar
general properties to the category of left A-comodules.

If Mis aright A-comodule and N is a left A-comodule the cotensor product
of M and N is the graded K-module M (1, N such that the sequence

0—> MO,N—> M@ N 2N MO D AQN

is an exact sequence of graded K-modules.
A sequence of graded K-modules

-1
— @2 -1, 0 - 2)—s

is split-exact if it is exact, and Ker (f(g)) is a direct summand of C(q) for each
q. Sequences of modules over a K-algebra or a K-coalgebra are split exact if
the underlying sequences of graded K-modules are split exact.
If 0— M — M— M" is a split-exact sequence of right A-comodules, and
N is a left A-comodule, then
6O— Mg, N—MO,N—M'O,N

is an exact sequence of graded K-modules.
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Similarly if M is a right A-comodule and 0 — N’ — N — N"” is a split-exact
sequence of left A-comodules, then

0O—MoO,N —MOQ,N—MO,N"
is an exact sequence of graded K-modules.

2.3. DEFINITION. The coalgebra A over K is connected if ¢; A,— K is an
isomorphism.

Notice that any connected coalgebra A has a unique augmentation
7. K— A, and that ¢, = K.

2.4. PROPOSITION. If A is a connected coalgebra over K, and N is a left
A-comodule, then N = 0 4f and only if KO, N = 0.

ProoF. Certainly if N = 0, then K O, N = 0. Suppose that KO, N = 0.
This is equivalent to saying that N — J(4) @ N is a monomorphism. Since A
is connected, J(A), = 0; and thus, if N,= 0 for ¢ =<k, we have (J(A)QN),=0
forg < Ik + 1; and it follows that N, = 0 forq < k£ + 1. Thus N = 0 and the
proposition is proved.

Having proved the preceding proposition we cannot, as in the preceding
section, draw a simple corollary since the category of left A-modules is not
necessarily abelian.

2.5. PROPOSITION. If A is a connected coalgebra over K, f: N—N" is a
morphism of left A-comodules, t: N' — N 1s the kernel of f considered as a
graded K-module, and the sequence

JA)QN' — J(A) @ N—> J(A) Q N”

18 an exact sequence of graded K-modules, then f is a monomorphism tf and
onlyif KO,f: KO, N— KO, N’ is a monomorphism.
ProOF. We have a commutative diagram

0 0

KOo,N E.i, KOo,N”

N ? — N N NII

JA QN — J(A) QN L2, jay® N”

with exact rows and columns. If f is a monomorphism, it follows at once that
K O, f is a monomorphism. Suppose K [, f is a monomorphism, and that
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N, = 0forq < k. Then since A is connected, (J(4) @ N’), = 0forq < k + 1;
and (J(4) ® f), is a monomorphism for ¢ < k + 1. Thus f, is a monomorphism
forg =k +1, and N/=0 for ¢ =<k -+ 1 which shows that N’ =0 and proves
the proposition.

Observe that the condition that J(4) @ N’ — J(4) @ N— J(A) Q N’ be
exact is immediate if either A is a flat K-module or f is an epimorphism.

If C is a graded K-module, then A Q) C is a left A-comodule with

A4®U:A®C————)A®A®C

the morphism A @ C. If N is a left A-comodule and f: N— C is a morphism
of graded K-modules, then the composition

N2 A N—221, axc

is a morphism of left A-comodules.
Observe that K [1,(4A Q® C) = C, and the morphism

KON—KO,(AQC)

under the conditions above is just the composition

KO, N— N-1,¢.

We may define the notion of connected left A-comodules, just as we defined
the notion of connected modules over an algebra in the preceding section. Thus
a left A comodule N is connected if it is connected as a graded K-module, i.e.,
N,~ K. We then have j: N — A defined as the composition

N AQN—22 ,AQK=4,

where ¢: N — K, ¢| N, is an isomorphism.

2.6. PROPOSITION. Suppose the following conditions are satisfied:

(1) A is aconnected coalgebra over K,

(2) N 1s a connected left A-comodule,

(3) C=K(O,N,

(4) p: N® C — N is a morphism of left A-comodules where Ayge =
Ay®C,

(5) j:C— N 1is the canonical monomorphism, and f: N—C 1is a
morphism of graded K-modules such that f7 = C,

(6) 0@ C)=j:C— N,

(7)) PINK1n) = N: N— N, and

(8) the sequence NQ C —f®—g—> AR C—— 01s an exact sequence of
left A-comodules.

ARQS

Iff~:N—»A®C'ésthecompositionNﬂ>A®N——————>A®C,then
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f is an isomorphism of left A-comodules.

PROOF. Define filtrations on A @ C and N C as follows: FY(ARC) =
qup ARC, FP(NQ C) = qup N®C, and let E{A QR C) and E(NR C)
denote the corresponding associated bigraded modules. We now have

(AR C)= A,QC,and EF(NQC)= N,Q C,. Moreover
FAFAN® C))c FHA®C)
and hence induces E(f®): E(N® C)— E(A R C); identifying E(N® C)
with N® C, and E(A ® C) with A Q C, we have E(fp) = j ® C which is
an epimorphism by hypothesis 8. Thus F is an epimorphism and fis an epi-
morphism,

Since K [J,f = C: C — C and we are now in a position to apply either
Proposition 2.4 or 2.5, it follows that f is a monomorphism, and hence an iso-
morphism, which proves the proposition.

3. Algebras, coalgebras, and duality

A graded K-module A is of finite type if each A, is a finitely generated
K-module. Itisprojective if each A, is projective. We recall a few facts con-
cerning graded K-modules which are projective of finite type. If A and B are
such K-modules, then

(1) the morphism of graded K-modules

AMA— AFF

defined by Mx)a* = a*(x) for x € A,, a* € A} is an isomorphism,

(2) the morphism of graded K-modules

a: A* @ B* — (A QR B)*

defined by a(a* @ b*)(z @ y) = a*(x)b*(y) fora* e A}, b* e B*%, xc A,,yc B, is
an isomorphism.

Thus we write A = A** and A* ® B* = (A B)*. Notice that A* is
projective of finite type when A is projective of finite type.

3.1. PROPOSITION. Suppose that A is a graded K-module which s
projective of finite type, then

(1) p: AR A— A is a multiplication in A if and only if p*: A* —
A* @ A* is a comultiplication in A*,

(2) @ s associative if and only if @* is assoctative,

(8) n: K— A is a unit for the multiplication @ if and only tf *: A* —
K* = K is a unit for the comultiplication o*,

(4) (4, @, ) is an algebra if and only 1f (A*, ®*, *) 18 a coalgebra,

(5) e A— K is an augmentation of the algebra (A, 1, @) if and only if
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e*. K— A* is an augmentation of the coalgebra (A*, @*, 7*), and

(6) the algebra (A, @, V) its commutative if and only if the coalgebra
(A%, p*, *) is commutative.

The proof of the preceding proposition follows at once from the definitions
and standard properties of projective modules of finite type.

3.2. PROPOSITION. Suppose (A, @, ) is an algebra over K such that the
graded K-module A is projective of finite type. If N is a graded K-module
which is projective of finite type, then

(1) @y: AQ N-— N defines the structure of a left A-module on N if
and only if Py N* — A* Q N* defines the structure of a left A*-comodule
on N*, and

(2) under the preceding conditions, 1f K Q. N is projective of finite
type, then (KQQ N)* = KO N*.

Once more the proof of the proposition follows at once from the definitions.

3.3. DEFINITIONS. Suppose that A and B are augmented algebras. A
morphism f: A — B of augmented algebras is left normal if

(1) the sequence of graded K-modules I(4) ® B— B -~ C is split exact
where C = KX, B and 7 is the natural epimorphism, and

(2) the composition

B® IA)— B—-C
is zero.
The morphism f is rtght normal if
(1) the sequence of graded K-modules B Q I(4) — B —= C is split exact
where C = B ®, K and 7 is the natural epimorphism, and
(2) the composition

I(A)Q B— B-—5C
is zero.
We say that fis normal if it is both right and left normal, and in this
case we write B//f for KQ,B = B, K. Moreover if f is a monomorphism
we write B//A for B//f when f is clear from the context.

3.4. PROPOSITION. If f: A — B s a left normal morphism of augmented
algebras, C = K@, B, and w: B— C is the natural morphism, there are
unique morphisms of graded K-modules ¢, CQC—C, 1. K— C, and
€. C — K such that w is a morphism of augmented algebras.

The proof is immediate from the definitions.

3.5. DEFINITIONS. Suppose that A and B are augmented coalgebras. A
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morphism f: B— A is left normal if
(1) the sequence of graded K-modules

C-2B—sJA)®B

is split exact where C = K [0, B and ¢ is the natural monomorphism, and
(2) the composition

C—- B— B® J(4)
is zero.
The morphism f is right normal if
(1) the sequence of graded K-modules

C— B— B®JA)

is split exact where C = B [0, K and ¢ is the natural monomorphism, and
(2) the composition
C— B—JAKB
is zero.
We say that fis normal if it is both right and left normal. If f is a

normal epimorphism we write A\\B for K 0, B = B O, K when f is clear from
the context.

3.6. PROPOSITION. Iff: B — A1isaleft normal morphism of augmented
coalgebras, C = K O, B, and i: C — B is the natural morphism, there are
unique morphisms of graded K-modulesA,:C —-C R C,e:C— K, n: K—C
such that 1 18 a morphism of augmented coalgebras.

The proof is immediate from the definitions.

Observe that condition 1 in the definition of either normal morphism of
algebras or of normal morphism of coalgebras is always satisfied if the ground
ring K is a field; while condition 2 is always satisfied in the commutative
case.

3.7. DEFINITIONS AND NOTATION. If A is an augmented algebra over K,
let Q(A) = KX, I(A). The elements of the graded K-module Q(A) are called
the wndecomposable elements of A. If A is an augmented coalgebra over K,
let P(A) = K 0, J(A). The elements of the graded K-module P(A) are called
the primitive elements of A.

Note that there is a natural exact sequence

I(A) ® [(A) —> I(A) — Q(A) — 0

for an augmented algebra A. Thus Q(4) = I(4) ®, K.
Similarly if A is an augmented coalgebra, there is a natural exact sequence
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0 P(4) J(4) J(4) ® J(4),
and thus P(4) = J(4) O, K.
If f+ A — B is a morphism of augmented algebras, then f induces
Q(N): Q(4) — Q(B) .

Similarly if f:* A — B is a morphism of augmented coalgebras, then f induces
P(f): P(A) — P(B).

3.8. PROPOSITION. If f: A — B is a morphism of augmented algebras
and B is connected, then f is an epimorphism tf and only if Q(f): Q(A) —
Q(B) s an epimorphism.

PRroOF. Certainly if fis an epimorphism, then Q(f) is an epimorphism.
Suppose now that Q(f) is an epimorphism. We have a commutative diagram

I(A) @ [(4) — I(4) — Q(4) — 0
| e | j Q)
I(B) ® I(B) — I(B) — Q(B) — 0
with exact rows. Since I(B), = 0, it follows that I(f), is an epimorphism.
Suppose I(f), is an epimorphism for ¢ < %, then (I(f) X I(f))q is an epimor-

phism for ¢ < n»; and thus by the 5-lemma, I(f), is an epimorphism for ¢ < =,
and the proposition follows.

3.9. PROPOSITION. If f: A— B is a morphism of augmented coalgebras,
the underlying graded K-modules of A and B are flat, and A is connected,
then f is a monomorphism if and only if P(f): P(A) — P(B) is a monomor-
phism.

PRroOF. Certainly if fis a monomorphism, then P(f) is a monomorphism.
Suppose that P(f) is a monomorphism. We have a commutative diagram

0 —— P(4) — J(A) — J(A) ® J(4)
R | xnenn
0 —— P(B) — J(B) — J(B) ® J(B)

with exact rows. Since J(A4), = 0 it follows that J(f), is monomophism. Sup-
pose J(f), is a monomorphism for ¢ < n, then since A and B and hence J(A4)
and J(B) are flat we have that (J(f) Q J(f)), is a monomorphism for ¢ < n;
and thus by the 5-lemma, J(f), is 2 monomorphism for ¢ =< n, and the prop-
osition follows.

Note that the difference between Propositions 3.8 and 3.9 comes from the
fact that the funector tensor product is right exact, but not left exact. Thus
a hypothesis is needed to guarantee its left exactness under certain conditions.
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3.10. PROPOSITION. If A is an augmented algebra, and the underlying
graded K-module of A is projective of finite type, then

(1) the sequence

I(4) ® I(A) — (A) — Q(A) — 0
is split exact if and only vf the sequence
0— P(A%) — J(A*) — J(4") Q J(A*)

18 split exact, and

(2) if the sequences of (1) are split exact, then P(A*) = Q(A)*, and
Q(A) = P(A%)*.

The proof of the proposition is immediate from the definitions.

3.11. PROPOSITION. If f: A— B s a left normal morphism of aug-
mented algebras, C = KQ,B, and w: B— C is the natural morphism of
augmented algebras, then the sequence

QLS Q)

Q(4) Q(B)
18 an exact sequence of graded K-modules.
ProOF. We have that the cokernel of Q(f) is the cokernel of

I(A) & IBy — 1I(B) ,

and that Q(C) is the cokernel of I(B)*— I(B)/I(A)B, and since these two
cokernels are naturally isomorphic the proposition follows.

3.12. PROPOSITION. If f: B— A is a left normal morphism of aug-
mented coalgebras, C = K (0, B, and i: C — B 1s the natural morphism of
augmented coalgebras, then the sequence

PG
0— P©) 22, p(B)
18 am exact sequence of graded K-modules.
ProoF. Suppose z€ P(B), and f(x) =0, then A,(x) =@ 1+ 1Rz,

(fQ B)Ay(x) =1® =, and so z€ P(B), N C,. Thus z€ P(C),. The rest of
the proof of the proposition is immediate.

Q) 0

PO

P(A4)

4., Elementary properties of Hopf algebras

4.1. DEFINITION. A Hopf algebra over K is a graded K-module A together
with morphisms of graded K-modules
P ARA— A, nK— A
AMA— ARA, e A— K
such that
(1) (4, @, 7) is an algebra over K with augmentation e,
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(2) (A, A, ¢) is a coalgebra over K with augmentation 7, and
(3) the diagram

AQA-> 4 2apA

l ARA I PR
ARQARAR A—22TCA | IQARQRARA
is commutative.

Notice that condition 3 is equivalent to saying either that A is a morphism
of algebras over K, or that ¢ is a morphism of coalgebras over K except for
the condition involving preservation of units. However since 7 is an augmenta-
tion of the coalgebra in question, the diagram

K-Z5KQK

l 7 1 7®7
A— AR A
is commutative and thus A is a morphism of algebras. Similarly ¢ is a mor-

phism of coalgebras.

In the diagram
A

T\———ﬁ A?A
N\

K \i\ ce®A
Kg}eﬂm\KéA

the upper right hand triangle is commutative if ¢ is a unit of the coalgebra. The
lower part of the diagram being clearly commutative, we have A is a morphism
of augmented algebras. Similarly ¢ is a morphism of augmented coalgebras.

4.2. DEFINITIONS. If A is a Hopf algebra, a left module over A is a left
module over the underlying algebra of A. If M and N are left modules over

A, then M @ N is the left module over A with Puexy AQMIN—-MQQN
defined as the composition

AQMRN-LBMEN /i Meg N-AZTEN

AQMQAR N2 yQN.

A left module coalgebra over A is a left A-module B together with morphisms
of left A-modules A;: B— BQ® B and ¢;: B— K such that (B, A &) is a
coalgebra over K.
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Similar considerations apply to right A-modules and A-coalgebras.

4.3. PROPOSITION. If A is a Hopf algebra over K, B is a left A-module
coalgebra C = KQ, B and 7. B— C is the natural morphism of graded
K-modules, then there are unique morphisms Ay: C —C QR C and g,: C — K
such that w is a morphism of coalgebras over K.

PROOF. Since Az: B— B B is a morphism of left A-modules, it induces

K®,0:K®,B— K®,(BRB).
However there is a natural morphism
0: KQu(BQB)— (KQ4B)® (KR4 B) .
Welet Ay =00 (KX, Ay). Since ;: B-— K is a morphism of left A-modules,
it induces
KR KQJB— KR, K.
Noting that K &, K — K where A acts on K via g, we see easily that (C, A, &)
fulfill the required conditions.

Note that C could be considered as a coalgebra over A on which I(A4) acts
trivially. Observe further that, if N is a left A-module on which A acts via
¢, and we consider A itself as a left A-module, then A R N is a left A-module,
and is in fact the extended A-module of N as defined in paragraph 1.

Recall further that if B was a connected A-module, we defined a canonical
morphism ¢: A — B in paragraph 1.

4.4. THEOREM. If A s a connected Hopf algebra over K, B s a connected
left A-module coalgebra, C = K@, B, v A— B, and ©: B— C are the canon-

T

ical morphisms, and the sequences 0— A LN B, B > C — 0 are split
exact as sequences of graded K-modules, then there exists h: B— AQ C which
18 stmultaneously an tsomorphism of left A-modules and right C-comodules.

ProoFr. Let f: C — B be a morphism of graded K-module such that zf = C.
Note that the composition

B2 BeB-22",.BRC

is a morphism of left A-modules and the conditions of Proposition 1.7 are sat-
isfied. Thus if f is the composition

AQC—2%' , AB—B

we have that f is an isomorphism of left A-modules. Hence there is a mor-
phism of left A-modules g: B — A such that gi = A. Now let & be the com-
position

B BRB22" ,AQC.
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‘We now have that h is a morphism of left A-modules and of right C-comodules.
Filtering A ® C by setting F(A®C) =3, _ AR C,, we have that hf is fil-
tration preserving and that E(hf) is just the identity morphism of E(A Q C).
Thus &f is an isomorphism of left A-modules, and hence so is k. Clearly &
fulfills the required conditions and the theorem is proved.

4.5. DEFINITIONS. If A is a Hopf algebra, a left comodule over A is a
left comodule over the underlying coalgebra of A. If M and N are left co-
modules over A with Aygy: M @ N defined as the composition

Ay @ Ax AQMRARN ART®N

AQAQMRQNLEMEN /MR N.
A left comodule algebra over A is an A-comodule B together with morphisms
of left A-comodules @,: B(® B — B and 7,: K — B such that (B, ¢;, 7;) is an
algebra over K.
4.6. PROPOSITION. If A isa Hopf algebra over K, B is a left A-comodule
algebra, C = K, B, and i: C— B 1s the natural morphism of graded

K-modules, then there are unique morphisms @, C R C— C and 7, K— C
such that 1 is a morphism of algebras over K.

M®N

The proof of the proposition is similar to that of 4.3.
Recall that if B was a connected A-comodule a canonical morphism j: B — A
‘wag defined in paragraph 2.

4.7. THEOREM. If A is a connected Hopf algebra over K, B is a con-
nected left A-comodule algebra, C = K (1, B, j: B— A, and 4: C— Barethe
canonical morphisms, and the sequences B 2, A—0,0—-C — s Bare split
exact as sequences of graded K-modules, then there exists h: AQC— B
which is simultaneously an isomorphism of left A-comodules and right
C-modules.

The proof is similar to that of 4.4. One uses Proposition 2.6 instead of Prop-
osition 1.7,

4.8. PROPOSITION. If A is a graded projective K-module of finite type,
then (A, ¢, 1, A, €) is a Hopf algebra with multiplication @, comultiplication
A, unit 7, and counit € 1f and only if (A*, A*, e*, *, 9*) is a Hopf algebra
with multiplication A*, comultiplication @*, unit e*, and counit n*.

The proof is immediate from the definitions, and what has been done
earlier.

4.9. PRropoSITION. If A, B, C areconnected Hopf algebras, and i: A— B,
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: B — C are morphisms of Hopf algebras, then the following are equivalent:

(1) 71is aleft normal monomorphism of algebras, C = KQ, B, and
the sequences 0 — AL B, B ~5C—0 are split exact as sequences of
graded K-modules,

(2) = 1is a right normal epimorphism of coalgebras, A = B O, K, and
the sequences 0 — A" B, B Z,C—0 are split exact as sequences of
graded K-modules,

(3) there exists f: AQ C— B which s an 1somorphism of left
A-modules and right C-comodules such that + = f(AQ ), and nf = ¢ C.

This proposition is a resumé of some part of what has already been proved.
Notice that exactness and split exactness are equivalent if K is a field. Thus
if K is a field and the multiplication in B is commutative, any sub Hopf algebra
of B is normal as a subalgebra. Similarly if K is a field and the comultiplication
in B is commutative, then any quotient Hopf algebra of B is normal as a
coalgebra.

4.10. PROPOSITION. Ifi: A— B, m: B — C are morphisms of connected
Hopf algebras satisfying the conditions of the preceding proposition, then
there is a commutative diagram

0 — P(4) — P(B) — P(C)

Lol

Q(4) — Q(B) — Q(C) — 0
with exact rows.
ProoF. The proposition follows at once from 3.11, 3.12 and the fact that,
for any Hopf algebra D, there is a natural morphism P(D)— Q(D).

4.11. PROPOSITION. Supposei: A— B, j: B— C are morphisms of Hopf
algebras such that ©, § are split monomorphisms, and left normal morphisms
of algebras. Let B = K®,B,C' = KQ,C, and j': B'— C’ be the morphism
of Hopf algebras induced by j. Now j’ is a split monomorphism which 18 left
normal as @ morphism of algebras, and

KR;C=KQsC .
ProoF. Recall that f: E — E’ is a split monomorphism if the sequence
0 — E — E’ is split exact. Now applying 4.9, we have that C = B & D where
D=K®;C. ThusC' ~ KQR,(BR D) =~ B ®D, and KQy C' = D which
proves the proposition.

4.12. DEFINITION. A set Iis directly ordered if there is given a partial
ordering of I such that
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(1) ©=jJ,7 < kimpliest =k,

(2) t=jandj =< ¢if and only if © = 7,

(8) fori,jel, there exists k€ I'such that + < kandj < k.

If for each i€I, A(?) is a graded K-module, and if for ¢ =y,
J(, 1) A(B)— A(F) is a morphism of graded K-modules such thatif 1 < 5,7 <k,
then f(k, 7) f(4, %) = f(k, ¢), and f(z, i) = A(t), we say that we have a direct
system of graded K-modules; and we denote by lim; A(¢) the direct limit of this
direct system of graded K-modules. If each A(¢)is an algebra, a coalgebra, or a
Hopf algebra, and each f(¢, ) is a morphism of algebras, coalgebras, or Hopf
algebras as the case may be, then lim; A(?) is an algebra, coalgebra, or Hopf
algebra according to the type of direct system with which we are dealing.
Moreover in each case the underlying graded K-module is the direct limit of
the underlying graded K-modules of the direct system.

More general direct limits exist in any of the categories being considered,
but we will not concern ourselves with that here.

Recall that a Priifer ring is an integral domain K such that every ideal in
K is flat, or equivalently every finitely generated ideal in K is projective.
Such a ring has the property that every submodule of a flat module is flat, or
equivalently that every finitely generated submodule of a flat module is pro-
jective. Thus for such a ring we have that every submodule of finite type
of a flat graded K-module is projective of finite type.

4.13. PROPOSITION. If B is a connected Hopf algebra over the Priifer
ring K such that the underlying graded K-module of B is flat, then B is a
direct limit of sub Hopf algebras of B whose underlying graded K-module
18 projective of finite type.

PRoOOF. Let & be the set of sub Hopf algebras of B which are direct limits
.of sub Hopf algebras of B of finite type. Clearly 3 is closed under limits, and
thus has maximal elements. Let A be such a maximal element of B. We pro-
pose to show that 4 = B.

Suppose that « is an element of least degree of B — A. Now

Ay =21 +1QRQx+ y
where y € A ® A. Without loss of generality we may assume that y € A(7) for
i€ I where A = lim,; A(4), and A(%) is a sub Hopf algebra of B of finite type.
Now if we let B(z) be the subalgebra of B generated by A(?) and x, we have
that B(7) is a sub Hopf algebra of B which is of finite type lim, B(¢) 2 « and
contains 4. This is impossible. Therefore A = B and the proposition follows.

4.14. Notation. If B is an algebra over K, we denote by B(n) the sub-
algebra of B generated by elements of degree less than or equal to ».
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4.15. PROPOSITION. If B is a connected Hopf algebra over the Priifer
ring K, and the underlying graded K-module of B is projective of finite
type, then

(1) there is a unique comultiplication in B(n) such that B(n) is a sub
Hopf algebra of B;

(2) the underlying graded K-module of B(n) is projective of finite type,

(3) B(n) ts finitely generated as an algebra;

(4) Q(B(n)), = Q(B) for r < u, and

(5) QBM®), =0 forr > mn.

The proof of this proposition is immediate from the definitions.

4.16. DEFINITIONS. A quast Hopf algebra over K is a graded K-module:
A together with morphisms of graded K-modules

P ARQA— A, nK— A
AMA—ARA, e A— K

such that
(1) 7 is a unit for the multiplication ¢,
(2) eis a counit for the comultiplication A,
(3) the diagram

AQA-— 4 A a®a

lA@A lgtv@tp
ARTRA

AQARARA— " S ARQRARAR A
is commutative, and

(4) en=K: K— K.

One sees easily that a quasi Hopf algebra A over K is a Hopf algebra if
and only if both ¢ and A are associative.

Moreover if A is a quasi Hopf algebra, then P(A4) is the kernel of J(A4) —
J(A) ® J(A), and Q(A) is the cokernel of I(A4) ®Q I(A) — I(A), just as for Hopf
algebras, there is a natural morphism of graded K-modules P(4)— Q(A). Prop-
ositions 4.13 and 4.15 follow for quasi Hopf algebras, just as for Hopf
algebras.

4.17. PROPOSITION. If A s a connected quasi Hopf algebra over the
field K of characteristic zero, then the natural morphism P(A) — Q(A) is a.
monomorphism if and only if the multiplication @ is commutative and
associative.



HOPF ALGEBRAS 233

Proor. Suppose that P(A) — Q(A) is a monomorphism. For x¢ A4,
ye A, ze A, let a(x, y, 2) = (@y)z — x(yz). If x, y, 2 are primitive a(z, ¥y, 2)
is primitive and its image in Q(A) is zero. Thus a(z, ¥, 2) = 0. Suppose now
ax,y,2) =0for p = u,q = v, r<w, and consider the case p = u, q = v,
r=w -+ 1. Now a(z, 9, z) is primitive and has zero image in Q(A) and hence
is zero. Proceeding by induction we have that a: A Q@ A ® A — A is the zero
morphism, or that the multiplication ¢ is associative. For xc A4,, ye 4,, let
[, y] = vy — (—1)**yx. Notice that if z, y are primitive, [, y] is primitive
and has image zero in Q(A4). Proceeding by induction as before we obtain that
[,]: AQ A— A is zero, and then ¢ is commutative.

Suppose now that the algebra A is commutative and has one generator
rxecA, n>0 If n is odd then = (—1)"2>=— 2* and z*= 0, that
PA)=I(4A) =Q(A). If niseven, Ax)=2R1+1Q«x,

A@H) = 30,6 )7 @ 0

where (%, 7) denotes the appropriate binomial coefficient, and 1 = 2°. We now
see that P(A) — Q(A) is an isomorphism.

Suppose that the converse part of the proposition is proved for algebras
with less than or equal to m generators, and that A is an algebra such that
v,eA, for tv=1,---,m+ 1, n;, <n,;,,, and the images of the elements
%y, ***, Tmy, Torm a basis of @, Q(A),. Let A’ be the subalgebra of A gen-
erated by z,, --+, x,., and note that A’ is a commutative algebra with co-
multiplication. Let A” = K®, A = A//A’ and observe that A” is a commuta-
tive algebra with comultiplication and one generator as an algebra. We now
have a commutative diagram

0— P(A"Y— P(A)— P(4")

R

0 — Q@A) — QM4) — Q") — 0

with exact rows. Since P(A’) — @Q(A’) is a monomorphism it follows that
P(A) — Q(A4) is a monomorphism. Thus by induction the converse part of the
proposition is proved for finitely generated algebras. As in Proposition 4.13
any connected coalgebra with comultiplication is a direct limit of connected
algebras with comultiplication which are of finite type, and those of finite type
are direct limits of finitely generated ones as in Proposition 4.14. Thus since
the functors P and Q commute with direct limits, and the direct limit of mono-

morphisms is a monomorphism in the category of graded K-moduies, the prop-
osition follows.
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4.18. COROLLARY. If A tis a connected quast Hopf algebra over the field
K of characteristic zero, then

(1) the comultiplication A is commutative and associative if and only
1f P(A) — Q(A) is an epimorphism, and

(2) Adisa Hopfalgebra with both commutative multiplication and com-
mutative comultiplication 1f and only if P(A) — Q(A) is an isomorphism.

4.19. DEFINITION OR NOTATION. Suppose that K is an integral domain of
characteristic p = 0, and A is a commutative algebra over K, define §: 4, —
A, by £(@) = a7

Notice that &(x + y) = §(x) + £(y), and &(xz) = E(2)é(2) for =, yc A,
ze€ A,,. In particular &(kx) = k°&(x) for x € A,, ke K. Observe also that if p
and » are odd, then &(z) = 0.

4.20. PROPOSITION. If A is a connected quasi Hopf algebra over the
field K of characteristic p + 0, then the natural morphism P(A) — Q(A) is
a monomorphism if and only if the multiplication @ is commutative and
associative, and £(A,) = 0 for n > 0.

Proor. Suppose P(A) — Q(A) is a monomorphism. The first part of the
proof of 4.17 shows that ¢ is associative and commutative. Notice that if
z € P(A), then £(x) € P(A),., and the image of &z) in Q(A),, is zero. Thus
&) =0. If &4,) =0 for 0 < m < n, then &(A4,) C P(A),,; and since the
composition An—eaP(A),,n-—»Q(A)p,, is zero, it follows by induction that
&(A,) = 0 for all n, and the first half of the proposition is proved.

Suppose now that ¢ is commutative and associative, and £(4,) = 0 for
all » > 0. As in the second half of 4.17, in order to show that P(A) — Q(A)
is a monomorphism, it suffices to do so in case the algebra A has one generator
x€ A, n>0. If p=2 thena’ =0, and P(A) = I(A) = Q(A). The situation
is the same if p is odd and » is odd. If p +# 2, and » is even, then A, = 0 for
qg#knk=20,1,.--,(p — 1) and 2* is a basic element for A4,,. Since

Ax®) = Ei”:k(?, et @ o
and (¢,7) # 0, we have P(4), = A, = Q(4),, P(4), = 0= Q(4), for q +# n,
and the proposition follows.
If S is a subset of the K-module M, we denote by K(S) the K-submodule
generated by S.

4.21. PROPOSITION. If A is a connected quast Hopf algebra with associa-
tive commutative multiplication over the field K of characteristic p #= 0,
there is an exact sequence

0 — P(K(EA)) — P(A) — Q(A) .
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ProoF. Let A’ = K(£(A)), and A" = KQ, A. Now &(4]) = 0forn > 0,
and we have a commutative diagram

0— P(A')— P(A)— P(4A")

I

Q(A") — Q(4) — Q(A")
with exact rows. The proposition now follows from 4.20.

4.22. DEFINITION. Suppose that K is a field of characteristic p == 0, and
A is a commutative coalgebra of finite type over K. Define K(\(A)) to be
K(&(A*))*, and observe that K\(A4) is a quotient coalgebra of A. If A is a
direct limit of commutative coalgebras of finite type A = lim, A(¢), define
Kn\(A) = lim; KN(A(7)).

Observe that if A is of finite type, then K(\(A))* = K&(A*).

4.23. PROPOSITION. If A s a connected Hopf algebra with both com-
mutative multiplication and commutative comultiplication over the field K
of characteristic p + 0, there is an exact sequence

0 — P(K&(4)) — P(A) — Q(A) — Q(KNA) — 0.
The proof of the proposition is immediate from the definitions. Observe
that if » is odd we have K&(A), = 0 = K)\(A),; and thus for » odd, if follows

that P(A4), =, Q(A), for any Hopf algebra A satisfying the conditions of
4.23.

5. Universal algebras of Lie algebras

5.1. DEFINITIONS. If A is an algebra over K, define[,]: A® A— A by
fz,y] = 2y — (—1)*yx for x € A,, y€ A,. The morphism of graded K-modules
[, 11is called the Lie product of A. The graded K-module A, together with its
Lie product, is called the associated Lie algebra of the algebra A.

A Lie algebra over K is a graded K-module L together with a morphism
[,]: L&Q L — L such that for some algebra A, there is a monomorphism of
graded K-modules f: L — A such that the diagram

L
lf &f lf
aalilba
is commutative.
If L and L’ are Lie algebras over K, a morphism f: I, — L’ of Lie algebras
is a morphism of graded K-modules such that the diagram
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Lo Ll

s s
L/®L/ [,] Ll

is commutative.

5.2. PROPOSITION. If L ts a Lie algebra over K, x€ L,, y€ L,, and
ze L,, then

(1) [, y] = (1), y], and

(2) (=1)7[x, [y, 2]] + (—=D*"[y, [z, 2]] + (—=1)"[z, [z, ¥]] = O.

The proof of the proposition is immediate from the definitions. If K is a
field of characteristic %2 or 3, it is possible to characterize Lie algebras by
the identities (1) and (2). Notice that (1) implies that 2[x, x] = 0 for p even.
To characterize Lie algebras over a field of characteristic 2, it is necessary to
assume, in addition to (1) and (2), that for any integer p, [z, 2] =0. Identity
(2) implies that 3[z, [x, ]] =0 for p odd. To characterize Lie algebras over a
field of characteristic 3, it is necessary to assume that [z, [x, ]] = 0 for p odd.

It is perhaps worth remarking that a Lie algebra is not an algebra since
it does not have a unit, and its multiplication or product is not associative.

5.3. DEFINITION. If L is a Lie algebra, the universal enveloping algebra
of L is an algebra U(L) together with a morphism of Lie algebras i;: L — U(L)
such that if A is an algebra and f: L — A is a morphism of Lie algebras, there
is a unique morphism of algebras f: U(L) — A such that the diagram

L% (L)
NS |z
{]7
A

is commutative.

5.4. Remarks. Since we have defined the universal enveloping algebra
of a Lie algebra by a universal property of morphisms, it is certainly unique
if it exists. Existence is proved as usual in the following way: If L is a
graded K-module let T(L) denote the tensor algebra of L, i.e., as a graded
K-module T(L) = @, T,(L) where T,(L) denotes the tensor product of L with
itself p-times, e.g., T(L) =K, T(L) =L, and Ty(L) = L Q L. Thereis a
natural isomorphism T,(L) @ T«(L) =, T,..(L) which on passing to direct
sums induces a multiplication ¢: T(L) & T(L) — T(L). Since T\(L) = K, there
are natural morphisms 7: K — T(L) and ¢: T(L) — K and T(L) becomes an
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augmented algebra over K. The algebra T(L) has the following property. If
fi L — A is a morphism of graded K-modules and A is the underlying graded
K-module of an algebra, then there is a unique morphism of algebras
f# T(L) — A such that the diagram

L—T(L)
NS
N |
A

of graded K-modules is commutative, where L = T(L) and ¢ is the natural
morphism.

Now if L is the underlying module of a Lie algebra, f a morphism of Lie
algebras, and I the ideal in T'(L) generated by elements xy — (—1)"yx — [z, ¥}
for xe L,, ye L,, then f#(I) = 0, and thus, if we let U(L) = T(L)/I, there is
a unique morphism of algebras f: U(L) — A such that the diagram

L, (L)
NSz
{7

A

is commutative, where %, is the composition L SN (L) — U(L).

Notice that the graded K-module 0 is a Lie algebra and that U(0) = K.
Thus, since for any Lie algebra L, there is a unique morphism of Lie algebras
0,: L — 0, we have that 0, induces ¢: U(L) — K and U(L) is an augmented
algebra. Now if f: L — L' is a morphism of Lie algebras, there is a unique
morphism of algebras U(f): U(L) — U(L’) such that U(f)i, = %,.f, and thus
L — U(L) is in fact a functor from the category of Lie algebras over K to the
category of augmented algebras over K.

Since in our definition of Lie algebra L, we assumed that for some algebra
A there was a morphism of Lie algebras f: L — A such that f was a monomor-

phism of graded K-modules, it follows that ¢,: L — U(L) is a monomorphism
of graded K-modules because f = ft,.

5.5. DEFINITION. If L, L’ are Lie algebras over K, then L x L’ is the
Lie algebra over K such that

[, v), @, ¥)] = ([=, '], [y, ¥'])

for

@, el X L), = L, x Ly, (@, y)e(li X L)y = Ly X L.
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The Lie algebra L x L’ is called the product of the Lie algebras L and L’.

In fact the preceding definition is slightly incorrect since we have not
shown that L X L' can be imbedded in the associated Lie algebra of an algebra.
However, this omission is easily remedied by defining

tpxps L X I — U(L) Q U(L)
by i@, y) =2@ 1+ 1Ry for (x, y)e (L X L'),.

Recall that in an arbitary category @ the product of objects A and A’, if
it exists, is an object A x A’ together with morphisms 7: 4 x A’ — A and
7' A x A’ — A’ such that, if C is an objectin®@ and f: C — A, f': C— A" are
morphisms in @, then there is a unique morphism f X f"C—A X A" in @
such that 7f x f/ = fand 7'f X f* = f’. It is exactly in this sence that L X
L’ is the product of the Lie algebras L and L’ in the category £, of Lie alge-
bras over K and morphisms of Lie algebras over K.

Suppose now we consider the category (CH(), of Hopf algebras over K
with commutative comultiplication. Let f: C— A, f': C — A’ be morphisms
in this category. We have that A & A’ is an object in the category and the
composition

c2cc L a0

is a morphism in the category. Moreover (A ® e)(f R fHA, = f, and
eRQRA(SRNA=T".
Thus A Q A’, together with the canonical morphisms (A®e): AR A — A
ande @ A AR® A’ — A’, is easily seen to be the product of the objects A and
A’ in the category.
Observe that in the preceding, one used the fact that the comultiplication

was commutative, for otherwise A, would be only a morphism of algebras and
not necessarily of Hopf algebras.

5.6. PROPOSITION. If L and L' are Lie algebras over K, then
UL x L'Yy= ULy UL .

PRrROOF. One verifies without trouble that the morphism of Lie algebras

Tpps L X L' — U(L) @ U(L’) satisfies the necessary conditions for it to be the
universal enveloping algebra of L X L.

5.7. DEFINITION AND COMMENTS. If L is a Lie algebra we have a natural
morphism A:L-— L x L, where A(x) = (z,2) for x€ L,. This induces
UA): UL) — U(L) ® U(L) and U(L) becomes a Hopf algebra. Henceforth
we will consider that U(L) is a Hopf algebra with this comultiplication. Notice
that the comultiplication in question is commutative, thus U(L) is an object
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in (CHC ).

A Hopf algebra A is said to be primitively generated if the least sub-
algebra of A containing P(A) is A itself.

5.8. PROPOSITION. If A isa Hopf algebra, then P(A) is a sub Lie algebra
of the associated Lie algebra of A.

The proof of the proposition is immediate from the definition. Now we
may say that a Hopf algebra A is primitively generated if the natural mor-
phism of Hopf algebras U(P(A))— A is an epimorphism in the category of
graded K-modules.

It is evident that every primitively generated Hopf algebra has commuta-
tive comultiplication. Thus the category (PI( ) whose objects are the primi-
tively generated Hopf algebras and morphisms are morphisms of Hopf algebras
in a subcategory of the category (CI()x of Hopf algebras with commutative
comultiplication. Recall that we have seen (4.18) that, if K is a field of
characteristic zero, a connected Hopf algebra A is in () if and only if
P(A) — Q(A) is an epimorphism, or equivalently the comultiplication of A is
commutative.

We now have two functors, U: £x — (PH)g and P: Hx — Lx where FH g
is the category of all Hopf algebras over K.

5.9. PROPOSITION. The functors U: 8x — (PH)x and P:(CIH)x — Lk
commute with products, and direct limits.

This proposition is just a resumé of things stated earlier, together with
a couple of observations. Note that we have not discussed the question of
the existence of products in the category J(x but only in the subcategory
(CH)x.

In order to proceed further we need to recall some facts about bigraded
K-modules. A bigraded K-module A is a family of K-modules {4,,} where the
indices p and ¢ run through integers such that » + ¢ = 0. If A and B are
bigraded K-modules, a morphism of bigraded K-modules f: A — B is a family
of morphisms of K-modules {f,,} such that f, ,: A, — B,.e

If A and B are bigraded K-modules, then (A & B) is the bigraded K-module
such that (AR B),,,= @Ti,zp A,,.RB,,. The tensor product of morphisms of

bigraded K-modules is defined similarly. There is also the dual of a bigraded
K-module A. It is denoted by A* and is the bigraded K-module such that
A}, = Hom (A4,,, K). If f: A— B, then f*: B* — A*, and f,f, = Hom (f,,,, K).

If A and B are bigraded K-modules, the twisting morphism 7: A @ B —
B & A is the morphism such that T, (a ® b) = (— 1)+ Qa for ac A4,,,,
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beB, ,r+s=p,andu + v =q.

We are now in a position to carry out the work of the preceding chapters
using bigraded K-modules instead of graded K-modules. The details of so doing
are left to the reader. It is worth commenting that a bigraded K-module A is
said to be connected if A,,, = K. However connectedness no longer suffices for
the theorems of the earlier paragraph in which the hypothesis was needed.
We assume instead that we are dealing with algebras such that they are con-
nected and either

(1) A,,,=0for p =0, except for (p, 9) = (0, 0), or

(2) A,,,=0for p =0, except for (p, q) = (0, 0).

In case (1) when dealing with a module B the condition of connectedness is
replaced by assuming in addition that B,,, = 0 for p < 0, and in case (2) we
assume B, ,= 0 for p > 0. We proceed in the same fashion for coalgebras
and comodules over coalgebras. The bigraded case of a proposition in the pre-
ceding chapters such as 3.8 will be referred to as Proposition B 3.8. We leave
the task of checking details to the reader.

Although we have dealt informally with filtrations in the preceding para-
graphs, we now recall some further details. If A is a graded K-module, a filtra-
tion on A is a family of sub-graded modules of A {F,A} indexed on the integers
such that F,AC F, ,A. If A and B are filtered modules, a morphism of fil-
tered graded modules f: A — B is a morphism of graded modules such that
A(F,A) C F,B. The associated bigraded module of the filtered graded module
A is the bigraded module E°(A) such that E°(A),,,= (F,A/F,_1A)pre I
f+ A— B is a morphism of filtered graded modules there is induced a morphism
E(f): E%(A) — E(B) of associated bigraded modules.

The filtration {F,A} on the graded module A is complete 3] if

(1) A=lim, . F,4, and

(2) A=1lim_. ,A/F,A.

If A and B are complete filtered graded modules and f: A — B is a morphism
of filtered modules, then if E°(f): E°(A) — E°(B) is a monomorphism, epimor-
phism, or isomorphism, f is a monomorphism, epimorphism, or isomorphism as
the case may be.

If A and B are filtered graded modules, a filtration is defined in A & B by
letting F,(AQRQ B) = Im (@®,,.-,F,AQRQ F,B— AX® B). There is a natural
morphism E°(A) Q E°(B) — E%A & B), which is always an epimorphism and
is easily seen to be an isomorphism if either

(1) the sequences
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0— FLA— A— A/FLA— 0,
00— F,B— B— B/F,B——0

are split exact for all p, or
(2) the modules A/F,A and B/F,B are flat for all p, q.

In this paper we will assume that we are always dealing with a case such
that

EYA)Q EXB) = EYAR B) .
Moreover, we will always deal with a case such that F,A = A for p = 0, or
F,A=0for p <O0.

The ground ring K is always considered to be a filtered graded module
with F,K = K for p = 0, and F,K = 0 for p < 0. We then have E°(K) is the
bigraded module denoted by K.

A filtered algebra A over K is an algebra with a filtration on its underly-
ing graded K-module such that ¢: A Q@ A — A is a morphism of filtered graded
modules. Thus if A is a filtered algebra over K, then E°%A4) is a filtered
bigraded algebra over K.

If A is a filtered algebra over K, a filtered left A-module M is a left
A-module with a filtration on its underlying graded K-module such that
p: AR M — M is a morphism of filtered graded modules. In this case E%(M)
is a module over E°(A).

Similar considerations apply to coalgebras, comodules, and Hopf algebras.

5.10. DEFINITION. If A is a primitively generated Hopf algebra over K,
its primitive filtration is defined inductively as follows:

(1) F,A=0forp <0,

(2) FLA=K, and

(3) F,,A=1Im F,AD (P(A) R F,A) — A.

In other words F,A is the sub graded K-module of A generated by prod-
ucts of =p primitive elements. This filtration could be defined on any Hopf
algebra but it is complete if and only if A is primitively generated.

5.11. PROPOSITION. If A is a primitively generated Hopf algebra over
the field K, then E%A) is a bigraded Hopf algebra such that

(1) E°A),,, =0 for p < 0 except for (p, q) = (0, 0),

(2) P(E%(A)) — QE(A)),

(3) P(E°A)),,q =0 for p+1, and

(4) P(EA), = E%(A) . = P(A)

Proor. Part 1 follows immediately from the way that the filtrationon A
was defined. Moreover it follows at once that E%A) is primitively generated
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by E? ,(A) for all g. Thus Q(E*(A)),,,=0for p 1, and Q(E°(A)),,, = E°(A).,,.
Since in A, if xe P(A),, ye P(A),, we have [z, y]e P(A),.,, if follows
that E°%A) is commutative, and the proposition follows from B 4.18 if the
characteristic of K is zero. If the characteristic of K is finite, say d, then
if x € P(A), and either d = 2 or ¢ is even, we have 2%€ P(A);. Thus in E°A),

we have &(E} (A)) = 0 for (p, ¢) # (0, 0), and the remainder of the proposition
follows from B 4.23.

5.12. DEFINITION. If L is a Lie algebra, we define the Lie filtration on
U(L) inductively as follows:

(1) F,UWL)=0for p <O,

(2) F,UL)= K, and

(3) F,.,UL) = Im (F,U(L)) @ (L Q F,U(L)) — U(L).

Observe that the Lie filtration on U(L) is complete, and if {F,U(L)} is the
primitive filtration on U(L), then F,U(L) < F,U(L).

5.13. PROPOSITION. If K is a field, L is a Lie algebra over K, and U(L)
1s filtered by the Lie filtration, then

(1) EU(L)),,, = 0 for p = 0 except for (p, ¢) = (0, 0),

(2) EYU(L)) is a primitively generated, commutative bigraded Hopf
algebra,

(3) QUEXUL)), o = ECU(L))1, ¢ = Lqss, and

(4) if the characteristic of K is zero, then

P(E(U(L))) — QE°(U(L))) .

PRrooF. Parts 1, 2, 3 follow from the definitions, while 4 follows from
B 4.18.

5.14. NOTATION AND COMMENTS. For the time being we need a different
notation for the underlying graded module of a Lie algebra L. It will be de-
noted by L*. The module L* can also be considered as a Lie algebra by letting
its Lie product be zero. We now denote U(L*) by A(L), i.e., A(L) = T(L*/I
where I is the ideal in T(L*) generated by elements zy — (—1)*%yx for x € L},
ye Li. The algebra A(L*) has the universal property that if B is a commuta-
tive algebra and f: L* — B is a morphism of graded K-modules, then there is
a unique morphism of algebras f: A(L)— B such that the diagram

Lf—— A(L)
N
B

is commutative. It also has the universal property that if L' is a Lie algebra
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and if /' L* — L’ is a morphism of graded K-modules, there is a unique mor-
phism of bigraded Hopf algebras E%A(L)) — E°(U(L")) induced by f.

5.15. THEOREM (Poincaré-Birkhoff-Witt). IfKisa field of characteristic
zero, and L is a Lie algebra over K, then the natural morphism

EY(A(L)) — EY(U(L))

18 an tsomorphism.

ProoF. By 5.13 we have that Q(E(A(L))) — Q(E°(U(L))) and

P(E°(A(L))) — P(E°(U(L)))

are both isomorphisms. Hence applying B 3.8 and B3.9, it follows that
E(A(L)) — E%U(L)) is an isomorphism, and the theorem is proved.

There is a more usual way of stating the preceding theorem. Recall that
if A is a bigraded module we have associated with A a graded module @A,
where (BA), = ®,,,..45 . This functor from bigraded modules to graded
modules takes algebras into algebras, coalgebras into coalgebras, and Hopf

algebras into Hopf algebras. In particular if we have a graded K-module X,
i. e., an abelian Lie algebra over the field K, then @E°(A(X)) = AX).

5.16. THEOREM. If K is a field of characteristic zero, and L ts a Lie
algebra over K, then the natural morphism

ALy — @ E°U(L)
is an isomorphism.

5.17 ProposITION. If K is a field of characteristic zero, and L is a Lie
algebra over K, then the primitive and the Lie filtrations on U(L) coincide.

Proor. First we consider the case where L is connected, i.e., L, = 0. In
this case L is a direct limit of Lie algebras of finite type, and it suffices to
prove the assertion when L is of finite type and connected. Now let {'F,U(L)}
denote the Lie filtration on U(L) and {"F,U(L)} the primitive filtration. We
have that IE°(U(L)) — "E°U(L) is 2 monomorphism in view of 5.11, 5.13, and
the fact that L ¢ P(U(L)). We are dealing with vector spaces of finite type,
and for any given degree » the dimensions over K of U(L),, ®,,,_.'E; ,U(L)
and @,,,_,"E; ,U(L) are equal, which proves the result.

Suppose now X is a vector space over K, concentrated in degree 0. Let
L(X) be the Lie algebra P(T(X)) where A(x) =2 @1+ 1R forxre X,. We
associate with L(X) a graded Lie algebra N(X). Recalling that

TX) =@, T,X),
we let N(X),, = L(X)NTHX), and L(X),,+, = 0; and using the induced Lie
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product, obtain a graded connected Lie algebra. Since the result is valid for
this graded connected Lie algebra, it is also valid for L(X) itself.

Now if L is any Lie algebra concentrated in degree 0, we have that there
is a natural epimorphism T'(L*) — U(L) and a resulting natural epimorphism
L(L¥*) — U(L). Recalling that T(L*) = U(L(L?%), we have a commutative
diagram

B U(IALY)) —— "E°U(L(LY)

l l

TEU(L) — TEU(L)
where the vertical morphisms are epimorphisms. It follows that
'E°U(L) — "E°U(L)

is an epimorphism. We already know that this last epimorphism is a mono-
morphism since L < PU(L), and thus it is isomorphism which proves the result
if L is concentrated in degree 0. For any Lie algebra L there is a canonical
exact sequence 0 L L L” 0 where L’ is connected and L”
is concentrated in degree 0. It follows that U(L'), U(L), and U(L") satisfy
the hypothesis of Proposition 3.12, so we have the commutative diagram

00— L' — L — L" —0

l l l

0 — PU(L') — PU(L) — PU(L")

with exact rows. The proposition now follows from the 5-lemma.

5.18. THEOREM. If K is a field of characteristic zero, and P: (PFH)g —
Lx and U: Lx — (PH)g are the natural functors, then

(1) the functor PU: 8¢ — Lk is the identity functor of L.

(2) the functor UP: (PI)x — (PH)x ts the identity functor of (PH)g.

PROOF. The preceding proposition implies PU(L) = L, and hence 1. Since
U(P(A)) — A has the property that PU(P(A)) = P(A), it is a monomorphism.
Certainly it is an epimorphism, hence an isomorphism, which implies 2, and
hence the theorem.

6. Lie algebras and restricted Lie algebras

6.1. DEFINITIONS. Suppose that p is a prime, and that K is a commutative
ring which is an algebra over the prime field with p-elements. If A is an algebra
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over K, define &: A, — A,, in case either » is even or p = 2 by &(x) = «* for
z€ A,. The graded K-module A together with its Lie product and the functions
£ A, — A,, is called the associated restricted Lie algebra of A.

A restricted Lie algebra over K is a Lie algebra L together with functions
&: L,— L,, for n even or p = 2 such that for some algebra A, there is a mono-
morphism of Lie algebras f: L — A such that the diagrams

£

Ln -_— I/,m

[ Jm

A, LA,

are commutative.
If L and L’ are restricted Lie algebras over K, a morphism f: L — L’ of
restricted Lie algebras is a morphism of Lie algebras such that the diagrams

L1,

lfn lfm

L,_¢,L,
are commutative

6.2. DerFINITION. If L is a restricted Lie algebra over the ring K of char-
acteristic p, the universal enveloping algebra of L is an algebra V(L) together
with a morphism of restricted Lie algebras ¢,: L — V(L) such that if A is an
algebra and /3 L — A is a morphism of restricted Lie algebras, there is a unique
morphism of algebras f* V(L) — A such that the diagram

L2 v

Nl

A

is commutative.

6.3. REMARKS. The uniqueness of V(L) is assured since it is defined by a
universal property of morphisms. Existence is seen by considering L as a Lie
algebra and letting V(L) = U(L)/I where I is the ideal in U(L) generated by
elements of the form 2? — &(x) for « € L, where n is even or p = 1. Moreover
since there is 2 monomorphism f: L — A for some associative algebra A, and
f = fi,, we have that i;: L — V(L) is a monomorphism.

The graded K-module 0 is certainly a restricted Lie algebra and 0;: L — 0
is a morphism of restricted Lie algebra. This induces V(L) — V(0) = K, and
thus L — V(L) is a functor from the category of restricted Lie algebras over
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K to category of augmented algebras over K,

6.4. DEFINITION. If L, L’ are restricted Lie algebras over the ring K of
characteristic p, then L X L’is the restricted Lie algebra over K whose under-

lying Lie algebra is the product of the underlying Lie algebras of L and L’ and
such that

£(@, 2') = (£(@), £(x"))
for (z, ') € (L. X L'), where » is ever or p = 1.

6.5. PROPOSITION. If L and L' are restricted Lie algebras over the ring
K of characteristic p, then

VL x L= V(L)Y V(L) .
The proof is just as the proof of 5.6.

6.6. DEFINITIONS AND COMMENTS. If L is a restricted Lie algebra we have
anatural morphism A: L, — L X L, where A(x) = (x, ) for x € L,. This induces
V(A): V(L) — V(LYRQ V(L) and V(L) becomes a primitively generated Hopf
algebra.

6.7. PROPOSITION. If A s a Hopfalgebra over the ring K of characteristic

P, then P(A) is a sub restricted Lie algebra of the associated restricted Lie
algebra of A.

The proof of the proposition is immediate from the definition.

We now have two functors V: (RE)x — (PH )¢ and P: I — (RL) where
(RO is the category of restricted Lie algebras.

6.8. PROPOSITION. The functors V: (RE)x— (PH ) and P: (CH)g — (REL)x
commute with products and direct limits.

The proof of the proposition is immediate from the definition.

6.9. DEFINITION. If L is restricted Lie algebra over the ring K of charac-
teristic p, the Lie filtration on V(L) is the filtration induced by U(L) — V(L),
Le., F(V(L)) = Im (F,U(L) — V(L)).

6.10. PROPOSITION. If K is a field of characteristic p + 0, and L is a
restricted Lie algebra over K, then the primitive and the Lie filtrations on
V(L) coincide.

The proof is easy and follows the lines of the proof of 5.17.

6.11. THEOREM. If K isa field of characteristic p =0, and P: (PH)x —
(R and V: (RL)x — (PH )¢ are the natural functors, then

(1) the functor PV: (REL)x — (RE)g is the identity functor of (RL)g, and

(2) the functor VP: (PI)x — (PI ) is the identity functor of (PI)x.
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If L is a restricted Lie algebra, we may let L* denote the restricted Lie
algebra with Lie multiplication 0 and & = 0, we may then write V(L#) = B(L).

6.12. PROPOSITION. If K is a field of characteristic p + 0, and L is a

restricted Lie algebra over K, then
B(L) = @E°V(L) .

6.13. PRrorosITION. If Kisa field, f: A— B is a morphism of Hopf alge-
bras which 1s @ monomorphism of the underlying graded vector spaces, and
B is primitively generated, then A is primitively generated.

ProOF. Wemay suppose A C B. Let A’ bethe maximal primitively genera-
ted sub Hopf algebra of A4, i.e., A’ = U(P(A)) if the characteristic of K is zero,
or A’ = V(P(A)) if the characteristic of Kis p # 0. Consider A" and B as filtered
by their primitive filtrations. Define afiltration of A by letting F,A = AN F,B.
Note that F;A = K + P(4). Now we have A = |JF,A and F,A = 0forq < 0.
Thus the filtration on A4 is complete, moreover the way we have defined it, the
morphism E°(A) — E°(B) is a monomorphism.

Consider E°A and E°B as graded by the filtration degree. Then they are
connected. Suppose the theorem is true for connected Hopf algebras, so that
E°A is primitively generated. Since P(E°B)),,, = 0 for » == 1 it follows that
P(E*A)),,, = 0forr + 1. It now follows that £°(A") — E%A) is a morphism
of primitively generated bigraded Hopf algebras, and that P(E°(A’))—P(E°(A))
is an isomorphism.

Now a morphism of connected coalgebras is a monomorphism if and only
if P(f) is a monomorphism, and a morphism f of connected algebras is an epi-
morphism if and only if Q(f) is an epimorphism. Thus E%A’)— E°(A) is an
isomorphism, A" — A is an isomorphism, and the result follows.

It remains to prove the theorem for connected A and B. Using Proposition
4.13, it suffices to prove it for A of finite type. Now it follows by an argument
similar to the proof of Proposition 4.13 that B is the direct limit of primitively
generated sub Hopf algebras of finite type. If A is of finite type, then it is
contained in one of these primitively generated Hopf algebras of finite type
B' < B. Hence it suffices to prove the result when A and B are both of finite
type and connected. In this case, Proposition 4.20 (applied to the dual Hopf
algebra) implies that A (or B) is primitively generated if and only if A* (or B*)
has an associative commutative multiplication, and £(A")=0 for n >0 (or &(B™) =
0 for n > 0), where &(x) = ¢, p = characteristic of the field K. If f* A— B
is a monomorphism, it follows that f*: B* — A* is an epimorphism, and thus
these properties carry over from B* to A*, and the theorem is proved.

6.14. DrrINITIONS. If L is a Lie algebra over K, then a subalgebra L' of I,
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is a normal subalgebra if there exists a Lie algebra L, and a morphism of Lie
algebras f: L — L'’ such that L’ is the kernel of f.

6.15. PRoPOSITION. If K is a field, B is a primitively generated Hopf
algebra over K, and A is a sub Hopf algebra of B, then the following conditions
are equivalent:

(1) P(4) is a normal sub Lie algebra of P(B),

(2) the algebra of A is a normal sub algebra of the algebra of B, and

(8) the algebra of A is a left normal sub algebra of the algebra of B.

ProoF. Suppose € P(A),, y€ P(B),, and (1) is satisfled, then xy =
[z, 4] + (— D2y and [z, y] € P(A)ptn. Thus I(A)B = BI(A) since B is primi-
tively generated and (1) implies (2). Certainly (2) implies (3). Suppose (3), and
let C = KX, B. Now C is a primitively generated Hopf algebra, and we have
that the sequence

0— P(A)— P(B)— P(C)

is an exact sequence of Lie algebras which implies (1).
Note that the preceding proposition shows that K@, B = C = BQ. K,
and as indicated in § 3 we often write B//A for C.

6.16. PROPOSITION. If K is a field, B is a primitively generated Hopf
algebra, and A is a normal sub Hopf algebra of B, then the sequence of Lie
algebras

0— P(A)— P(B)— P(B//A)—0

18 exact.

PROOF. We have that the sequence 0 — P(4) — P(B) — P(B/[/A) is exact.
Let L be the cokernel of P(A4) — P(B), and let C = U(L) if the characteristic
of K is zero, or C = V(L) if the characteristic of K is p. Now there is a natural
morphism C — B//A and 0 — P(C)— P(B//A) is exact and C — B//A is a mono-
morphism. Moreover the composition B— C—B//A is just the natural morphism
B — B//A. Hence C — B//A is an epimorphism. This implies C — B//A is an
isomorphism, and the desired result follows.

We now proceed to use an old trick to obtain the Poincaré-Birkhoff-Witt
theorem for Lie algebras over a field K of characteristic p # 0.

6.17. DEFINITIONS, RECOLLECTIONS, AND NOTATION. Let Z denote the
ring of rational integers, and let Z [[¢]] denote the ring of formal power series
in one variable t over Z. If fe Z[[t]], let f(rn) denote the coefficient of ¢* in f.
Now £ is a unit in the ring Z[[¢]] if and only if f(0) == 1. Indeed let f=(0) =
£(0). Then the formula f~(n) = — f0)(3 " A1) f~(n — 1)) defines f~(n) in-
ductively for n > 0.



HOPF ALGEBRAS 249

Let I be the ideal in Z[[{]] consisting of those functions with no constant

term. Let B: I— Z[[t]] be defined by B(f)(k) is the coefficient of t* in the
power series corresponding to the rational function

H1§j§k+1(1 + (—1)”1tf)‘~1)f+1f<j) .
Note that

B(f+ 9) = B(HB(), BUHO) =1, BE") = A — )",

and
BE™) = (1 4 "+ .

We have that 8 is a morphism of I into the group G of those units of Z[[¢]]
with leading term 1. Suppose now f<c G. Define f, inductively as follows:

fo =1,
and

Furn = FAL+ (—1ppr)ratem
Let g(0) = 0, and g(n) = (—1)""'f,—.(n). Now B(g) = f, and it follows that
B: I — G is an isomorphism.

Suppose now that K is a commutative ring and X is a free graded
K-module of finite type. The Euler-Poincaré series of X is the element
a(X) e Z[[t]] such that a(X)(n) is the dimension of X, over K. We have
aXPY)=aX)+ a(Y), and c( X R Y) = a(X)a(Y).

If f, g € Z[[t]], wesay that f < gis f(n) < g(n) foralln. Supposeh: X — Y
is an epimorphism, then a(Y) < a(X) and, for % to be an isomorphism, it
is necessary and sufficient that a(Y) = a(X).

If K is a field, and X is such that X, = 0, then a(X) ¢ I, and so fa(X) is
defined. If p = 2, or X,,,, = 0 for all g, then Sa(X) = a(A(X)). Indeed this
is the reason for defining 8 in the way in which we have. The fact that
Ba(X) = a(A(X)) follows easily from the identities B(t™) = (1 — t*)?, and
B(t2n+1) =1+ t2"+1)-

We now want to deal with the bigraded case of the preceding. Thus let
Z[[s, t]] be the power series ring over Z in two variables s and ¢, and I the ideal
of series with 0 constant term. Let G be the group of units with leading term
1, and for a power series f, let f(m, n) be the coefficient of s™t". Define

B: I — G by letting B(f)(m, n) be the coefficient of $™t" in the power series
corresponding to the rational function

H1§i§m+l H1§j§n+1(1 4 (_1)i+i+lsitj)(——1)i+j+1f(i,J') .
The function B has the following properties
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(1) B(f+ 9) = B(NB),

(2) B is an isomorphism,

(3) B(s™t") = (1 4 (—1ym+ntigmgry=oments,

For bigraded modules over K we consider only two special cases. In case
1 we deal with free bigraded modules X of finite type such that X, , = 0 for
p < 0. We let a(X)(m, n) be the dimension over K of X,,, ,,,,. In case 2 we
deal with free bigraded modules X of finite type such that X, , = 0forp > 0,
and we let a(X)(m, n) be the dimension over K of X_,,, ,_,-

If f, g€ Z|[s, t]] we say that f < ¢ if f(m, n) = g(m, n) for all m, n. If
h: X— Y is an epimorphism in either of the cases under consideration then
a(Y) £ a(X) and, for k to be an isomorphism, it is necessary and sufficient
that a(Y) = a(X).

If Kis a field, and X is such that X, , = 0, then a(X)e I, Ba(X) is de-
fined, and Ba(X) = c¢A(X) if p + 2 or X,,,, = 0 for all m + » odd.

6.18. DEFINITION. If X is a graded module over K, let L(X) denote the
sub Lie algebra of T(X) generated by X. The Lie algebra L(X) is called the
free Lie algebra generated by X.

Note that if K is a field of characteristic 0, then PT(X) = L(X), and we
have already used this notation in 5.17. Observe further that it is clear, from
the universal properties of UL(X) and T(X), that UL(X) = T(X).

6.19. PROPOSITION. If K is a field, X is a graded vector space over K,

and U(L(X)) is filtered by its Lie filtration, then the natural morphism
A(L(X)) — E°U(L(X))
18 an isomorphism.

ProoF. Because of the usual argument concerning direct limits, we may
assume that X is of finite type. Suppose the characteristic of K is 2. There
is a functor from the category of graded K-modules into itself which doubles
dimension; namely, to a graded K-module B, it assigns the graded K-modules
D(B) such that D(B),, = B,, and D(B),, = 0. To a morphism f: B— B/, it
assigns the morphism D(f): D(B) — D(B’) such that D(f),, = f;- The functor
D has the property that D(B Q B') = D(B) ® D(B’). Moreover A(D(B)) =
DA(B) for any graded K-module B, L(D(B)) = D(L(B)), and U(L(D(B))) =
DU(L(B)). Consequently in order to prove the proposition it suffices to assume
that if the characteristic of K is 2, then X,,,, = 0 for all q.

We now want to make a further reduction. This is done by introducing
a special filtration on L(X), and UL(X) = T(X). This filtration is defined by
setting F,I(X) = 0 for ¢ =0, and F,L(X) = L(X) N @, T.(X) for ¢ > 0.
The filtration on 7T(X) is such that F,T(X) = @,<,T.(X). A filtration is in-
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duced on X itself. We let Y be the bigraded vector space E°(X), and note
that Y, ,=0 for r %1, and Y,,, = X,,,. In particular Y, , = 0. We have
E'T(X) = T(Y) = U((Y)). Since this filtration is complete, it suffices to
prove, in order to prove the proposition, the bigraded version of the proposition
dealing with a bigraded vector space Y where Y, , = 0.

We may assume without loss that ¥ = KQ, W where W is a free
bigraded Z module. Now if we set f= a(W), we have f= a(KRQ,W) for
any field K. Moreover T(Y) = KR, T(W), and thus a(T(Y)) = a(T(W)) =
(1 — f)~* for any field K. Suppose the characteristic of K is zero. In this case
we have AL(Y) — @ E°UL(Y) is an isomorphism by §5.16. Consequently
Bla(L(Y)) = (1 — f)~". Suppose we let g = a(L(W)), and =z = a(L(Y)). Since
there is a natural epimorphism K &, L(W)— L(Y), it follows that i < g.
Since this last epimorphism is an isomorphism if the characteristic of K is 0,
it follows that B(g) = (1 — f)~*. Since B is order preserving and 7 =< g, it
follows that B(k) =< (1 — f)~*. However B(h) = aA(L(Y)) and the natural
morphism AL(Y)— @ E°UL(Y) is an epimorphism. Therefore A(h) =
A — ). It follows that B(h) = (1 — f)', AL(Y)—>@ E°UL(Y) is an isomor-
phism, and since 5 is an isomorphism, that » = g, i.e., K®, L(W) — L(Y)
is an isomorphism. Thus the proposition is proved.

It is worth remarking that neither the assertion that K&®, L(W)—
L(Y) is an isomorphism or the assertion that a(AL(Y)) = BaL(Y) is true if
the characteristic of K is 2, and W,,,, # 0 for some q.

6.20. THEOREM (Poincaré-Birkhoff-Witt). If K 4s a field, L is a Lie
algebra over K, and U(L) is filtered by tts Lie filtration, then the natural
morphism

A(L)— @ E°U(L)
ts an isomorphism.

ProoOF. For any Lie algebra L, temporarily let C(L) = @ E°U(L). Now
choose a graded vector space X so that there is an exact sequence of Lie alge-
bras 0 — L' — L(X) — L — 0. We have a commutative diagram

ALY —— C(L)

| l

A(L(X)) — C(L(X)) .
Since A(L’) — A(L(X)) is a monomorphism, it follows that A(L’) — C(L’) is a
monomorphism. Since the natural morphism A(L) — C(L) is an epimorphism
for any Lie algebra L, it follows that A(L’) — C(L’) is an isomorphism. The
fact that U(L) = U(L(X))//U(L') implies that C(L) = C(I(X))//C(L’). More-
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over A(L) = A(I(X))/]A(L"). Thus A(L)— C(L) is an isomorphism, and the
theorem is proved.

7. Some classical theorems

Convention. In this section quasi Hopf algebra will refer only to those
quasi Hopf algebras whose multiplication is associative.

7.1. DEFINITION. Let A be an augmented algebra over K. Define F, A=A
for p =0, and F,A = I(A)® for p < 0. The filtration {F,A} is called the
augmentation filtration of A.

7.2. PROPOSITION. If A is an augmented algebra over K filtered by its
augmentation filtration, then

(1) E°(A) is a bigraded connected algebra over K,

(2) QE(A))p, =0 forp = —1,

(3) QE(A) 1 = QA .

7.3. PROPOSITION. If A and B are augmented algebras over the field K
filtered by their augmentation filtrations, then E°(A Q B) = E°(A) Q E(B).

The proof of the preceding propositions is immediate.

7.4. PROPOSITION. If A is a quasi Hopf algebra over the field K, and A is
filtered by its augmentation filtration, then E°(A) is a primitively generated
bigraded Hopf algebra over K with comultiplication E°(A) induced by the
comultiplication A of A.

Once more the proof is immediate from the definitions.

Using the augmentation filtration, we have associated with any quasi Hopf
algebra A over the field K a primitively generated Hopf algebra @E°(A4) which
is closely related to A. That it is not in general isomorphic with A as an algebra,
can be seen by letting A be the Steenrod algebra or the group algebra of an
appropriately chosen finite group, e.g., the Sylow p-subgroup of the symmetric
group on p? letters for p an odd prime. We will see, however, that if A is
connected, and has commutative multiplication, then A and @E°(A) are
isomorphic with A as algebras if the field K is perfect. This can be viewed as
a major part of the content of the theorems of Hopf, Leray, and Borel if one
chooses to do so. These theorems will be proved in this section.

7.5. THEOREM (Leray). If Ais a connected commutative quast Hopf algebra
over the field K of characteristic zero and X = Q(A), then if f: X — I(A) is a
morphism of graded vector spaces such that the composition X ——f——> I(A4) LEN o
1s the identity morphism of X, where 7w s the natural morphism, then there
1s an isomorphism of algebras A(X) — A induced by f.
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Proor. Choose f satisfying the required conditions. Let f: A(X)— A
denote the morphism of augmented algebras induced by f. Now f induces
E(f). E(A(X)) — E°(A), and E°(f) is a morphism of bigraded connected Hopf
algebras. Applying 7.2 and the manner in which f was chosen, we have that
QUE(f)): QIE(A(X))) — Q(E°(A)) is an isomorphism. It is essentially the
identity morphism of X. Applying 4.17 we have a commutative diagram

P(E(A(X))) — P(E°(4))

QE(AX))) — Q(E°(A))
such that the morphisms represented by the vertical arrows are monomorphisms.
Thus P(E°(f)) is a monomorphism. It results that E°(f) is an isomorphism.
Hence fis an isomorphism and the theorem is proved.

Note that, in the preceding proof, connectedness of A was used to guarantee
that the augmentation filtration of A was complete, allowing us to conclude that
f was an isomorphism from the fact that E°(f) was an isomorphism.

The theorem of Hopf is that special case of the preceding where, for some
integer n, we have A, = 0 for ¢ > n. This guarantees Q(A), = 0 for q even,
and that, as an algebra, A is an exterior algebra generated by elements of odd
degree.

7.6. DEFINITIONS AND REMARKS. If A isan algebra over K, a submodule ¥
of A is a generating submodule if the natural morphism 7(Y) — A induced by
Y — A is an epimorphism. A set of generators for A is a graded set X which
is a set of generators for a generating submodule. If A is connected, we may
by 3.8 always choose a set of generators to be contained in I(4). If K is a field,
then we will have that the set of generators has no superfluous elements if its
image in Q(A) is a basis for Q(A).

7.7. DEFINITION. If Ais an algebraover Kand x € A, for some n, the height
of « is the least integer ¢ such that x? = 0; or, if no such integer exists, the
height of x is infinity.

7.8. PROPOSITION. Let A be a connected quast Hopf algebra over the field
K which as an algebra has one generator x of degree n, then A is a Hopf
algebra, and

(1) if the characteristic of K is zero, the height of x is two for n odd
and infinity for n even;

(2) if the characteristic of K is p odd, then the height of x is two for n
odd and either infinity or a power of p for n even; and

(3) if the characteristic of K is two, then the height of x is either in-
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finity or a power of two.

ProoF. We must have A(x) =2 @1+ 1R 2. Thus x is primitive, A is asso-
ciative, and A is a Hopf algebra. If for » odd the characteristic of K is zero odd,
then 2* = 0 since A 1s commutative. In the remaining cases consider the formula

Ax?) = EHH @ NERal,
where (¢, j) denotes the appropriate binomial coefficient and «° = 1. If the
characteristic of K is zero, we have by induction that x? == 0 for all ¢q. If the
characteristic of K is p, we must have that if «x is of finite height ¢, then all

of the binomial coefficients (¢, ¢ — ) such that 0 < 7 < q are zero, and thus ¢
is a power of p.

7.9. PROPOSITION. If A is a connected quast Hopf algebra over the field
K of characteristic p # 0, and the multiplication of A is commutative, then tvf

(1) QA), = 0 for r > n, and

(2) &7(I(A)) =0 for some integer f,
it follows that P(A),= 0 for r > p’~'n.

PRoOF. Suppose first that 4 has one generator « in degree k. If both p and
k are odd, then ¢ = 0, z is a basis for I{A4) and the proposition is trivially true.
Otherwise, since @, &, « -+, 2?’ " generate I(4) and A(x?) = 32, . (4, )’ @ a7
where (%, j) denotes the appropriate binomial coefficient, we have that P(A) is
generated by z, &), - -+, &(«x), and the proposition is again true.

Suppose now that the assertion is proved for quasi Hopf algebras with ¢
or less generators as an algebra, and that A has ¢ + 1 generators. Choosing a
set of ¢ + 1 generators, let X be one of highest degree and let A’ be the sub
guasi Hopf algebra generated by the remaining generators. Let A” = A4//A4’,
and note that A” is a quasi Hopf algebra with one generator satisfying (1) and (2).
Modifying 3.12 slightly, since we have not assumed that A has an associative
comultiplication, there results an exact sequence 0 — P(A’) — P(4) — P(4").
By induction the proposition is true for A'. It is true for A” since A" has one
generator. Thus the proposition is true for finitely generated quasi Hopf
algebras. The usual direct limit argument now shows that it is true in general.

7.10. PROPOSITION. If A is a connected quast Hopf algebra over the perfect
Jield K, the multiplication of A is commutative, A’ is a sub quasi Hopf algebra
of A, A" = AJ/A’, and

(1) 0— Q4 — Q(A) — QA") — 0 s exact,

(2) Q(A); =0 for r > n, and

(8) A” has one generator x in degree n, then A is tsomorphic with
AR A" as an algebra.

PROOF. Letm: A— A" be the natural morphism. If /: A" — Ais a morphism
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of graded vector spaces such that #f = A, then by 1.7, the composition
A4 % 4s04-25 24

is an isomorphism of left A’-modules. Since the multiplication of A is com-
mutative @ is a morphism of algebras. Thus for the composition to be an
isomorphism of algebras, it is necessary and sufficient that f be a morphism of
algebras.

In other words, in order to prove the proposition, it suffices to show that
there exists y€ A, such that 7(y) = = and the height of ¥ is the same as the
height of x. Clearly any y such that w(y) = « will suffice if » is odd and the
characteristic of K is zero or odd; or, if the height of x is infinity. Thus we
may suppose without loss that we are in one of the remaining cases, the char-
acteristic of K is p, and the height of = is p”. Let B’ = &/(4’) and observe that,
since the field K is perfect, B’ is the sub Hopf algebra K&'(A') of A'. Let C' =
A'||B', C = A//B’,C" = C//C’". Now 4.11 (extended to the case of quasi Hopf
algebras) implies that the natural morphism A" — C” is an isomorphism. We
have also that C’ is a sub quasi Hopf algebra of C, and Q(4") = Q(C"), Q(A) =
Q(C). Let z': C — C" be the natural morphism and choose ze C, such that
() =xeC) = A]. WehaveA(z) =2Q 1+ 1Qz+ uwhereuec I(C)YR I(C").
Thus £7(u) = 0 and A(E2) = &2® 1+ 1R £z, This means &7(z) e PC),s,-
However, P(C), s, = 0 since 0 — P(C") — P(C) — P(C”) is exact, and both C
and C” satisfy the hypotheses of 7.9. Thus &7(z) = 0.

Let a: A — C be the natural morphism. Choose w ¢ A4, such that a(w) = z.
Now A(w)=w@®1+ 1Qw + v whereve I(4) @ I(A). Thus (AR a)AEw) =
&w @ 1 using that £z = 0, and both that (A Q a)ve I[(A") Q I(C’) and that &'
is zero in I(A’) Q I(C'). Consequently applying 4.9 (extended to the case of
quasi Hopf algebras) we have that £’we B’. Thus there exists w,< A, such
that &’w, = &’w. Letting ¥ = w — w,, we have 7(y) — x and the height of ¥
is p’. Hence the proposition is proved.

7.11. THEOREM (Borel). If A is a connected quast Hopf algebra over the
perfect field K, the multiplication in A is commutative, and the underlying
graded vector space of A is of finite type, then as an algebra, A is isomorphic
with a tensor product @,e; 4, of Hopf algebras A,;, where A; is a Hopf algebra
with a single generator x;.

Proor. Note that, under the hypotheses of the theorem, A(n) is finitely
generated as an algebra. Thus the theorem follows by induction from the

preceding proposition for A(n). A simple direct limit argument completes the
proof.
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7.12. EXAMPLE. Let K be a field of characteristic p which is not perfect.
Let B be the Hopf algebra which, as an algebra, is the free commutative algebra
generated by two generators « and ¥ of degree n even. Let k¢ K be an element
which does not have a »"* root in K, and let 4 be the sub Hopf algebra generat-
ed by &) — k&(y). Finally let C = B//A. We have that C is a primitively
generated Hopf algebra with two generators x and ¥ having commutative
multiplication. However, the algebra of C cannot be decomposed into a tensor
product of two algebras with one generator.

7.18. THEOREM. If B isa connected quasi Hopf algebra with commutative
multiplication over the perfect field K, and B s filtered by its augmentation
JSiltration, then B is isomorphic with @E(B) as an algebra.

PRrRoOF. Note that for any augmented algebra A, we have @FE°(A) is an
augmented algebra and E(@E*(A4)) — E°(A). Let @ be the set of pairs (4, f)
such that

(1) Aisasub Hopf algebra of B such that the sequence 0 — Q(A4) — Q(B)
is exact,

(2) f:BE(A)— A is a morphism of algebras such that E°(f): E°(A4) —
E°(A) is the identity morphism, and

(3) if Q(f),: QBEA), — Q(B), is not an isomorphism, then
QEE(A)), = 0 for q¢ > n.

Observe that condition 2 implies that f is an isomorphism of algebras.
Further since K¢ @, we have @ is non-empty.

Order the pairs (4, f) by saying that (4, f) < (C, g) if

(1) AcC,

(2) if @A), — Q(C), is not an isomorphism, then Q(A4), = 0 for ¢'> n,

(3) the diagram

SE(4) — BEC)
b
4 — C

is commutative.

A simple direct limit argument with a linearly ordered subset of @ shows
that @ has maximal elements. Let (4, f) be such a maximal element, and % the
least integer such that Q(A), == @Q(B), if such an integer exists. Let y<€ B, be
an element whose image in @Q(B), is not in Q(A), and let C be the sub Hopf
algebra of B generated by A and y. Applying 7.10 we have that C is isomorphic
with A® C//A. Now E%C) = E%(A) R E°(C//A). Moreover @E*C//A) is
isomorphic with C//A since C//A has a single generator as an algebra. Therefore
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we may choose g: @E°C) — C so that (C, g)e@ and (A4, f) < (C, g). This
contradicts the maximality of (4, f) and shows that we must have had A = B
to start out with. Hence the theorem is proved.

7.14. LEMMA. If A is a connected primitively generated Hopf algebra
with commutative multiplication over the field K of characteristic p # 0, then

P(K&(4)) = K&(P(A)) .

PROOF. By 6.11 we have that A = V(P(A)). Now K&(A) = V(KE(P(A))),
and the result follows.

7.15. PROPOSITION. If A is a comnected primitively generated Hopf
algebra over the perfect field K, the multiplication in A ts commutative, A’
1s a sub Hopf algebra of A, A” = A//A’, and

(1) 0—Q(A") — Q(A) — Q(A") — 0,

(2) QA), =0 forr >mn, and

(8) A” has one generator x in degree m, then A is isomorphic with
A R A” as a Hopf algebra.

PRrRooF. In the notation of 7.10 it suffices to prove there exists y € 4, such
that 7(y) = x, height ¥ = height x, and y is primitive. We now follow through
the proof of 7.10 observing that we may choose z, w, and w, primitive, this last
being true since we obtain &’w ¢ P(7A") = &7 P(A’) by the preceding lemma and
using the fact that K is perfect.

7.16. THEOREM. If A is a connected primitively generated Hopf algebra
over the perfect field K, the multiplication in A is commutative, and the
underlying graded vector space of A 1is of finite type, then there is an iso-
morphism of Hopf algebras of A with @,c; A; where each A, is a Hopf algebra
with a single generator x,.

PRroOF. One applies 7.15 inductively, and passes to the direct limit.

Note that in 7.11 we have an isomorphism of algebras and that, under the
stronger hypotheses of 7.16, we have an isomorphism of Hopf algebras.

7.17. DEFINITION. The algebra A is strictly commutative if it is com-
mutative and if, in addition, #* = 0 for every X of odd degree in A.

7.18. REMARKS. If A is an algebra over a field of characteristic not two,
then A is commutative if and only if A is strictly commutative. Over any ring
K, the free strictly commutative algebra generated by a graded module X is
the quotient of A(X) by the ideal I generated by the elements * where @ is an
element of odd degree of A(X). If X is concentrated in odd degrees then the
free strictly commutative algebra generated by X is called the Grassmann or
exterior algebra of X. It is usually denoted by E(X), and has the property that
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EXPY)=EX)RQRE(Y). The morphism X— X X where x— (x, x) induces a
morphism which makes F(X) into a Hopf algebra in a canonical way. If X is
projective of finite type, then F(X)* is easily seento be the same thing as E(X*).

If X is concentrated in even degrees, the algebra A(X) is sometimes called
the symmetric algebra generated by X. If X is free and generators {X.},c; for
X are given, it is called also the polynomial algebra generated by {X}:e;.

7.19. EXAMPLE. Let K be a field of characteristic p which is not perfect.
Let B be the Hopf algebra which, as an algebra, is the free commutative algebra
generated by an element z of degree 2 and an element ¥ of degree 2p. Let k&
be an element of K which does not have a p’ ** root, and let 4 be the sub Hopf
algebra of B generated by £ (x) — k&(y). Letting C = B//A we have that C is
a primitively generated Hopf algebra with two generators x and y. However,
neither 7.11 or 7.13 is true for C. This example differs from that of 7.12 in
that 7.13 is true for the example of 7.12.

7.20. THEOREM (Samelson-Leray). Let A be a connected Hopf algebra over
the field K having strictly commutative multiplication, and such that Q(A), =
0 for n even, then the natural morphism E(P(A)) — A induced by P(A) — A
18 an tsomorphism.

Proor. It suffices to prove the theorem assuming that A is of finite type.
Now P(A) — Q(A) is a monomorphism by 4.21 or 4.20 depending on the charac-
teristic of K. Note that in the case of finite characteristic &(I(A)) = 0 since A
is generated by elements of odd degree and is strictly commutative. We thus
have that A* is primitively generated, i.e., P(A*) — Q(A4*) is an epimorphism.
However P(A*), — 0 for n even thus [z, y] = 0 for z, ¥ primitive elements of
A*. Since A* is primitively generated, this means that the multiplication in A*
is commutative. If the characteristic of K is two and « is a primitive element
of odd degree, then x? is primitive of even degree so 2* = 0. Consequently A*
is strictly commutative and Q(A4*), = 0 for n even. Applying 4.21 or 4.20 again
we have for any field K that P(4*) — Q(A*) is a monomorphism. It results that
P(A) — Q(A) is an isomorphism and the theorem follows.

Note that in the preceding it was important that A be a Hopf algebra and
not just a quasi Hopf algebra. The result of the theorem is not velid if associ-
ativity of the comultiplication is not assumed.

7.21. PROPOSITION. If B is a connected Hopf algebra over the field K of
characteristic different from two, and both the multiplication and the
comultiplication of B are commutative, then B is tsomorphic with A® C
where A ts o Grassman algebra with generators of odd degree, and C is a
Hopf algebra which is zero in odd degrees.
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Proor. Let L, = P(B), for g odd and L, = 0 for ¢ even. Let A be the sub
Hopf algebra of B generated by L(4A = E(L)). Let C = B//A. Assuming B is
of finite type, we have L* is the odd degree part of P(B*). There results a
morphism of Hopf algebras j*: A* — B* whose dual j: B— A has the property
that the composition A — B — A is the identity morphism of A. Using j, we
form A\\B, and observe that the composition A\\B — B — C is an isomorphism.
Thus B = A® C, and the proposition is proved.

8. Morphisms of connected coalgebras into connected algebras

8.1. DEFINITIONS. If A is a connected coalgebra and B is a connected
algebra, let G(A4, B) denote the set of morphism of modules f: A — B such that
f, is the identity morphism of K. If f, g € G(A, B), let fxg be the composition

A% 42472 B2 B.

8.2. PROPOSITION. If A is a connected coalgebra and B ts a connected

algebra, then G(A, B) is a group under the operation * with identity
A—>K-"5B,.

ProoF. The fact that G(A, B) is a monoid is clear from the definitions. It
remains to show that, if fe G(4, B), there exists f~* € G(A4, B). Suppose f'is
defined in degrees less than n, € 4,, and A@) =2 QR 1+ 1R« + Xz Q =}.
Note we may assume # > 0, and that 0 < degree »;’ < n for all ¢. Let f~'(x) =
—x — ) @ f))-

8.3. PROPOSITION. If f: A’— A is a morphism of connected coalgebras
and g: B— B’ is a morphism of connected algebras, there ts induced a
morphism of groups G(f, 9): G(A, B) — G(4’', B) by G(f, 9) h = ghf.

8.4. DEFINITION. If Ais a connected Hopf algebra, the conjugation of A
is the inverse in G(4, A) of the identity morphism of A. It is denoted by C,
or C.

8.5. PRoOPOSITION. If A and B are connected Hopf algebras, then
C,RCy: AR B— AQ B is the conjugation of AR B.

The proof is straightforward.

8.6. PROPOSITION. If A is a connected Hopf algebra, then the diagram

A—" LA@A

jT
¢ AR A

L, e
A—S 404
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is commutative.
PROOF. Since A is a morphism of algebras, we have by 8.3 that AC is the

inverse of A. It remains to show that (C @ C) TA is also an inverse of A. Since
T is an automorphism of the Hopf algebra A A we have T(C R C) =

(CRC)T. Now
A* (T(C Q C)A)
=PRQANARTRAARARTIAR(CRC)A)A
= (PRAUARTIARPRAARARCRCHARAR AAR LA
= (PRAARTIARPARC)A)QCHARQ A)A
=(PQAURTNARNERQCHARQ LA .
Observing that T(ne & C)A = (C & %¢e)A, the last line above becomes
@R AARCRENAR AA = ((P(ARC)HA) Q 7e)A = (e Q 1E)A = 78,
and the proposition is proved.
Note that the associativity of the comultiplication wasused in the preceding.

8.7. PROPOSITION. If A is a connected Hopf algebra, then the diagram

AQA—2 4
lC@C ‘
AR A

18 commutative.
The proof of this proposition is just the dual of the proof of 8.6.

8.8. PROPOSITION. If A is a Hopf algebra with either commutative
multiplication or commutative comultiplication, then Co C: A— A is the
identity morphism of A.

ProoF. It suffices to show that C* = Co C is the inverse of C in G(4, A).
Now C?**C = ¢(C ® C)(C R® A)A = CPT(C ® A)A by 8.7. If either @ or A is
commutative, this becomes Cp(C @ A)A = C ne = 7¢, and the proposition is
proved.

8.9. COMMENTS. If we consider the category @ of augmented coalgebras
with commutative comultiplication over K, it is easily seen to be a category
with products. The product of A and B is just A @ B. This is not the case if
we do not restrict ourselves to commutative comultiplication. Moreover K is a
point in this category, i.e., given any object A in @ there is a unique morphism
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7: K— A and a unique morphism ¢: A — K. This means that we can define the
notion of monoid in the category. Letting A x B denote the product in the
category of A and B, we have that a monoid in the category is an object A
together with a morphism @: A x A — A such that the diagrams

AxAx A2, 444

e I

AxA—2 4,
A=Kx A-2*% ,4xa

AN
AN
AN
4
@
AN
AN
AN
N
A,
AXr]
A=Ax K— "5 Ax A
AN
AN
AN
N4
AN @
AN
AN
AN
N
A

are commutative. In other words a monoid in the category @ is just a Hopf
algebra with commutative comultiplication. A group in the category is a monoid
in the category together with C: A — A such that the diagram

At A A-A%C 44— 4
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is commutative. Thus we have just seen that the connected Hopf algebras with
commutative comultiplication are groups in the category (.

If we let I denote the category of topological spaces with base point, then
if K is a field, there is a natural functor H,( , K): ¥ — @ which to every space
X assigns its singular homology with coefficients in K. The comultiplication
H. (X, K)— H.(X, K)® H.(X, K) is the morphism induced by the diagonal
A; X— X x X. Note that if P is a point, H.(P,K)= K. Thus P— X
induces K— H.(X; K) and X — P induces H.(X; K) — K. The functor
H.( , K): 9 — @& preserves products, sends monoids into monoids, and groups
into groups. Indeed it sends connected H-spaces with homotopy associative
multiplication into groups. If G is a group in J and G operates on X on the
left, then G X X — Xinduces H.(G; K)Q H,(X, K)— H (X, K),and H,(X, K)
becomes a module coalgebra over the Hopf algebra H,(G, K). We assume the
usual associativity conditions ete. for the operation of G on X.

We will conelude this section by showing one more analogy between con-
nected Hopf algebras with commutative comultiplication and groups; namely,
that in this case, there is just one notion of normal subalgebra (3.3).

8.10. PROPOSITION. If B is a connected Hopf algebra with commutative

comultiplication, and A is a sub Hopf algebra of B, then the following are
equivalent:

(1) A is aleft normal subalgebra of B,

(2) A s a right normal subalgebra of B, and

(3) A is a normal subalgebra of B.

Proor. It suffices to show that, if I(A)B < BI(A), then I(4)B = BI(4).
Applying the conjugation operation, we have C(I(A)B) C C(BI(A)). However,
C(I(A)B) = C(B)C(I(A)) = BI(A), and C(BI(A)) = C(I(A))C(B) = I(A)B by 8.7
and 8.8, which proves the proposition.

Appendix. The characteristic zero homology of H-spaces

By Corollary 4.18 we have that, if A is a connected Hopf algebra over a
field K of characteristic zero, then it is primitively generated if and only if the
comultiplication in A is commutative. Applying 5.18, we have that such a Hopf
algebra is the universal enveloping algebra of the Lie algebra of its own primi-
tive elements, i.e., A = U(P(4)).

Now if G is an H-space with unit and homotopy associative multiplication,
then H,(G; K) is a Hopf algebra. Moreover G is connected if and only if
H,.(G; K) is connected. Assuming G connected, we have that H,(G; K) is
primitively generated, since the fact that the diagonal A: G — G X G is com-
mutative, implies that the comultiplication in H,(G; K) is commutative. Thus
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H,(G, K) = U(P(H.(G; K))). Inthissituation it is possible to give P(H,(G; K))

a more geometric interpretation. We now proceed to indicate how this is done.
If G satisfies the above conditions, and 7,(G) stands for the ¢’ ™ homotopy

group of G based at the identity element of G, there is defined a pairing

[ , I: EP(G) K 7Tq(G) - ﬂpH(G)
having the following properties:
(1) if zem,(G), and y € 7,(G), then [z, y] = (—1)»* |y, x|,
(2) if xe7,(G@), ye 7 (G), ze 7.(G), then

(Ml)pf[x’ [y; z]] + (_1)”[% [zr x]] + (__1)qr[z’ [90, y]] =0 ’
and

(8) if xe 7, (G), ye 1 ,(G)and \,: 7,(G) — H,(G) is the Hurewicz morphism,
then

)"p+q[xy y] = )"p(x))"q(y) - (—1)pq7\'q(y)7\'p(x) .
Consequently K being of characteristic zero, the graded vector space 7(G; K)
such that 7,(G; K) = 7,(G) @ K becomes a Lie algebra over K, and the induced
morphism \: 7,.(G; K) — H.(G, K) is a morphism of Lie algebras. Details
concerning the preceding may be found in several places, e.g., [8] or [9]. The
Lie product in 7.(G; K) is frequently called the Samelson product.

Now one has that the image of A is contained in P(H..(G; K)). Itisinfact
exactly P(H,(G; K)) as has been proved by Cartan and Serre. The proof is most
easily carried out by looking at the natural Postnikov system of G [7], and
observing that at each stage the fibre is totally non-homologous to zero. This
last fact is obtained by observing that each stage of this Postnikov system is
a principal fibration with fibre, base, and total space all H-spaces of the type
under consideration. It results that the characteristic zero & invariant of the
fibration is zero due to its being a primitive element of a degree such that the
space of primitive elements of this degree is zero by inductive hypothesis.
Combining these facts there results the following theorem.

THEOREM. IfG isa pathwise connected homotopy associative H-space with
unit, and »: 7(G; K) — H(G; K) is the Hurewicz morphism of Lie algebras,
then the induced morphism N: Un(G; K)) — H.(G; K) is an isomorphism of
Hopf algebras.

Note that if G is a pathwise connected topological group, then the conditions
of the theorem obtain.

PRINCETON UNIVERSITY
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