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On the Structure of Hopf Algebras 
By JOHN W. MILNOR and JOHN C. MOORE* 

The notion of Hopf algebra' has been abstracted from the work of Hopf 
on manifolds which admit a product operation. The homology H*(M; K) of 
such a manifold with coefficients in the field K admits not only a diagonal or 
co-product 

H*(M; K) - H (M; K) 0H H*(M; K) 

induced by the diagonal M e M x M, but also a product 

H*(M, K) 0 HE*(M; K) - HE*(M; K) 

induced by the product M x M e M. The structure theorem of Hopf con- 
cerning such algebras has been generalized by Borel, Leray, and others. 

This paper gives a comprehensive treatment of Hopf algebras and some 
surrounding topics. New proofs of the classical theorems are given, as well as 
some new results. The paper is divided into eight sections with the following 
titles: 

1. Algebras and modules. 
2. Coalgebras and comodules. 
3. Algebras, coalgebras, and duality. 
4. Elementary properties of Hopf algebras. 
5. Universal algebras of Lie algebras. 
6. Lie algebras and restricted Lie algebras. 
7. Some classical theorems. 
8. Morphisms of connected coalgebras into connected algebras. 
The first four sections are introductory in nature. Section 5 shows that, 

over a field of characteristic zero, the category of graded Lie algebras is iso- 
morphic with the category of primitively generated Hopf algebras. In ? 6, a 
similar result is obtained in the case of characteristic p # 0, but with graded 
Lie algebras replaced by graded restricted Lie algebras. Section 7 studies 
conditions when a Hopf algebra with commutative multiplication splits either 
as a tensor product of algebras with a single generator or a tensor product of 

* The first author was an Alfred P. Sloan Research Fellow, and the second was partially 
supported by the Air Force Office of Scientific Research during the period that this work 
was being done. 

1 The term hyperalgebra is used by Cartier, Halpern, and others for the same concept. 
Our Hopf algebras differ from those defined by Borel in that the complication or diagonal 
map is considered as part of the structure. 
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Hopf algebras with a single generator. It is here that one finds the funda- 
mental theorem of Hopf, Leray, and Borel. Section 8 introduces and studies 
mildly a canonical anti-automorphism defined for connected Hopf algebras. For 
the Steenrod algebra, this operation was essentially introduced by Thom 
(Compare Milnor [6]). 

In addition to the main body of the paper, there is an appendix on the 
homology of H-spaces with coefficients in a field of characteristic zero. 

1. Algebras and modules 

For convenience we assume that we have chosen a fixed commutative ring 
K. Tensor products will be taken over K, and the tensor product of two K- 
modules A and B will be denoted by A 0 B. Similarly Hom (A, B) will denote 
the morphisms of A into B in the category of K-modules. 

A graded K-module A is a family of K-modules {An} where the indices n 
run through the non-negative integers. If A, B are graded K-modules, a 
morphism of graded K-modules f: A - B is a family of morphisms {f"} such 
that fn: A,,, B, is a morphism of K-modules. 

If A and B are graded K-modules, then A 0 B is the graded K-module 
such that (A0B) =( @i+i=n AtA?Bj, and if f: A-A', g: B B' are morphisms 
of graded K-modules, then (f 0 g): A( B -+ A' 0 B' is the morphism of graded 
K-modules such that (f (0 g)n = Gz+i=,n f 0 gi. 

If A is a graded K-module, we denote by A* the graded K-module such 
that A* = Hom (An, K). If f: A B is a morphism of graded K-modules, then 
f *: B* A* is the morphism of graded K-modules such that f.* = Hom (f , K). 
Here we use the convention that a module and the identity morphism of the 
module will be denoted by the same symbol. 

Sometimes K itself will be considered as a graded K-module which is the 
0-module in all degrees except 0, and the ring K in degree 0. Recall that 
A (0 K = A = K? A where A and K both denote either K-modules or graded 
K-modules. 

1.1. DEFINITIONS. An algebra over K is a graded K-module A together 
with morphisms of graded K-modules q': A 0 A A and to: K A such that 
the diagrams 

A (A A (D A-A '9, AA@ A 

(1) (9 A 

AOA A 

and 
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KOA- 
77( A 

XA A 
'S/ 

(2) A 

A/ AD K0A -*A0A 

are commutative. The morphism q' is called the multiplication of the algebra 
A, and '? is called the unit of A. 

A multiplication in a graded K-module A is a morphism qp: A 0 A > A. 
For this to be the multiplication of an algebra condition, (1) says that it must 
be associative; while the existence of Y together with the commutativity of 
diagram (2) says that this multiplication must have a unit. 

For convenience we introduce the twisting morphism T: A 0 B > B 0 A 
where A and B are graded K-modules, and T is the morphism such that 
T,(a 0 b) = (-l)Pqb 3 a for a e Ap, b e Bq and p + q = n. The algebra A is 
commutative if the diagram 

A O A 

T A 

AOA 

is commutative. Classically such an algebra was called anti-commutative. 
If A and B are algebras over K, then A 0 B is the algebra over K with 

multiplication the composition 

A 0 B 0 A 0 B AOAOBOB -9A 9 > A 0 B 
and unit 

K= KOK 77A T7B A0B 

A morphism of algebras f: A B is a morphism of graded K-modules such 
that the diagrams 

AMAD)A K'A 

{fOf {f {f jf 

BOB B-B K I B 

are commutative. Observe that an algebra A is commutative if and only if 
a: A 0 A - A is a morphism of algebras. 

An augmentation of an algebra A is a morphism of algebras s: Ax K. 
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An algebra A together with an augmentation EA is called an augmented (or 
supplemented) algebra. If A is an augmented algebra, we denote by I(A) the 
kernel of s: A - K. Observe that I(A)q = Aq for q > 0, and I(A)0 is the kernel 
of s,: A,, K. The ideal I(A) in A is called the augmentation ideal of A. Observe 
that as a graded K-module A may be considered as the direct sum 

A image '7 QD kernel a, 

or identifying K and image 7, 

A = Ke I(A) . 

Here we use the fact that s67: K - K is the identity morphism of K. 

1.2. DEFINITION. If A is an algebra over K, a left A-module is a graded 
K-module N together with a morphism q'N: A? N -k N such that the diagrams 

A O A OA N A9(9N A C N 

(pA?( N {9N 

A ON (PN N, 

KO 
7 N 

SA ON 
KON ~~'P / 

~\ /9RN 
N 

are commutative. 
If N, N' are left A-modules, a morphism f: N o N' of left A-modules is 

a morphism of graded K-modules such that the diagram 

AO N -f-N 

{A(f {f 

A O N1 N. N 

is commutative. 
If f, g: No N' are morphisms of left A-modules, then (f + g): N- N' is 

the morphism of left A-modules such that (f + g)q = fq + gq: Mq >Mq, a 
morphism of K-modules. 

The kernel of f is the left A-module such that as a graded K-module 
(Kerf)q = Ker (fq), and the cokernel of f is the left A-module such that as a 
graded K-module (Coker f)q Coker (fq). Making a few routine verifications, 
one sees that the category of left A-modules is an abelian category. 

The notion of right A-module M is defined similarly using a morphism of 
graded K-modules 9M: MO A A M. The right A-modules also form an abelian 
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category. 
If M is a right A-module, and N is a left A-module the tensor product of 

M and N is the graded K-module M 0A N such that the sequence 

MO AO N SN.MSX M0N -*M0AN ,-O 

is an exact sequence of graded K-modules. 

If M' - M , M' 0 is an exact sequence of right A-modules, and N is a 
left A-module, then 

M'04AN )MOAN- M" 0AN > 0 

is an exact sequence of graded K-modules. 
Similarly if M is a right A-module, and N' - N - N" - 0 is an exact 

sequence of left A-modules, then 

M0AN' -M04AN -M0AN" -O 

is an exact sequence of graded K-modules. 
In particular if A is an augmented algebra, we have that K is a right A- 

module via the augmentation s: A - K. Thus if N is a left A-module, we have 
defined K 04 N and K 04 N = N/I(A)N where I(A)N is the image of the 
composition 

I(A) O N - AON9N. 

1.3. DEFINITION. The algebra A over K is connected if '?: K - A, is an 
isomorphism. 

Notice that any connected algebra A has a unique augmentation s: A - K, 
and that Ki- A,, K where s072 = K. 

1.4. PROPOSITION. If A is a connected algebra over K, and N is a left 
A-module, then N = 0 if and only if KOA N 0. 

PROOF. Certainly if N= 0, then K 04 N = 0. Suppose, on the other hand, 
that K 04 N = 0. This is equivalent to saying that I(A) 0 N N is an epi- 
morphism. Now since A is connected, I(A) = 0; and then if Nq 0 for q _ k, 
we have (I(A) 0 N)q 0 for q ? k + 1, and it follows that Nq 0 0 for 
q ? k + 1. Since (I(A) N)o = 0 No, we have proved the proposition. 

1.5. COROLLARY. If A is a connected algebra over K and f: N' -N is a 
morphism of left A-modules, then f is an epimorphism if and only if 
K 4Af: K 0DA N' - K 04 N is an epimorphism. 

PROOF. Certainly if f is an epimorphism, so is K 0Af. Suppose K 0Af is 
an epimorphism. Let N" be the cokernel of f. We have exact sequences 
N'- N - N"'- 0, and KOiN' , K0AN K0AN"--* 0. Since KOAf 
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is an epimorphism, K OA N" = 0, and it follows from the preceding proposition 
that N" = 0 which proves the corollary. 

If C is a graded K-module, then A 0 C is a left A-module called the ex- 
tended A-module of C with q,'&?: A 0 A 0 Coo A 0 C the morphism 

A X A 0 C 9?' k-A 0DC . 

If N is a left A-module, and f: C N is a morphism of graded K-modules, 
then the composition A ? C - A ON N is a morphism of left 
A-modules. 

Observe that K OA (A 0 C) = C, and that the morphism K 0 A(A 0 C) 
KOAN under the conditions above is just the composition of morphisms of 
graded K-modules 

C f)N AKON. 
1.6. PROPOSITION. If A is a connected algebra over K, C is a graded 

K-module, N is a left A-module, and f: C N is a morphism of graded 
K-modules, then the composition 

A OC-A(9f ) A0O N 9'N --N 
is an epimorphism of left A-modules if and only if the composition 

f 
C. - N >-K0AN 

is an epimorphism of graded K-modules. 
PROOF. The proposition follows at once from Corollary 1.5. 
In addition to speaking of algebras over K being connected, it is possible 

to speak of graded K-modules being connected. If N is a graded K-module, it 
is connected if No K. If A is an algebra over K, and N is a left A-module, 
we say that N is connected if the underlying graded K-module of N is con- 
nected. In this case, given an isomorphism '7: Kay No, there is defined a 
unique morphism i: A - N which is the composition 

A A -A K0 AN N. 
1.7. PROPOSITION. Suppose the following conditions are satisfied: 
( 1 ) A is a connected algebra over K; 
( 2 ) N is a connected left A-module; 
(3) C=K0AN; 
(4) A: N - NO C is a morphism of left A-modules where 

cPgNOK: A ONO C -*NOC 

is the morphism qN 0 C; 
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(5) H: N-> C is the canonical epimorphism, and f: C N is a morphism. 
of graded K-modules such that Hf = C; 

(6) (s0C)A H: N C; 
(7) (No06)A =N: N-N; and 
(8) the sequence 0 A 0 C - (0 N ? C is an exact sequence of left 

A-modules. 
If f: A 0 C N is the composition A -O CA A0 (A N N. then 

f is an isomorphism of left A-modules. 
PROOF. By Proposition 1.6, we have that f is an epimorphism. Now define 

filtrations on A 0 C and NO0 C as follows: Fp(A 0 C) = Eq, A 0 Cq, and 
Fv(N0 C) = < N? Cq. Let E?(A 0 C) and E0(NO C) denote the corre- 
sponding associated bigraded modules. We now have E0,q(A 0 C) = Aq 0 Cp, 
and E0,q(N0 C) = Nq 0 Cp. Moreover K O Cq) c Fp(NO C) since 
Eq<p (NO C)q _ FP(NO C). Since A f is a morphism of left A-modules, it 
follows that A/f(FP(A 0 C)) c Fp(N 0 C) and thus Af induces 

EO(Af ): E?(A 0 C) -> E?(N0 C). 

Moreover identifying E?(A 0 C) with A 0 C and E?(N O C) with N ? C, we 
have that E0(A7f) is just the morphism i 0 C which is a monomorphism by 
hypothesis 8. This implies that A f is a monomorphism, and proves the propo- 
sition, since now f is a monomorphism. 

2. Coalgebras and comodules 

2.1. DEFINITIONS. A coalgebra over K is a graded K-module A together 
with morphisms of graded K-modules 

A: A- AOA and s:A )K 
such that the diagrams 

A AOA 
(1) A A OA 

AOA- -_)A0A0A 
and 

A O A -A) K0A 
/ 

A 
A/ \AO 

A< A/ A?E\ g 
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are commutative. The morphism A is called the comultiplication of the co- 
algebra A, and s is called the unit of A. 

The coalgebra A is commutative if the diagram 

A C) A 

A7 T 

A0A 

is commutative. 
If A and B are coalgebras over K, then A 0 B is the coalgebra over K 

with comultiplication the composition 

AA AB A (?D T?( B 
A0(gB -g A0gA0gB0B -*A0gB0A0B, 

and unit 

A 0 B -- K X K = K. 

A morphism of coalgebras f: A B is a morphism of graded K-modules 
such that the diagrams 

A-NAA A A 'A K 

jf AB {ff {f {k 

B AB 
>($ B B RUB K 

are commutative. One can verify without difficulty that a coalgebra A is com- 
mutative if and only if A: A - A 0 A is a morphism of coalgebras. 

Noticing that we may consider K to be a coalgebra in a canonical way, an 
augmentation of a coalgebra is a morphism of coalgebras '7: K e A. If A is an 
augmented coalgebra, i.e., a coalgebra together with an augmentation '7, we 
denote by J(A) the cokernel of '7. Considering A as a graded K-module we have 
that 

A = K et J(A) . 

2.2. DEFINITIONS. If A is a coalgebra over K, a left A-comodule is a graded 
K-module N together with a morphism A,: No A ? N such that the 
diagrams 
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N AN AON 
ANAA (?D N 

A< N A' A~N - 

AON -)A0AN 
A0N- ()-)K0N 

/ 
AN\ / 

N 
are commutative. 

If N, N' are left A-comodules, a morphism f: N > N' of left A-comodules 
is a morphism of graded K-modules such that the diagram 

AN 
N -HA?N 

jf {A~f 
nN' A(N' 

is commutative. 
The category of left A-comodules is immediately seen to be an additive 

category. However, due to the fact that A Oy ( ) is right exact and not in 
general left exact, it is not an abelian category in general. If A is a flat graded 
K-module, then the category of left A-comodules is abelian. 

The notion of right A-comodules is defined using a morphism of graded 
K-modules A,: M-a MO A. The category of right A-comodules has similar 
general properties to the category of left A-comodules. 

If M is a right A-comodule and N is a left A-comodule the cotensor product 
of M and N is the graded K-module M o , N such that the sequence 

O- ME1AN )-MON AmN-MAN M A N 
is an exact sequence of graded K-modules. 

A sequence of graded K-modules 

> C(q) C(q -1) f(q-2) ) - 

is split-exact if it is exact, and Ker (f (q)) is a direct summand of C(q) for each 
q. Sequences of modules over a K-algebra or a K-coalgebra are split exact if 
the underlying sequences of graded K-modules are split exact. 

If 0 - M' - M - M" is a split-exact sequence of right A-comodules, and 
N is a left A-comodule, then 

0 - M' DAN - MDAN -M1 EAN 

is an exact sequence of graded K-modules. 
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Similarly if M is a right A-comodule and 0 - N' N N" is a split-exact 
sequence of left A-comodules, then 

0 - M WAN' - DM N M WAN" 

is an exact sequence of graded K-modules. 

2.3. DEFINITION. The coalgebra A over K is connected if e,: A0 - K is an 
isomorphism. 

Notice that any connected coalgebra A has a unique augmentation 
22: K-+ A, and that se&O = K. 

2.4. PROPOSITION. If A is a connected coalgebra over K, and N is a left 
A-comodule, then N = 0 if and only if K W A N = 0. 

PROOF. Certainly if N = 0, then K WlA N = 0. Suppose that K WA N 0. 
This is equivalent to saying that N - J(A) (0 N is a monomorphism. Since A 
is connected, J(A), = 0; and thus, if Nq = 0 for q ? k, we have (J(A) 0 N)q= 0 
for q < k + 1; and it follows that Nq = 0 for q < k + 1. Thus N = O and the 
proposition is proved. 

Having proved the preceding proposition we cannot, as in the preceding 
section, draw a simple corollary since the category of left A-modules is not 
necessarily abelian. 

2.5. PROPOSITION. If A is a connected coalgebra over K, f: N N" is a 
morphism of left A-comodules, c: N' N is the kernel off considered as a 
graded K-module, and the sequence 

J(A) (ON' -* J(A) 0 N J(A) (O N" 

is an exact sequence of graded K-modules, then f is a monomorphism if and 
only if K WAf: K WA N-> K WAN' is a monomorphism. 

PROOF. We have a commutative diagram 

I K Dflf 
K WAN - K A N" 

N N N" 

I J(A)?gf J(A) ? N'- J(A)?N - J(A) ? N" 

with exact rows and columns. If f is a monomorphism, it follows at once that 
K WAf is a monomorphism. Suppose K W4 f is a monomorphism, and that 
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N,' = 0 for q ? k. Then since A is connected, (J(A) 0 N')q = 0 for q < k + 1; 
and (J(A) (0 f )q is a monomorphism for q ? k + 1. Thus fq is a monomorphism 
for q < k + 1, and Nq' = 0 for q < k + 1 which shows that N' = 0 and proves 
the proposition. 

Observe that the condition that J(A) (0 N' J(A) (0 N - J(A) (0 N" be 
exact is immediate if either A is a flat K-module or f is an epimorphism. 

If C is a graded K-module, then A 0 C is a left A-comodule with 

AIsc: A ( 0 C >A0&A0C 
the morphism A 0 C. If N is a left A-comodule and f: N C is a morphism 
of graded K-modules, then the composition 

No A0N A A -2AC 

is a morphism of left A-comodules. 
Observe that K WA (A (0 C) = C, and the morphism 

K LIAN N K IA(A ( C) 

under the conditions above is just the composition 

Kw4N -N f-C. 
We may define the notion of connected left A-comodules, just as we defined 

the notion of connected modules over an algebra in the preceding section. Thus 
a left A comodule N is connected if it is connected as a graded K-module, i.e., 
No K. We then have j: N A defined as the composition 

AN-*ON -*OKA N- A (&.N-I) A ($9 K = A 

where s: N K, a I N, is an isomorphism. 

2.6. PROPOSITION. Suppose the following conditions are satisfied: 
( 1 ) A is a connected coalgebra over K, 
(2) N is a connected left A-comodule, 
(3) C= K IAN, 

(4) p: NO( C N is a morphism of left A-comodules where ANeg 

AN 0 C, 

(5) j: C - N is the canonical monomorphism, and f: N-o C is a 
morphism of graded K-modules such that fj = C, 

(6) p()7 ( C) = j: C yNg 
(7) q(N?(7) = N:- N N, and 
(8) the sequence N( C f 0C--> A (0 C > 0 is an exact sequence of 

left A-comodules. 
1ffA: N A C s the omposition A?!g - AO C, A 

If :N A(&C is the composition N-)A? N OfIA , 9then 



222 MILNOR AND MOORE 

f is an isomorphism of left A-comodules. 
PROOF. Define filtrations on A 0 C and N (? C as follows: FP(A 0 C) 

Igqp A ? Cq, FP(N03 C) = Iq~p NO Cq, and let EO(A (0 C) and EO(N0(9 C) 
denote the corresponding associated bigraded modules. We now have 
EoP s(A 0 C) = Aq 0 C, and Eopjq(N? C) = Nq 0 Cp. Moreover 

f7(FP(N C)) c FP(A 0 C) 

and hence induces E0(Ip): Eo(N 0 C) Eo(A (0 C); identifying EO(N (0 C) 
with N O C, and EO(A 0 C) with A 0& C, we have E0(f9) = i .0 C which is 
an epimorphism by hypothesis 8. Thus fp is an epimorphism and f is an epi- 
morphism. 

Since K oL f= C: C C and we are now in a position to apply either 
Proposition 2.4 or 2.5, it follows that 7 is a monomorphism, and hence an iso- 
morphism, which proves the proposition. 

3. Algebras, coalgebras, and duality 

A graded K-module A is of finite type if each A, is a finitely generated 
K-module. It is projective if each A, is projective. We recall a few facts con- 
cerning graded K-modules which are projective of finite type. If A and B are 
such K-modules, then 

(1 ) the morphism of graded K-modules 

X: A - A** 

defined by X(x)a* = a*(x) for x e A,, a* e A* is an isomorphism, 
(2 ) the morphism of graded K-modules 

a: A* 03B* ) (A0B)* 

defined by a(a* 0 b*)(x 0 y) a*(x)b*(y) for a* e A*, b* e B*, x e Ap, y e Bq is 
an isomorphism. 

Thus we write A A**, and A* 0 B* (A 0 B)*. Notice that A* is 
projective of finite type when A is projective of finite type. 

3.1. PROPOSITION. Suppose that A is a graded K-module which is 
projective of finite type, then 

(1) p: A 0 A - A is a multiplication in A if and only if 9*: A* 
A* 0 A* is a comultiplication in A*, 

(2 ) q is associative if and only if 9* is associative, 
(3 ) 7;: K-) A is a unit for the multiplication p if and only if 7j*: A* 

K* = K is a unit for the comultiplication qY*, 

(4) (A, p, 77) is an algebra if and only if (A*, *, *) is a coalgebra, 
( 5 ) s: A - K is an augmentation of the algebra (A, ', p) if and only if 
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s*: K - A* is an augmentation of the coalgebra (A*, q*, i*), and 
(6) the algebra (A, p, I) is commutative if and only if the coalgebra 

(A*, q*, I*) is commutative. 
The proof of the preceding proposition follows at once from the definitions 

and standard properties of projective modules of finite type. 

3.2. PROPOSITION. Suppose (A, p, i7) is an algebra over K such that the 
graded K-module A is projective of finite type. If N is a graded K-module 
which is projective of finite type, then 

( 1 ) 9y: A 0 N-o N defines the structure of a left A-module on N if 
and only if P,*: N* ) A* 0) N* defines the structure of a left A*-comodule 
on N*, and 

( 2 ) under the preceding conditions, if K 04 N is projective of finite 
type, then (K? ON)* K El N*. 

Once more the proof of the proposition follows at once from the definitions. 

3.3. DEFINITIONS. Suppose that A and B are augmented algebras. A 
morphism f: A B of augmented algebras is left normal if 

(1 ) the sequence of graded K-modules I(A) 0 B B > C is split exact 
where C = K04B and wc is the natural epimorphism, and 

(2) the composition 

B (& I(A) B C 
is zero. 

The morphism f is right normal if 
(1 ) the sequence of graded K-modules B (0 I(A) B > C is split exact 

where C =B 0 K and w is the natural epimorphism, and 
(2 ) the composition 

I(A) (g B > C 
is zero. 

We say that f is normal if it is both right and left normal, and in this 
case we write B//f for K 04AB = B 04 K. Moreover if f is a monomorphism 
we write B//A for B//f when f is clear from the context. 

3.4. PROPOSITION. If f: A - B is a left normal morphism of augmented 
algebras, C= K?4 B, and r: B L C is the natural morphism, there are 
unique morphisms of graded K-modules sp,: C 0 C - C, )7,: Ken C, and 
s, C - K such that wr is a morphism of augmented algebras. 

The proof is immediate from the definitions. 

3.5. DEFINITIONS. Suppose that A and B are augmented coalgebras. A 
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morphism f: B A is left normal if 
(1 ) the sequence of graded K-modules 

i 
CU B J(A) & B 

is split exact where C = K W B and i is the natural monomorphism, and 
(2 ) the composition 

C- ?B B -Bg J(A) 
is zero. 

The morphism f is right normal if 
(1 ) the sequence of graded K-modules 

C-UB ,B (J(A) 

is split exact where C = B W AK and i is the natural monomorphism, and 
(2 ) the composition 

C >B )J(A)OgB 

is zero. 
We say that f is normal if it is both right and left normal. If f is a 

normal epimorphism we write A\\B for K W A B = B W AK when f is clear from 
the context. 

3.6. PROPOSITION. If f: B A is a left normal morphism of augmented 
coalgebras, C = K W A B, and i: C - B is the natural morphism, there are 
unique morphisms of graded K-modules A,: C Ck C 0 C, ,: C K, K C 
such that i is a morphism of augmented coalgebras. 

The proof is immediate from the definitions. 
Observe that condition 1 in the definition of either normal morphism of 

algebras or of normal morphism of coalgebras is always satisfied if the ground 
ring K is a field; while condition 2 is always satisfied in the commutative 
case. 

3.7. DEFINITIONS AND NOTATION. If A is an augmented algebra over K, 
let Q(A) = K (A I(A). The elements of the graded K-module Q(A) are called 
the indecomposable elements of A. If A is an augmented coalgebra over K, 
let P(A) = K W A J(A). The elements of the graded K-module P(A) are called 
the primitive elements of A. 

Note that there is a natural exact sequence 

I(A) 0 I(A) > I(A) > Q(A) > 0 

for an augmented algebra A. Thus Q(A) = I(A) (0A K. 
Similarly if A is an augmented coalgebra, there is a natural exact sequence 
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O > P(A) > J(A) - J(A) 0 J(A), 

and thus P(A) = J(A) WA K. 
If f: A B is a morphism of augmented algebras, then f induces 

Q(f): Q(A) > Q(B) . 

Similarly if f: A - B is a morphism of augmented coalgebras, then f induces 

P(f): P(A) - P(B). 

3.8. PROPOSITION. If f: A B is a morphism of augmented algebras 
and B is connected, then f is an epimorphism if and only if Q(f): Q(A) 
Q(B) is an epimorphism. 

PROOF. Certainly if f is an epimorphism, then Q(f) is an epimorphism. 
Suppose now that Q(f) is an epimorphism. We have a commutative diagram 

I(A) 0 I(A) > I(A) > Q(A) > 0 

I(f) & I(f) I(f) Q(f ) 

I(B) 0 I(B) > I(B) > Q(B) > 0 

with exact rows. Since I(B)o = 0, it follows that I(f)o is an epimorphism. 
Suppose I(f)q is an epimorphism for q < n, then (I(f) (0 I(f))q is an epimor- 
phism for q < n; and thus by the 5-lemma, I(f)q is an epimorphism for q < n, 
and the proposition follows. 

3.9. PROPOSITION. If f: A B is a morphism of augmented coalgebras, 
the underlying graded K-modules of A and B are flat, and A is connected, 
then f is a monomorphism if and only if P(f): P(A) P(B) is a monomor- 
phism. 

PROOF. Certainly if f is a monomorphism, then P(f) is a monomorphism. 
Suppose that P(f) is a monomorphism. We have a commutative diagram 

O > P(A) > J(A) > J(A) 0) J(A) 

{P(f) {J(f) J(f) & (f) 

O > P(B) > J(B) > J(B) (0 J(B) 

with exact rows. Since J(A), = 0 it follows that J(f)0 is monomophism. Sup- 
pose J(f)q is a monomorphism for q < n, then since A and B and hence J(A) 
and J(B) are flat we have that (J(f) (0 J(f))q is a monomorphism for q < n; 
and thus by the 5-lemma, J(f)q is a monomorphism for q ? n, and the prop- 
osition follows. 

Note that the difference between Propositions 3.8 and 3.9 comes from the 
fact that the functor tensor product is right exact, but not left exact. Thus 
a hypothesis is needed to guarantee its left exactness under certain conditions. 
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3.10. PROPOSITION. If A is an augmented algebra, and the underlying 
graded K-module of A is projective of finite type, then 

(1 ) the sequence 

I(A) 0 I(A) I(A) Q(A) 0 

is split exact if and only if the sequence 

0 P(A*) J(A*) J(A*) (0 J(A*) 

is split exact, and 
(2) if the sequences of (1) are split exact, then P(A*) = Q(A)*, and 

Q(A)= P(A*)*. 
The proof of the proposition is immediate from the definitions. 

3.11. PROPOSITION. If f: A - B is a left normal morphism of aug- 
mented algebras, C = KODAB, and r: B C is the natural morphism of 
augmented algebras, then the sequence 

Q(A) Q f) Q(B) Q(7r ) Q(C) > O 

is an exact sequence of graded K-modules. 
PROOF. We have that the cokernel of Q(f) is the cokernel of 

I(A) Ef3 I(B)2 > I(B),9 

and that Q(C) is the cokernel of I(B)2 I(B)/I(A)B, and since these two 
cokernels are naturally isomorphic the proposition follows. 

3.12. PROPOSITION. If f: B - A is a left normal morphism of aug- 
mented coalgebras, C = K EA B, and i: C B is the natural morphism of 
augmented coalgebras, then the sequence 

P~i) f 
O > P(C) () P(B) P( ) P(A) 

is an exact sequence of graded K-modules. 

PROOF. Suppose x e P(B)n and f(x) = 0, then AB(x) = X 0 1 + 1 0 x, 

(f (0 B)AB(X) = 1 0 x, and so x e P(B)n nf Cn. Thus x e P(C)n. The rest of 
the proof of the proposition is immediate. 

4. Elementary properties of Hopf algebras 

4.1. DEFINITION. A Hopf algebra over K is a graded K-module A together 
with morphisms of graded K-modules 

cp:A?A -A, A ?:K -A 

A: A > A (8 A, s: A K 

such that 
( 1 ) (A, p, 7]) is an algebra over K with augmentation s, 
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(2) (A, A, a) is a coalgebra over K with augmentation i, and 
(3) the diagram 

AAO A A A?O A 

A O A & A O A- -OTOA A(8 A(8 AQgA 
is commutative. 

Notice that condition 3 is equivalent to saying either that A is a morphism 
of algebras over K, or that p is a morphism of coalgebras over K except for 
the condition involving preservation of units. However since ) is an augmenta- 
tion of the coalgebra in question, the diagram 

K )K0K 

A A 0 A 
is commutative and thus A is a morphism of algebras. Similarly 9 is a mor- 
phism of coalgebras. 

In the diagram 

A _ A(?A 

K \ |eA 
K( 

K? K O- K?A 

the upper right hand triangle is commutative if a is a unit of the coalgebra. The 
lower part of the diagram being clearly commutative, we have A is a morphism 
of augmented algebras. Similarly 9 is a morphism of augmented coalgebras. 

4.2. DEFINITIONS. If A is a Hopf algebra, a left module over A is a left 
module over the underlying algebra of A. If M and N are left modules over 
A, then M O N is the left module over A with RMQN A ? M O N M 0 N 
defined as the composition 

AOMONAMN A A X N 

AOMOAON (PM(S~(N MO N. 

A left module coalgebra over A is a left A-module B together with morphisms 
of left A-modules AB, B B 0 B and BB B K such that (B, A., sB) is a 

coalgebra over K. 
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Similar considerations apply to right A-modules and A-coalgebras. 

4.3. PROPOSITION. If A is a Hopf algebra over K, B is a left A-module 
coalgebra C = KOAB and w: B y C is the natural morphism of graded 
K-modules, then there are unique morphisms A,: Coo C (0 C and ea: Coo K 

such that wr is a morphism of coalgebras over K. 
PROOF. Since AB: B - B (0 B is a morphism of left A-modules, it induces 

KOAAB: K OAB -K A(B O& B) . 
However there is a natural morphism 

?: K0A (B 0 B) - (K0&AB) 0& (K0AB)C 

We let A a = o ? (K(0A AB). Since EB: B K is a morphism of left A-modules, 
it induces 

K AeB: K AB > KOAK . 

Noting that K A K -K where A acts on K via a, we see easily that (C, A0, es) 

fulfill the required conditions. 
Note that C could be considered as a coalgebra over A on which I(A) acts 

trivially. Observe further that, if N is a left A-module on which A acts via 
e, and we consider A itself as a left A-module, then A (0 N is a left A-module, 
and is in fact the extended A-module of N as defined in paragraph 1. 

Recall further that if B was a connected A-module, we defined a canonical 
morphism i: A - B in paragraph 1. 

4.4. THEOREM. If A is a connected Hopf algebra over K, B is a connected 
left A-module coalgebra, C = KA B, i: A B, and wr: B C are the canon- 

ical morphisms, and the sequences 0 A - B, B > Coo 0 are split 
exact as sequences of graded K-modules, then there exists h: B-RA? C which 
is simultaneously an isomorphism of left A-modules and right C-comodules. 

PROOF. Let f: C B be a morphism of graded K-module such that wrf = C. 
Note that the composition 

A B B B-8 
Or B @ C B-IB0DB -BC 

is a morphism of left A-modules and the conditions of Proposition 1.7 are sat- 
isfied. Thus if f is the composition 

AOC Aof A?B B 
we have that f is an isomorphism of left A-modules. Hence there is a mor- 
phism of left A-modules g: B A such that gi A. Now let h be the com- 
position 

AB g ? Ar 
B-*B?(B -+A?C. 
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We now have that h is a morphism of left A-modules and of right C-comodules. 
Filtering A (0 C by setting F,(A 0 C) = Eq<pA 0 Cq, we have that hf is fil- 
tration preserving and that E0(hf ) is just the identity morphism of E0(A (0 C). 
Thus hf is an isomorphism of left A-modules, and hence so is h. Clearly h 
fulfills the required conditions and the theorem is proved. 

4.5. DEFINITIONS. If A is a Hopf algebra, a left comodule over A is a 
left comodule over the underlying coalgebra of A. If M and N are left co- 
-modules over A with A,,N: M 0 N defined as the composition 

M @ N 
A 

MM?N 
A?TN T 

A0A M(g0M(N "' 
-M?g- A (o M( N. 

A left comodule algebra over A is an A-comodule B together with morphisms 
of left A-comodules RB: B 0 B > B and yB: K-n B such that (B, gB, B) is an 
algebra over K. 

4.6. PROPOSITION. If A is a Hopf algebra over K, B is a left A-comodule 
algebra, C = K WA B, and i: C U B is the natural morphism of graded 
K-modules, then there are unique morphisms p%: C 0 C C and r7c: K C 
such that i is a morphism of algebras over K. 

The proof of the proposition is similar to that of 4.3. 
Recall that if B was a connected A-comodule a canonical morphism j: B - A 

was defined in paragraph 2. 

4.7. THEOREM. If A is a connected Hopf algebra over K, B is a con- 
rnected left A-comodule algebra, C =K A B, j: B A, and i: Coo B are the 

a canonical morphisms, and the sequences B - A 0, 0 > C B are split 
exact as sequences of graded K-modules, then there exists h: A 0 C - B 
which is simultaneously an isomorphism of left A-comodules and right 
C-modules. 

The proof is similar to that of 4.4. One uses Proposition 2.6 instead of Prop- 
osition 1.7. 

4.8. PROPOSITION. If A is a graded projective K-module of finite type, 
then (A, p, ry, A, s) is a Hopf algebra with multiplication 9, comultiplication 
A, unit Y, and counit a if and only if (A*, A*, s*, 9*, 7)*) is a Hopf algebra 
with multiplication A*, comultiplication 9*, unit s*, and counit )7*. 

The proof is immediate from the definitions, and what has been done 
earlier. 

4.9. PROPOSITION. If A, B, C are connected Hopf algebras, and i: A > B, 
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w: B C are morphisms of Hopf algebras, then the following are equivalent: 
(1) i is a left normal monomorphism of algebras, C = K (?A B, and 

i I 
the sequences 0 A - B, B > C- 0 are split exact as sequences of 

graded K-modules, 
(2 ) wr is a right normal epimorphism of coalgebras, A = B oa K, and 

the sequences 0 ) A > B, B - C 0 are split exact as sequences of 

graded K-modules, 
( 3 ) there exists f: A 0 C B which is an isomorphism of left 

A-modules and right C-comodules such that i = f(A 0Y I), and wrf = s?( C. 

This proposition is a resume of some part of what has already been proved. 

Notice that exactness and split exactness are equivalent if K is a field. Thus 

if K is a field and the multiplication in B is commutative, any sub Hopf algebra 

of B is normal as a subalgebra. Similarly if K is a field and the comultiplication 

in B is commutative, then any quotient Hopf algebra of B is normal as a 

coalgebra. 

4.10. PROPOSITION. If i: A B, 7r: B C are morphisms of connected 

Hopf algebras satisfying the conditions of the preceding proposition, thenw 

there is a commutative diagram 

0 P(A) ) P(B) P(C) 

Q(A) > Q(B) > Q(C) > 0 

with exact rows. 
PROOF. The proposition follows at once from 3.11, 3.12 and the fact that, 

for any Hopf algebra D, there is a natural morphism P(D) - Q(D). 

4.11. PROPOSITION. Suppose i: A > B, j: B - C are morphisms of Hopf 

algebras such that i, j are split monomorphisms, and left normal morphisms 

of algebras. Let B' = K 0, B, C' = K 0( C, and j': B' C' be the morphism 

of Hopf algebras induced by j. Now j' is a split monomorphism which is left 

normal as a morphism of algebras, and 

K 0B C = K B' C'. 

PROOF. Recall that f: E - E' is a split monomorphism if the sequence 

0 E - E' is split exact. Now applying 4.9, we have that C - B 0 D where 

D =KOBC. Thus C' - K @, (B 0 D) = B'(g D, and K 0BsC' D which 

proves the proposition. 

4.12. DEFINITION. A set I is directly ordered if there is given a partial 

ordering of I such that 
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(1) i _ j, j _ k implies i < k, 
(2) i < j andj ? iif andonlyif i= j, 
( 3 ) for i, j I, there exists k I such that i ? k and j < k. 
If for each i e I, A(i) is a graded K-module, and if for i _ j, 

f(j, i): A(i) - A(j) is a morphism of graded K-modules such that if i _ j, j < k, 
then f(k, j) f(j, i) = f(k, i), and f(i, i) = A(i), we say that we have a direct 
system of graded K-modules; and we denote by lim, A(i) the direct limit of this 
direct system of graded K-modules. If each A(i) is an algebra, a coalgebra, or a 
Hopf algebra, and each f(i, j) is a morphism of algebras, coalgebras, or Hopf 
algebras as the case may be, then lim, A(i) is an algebra, coalgebra, or Hopf 
algebra according to the type of direct system with which we are dealing. 
Moreover in each case the underlying graded K-module is the direct limit of 
the underlying graded K-modules of the direct system. 

More general direct limits exist in any of the categories being considered, 
but we will not concern ourselves with that here. 

Recall that a Priifer ring is an integral domain K such that every ideal in 
K is flat, or equivalently every finitely generated ideal in K is projective. 
Such a ring has the property that every submodule of a flat module is flat, or 
equivalently that every finitely generated submodule of a flat module is pro- 
jective. Thus for such a ring we have that every submodule of finite type 
of a flat graded K-module is projective of finite type. 

4.13. PROPOSITION. If B is a connected Hopf algebra over the Pritfer 
ring K such that the underlying graded K-module of B is fiat, then B is a 
direct limit of sub Hopf algebras of B whose underlying graded K-module 
is projective of finite type. 

PROOF. Let C be the set of sub Hopf algebras of B which are direct limits 
of sub Hopf algebras of B of finite type. Clearly 3 is closed under limits, and 
thus has maximal elements. Let A be such a maximal element of B. We pro- 
pose to show that A = B. 

Suppose that x is an element of least degree of B - A. Now 

AB(X) = X C) 1 + 1 C) X + y 
where y E A 0 A. Without loss of generality we may assume that y E A(i) for 
i E I where A = lim, A(i), and A(i) is a sub Hopf algebra of B of finite type. 
Now if we let B(i) be the subalgebra of B generated by A(i) and x, we have 
that B(i) is a sub Hopf algebra of B which is of finite type lim, B(i) E x and 
contains A. This is impossible. Therefore A = B and the proposition follows. 

4.14. Notation. If B is an algebra over K, we denote by B(n) the sub- 
algebra of B generated by elements of degree less than or equal to n. 
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4.15. PROPOSITION. If B is a connected Hopf algebra over the Prilfer 
ring K, and the underlying graded K-module of B is projective of finite- 
type, then 

( 1 ) there is a unique comultiplication in B(n) such that B(n) is a sub 
Hopf algebra of B; 

( 2 ) the underlying graded K-module of B(n) is projective of finite type,. 
(3) B(n) is finitely generated as an algebra; 
(4) Q(B(n))r = Q(B) for r < n, and 
(5 ) Q(B(n)), = O for r > n. 

The proof of this proposition is immediate from the definitions. 

4.16. DEFINITIONS. A quasi Hopf algebra over K is a graded K-module: 
A together with morphisms of graded K-modules 

:A03A - A, A :K - A 

A:A --A A, : A -K 

such that 

(1) 9Y is a unit for the multiplication 9, 
(2) e is a counit for the comultiplication A, 
(3) the diagram 

A 
A{(gA >D A A (g 

A (g A 0 g A A AD -(A 0A0A0A A 

is commutative, and 

(4) sy = K: KK. 
One sees easily that a quasi Hopf algebra A over K is a Hopf algebra if 

and only if both 9 and A are associative. 
Moreover if A is a quasi Hopf algebra, then P(A) is the kernel of J(A) 

J(A) 0 J(A), and Q(A) is the cokernel of I(A) 0 I(A) - I(A), just as for Hopf 
algebras, there is a natural morphism of graded K-modules P(A) Q(A). Prop-- 
ositions 4.13 and 4.15 follow for quasi Hopf algebras, just as for Hopf 
algebras. 

4.17. PROPOSITION. If A is a connected quasi Hopf algebra over the 
field K of characteristic zero, then the natural morphism P(A) - Q(A) is a. 
monomorphism if and only if the multiplication 9 is commutative and 
associative. 
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PROOF. Suppose that P(A) - Q(A) is a monomorphism. For x e Ap, 
ye Aq, z e Ar, let a(x, y, z) - (xy)z - x(yz). If x, y, z are primitive a(x, y, z) 
is primitive and its image in Q(A) is zero. Thus a(x, y, z) = 0. Suppose now 
a(x, y, z) = O for p < u, q _ v, r < w, and consider the case p _ u, q < v, 
r = w + 1. Now a(x, y, z) is primitive and has zero image in Q(A) and hence 
is zero. Proceeding by induction we have that a: A (0 A 0g A A is the zero 
morphism, or that the multiplication p is associative. For x E Ap, y e Aq, let 
[x, y] = y- (-_ )pqyx. Notice that if x, y are primitive, [x, y] is primitive 
and has image zero in Q(A). Proceeding by induction as before we obtain that 
[, ]: A 0 A n A is zero, and then 9 is commutative. 

Suppose now that the algebra A is commutative and has one generator 
xe A., n > 0. If n is odd then x2 = (-_1)2X2 =_ x2 and x2 0, that 
P(A) = I(A) = Q(A). If n is even, A(x) = x 0D 1 + 1 ? x, 

A(Xk) = Ei+ j kj j)Xi 0 xi 

where (i, j) denotes the appropriate binomial coefficient, and 1 = x0. We now 
see that P(A) - Q(A) is an isomorphism. 

Suppose that the converse part of the proposition is proved for algebras 
with less than or equal to m generators, and that A is an algebra such that 

xi e A, for i = 1, * *rnm + 1, ni < ni+1, and the images of the elements 
x1,... X X1 form a basis of er Q(A)r. Let A' be the subalgebra of A gen- 
erated by X1, ... , Xa, and note that A' is a commutative algebra with co- 
multiplication. Let A" = KOA' A = A//A' and observe that A" is a commuta- 
tive algebra with comultiplication and one generator as an algebra. We now 
have a commutative diagram 

o > P(A') - P(A) - P(A") 

O > Q(Al) Q(A) Q(Aff) 0 

with exact rows. Since P(A') Q(A') is a monomorphism it follows that 
P(A) o Q(A) is a monomorphism. Thus by induction the converse part of the 
proposition is proved for finitely generated algebras. As in Proposition 4.13 
any connected coalgebra with comultiplication is a direct limit of connected 
algebras with comultiplication which are of finite type, and those of finite type 
are direct limits of finitely generated ones as in Proposition 4.14. Thus since 
the functors P and Q commute with direct limits, and the direct limit of mono- 
morphisms is a monomorphism in the category of graded K-modules, the prop- 
osition follows. 
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4.18. COROLLARY. If A is a connected quasi Hopf algebra over the field 
K of characteristic zero, then 

( 1) the comultiplication A is commutative and associative if and only 
if P(A) - Q(A) is an epimorphism, and 

(2) A is a Hopf algebra with both commutative multiplication and com- 
mutative comultiplication if and only if P(A) - Q(A) is an isomorphism. 

4.19. DEFINITION OR NOTATION. Suppose that K is an integral domain of 
characteristic p k 0, and A is a commutative algebra over K, define t: An 
A by d(x) = x. 

Notice that d(x + y) = t(x) + d(y), and d(xz) = d(x)e(z) for x, y e A", 
z e Am. In particular d(kx) = kPt(x) for x @ A,, k e K. Observe also that if p 
and n are odd, then d(x) = 0. 

4.20. PROPOSITION. If A is a connected quasi Hopf algebra over the 
field K of characteristic p t 0, then the natural morphism P(A) - Q(A) is 
a monomorphism if and only if the multiplication p is commutative and 
associative, and (Aj) = 0 for n > 0. 

PROOF. Suppose P(A) Q(A) is a monomorphism. The first part of the 
proof of 4.17 shows that c is associative and commutative. Notice that if 
x E P(A), then d(x) E P(A)pn, and the image of t(x) in Q(A)pn is zero. Thus 
t(x) = 0. If d(Am) = 0 for 0 < m < n, then d(Aj) c P(A),,; and since the 
composition An - P(A)pn Q(A)p, is zero, it follows by induction that 
t(A") = 0 for all n, and the first half of the proposition is proved. 

Suppose now that 9 is commutative and associative, and t(A") 0 for 
all n > 0. As in the second half of 4.17, in order to show that P(A) Q(A) 
is a monomorphism, it suffices to do so in case the algebra A has one generator 
x e@ A,, n > 0. If p = 2, then x2 = 0, and P(A) = I(A) = Q(A). The situation 
is the same if p is odd and n is odd. If p t 2, and n is even, then Aq = 0 for 
q t kn k = 0, 1, *., (p - 1) and Xk is a basic element for Akn. Since 

5(Xk) = Li+j=Jif j)Xi 0 xi 

and (i, j) Y 0, we have P(A), = An Q(A)n, P(A)q = 0 = Q(A)q for q k n, 
and the proposition follows. 

If S is a subset of the K-module M, we denote by K(S) the K-submodule 
generated by S. 

4.21. PROPOSITION. If A is a connected quasi Hopf algebra with associa- 
tive commutative multiplication over the field K of characteristic p k 0, 
there is an exact sequence 

0 - P(K(tA)) - P(A) - Q(A) . 
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PROOF. Let A' = K(e(A)), and A" = K0A, A. Now d(A") = 0 for n > 0, 
and we have a commutative diagram 

0 - P(A') - P(A) - P(A") 

Q(A) Q(A) Q(A") 

with exact rows. The proposition now follows from 4.20. 

4.22. DEFINITION. Suppose that K is a field of characteristic p k 0, and 
A is a commutative coalgebra of finite type over K. Define K(X(A)) to be 
K(e(A*))*, and observe that KX(A) is a quotient coalgebra of A. If A is a 
direct limit of commutative coalgebras of finite type A = limi A(i), define 
KX(A) = limr KX(A(i)). 

Observe that if A is of finite type, then K(X(A))* = K$(A*). 

4.23. PROPOSITION. If A is a connected Hopf algebra with both com- 
,mutative multiplication and commutative comultiplication over the field K 
of characteristic p = 0, there is an exact sequence 

o - P(K$(A)) - P(A) - Q(A) - Q(KX(A)) - 0. 

The proof of the proposition is immediate from the definitions. Observe 
that if n is odd we have K$(A). = 0 = KX(A)%; and thus for n odd, if follows 
that P (A)n > Q(A). for any Hopf algebra A satisfying the conditions of 
4.23. 

5. Universal algebras of Lie algebras 

5.1. DEFINITIONS. If A is an algebra over K, define [, ]: A (0 A A by 
[x, y] = y- (-_ )pqyx for x E Ap, y e Aq. The morphism of graded K-modules 
[, ] is called the Lie product of A. The graded K-module A, together with its 
Lie product, is called the associated Lie algebra of the algebra A. 

A Lie algebra over K is a graded K-module L together with a morphism 
[,]:L 0 L )L L such that for some algebra A, there is a monomorphism of 
graded K-modules f: L A such that the diagram 

L L L '] L 

{f?S' {f AOAI-)-A 

is commutative. 
If L and L' are Lie algebras over K, a morphism f: L L' of Lie algebras 

is a morphism of graded K-modules such that the diagram 
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L 0D L IL 

lf (~f if 

L'0(@L'l-iL>L' 
is commutative. 

5.2. PROPOSITION. If L is a Lie algebra over K, x G L, y e Lq, and 
z E Lr, then 

( 1 ) [x, y] J(-)pq+l[X, y], and 
( 2 ) (- 1)Pr[X, [y, Z]] + (-_1)qP[y, [Z. X]] + (-1)rq[z, [x, y]] = 0. 

The proof of the proposition is immediate from the definitions. If K is a 
field of characteristic # 2 or 3, it is possible to characterize Lie algebras by 
the identities (1) and (2). Notice that (1) implies that 2[x, x] = 0 for p even. 
To characterize Lie algebras over a field of characteristic 2, it is necessary to 
assume, in addition to (1) and (2), that for any integer p, [x, x] = 0. Identity 
(2) implies that 3[x, [x, x]] = 0 for p odd. To characterize Lie algebras over a 
field of characteristic 3, it is necessary to assume that [x, [x, x]] = 0 for p odd. 

It is perhaps worth remarking that a Lie algebra is not an algebra since 
it does not have a unit, and its multiplication or product is not associative. 

5.3. DEFINITION. If L is a Lie algebra, the universal enveloping algebra, 
of L is an algebra U(L) together with a morphism of Lie algebras iL: L - U(L) 
such that if A is an algebra and f: L - A is a morphism of Lie algebras, there 
is a unique morphism of algebras f: U(L) A such that the diagram 

L U(L) 

X f 
A 

is commutative. 

5.4. Remarks. Since we have defined the universal enveloping algebra 
of a Lie algebra by a universal property of morphisms, it is certainly unique 
if it exists. Existence is proved as usual in the following way: If L is a 
graded K-module let T(L) denote the tensor algebra of L, i. e., as a graded 
K-module T(L) = G), T,(L) where T,(L) denotes the tensor product of L with 
itself p-times, e. g., To(L) = K, T1(L) L, and T2(L) = L 0 L. There is a 

natural isomorphism Tp(L) 0 Tq(L) > Tp+q(L) which on passing to direct 
sums induces a multiplication p: T(L) (0 T(L) - T(L). Since To(L) = K, there 
are natural morphisms 7?: K a T(L) and s: T(L) - K and T(L) becomes an 
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augmented algebra over K. The algebra T(L) has the following property. If 
f: L - A is a morphism of graded K-modules and A is the underlying graded 
K-module of an algebra, then there is a unique morphism of algebras 
fl: T(L) A such that the diagram 

L-- T(L) 

A 

of graded K-modules is commutative, where L = T1(L) and i is the natural 
morphism. 

Now if L is the underlying module of a Lie algebra, f a morphism of Lie 
algebras, and I the ideal in T(L) generated by elements xy - (- 1)Pyx - [x, y1 
for x e L y ye Lq, then f'(I) = 0, and thus, if we let U(L) = T(L)/I, there is 
a unique morphism of algebras f: U(L) A such that the diagram 

L 1 U(L) 

X\f 
A 

is commutative, where iL is the composition L T(L) U(L). 
Notice that the graded K-module 0 is a Lie algebra and that U(O) = K. 

Thus, since for any Lie algebra L, there is a unique morphism of Lie algebras 
OL: L -f0, we have that OL induces s: U(L) K and U(L) is an augmented 
algebra. Now if f: L - L' is a morphism of Lie algebras, there is a unique 
morphism of algebras U(f): U(L) U(L') such that U(f)iL = irf, and thus 
L U(L) is in fact a functor from the category of Lie algebras over K to the 
category of augmented algebras over K. 

Since in our definition of Lie algebra L, we assumed that for some algebra 
A there was a morphism of Lie algebras f: L A such that f was a monomor- 
phism of graded K-modules, it follows that iL: L U(L) is a monomorphism 
of graded K-modules because f = fil 

5.5. DEFINITION. If L, L' are Lie algebras over K, then L x L' is the 
Lie algebra over K such that 

[(x, y), (x', y')] = ([x, x'], [y, y']) 

for 
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The Lie algebra L x L' is called the product of the Lie algebras L and L'. 
In fact the preceding definition is slightly incorrect since we have not 

shown that L x L' can be imbedded in the associated Lie algebra of an algebra. 
However, this omission is easily remedied by defining 

iLXl L x L' - U(L) 0 U(L') 

by i(x, y) - x 1 + 1ly for (x, y)e (L x L'),. 
Recall that in an arbitary category (& the product of objects A and A', if 

it exists, is an object A x A' together with morphisms w: A x A' > A and 
w7': A x A' - A' such that, if C is an object in (& and f: C - A, f': C - A' are 
morphisms in (i, then there is a unique morphism f x f': C - A x A' in (a 
Esuch that wif x f ' f and w'f x f = f'. It is exactly in this sence that L x 
L' is the product of the Lie algebras L and L' in the category SK of Lie alge- 
bras over K and morphisms of Lie algebras over K. 

Suppose now we consider the category (CSC)K of Hopf algebras over K 
with commutative comultiplication. Let f: C - A, f': C A' be morphisms 
in this category. We have that A 0 A' is an object in the category and the 
,composition 

C AG C (9 C f (9f, A ? A' 

is a morphism in the category. Moreover (A 0 s)(f 0 f')Ac f, and 

s 0) A'(f 0 f)AG = f'. 
Thus A 0 A', together with the canonical morphisms (A 0 s): A 0 A' A 
and 6 0 A': A 0 A' A', is easily seen to be the product of the objects A and 
A' in the category. 

Observe that in the preceding, one used the fact that the comultiplication 
was commutative, for otherwise A0 would be only a morphism of algebras and 
not necessarily of Hopf algebras. 

5.6. PROPOSITION. If L and L' are Lie algebras over K, then 

U(L x L') = U(L) 0) U(L') . 

PROOF. One verifies without trouble that the morphism of Lie algebras 
iLXL': L x L' - U(L) (g U(L') satisfies the necessary conditions for it to be the 
universal enveloping algebra of L x L'. 

5.7. DEFINITION AND COMMENTS. If L is a Lie algebra we have a natural 
morphism A: L - L x L, where A(x) = (x, x) for x E L,. This induces 
U(A): U(L) - U(L) 0 U(L) and U(L) becomes a Hopf algebra. Henceforth 
we will consider that U(L) is a Hopf algebra with this comultiplication. Notice 
that the comultiplication in question is commutative, thus U(L) is an object 
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in (CXC)K. 
A Hopf algebra A is said to be primitively generated if the least sub- 

algebra of A containing P(A) is A itself. 

5.8. PROPOSITION. If A is a Hopf algebra, then P(A) is a sub Lie algebra 
of the associated Lie algebra of A. 

The proof of the proposition is immediate from the definition. Now we 
may say that a Hopf algebra A is primitively generated if the natural mor- 
phism of Hopf algebras U(P(A)) - A is an epimorphism in the category of 
graded K-modules. 

It is evident that every primitively generated Hopf algebra has commuta-- 
tive comultiplication. Thus the category (9'XC)K whose objects are the primi- 
tively generated Hopf algebras and morphisms are morphisms of Hopf algebras 
in a subcategory of the category (CX,)K of Hopf algebras with commutative 
comultiplication. Recall that we have seen (4.18) that, if K is a field of 
characteristic zero, a connected Hopf algebra A is in (9XC)K if and only if 
P(A) - Q(A) is an epimorphism, or equivalently the comultiplication of A is 
commutative. 

We now have two functors, U: &Kp (,PfC)K and P: XfCK 2.K where XC 
is the category of all Hopf algebras over K. 

5.9. PROPOSITION. The functors U: &K- (9JC)K and P: (QCX)K 2 
commute with products, and direct limits. 

This proposition is just a resume of things stated earlier, together with 
a couple of observations. Note that we have not discussed the question of 
the existence of products in the category XCK but only in the subcategory 

(a J)K. 

In order to proceed further we need to recall some facts about bigraded 
K-modules. A bigraded K-module A is a family of K-modules {Apq} where the 
indices p and q run through integers such that p + q ? 0. If A and B are 
bigraded K-modules, a morphism of bigraded K-modules f: A - B is a family 
of morphisms of K-modules {fpq} such that fpq: Ap, q Bpq. 

If A and B are bigraded K-modules, then (A 0 B) is the bigraded K-module 
such that (A?)B)pq = @r+8=P ArU(OBsV. The tensor product of morphisms of 

u +v=q 
bigraded K-modules is defined similarly. There is also the dual of a bigraded 
K-module A. It is denoted by A* and is the bigraded K-module such that 

A*,q = Hom (Ap,q, K). If f: A B, then f *: B* -* A*, and fp*,q = Hom (fpq, K). 
If A and B are bigraded K-modules, the twisting morphism T: A (0 B 

B ? A is the morphism such that Tp,q(a (0 b) = (- 1)(r+u)(B+v)b 0 a for a e Ar, 
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b ? B,, V, r - s p, and u + v -q. 

We are now in a position to carry out the work of the preceding chapters 
using bigraded K-modules instead of graded K-modules. The details of so doing 
are left to the reader. It is worth commenting that a bigraded K-module A is 
said to be connected if A,,0, K. However connectedness no longer suffices for 
the theorems of the earlier paragraph in which the hypothesis was needed. 
We assume instead that we are dealing with algebras such that they are con- 
nected and either 

(1) Apq Ofor p < 0, except for (p, q) = (0 0), or 
(2) Ap,q 0 forp > 0, except for (p, q) (0,0). 

In case (1) when dealing with a module B the condition of connectedness is 
replaced by assuming in addition that Bp, q = 0 for p < 0, and in case (2) we 
assume Bp, q - 0 for p > 0. We proceed in the same fashion for coalgebras 
and comodules over coalgebras. The bigraded case of a proposition in the pre- 
ceding chapters such as 3.8 will be referred to as Proposition B 3.8. We leave 
the task of checking details to the reader. 

Although we have dealt informally with filtrations in the preceding para- 
graphs, we now recall some further details. If A is a graded K-module, a filtra- 
tion on A is a family of sub-graded modules of A {FpA} indexed on the integers 
such that FPA ci Fp+1A. If A and B are filtered modules, a morphism of fil- 
tered graded modules f: A - B is a morphism of graded modules such that 

f(FPA) ci FpB. The associated bigraded module of the filtered graded module 
A is the bigraded module E0(A) such that E0(A)p,q= (FpA/Fp_,A)p+q. If 

f: A - B is a morphism of filtered graded modules there is induced a morphism 
E0(f): E0(A) - E0(B) of associated bigraded modules. 

The filtration {FpA} on the graded module A is complete [3] if 
(1) A= limpOFpA, and 

(2 )A = lim-,,.,,A/FpA. 
If A and B are complete filtered graded modules and f: A - B is a morphism 
of filtered modules, then if E0(f): E0(A) - E0(B) is a monomorphism, epimor- 
phism, or isomorphism, f is a monomorphism, epimorphism, or isomorphism as 
the case may be. 

If A and B are filtered graded modules, a filtration is defined in A 0 B by 
letting Fp(A 0 B) = Im (@?,+s=pFA (0 F8B - A (0 B). There is a natural 
morphism E0(A) 0& E0(B) - E0(A (0 B), which is always an epimorphism and 
is easily seen to be an isomorphism if either 

( 1 ) the sequences 
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o > FA > A - AA/FDA 0 
o + FqB - B B/FqB > 0 

are split exact for all p, or 
( 2 ) the modules A/FDA and B/FqB are flat for all p, q. 
In this paper we will assume that we are always dealing with a case such 

that 

EO(A) (0 EO(B) E0(A (0 B). 
Moreover, we will always deal with a case such that FpA = A for p > O, or 
FA 0 0 for p < 0. 

The ground ring K is always considered to be a filtered graded module 
with FpK = K for p > 0, and FpK 0 0 for p < 0. We then have EO(K) is the 
bigraded module denoted by K. 

A filtered algebra A over K is an algebra with a filtration on its underly- 
ing graded K-module such that (p: A 0 A A is a morphism of filtered graded 
modules. Thus if A is a filtered algebra over K, then E0(A) is a filtered 
bigraded algebra over K. 

If A is a filtered algebra over K, a filtered left A-module M is a left 
A-module with a filtration on its underlying graded K-module such that 
R: A 0 M - M is a morphism of filtered graded modules. In this case EO(M) 
is a module over EO(A). 

Similar considerations apply to coalgebras, comodules, and Hopf algebras. 

5.10. DEFINITION. If A is a primitively generated Hopf algebra over K, 
its primitive filtration is defined inductively as follows: 

(1) FA = 0Oforp < O, 
(2) FA = K, and 
( 3 ) F-,1A = Im FA Q (P(A) 0 FpA) A. 
In other words FpA is the sub graded K-module of A generated by prod- 

ucts of ? p primitive elements. This filtration could be defined on any Hopf 
algebra but it is complete if and only if A is primitively generated. 

5.11. PROPOSITION. If A is a primitively generated Hopf algebra over 
the field K, then E?(A) is a bigraded Hopf algebra such that 

(1 ) EO(A)p,q 0 O for p ? 0 except for (p, q) = (0, 0), 
( 2) P (E?(A)) Q(E?(A))9 
(3) P(E0(A))p, q 0 O for p + 1, and 
(4) P(E?(A))I,q = E?(A)I,q P(A)q+l. 
PROOF. Part 1 follows immediately from the way that the filtration on A 

was defined. Moreover it follows at once that E?(A) is primitively generated 
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by E, q(A) for all q. Thus Q(E0(A))p,q = 0 for p # 1, and Q(E0(A))1, q= E0(A)i,q. 
Since in A, if x ? P(A)m,, y e P(A)n, we have [x, y] ? P(A)m+n, if follows 
that EO(A) is commutative, and the proposition follows from B 4.18 if the 
characteristic of K is zero. If the characteristic of K is finite, say d, then 
if x ? P(A)q and either d = 2 or q is even, we have xcd ? P(A)dq. Thus in EO(A), 
we have d(E?q(A)) = 0 for (p, q) # (0, 0), and the remainder of the proposition 
follows from B 4.23. 

5.12. DEFINITION. If L is a Lie algebra, we define the Lie filtration on 
U(L) inductively as follows: 

(1) FpU(L) 0Oforp<O, 
(2) F0U(L)=K, and 
( 3) Fp + U(L) = Im (FpU(L)) Q (L 0 FpU(L)) U(L). 
Observe that the Lie filtration on U(L) is complete, and if {FU(L)} is the 

primitive filtration on U(L), then FpU(L) ci FU(L). 

5.13. PROPOSITION. If K is a field, L is a Lie algebra over K, and U(L) 
is filtered by the Lie filtration, then 

( 1 ) EO(U(L))p,q = 0 for p ? 0 except for (p, q) = (0, 0), 
(2) EO(U(L)) is a primitively generated, commutative bigraded Hopf 

algebra, 

( 3) Q(EO(U(L)))I, q = EO(U(L))i, q = Lq+,, and 
( 4) if the characteristic of K is zero, then 

P (EO( U(L))) Q(EO( U(L))) 
PROOF. Parts 1, 2, 3 follow from the definitions, while 4 follows from 

B 4.18. 

5.14. NOTATION AND COMMENTS. For the time being we need a different 
notation for the underlying graded module of a Lie algebra L. It will be de- 
noted by L'. The module L' can also be considered as a Lie algebra by letting 
its Lie product be zero. We now denote U(LI) by A(L), i. e., A(L) = T(L#)/I 
where I is the ideal in T(LO) generated by elements xy - (-_ )Pqyx for x E Lo, 
y E LqL. The algebra A(LI) has the universal property that if B is a commuta- 
tive algebra and f: L' B is a morphism of graded K-modules, then there is 
a unique morphism of algebras f: A(L) - B such that the diagram 

LV- A(L) 

X Of 
B 

is commutative. It also has the universal property that if L' is a Lie algebra 
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and if f: LO L' is a morphism of graded K-modules, there is a unique mor- 
phism of bigraded Hopf algebras EO(A(L)) - EO(U(L')) induced by f. 

5.15. THEOREM (Poincare-Birkhoff-Witt). If Kis a field of characteristic 
zero, and L is a Lie algebra over K, then the natural morphism 

EO(A(L)) >EO(U(L)) 

is an isomorphism. 
PROOF. By 5.13 we have that Q(EO(A(L))) - Q(EO(U(L))) and 

P(EO(A(L))) > P(EO( U(L))) 

are both isomorphisms. Hence applying B 3.8 and B 3.9, it follows that 
EO(A(L)) - EO(U(L)) is an isomorphism, and the theorem is proved. 

There is a more usual way of stating the preceding theorem. Recall that 
if A is a bigraded module we have associated with A a graded module $A, 
where (@A)n = @pq=n Ap,q. This functor from bigraded modules to graded 
modules takes algebras into algebras, coalgebras into coalgebras, and Hopf 
algebras into Hopf algebras. In particular if we have a graded K-module X, 
i. e., an abelian Lie algebra over the field K, then @E0(A(X)) = A(X). 

5.16. THEOREM. If K is a field of characteristic zero, and L is a Lie 
algebra over K, then the natural morphism 

A(L) E (1 E U(L) 

is an isomorphism. 

5.17 PROPOSITION. If K is a field of characteristic zero, and L is a Lie 
algebra over K, then the primitive and the Lie filtrations on U(L) coincide. 

PROOF. First we consider the case where L is connected, i. e., Lo = 0. In 
this case L is a direct limit of Lie algebras of finite type, and it suffices to 
prove the assertion when L is of finite type and connected. Now let {I'Fp U(L)} 
denote the Lie filtration on U(L) and {"FFpU(L)} the primitive filtration. We 
have that IE0(U(L)) - IIE0U(L) is a monomorphism in view of 5.11, 5.13, and 
the fact that L c P(U(L)). We are dealing with vector spaces of finite type, 
and for any given degree n the dimensions over K of U(L),, @p+q=n EPqU(L) 
and Ep+q=nIIEpqU(L) are equal, which proves the result. 

Suppose now X is a vector space over K, concentrated in degree 0. Let 
L(X) be the Lie algebra P(T(X)) where A(x) = x 0 1 + 1 0 x for x E X0. We 
associate with L(X) a graded Lie algebra N(X). Recalling that 

T(X) = (BP Tp(X) 

we let N(X)2p = L(X) n Tp(X), and L(X)2p+, = 0; and using the induced Lie 
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product, obtain a graded connected Lie algebra. Since the result is valid for 
this graded connected Lie algebra, it is also valid for L(X) itself. 

Now if L is any Lie algebra concentrated in degree 0, we have that there 
is a natural epimorphism T(LI) - U(L) and a resulting natural epimorphism 
L(LI) - U(L). Recalling that T(LI) U(L(L')), we have a commutative 
diagram 

IEO U(L(L#)) >IIEO U(L(L#)) 

I I 
IEOU(L) - IIOEU(L) 

where the vertical morphisms are epimorphisms. It follows that 

IEOU(L) - IIEOU(L) 

is an epimorphism. We already know that this last epimorphism is a mono- 
morphism since L c PU(L), and thus it is isomorphism which proves the result 
if L is concentrated in degree 0. For any Lie algebra L there is a canonical 
exact sequence 0 - L- + L - L-" 0 where L' is connected and L" 
is concentrated in degree 0. It follows that U(L'), U(L), and U(L") satisfy 
the hypothesis of Proposition 3.12, so we have the commutative diagram 

0 - L- L - L - 0 

0 - PU(L') - PU(L) - PU(L") 

with exact rows. The proposition now follows from the 5-lemma. 

5.18. THEOREM. If K is a field of characteristic zero, and P: (iP'C)K: 

2,K and U: 2,K > ('PXC)K are the natural functors, then 
(1) the functor PU: ?2K - &?K is the identity functor of ,. 

(2) the functor UP: (PXC)K (PfC)K is the identity functor of (IPX)K. 

PROOF. The preceding proposition implies PU(L) = L, and hence 1. Since 
U(P(A)) - A has the property that PU(P(A)) = P(A), it is a monomorphism. 
Certainly it is an epimorphism, hence an isomorphism, which implies 2, and 
hence the theorem. 

6. Lie algebras and restricted Lie algebras 

6.1. DEFINITIONS. Suppose that p is a prime, and that K is a commutative 
ring which is an algebra over the prime field with p-elements. If A is an algebra 
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over K, define d: A,,y APn in case either n is even or p - 2 by t(x) = xP for 
x E An. The graded K-module A together with its Lie product and the functions 
I: An -APn is called the associated restricted Lie algebra of A. 

A restricted Lie algebra over K is a Lie algebra L together with functions 
I: Ln LPn for n even or p = 2 such that for some algebra A, there is a mono- 
morphism of Lie algebras f: L A such that the diagrams 

Ln Lpn 

A 
1 

An ) Apn 

are commutative. 
If L and L' are restricted Lie algebras over K, a morphism f: L L' of 

restricted Lie algebras is a morphism of Lie algebras such that the diagrams 

Ln Lpn 

Lf L 
1 1 

are commutative 

6.2. DEFINITION. If L is a restricted Lie algebra over the ring K of char- 
acteristic p, the universal enveloping algebra of L is an algebra V(L) together 
with a morphism of restricted Lie algebras iL: L o V(L) such that if A is an 
algebra and f: L - A is a morphism of restricted Lie algebras, there is a unique 
morphism of algebras f: V(L) A such that the diagram 

L -L-, V(L) 

\f O 

A 

is commutative. 

6.3. REMARKS. The uniqueness of V(L) is assured since it is defined by a 
universal property of morphisms. Existence is seen by considering L as a Lie 
algebra and letting V(L) = U(L)/I where I is the ideal in U(L) generated by 
elements of the form xP - d(x) for x E Ln where n is even or p = 1. Moreover 
since there is a monomorphism f: L A for some associative algebra A, and 
f = f L we have that iL: L V(L) is a monomorphism. 

The graded K-module 0 is certainly a restricted Lie algebra and OL: L 0 
is a morphism of restricted Lie algebra. This induces V(L) - V(O) = K, and 
thus L o V(L) is a functor from the category of restricted Lie algebras over 



246 MILNOR AND MOORE 

K to category of augmented algebras over K. 

6.4. DEFINITION. If L, L' are restricted Lie algebras over the ring K of 
characteristic p, then L x L' is the restricted Lie algebra over K whose under- 
lying Lie algebra is the product of the underlying Lie algebras of L and L' and. 
such that 

d(x, x') = (e (x), (x')) 

for (x, x') E (L x L')n where n is ever or p = 1. 

6.5. PROPOSITION. If L and L' are restricted Lie algebras over the ringf 
K of characteristic p, then 

V(L x L') = V(L) 0) V(L') . 

The proof is just as the proof of 5.6. 

6.6. DEFINITIONS AND COMMENTS. If L is a restricted Lie algebra we have 
a natural morphism A: L - L x L, where A(x) = (x, x) for x E L,. This induces 
V(A): V(L) V(L) 0 V(L) and V(L) becomes a primitively generated Hopf 
algebra. 

6.7. PROPOSITION. If A is a Hopf algebra over the ring K of characteristic 
p, then P(A) is a sub restricted Lie algebra of the associated restricted Lie 
algebra of A. 

The proof of the proposition is immediate from the definition. 
We now have two functors V: (9S ) (PC) and P: XCK > (tS2)K where 

(9S~)K is the category of restricted Lie algebras. 

6.8. PROPOSITION. The functors V: (?S)K- (PCK)and P: (CZJC)K(k)K 

commute with products and direct limits. 

The proof of the proposition is immediate from the definition. 

6.9. DEFINITION. If L is restricted Lie algebra over the ring K of charac- 
teristic p, the Lie filtration on V(L) is the filtration induced by U(L) V(L), 
i.e., Fq(V(L)) = Im (Fq U(L) V(L)). 

6.10. PROPOSITION. If K is a field of characteristic p # 0, and L is a 
restricted Lie algebra over K, then the primitive and the Lie filtrations on 
V(L) coincide. 

The proof is easy and follows the lines of the proof of 5.17. 

6.11. THEOREM. If K is a field of characteristic p # 0, and P: (9XC)K 

(9S})K and V: (ZS)K -) (9XC)K are the natural functors, then 
(1 ) the functor P V: (92)K (9k2)K is the identity functor of (XkS)K, and 
(2 ) the functor VP: (PC)- (XC)K is the identity functor of (Pf)K. 
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If L is a restricted Lie algebra, we may let LO denote the restricted Lie 
algebra with Lie multiplication 0 and 5 = 0, we may then write V(LO) = B(L). 

6.12. PROPOSITION. If K is a field of characteristic p # 0, and L is a 
-restricted Lie algebra over K, then 

B(L) = @EOV(L) . 

6.13. PROPOSITION. If K is a field, f: A RB is a morphism of Hopf alge- 
bras which is a monomorphism of the underlying graded vector spaces, and 
B is primitively generated, then A is primitively generated. 

PROOF. We may suppose A c B. Let A' be the maximal primitively genera- 
ted sub Hopf algebra of A, i.e., A' = U(P(A)) if the characteristic of K is zero, 
or A' = V(P(A)) if the characteristic of K is p # 0. Consider A' and B as filtered 
by their primitive filtrations. Define a filtration of A by letting FqA A n FqB. 
Note that F1A -K + P(A). Now we have A = UFqA and FqA = 0 for q < 0. 
Thus the filtration on A is complete, moreover the way we have defined it, the 
morphism E0(A) - E0(B) is a monomorphism. 

Consider E0A and E0B as graded by the filtration degree. Then they are 
connected. Suppose the theorem is true for connected Hopf algebras, so that 
E'A is primitively generated. Since P(E0(B))r,, = 0 for r # 1 it follows that 

P(E0(A))rgs = 0 for r # 1. It now follows that EV(A') - E0(A) is a morphism 
of primitively generated bigraded Hopf algebras, and that P(E0(A')) )P(E0(A)) 
is an isomorphism. 

Now a morphism of connected coalgebras is a monomorphism if and only 
if P(f) is a monomorphism, and a morphism f of connected algebras is an epi- 
morphism if and only if Q(f) is an epimorphism. Thus E0(A') E0(A) is an 
isomorphism, A' - A is an isomorphism, and the result follows. 

It remains to prove the theorem for connected A and B. Using Proposition 
4.13, it suffices to prove it for A of finite type. Now it follows by an argument 
similar to the proof of Proposition 4.13 that B is the direct limit of primitively 
generated sub Hopf algebras of finite type. If A is of finite type, then it is 
contained in one of these primitively generated Hopf algebras of finite type 
B' c B. Hence it suffices to prove the result when A and B are both of finite 
type and connected. In this case, Proposition 4.20 (applied to the dual Hopf 
algebra) implies that A (or B) is primitively generated if and only if A* (or B*) 
has an associative commutative multiplication, and 5(An) = 0 for n > 0 (or $(Bn) = 
0 for n > 0), where 5(x) = x", p = characteristic of the field K. If f: A x B 
is a monomorphism, it follows that f *: B* > A* is an epimorphism, and thus 
these properties carry over from B* to A*, and the theorem is proved. 

6.14. DEFINITIONS. If L is a Lie algebra over K, then a subalgebra L' of L 
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is a normal subalgebra if there exists a Lie algebra L", and a morphism of Lie 
algebras f: L > L" such that L' is the kernel of f. 

6.15. PROPOSITION. If K is a field, B is a primitively generated Hopf 
algebra over K, and A is a sub Hopf algebra of B, then the following conditions 
are equivalent: 

(1) P(A) is a normal sub Lie algebra of P(B), 
(2) the algebra of A is a normal sub algebra of the algebra of B, and 
( 3 ) the algebra of A is a left normal sub algebra of the algebra of B. 
PROOF. Suppose x e P(A)m, y e P(B),, and (1) is satisfied, then xy 

[x, y] + (-_ )Pqxy and [x, y] e P(A)mf+n. Thus I(A)B = BI(A) since B is primi- 
tively generated and (1) implies (2). Certainly (2) implies (3). Suppose (3), and 
let C = K (?A B. Now C is a primitively generated Hopf algebra, and we have 
that the sequence 

0 >P(A) >P(B) P(C) 

is an exact sequence of Lie algebras which implies (1). 
Note that the preceding proposition shows that K (A B C =B 0( K, 

and as indicated in ? 3 we often write B//A for C. 

6.16. PROPOSITION. If K is a field, B is a primitively generated Hopf 
algebra, and A is a normal sub Hopf algebra of B, then the sequence of Lie 
algebras 

0 P(A) >P(B) P(B11A) 0 

is exact. 
PROOF. We have that the sequence 0 - P(A) P(B) P(B//A) is exact. 

Let L be the cokernel of P (A) > P (B), and let C U(L) if the characteristic 
of K is zero, or C = V(L) if the characteristic of K is p. Now there is a natural 

morphism C - B//A and 0 - P (C) - P (B//A) is exact and C - B//A is a mono- 

morphism. Moreover the composition B - C )B//A is just the natural morphism 
B - B//A. Hence C - B//A is an epimorphism. This implies Coo B//A is an 

isomorphism, and the desired result follows. 
We now proceed to use an old trick to obtain the Poincare-Birkhoff-Witt 

theorem for Lie algebras over a field K of characteristic p # 0. 

6.17. DEFINITIONS, RECOLLECTIONS, AND NOTATION. Let Z denote the 
ring of rational integers, and let Z [[t]] denote the ring of formal power series 
in one variable t over Z. If f e Z[[t]], let f(n) denote the coefficient of t' in f. 
Now f is a unit in the ring Z[[t]] if and only if f(O) =+ 1. Indeed let f-t(0) = 
f(O). Then the formula f-1(n) -f(O)-1(E>'f(i)ft-(n - i)) defines f-1(n) in- 
ductively for n > 0. 
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Let I be the ideal in Z[[t]] consisting of those functions with no constant 
term. Let 8: I Z[[t]] be defined by f(f)(k) is the coefficient of tk in the 
power series corresponding to the rational function 

TI 1i~k?1(1 + (-l)i+lti)1- 1J+lf (i) 

Note that 

Mf+g) h( MA8)(g), 8(f )(O) = 1, (t2 ) = (1 _ t"Y)_1 

and 

8(t )=) (1 + t2 ). 

We have that ,8 is a morphism of I into the group G of those units of Z[[t]] 
with leading term 1. Suppose now fe G. Define fn inductively as follows: 

fA -f, 

and 

fn(1 + (-l)ntn+l)-fn(+n1) 

Let g(O) = 0, and g(n) = (- j)n-1ff-f (n). Now j8(g) f f, and it follows that 
,8: I d G is an isomorphism. 

Suppose now that K is a commutative ring and X is a free graded 
K-module of finite type. The Euler-Poincare' series of X is the element 
a(X) e Z[[t]] such that a(X)(n) is the dimension of Xn over K. We have 
a(XQ Y) = a(X) + a(Y), and a(XO Y) = a(X)a(Y). 

If f, g e Z[[t]], we say that f ? g is f(n) < g(n) for all n. Suppose h: X > Y 
is an epimorphism, then a(Y) < a(X) and, for h to be an isomorphism, it 
is necessary and sufficient that a( Y) = a(X). 

If K is a field, and X is such that X0 = 0, then a(X) e I, and so 46a(X) is 
defined. If p # 2, or X2q,, = 0 for all q, then 46a(X) = a(A(X)). Indeed this 
is the reason for defining 8 in the way in which we have. The fact that 
8a(X) a a(A(X)) follows easily from the identities ,8(t2l) - (1 - t2l)-, and 
,8(t l) - (1 + t2 +1). 

We now want to deal with the bigraded case of the preceding. Thus let 
Z[[s, t]] be the power series ring over Z in two variables s and t, and I the ideal 
of series with 0 constant term. Let G be the group of units with leading term 
1, and for a power series f, let f(m, n) be the coefficient of snt'. Define 
,/: Id G by letting 6(f)(m, n) be the coefficient of smtn in the power series 
corresponding to the rational function 

" 15i!m+ 1 I 5jgn+ (1 + (- l)i+i+lsiti)(-l)%+J+lf(i, j) 

The function 8 has the following properties 
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(1) 18(f + g) = I80 8(g), 
( 2 ) 8 is an isomorphism, 
(3) ,C(smt-) = (1 + (-l)m+n+lSmtn)(-1)m+n+l 
For bigraded modules over K we consider only two special cases. In case 

1 we deal with free bigraded modules X of finite type such that Xpq = 0 for 
p < 0. We let a(X)(m, n) be the dimension over K of Xm, m+n. In case 2 we 
deal with free bigraded modules X of finite type such that Xp, q= 0 for p > 0, 
and we let a(X)(m, n) be the dimension over K of X-___n-_ 

If f, g e Z[[s, t]] we say that f ? g if f(m, n) _ g(m, n) for all m, n. If 
h: X - Y is an epimorphism in either of the cases under consideration then 
a( Y) < a(X) and, for h to be an isomorphism, it is necessary and sufficient 
that a( Y) = a(X). 

If K is a field, and X is such that X0.0 0, then a(X) e I, 46a(X) is de- 
fined, and 8a(X) = aA(X) if p # 2 or Xm, n 0 for all m + n odd. 

6.18. DEFINITION. If X is a graded module over K, let L(X) denote the 
sub Lie algebra of T(X) generated by X. The Lie algebra L(X) is called the 
free Lie algebra generated by X. 

Note that if K is a field of characteristic 0, then PT(X) = L(X), and we 
have already used this notation in 5.17. Observe further that it is clear, from 
the universal properties of UL(X) and T(X), that UL(X) = T(X). 

6.19. PROPOSITION. If K is a field, X is a graded vector space over K, 
and U(L(X)) is filtered by its Lie filtration, then the natural morphism 

A(L(X)) E E? U(L (X)) 
is an isomorphism. 

PROOF. Because of the usual argument concerning direct limits, we may 
assume that X is of finite type. Suppose the characteristic of K is 2. There 
is a functor from the category of graded K-modules into itself which doubles 
dimension; namely, to a graded K-module B, it assigns the graded K-modules 
D(B) such that D(B)2q = Bq, and D(B)2q+, - 0. To a morphism f: B B', it 
assigns the morphism D(f): D(B) - D(B') such that D(f)2q = fq. The functor 
D has the property that D(B 0 B') = D(B) 0 D(B'). Moreover A(D(B)) = 
DA(B) for any graded K-module B, L(D(B)) = D(L(B)), and U(L(D(B))) = 
DU(L(B)). Consequently in order to prove the proposition it suffices to assume 
that if the characteristic of K is 2, then X2q+, = 0 for all q. 

We now want to make a further reduction. This is done by introducing 
a special filtration on L(X), and UL(X) = T(X). This filtration is defined by 
setting FqL(X) = 0 for q _ 0, and FqL(X) = L(X) nf rqTr(X) for q > 0. 
The filtration on T(X) is such that FqT(X) = 3rqTr(X). A filtration is in- 
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duced on X itself. We let Y be the bigraded vector space E0(X), and note 
that Yr,. = 0 for r # 1, and Y1 , = X8+1. In particular Y0, 0 0. We have 
EOT(X)= T(Y) U(L(Y)). Since this filtration is complete, it suffices to 
prove, in order to prove the proposition, the bigraded version of the proposition 
dealing with a bigraded vector space Y where Y, 0 = 0. 

We may assume without loss that Y = K ? W where W is a free 
bigraded Z module. Now if we set f = a(W), we have f = a(K ? W) for 
any field K. Moreover T( Y) = K ?& T( W), and thus a(T( Y)) = a(T( W)) = 
(1 - f)-1 for any field K. Suppose the characteristic of K is zero. In this case 
we have AL(Y) E0 UL(Y) is an isomorphism by ? 5.16. Consequently 
,8(a(L( Y)) = (1 - f)-l. Suppose we let g = a(L( W)), and h = a(L( Y)). Since 
there is a natural epimorphism K ?z L( W) - L( Y), it follows that h ? g. 
Since this last epimorphism is an isomorphism if the characteristic of K is 0, 
it follows that j8(g) = (1 - f)1. Since 8 is order preserving and h ? g, it 
follows that /3(h) ? (1 - f)1. However j6(h) = aA(L(Y)) and the natural 
morphism AL(Y) > e E?UL(Y) is an epimorphism. Therefore j8(h) > 

(1 - f)-1. It follows that ,4(h) = (1 - f)-1, AL( Y) -e E? UL( Y) is an isomor- 
phism, and since f8 is an isomorphism, that h = g, i.e., K0& L(W) L(Y) 
is an isomorphism. Thus the proposition is proved. 

It is worth remarking that neither the assertion that K ?L(W) 
L(Y) is an isomorphism or the assertion that a(AL( Y)) = flaL( Y) is true if 
the characteristic of K is 2, and Wi,2, # 0 for some q. 

6.20. THEOREM (Poincare-Birkhoff-Witt). If K is a field, L is a Lie 
algebra over K, and U(L) is filtered by its Lie filtration, then the natural 
morphism 

A(L) - e E?U(L) 
is an isomorphism. 

PROOF. For any Lie algebra L, temporarily let C(L) e 3 E0U(L). Now 
choose a graded vector space X so that there is an exact sequence of Lie alge- 
bras 0 L' - L(X) > L 0. We have a commutative diagram 

A(L) > CL') 

A(L(X)) - C(L(X)). 

Since A(L') > A(L(X)) is a monomorphism, it follows that A(L') C(L') is a 
monomorphism. Since the natural morphism A(L) - C(L) is an epimorphism 
for any Lie algebra L, it follows that A(L') C(L') is an isomorphism. The 
fact that U(L) = U(L(X))// U(L') implies that C(L) = C(L(X))//C(L'). More- 
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over A(L) = A(L(X))//A(L'). Thus A(L) C(L) is an isomorphism, and the 
theorem is proved. 

7. Some classical theorems 

Convention. In this section quasi Hopf algebra will refer only to those 
quasi Hopf algebras whose multiplication is associative. 

7.1. DEFINITION. Let A be an augmented algebra over K. Define FpA = A 
for p > 0, and FA = I(A)-P for p < 0. The filtration {F.A} is called the 
augmentation filtration of A. 

7.2. PROPOSITION. If A is an augmented algebra over K filtered by its 
augmentation filtration, then 

( 1 ) E0(A) is a bigraded connected algebra over K, 
( 2 ) Q(E0(A))pq =O for p # -1, 
(3) Q(E0(A))-1,q = Q(A)q1. 

7.3. PROPOSITION. If A and B are augmented algebras over the field K 
filtered by their augmentation filtrations, then E0(A (0 B) = E0(A) 0 E0(B). 

The proof of the preceding propositions is immediate. 

7.4. PROPOSITION. If A is a quasi Hopf algebra over the field K, and A is 
filtered by its augmentation filtration, then E0(A) is a primitively generated 
bigraded Hopf algebra over K with comultiplication E0(A) induced by the 
comultiplication A of A. 

Once more the proof is immediate from the definitions. 
Using the augmentation filtration, we have associated with any quasi Hopf 

algebra A over the field K a primitively generated Hopf algebra eE0(A) which 
is closely related to A. That it is not in general isomorphic with A as an algebra, 
can be seen by letting A be the Steenrod algebra or the group algebra of an 
appropriately chosen finite group, e.g., the Sylow p-subgroup of the symmetric 
group on p2 letters for p an odd prime. We will see, however, that if A is 
connected, and has commutative multiplication, then A and @EO(A) are 
isomorphic with A as algebras if the field K is perfect. This can be viewed as 
a major part of the content of the theorems of Hopf, Leray, and Borel if one 
chooses to do so. These theorems will be proved in this section. 

7.5. THEOREM (Leray). If A is a connected commutative quasi Hopf algebra 
over the field K of characteristic zero and X = Q(A), then if f: X I(A) is a 
morphism of graded vector spaces such that the composition X - I(A) >- X 
is the identity morphism of X, where 7c is the natural morphism, then there 
is an isomorphism of algebras A(X) - A induced by f. 
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PROOF. Choose f satisfying the required conditions. Let f: A(X) - A 
denote the morphism of augmented algebras induced by f. Now f induces 
E?(f): E0(A(X)) > E0(A), and E0(f) is a morphism of bigraded connected Hopf 
algebras. Applying 7.2 and the manner in which f was chosen, we have that 
Q(E0(f)): Q(E0(A(X))) Q(E0(A)) is an isomorphism. It is essentially the 
identity morphism of X. Applying 4.17 we have a commutative diagram 

P(EO(A(X))) P(E (A)) 

1. 1. 
Q(E (A(X))) Q(EO(A)) 

such that the morphisms represented by the vertical arrows are monomorphisms. 
Thus P(E0(f)) is a monomorphism. It results that E0(f) is an isomorphism. 
Hence f is an isomorphism and the theorem is proved. 

Note that, in the preceding proof, connectedness of A was used to guarantee 
that the augmentation filtration of A was complete, allowing us to conclude that 
f was an isomorphism from the fact that E0(f) was an isomorphism. 

The theorem of Hopf is that special case of the preceding where, for some 
integer n, we have Aq - 0 for q > n. This guarantees Q(A)q = 0 for q even, 
and that, as an algebra, A is an exterior algebra generated by elements of odd 
degree. 

7.6. DEFINITIONS AND REMARKS. If A is an algebra over K, a submodule Y 
of A is a generating submodule if the natural morphism T( Y) > A induced by 
Y e A is an epimorphism. A set of generators for A is a graded set X which 
is a set of generators for a generating submodule. If A is connected, we may 
by 3.8 always choose a set of generators to be contained in I(A). If K is a field, 
then we will have that the set of generators has no superfluous elements if its 
image in Q(A) is a basis for Q(A). 

7.7. DEFINITION. If A is an algebra over Kand x e A. for some n, the height 
of x is the least integer q such that Xq = 0; or, if no such integer exists, the 
height of x is infinity. 

7.8. PROPOSITION. Let A be a connected quasi Hopf algebra over the field 
K which as an algebra has one generator x of degree n, then A is a Hopf 
algebra, and 

( 1 ) if the characteristic of K is zero, the height of x is two for n odd 
and infinity for n even; 

( 2 ) if the characteristic of K is p odd, then the height of x is two for n 
odd and either infinity or a power of p for n even; and 

( 3 ) if the characteristic of K is two, then the height of x is either in- 
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finity or a power of two. 
PROOF. We must have A(x)= x 1 + 10 x. Thus x is primitive, A is asso- 

ciative, and A is a Hopf algebra. If for n odd the characteristic of Kis zero odd, 
then x2 -0 since A is commutative. In the remaining cases consider the formula 

A(xq) = Ei+j=q (i, j)xi 0 xi 

where (i, j) denotes the appropriate binomial coefficient and x0 = 1. If the 
characteristic of K is zero, we have by induction that Xq # 0 for all q. If the 
characteristic of K is p, we must have that if x is of finite height q, then all 
of the binomial coefficients (i, q - i) such that 0 < i < q are zero, and thus q 
is a power of p. 

7.9. PROPOSITION. If A is a connected quasi Hopf algebra over the field 
K of characteristic p # 0, and the multiplication of A is commutative, then if 

(1) Q(A)r = 0 for r > n, and 
(2) df(I(A)) = 0 for some integer f, 

it follows that P(A)r= 0 for r > pr-1n. 
PROOF. Suppose first that A has one generator x in degree k. If both p and 

k are odd, then xi - 0, x is a basis for I(A) and the proposition is trivially true. 
Otherwise, since x, xi, . . ., x~f-i generate I(A) and A(xq) = i+1 =qzi j)xi 0 xj 
where (i, j) denotes the appropriate binomial coefficient, we have that P(A) is 
generated by x, d(x), ..., t"-1(x), and the proposition is again true. 

Suppose now that the assertion is proved for quasi Hopf algebras with q 
or less generators as an algebra, and that A has q + 1 generators. Choosing a 
set of q + 1 generators, let X be one of highest degree and let A' be the sub 
quasi Hopf algebra generated by the remaining generators. Let A" = A//A', 
and note that A" is a quasi Hopf algebra with one generator satisfying (1) and (2). 
Modifying 3.12 slightly, since we have not assumed that A has an associative 
comultiplication, there results an exact sequence 0 - P(A') - P(A) - P(A"). 
By induction the proposition is true for A'. It is true for A" since A" has one 
generator. Thus the proposition is true for finitely generated quasi Hopf 
algebras. The usual direct limit argument now shows that it is true in general. 

7.10. PROPOSITION. If A is a connected quasi Hopf algebra over the perfect 
field K, the multiplication of A is commutative, A' is a sub quasi Hopf algebra 
of A, A" = A//A', and 

( 1 ) 0 -Q(A') - Q(A) Q(A") Ois exact, 

(2) Q(A), = Oforr > n, and 
(3) A" has one generator x in degree n, then A is isomorphic with 

A' (0 A" as an algebra. 
PROOF. Let w: Am A" be the natural morphism. If f: A"- A is a morphism 
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of graded vector spaces such that wf - A, then by 1.7, the composition 

A'0 ( A"f )A A )A 

is an isomorphism of left A'-modules. Since the multiplication of A is com- 
mutative qp is a morphism of algebras. Thus for the composition to be an 
isomorphism of algebras, it is necessary and sufficient that f be a morphism of 
algebras. 

In other words, in order to prove the proposition, it suffices to show that 
there exists y ? An such that r(y) = x and the height of y is the same as the 
height of x. Clearly any y such that r(y) = x will suffice if n is odd and the 
characteristic of K is zero or odd; or, if the height of x is infinity. Thus we 
may suppose without loss that we are in one of the remaining cases, the char- 
acteristic of K is p, and the height of x is pf. Let B' = tf(A') and observe that, 
since the field K is perfect, B' is the sub Hopf algebra Kif(A') of A'. Let C' - 

A'//B', C A//B', C" = C//C'. Now 4.11 (extended to the case of quasi Hopf 
algebras) implies that the natural morphism A" - C" is an isomorphism. We 
have also that C' is a sub quasi Hopf algebra of C, and Q(A') = Q(C'), Q(A) = 
Q(C). Let w': C - C" be the natural morphism and choose z ? CG such that 
w'(z) = x C ' = Ant. We have A(z) = z ( 1 + 1 ( z + u where u (C') I(C') . 
Thus tf(u) 0 0 and A(~fz) = 0fZ 8 1 + 1 0 ~fz. This means -f (z) ? P(C)Pfn. 
However, P(C) ffl 0 since 0 P(C') P(C) P(C") is exact, and both Cr 
and C" satisfy the hypotheses of 7.9. Thus tf(z) 0. 

Let a: A - C be the natural morphism. Choose w ? An such that a(w) = z. 
Now A(w) = w (8 1 + 10 w + v where v C I(A') 0 I(A'). Thus (A a a)A(ifw) 
$fw 0 1 using that tfz 0 0, and both that (A 0 a)v ? I(A') (0 I(C') and that r 
is zero in I(A') 0 I(C'). Consequently applying 4.9 (extended to the case of 
quasi Hopf algebras) we have that w ? B'. Thus there exists w. ? A' such 
that tfwo - w. Letting y- w - w, we have r(y) = x and the height of y 
is pf. Hence the proposition is proved. 

7.11. THEOREM (Borel). If A is a connected quasi Hopf algebra over the 
perfect field K, the multiplication in A is commutative, and the underlying 
graded vector space of A is of finite type, then as an algebra, A is isomorphic 
with a tensor product ?i, Ai of Hopf algebras Ai, where Ai is a Hopf algebra 
with a single generator xi. 

PROOF. Note that, under the hypotheses of the theorem, A(n) is finitely 
generated as an algebra. Thus the theorem follows by induction from the 
preceding proposition for A(n). A simple direct limit argument completes the 
proof. 
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7.12. EXAMPLE. Let K be a field of characteristic p which is not perfect. 
Let B be the Hopf algebra which, as an algebra, is the free commutative algebra 
generated by two generators x and y of degree n even. Let k ? K be an element 
which does not have a p' th root in K, and let A be the sub Hopf algebra generat- 
ed by t(x) - k$(y). Finally let C= B//A. We have that C is a primitively 
generated Hopf algebra with two generators x and y having commutative 
multiplication. However, the algebra of C cannot be decomposed into a tensor 
product of two algebras with one generator. 

7.13. THEOREM. If B is a connected quasi Hopf algebra with commutative 
multiplication over the perfect field K, and B is filtered by its augmentation 
filtration, then B is isomorphic with @E0(B) as an algebra. 

PROOF. Note that for any augmented algebra A, we have @E0(A) is an 
augmented algebra and EO(@EE(A)) = E0(A). Let a be the set of pairs (A, f) 
such that 

( 1 ) A is a sub Hopf algebra of B such that the sequence 0 Q(A) Q(B) 
is exact, 

(2) f: @EO(A) - A is a morphism of algebras such that E0(f): E0(A) 
EO(A) is the identity morphism, and 

( 3 ) if Q(f).: Q(@3E0(A)), - Q(B)n, is not an isomorphism, then 
Q([E0(A))q = 0 for q > n. 

Observe that condition 2 implies that f is an isomorphism of algebras. 
Further since KG a, we have a is non-empty. 

Order the pairs (A, f) by saying that (A, f) < (C, g) if 
(1) Ac C, 
( 2 ) if Q(A)n - Q(C)n is not an isomorphism, then Q(A)q = 0 for q'> n, 
(3) the diagram 

@E0(A) > @E0(C) 

If Ig 
A - C 

is commutative. 
A simple direct limit argument with a linearly ordered subset of a shows 

that a has maximal elements. Let (A, f) be such a maximal element, and n the 
least integer such that Q(A)n # Q(B)n if such an integer exists. Let y C Bn be 
an element whose image in Q(B)n is not in Q(A)n and let C be the sub Hopf 
algebra of B generated by A and y. Applying 7.10 we have that C is isomorphic 
with A (0 C//A. Now E0(C) = E0(A) 0) E0(C//A). Moreover @E0(C//A) is 
isomorphic with C//A since C//A has a single generator as an algebra. Therefore 
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we may choose g: @E0(C) C so that (C, g) ? a and (A, f) < (C, g). This 
contradicts the maximality of (A, f) and shows that we must have had A = B 
to start out with. Hence the theorem is proved. 

7.14. LEMMA. If A is a connected primitively generated Hopf algebra 
with commutative multiplication over the field K of characteristic p + 0, then 

P(K$(A)) - K(P(A)) - 

PROOF. By 6.11 we have that A- V(P(A)). Now Kt(A) = V(K$(P(A))), 
and the result follows. 

7.15. PROPOSITION. If A is a connected primitively generated Hopf 
algebra over the perfect field K, the multiplication in A is commutative, A' 
is a sub Hopf algebra of A, A" = A//A', and 

( 1) 0 Q(A') ) Q(A) ) Q(A"f) - O 
(2) Q(A)r = O for r > n, and 
(3) A" has one generator x in degree n, then A is isomorphic with 

A' (0 A" as a Hopf algebra. 
PROOF. In the notation of 7.10 it suffices to prove there exists y ? An such 

that wr(y) = x, height y = height x, and y is primitive. We now follow through 
the proof of 7.10 observing that we may choose z, w, and w0 primitive, this last 

being true since we obtain dfw ? P(dfA') - dfP(A') by the preceding lemma and 
using the fact that K is perfect. 

7.16. THEOREM. If A is a connected primitively generated Hopf algebra 
over the perfect field K, the multiplication in A is commutative, and the 
underlying graded vector space of A is of finite type, then there is an iso- 
morphism of Hopf algebras of A with ?&i,, Ai where each Ai is a Hopf algebra 
with a single generator xi. 

PROOF. One applies 7.15 inductively, and passes to the direct limit. 
Note that in 7.11 we have an isomorphism of algebras and that, under the 

stronger hypotheses of 7.16, we have an isomorphism of Hopf algebras. 

7.17. DEFINITION. The algebra A is strictly commutative if it is com- 
mutative and if, in addition, x2 0 for every X of odd degree in A. 

7.18. REMARKS. If A is an algebra over a field of characteristic not two, 
then A is commutative if and only if A is strictly commutative. Over any ring 
K, the free strictly commutative algebra generated by a graded module X is 
the quotient of A(X) by the ideal I generated by the elements x2 where x is an 
element of odd degree of A(X). If X is concentrated in odd degrees then the 
free strictly commutative algebra generated by X is called the Grassmann or 
exterior algebra of X. It is usually denoted by E(X), and has the property that 
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E(XO Y)= E(X) E( Y). The morphism X- D X63X where x -(x, x) induces a 
morphism which makes E(X) into a Hopf algebra in a canonical way. If X is 
projective of finite type, then E(X)* is easily seen to be the same thing as E(X*). 

If X is concentrated in even degrees, the algebra A(X) is sometimes called 
the symmetric algebra generated by X. If X is free and generators {Xi}ji for 
X are given, it is called also the polynomial algebra generated by {X}tI. 

7.19. EXAMPLE. Let K be a field of characteristic p which is not perfect. 
Let B be the Hopf algebra which, as an algebra, is the free commutative algebra 
generated by an element x of degree 2 and an element y of degree 2p. Let k 
be an element of K which does not have a p' th root, and let A be the sub Hopf 
algebra of B generated by i2(x) - ki(y). Letting C = B//A we have that C is 
a primitively generated Hopf algebra with two generators x and y. However, 
neither 7.11 or 7.13 is true for C. This example differs from that of 7.12 in 
that 7.13 is true for the example of 7.12. 

7.20. THEOREM (Samelson-Leray). Let A be a connected Hopf algebra over 
the field K having strictly commutative multiplication, and such that Q(A)X = 
0 for n even, then the natural morphism E(P(A)) A induced by P(A) - A 
is an isomorphism. 

PROOF. It suffices to prove the theorem assuming that A is of finite type. 
Now P(A) - Q(A) is a monomorphism by 4.21 or 4.20 depending on the charac- 
teristic of K. Note that in the case of finite characteristic i(I(A)) = 0 since A 
is generated by elements of odd degree and is strictly commutative. We thus 
have that A* is primitively generated, i.e., P(A*) - Q(A*) is an epimorphism. 
However P(A*)n = 0 for n even thus [x, y] = 0 for x, y primitive elements of 
A*. Since A* is primitively generated, this means that the multiplication in A* 
is commutative. If the characteristic of K is two and x is a primitive element 
of odd degree, then x2 is primitive of even degree so x2= 0. Consequently A* 
is strictly commutative and Q(A*)n = 0 for n even. Applying 4.21 or 4.20 again 
we have for any field Kthat P(A*) -Q(A*) is a monomorphism. It results that 
P(A) - Q(A) is an isomorphism and the theorem follows. 

Note that in the preceding it was important that A be a Hopf algebra and 
not just a quasi Hopf algebra. The result of the theorem is not velid if associ- 
ativity of the comultiplication is not assumed. 

7.21. PROPOSITION. If B is a connected Hopf algebra over the field K of 
characteristic different from two, and both the multiplication and the 
comultiplication of B are commutative, then B is isomorphic with A 0 C 
where A is a Grassman algebra with generators of odd degree, and C is a 
Hopf algebra which is zero in odd degrees. 
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PROOF. Let Lq = P(B)q for q odd and Lq = 0 for q even. Let A be the sub 
Hopf algebra of B generated by L(A = E(L)). Let C - B//A. Assuming B is 
of finite type, we have L* is the odd degree part of P(B*). There results a 
morphism of Hopf algebras j*: A* B* whose dual j: B - A has the property 
that the composition A - B - A is the identity morphism of A. Using j, we 
form A\\B, and observe that the composition A\\B B C is an isomorphism. 
Thus B = A 0 C, and the proposition is proved. 

8. Morphisms of connected coalgebras into connected algebras 

8.1. DEFINITIONS. If A is a connected coalgebra and B is a connected 
algebra, let G(A, B) denote the set of morphism of modules f: A - B such that 

fA is the identity morphism of K. If f, g e G(A, B), let f*g be the composition 

A A &8AfoigB&B- sD B . 

8.2. PROPOSITION. If A is a connected coalgebra and B is a connected 

algebra, then G(A, B) is a group under the operation * with identity 

A--- K 
'Y 

) B. 

PROOF. The fact that G(A, B) is a monoid is clear from the definitions. It 
remains to show that, if f e G(A, B), there exists f-1 e G(A, B). Suppose f-1 is 
defined in degrees less than n, x E An, and A(x) =x 1 + 10 x + i x' 0 x". 

Note we may assume n > 0, and that 0 < degree x"' < n for all i. Let f-1(x) = 
- x -E x' f-l(XD'). 

8.3. PROPOSITION. If f: A' - A is a morphism of connected coalgebras 
and g: B - B' is a morphism of connected algebras, there is induced a 
morphism of groups G(f, g): G(A, B) - G(A', B) by G(f, g) h = ghf. 

8.4. DEFINITION. If A is a connected Hopf algebra, the conjugation of A 

is the inverse in G(A, A) of the identity morphism of A. It is denoted by CA 
or C. 

8.5. PROPOSITION. If A and B are connected Hopf algebras, then 
CA? CB: A 0 B > A 0 B is the conjugation of A O B. 

The proof is straightforward. 
8.6. PROPOSITION. If A is a connected Hopf algebra, then the diagram 

A -A0(A 

{T 
C A0( A 

A - * 4A (0 A 
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is commutative. 
PROOF. Since A is a morphism of algebras, we have by 8.3 that AC is the 

inverse of A. It remains to show that (C 0 C) TA is also an inverse of A. Since 
T is an automorphism of the Hopf algebra A 0 A we have T(C 0 C) 

(C O C)T. Now 
A* (T(C 0 C)A) 

= (p0p)(A0T0A)A0A0T(A 0 (C0 C)A)A 
- (p 0A)(A0 T)(A 0pOA)(A0AOC0C)(AOA0A)(A0A)A 

=(p p A)(A 0 T)((A 0 p(A 0 C)A) 0 C)(A 0 A)A 
= (cpA)(A?T)(A re?C)(A?A)A . 

Observing that T(7es 0 C)A = (C (0 72e)A, the last line above becomes 

(0 0 A)(A 0 C 0 7s)(A0 A)A = ((cp(A 0C)A) ()Ore)A - (Os 8) e)A - 
72s 

and the proposition is proved. 
Note that the associativity of the comultiplication was used in the preceding. 

8.7. PROPOSITION. If A is a connected Hopf algebra, then the diagram 

A0&A S-,A 

Icoc~~~~~~~~~~~~~~ 
A?A IC 

1T1 
AOA S-*A 

is commutative. 

The proof of this proposition is just the dual of the proof of 8.6. 

8.8. PROPOSITION. If A is a Hopf algebra with either commutative 
multiplication or commutative comultiplication, then C o C: A - A is the 

identity morphism of A. 
PROOF. It suffices to show that C2 = C o C is the inverse of C in G(A, A). 

Now C2* C = q(C X C)(C X A)A = CRT(C Og A)A by 8.7. If either p or A is 

commutative, this becomes Cp(C 0 A)A Car = as, and the proposition is 

proved. 

8.9. COMMENTS. If we consider the category a of augmented coalgebras 
with commutative comultiplication over K, it is easily seen to be a category 
with products. The product of A and B is just A 0 B. This is not the case if 
we do not restrict ourselves to commutative comultiplication. Moreover K is a 
point in this category, i.e., given any object A in a there is a unique morphism 
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i: K A and a unique morphism s: A - K. This means that we can define the 
notion of monoid in the category. Letting A x B denote the product in the 
category of A and B, we have that a monoid in the category is an object A 
together with a morphism g': A x A - A such that the diagrams 

A x A x A S A 

|A X SD 1 
AKxA -> AA 

A = K x A- 
9 X A A x A 

\\ AI 

\A I~ 

A A xK A~AxA 

\\A 

.are commutative. In other words a monoid in the category CT is just a Hopf 
-algebra with commutative comultiplication. A group in the category is a monoid 
.in the category together with C: A -k A such that the diagram 

A ~~~A xC 

A, A A=x A x X A x A A 

\\ / 

\ / 

K~~ 
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is commutative. Thus we have just seen that the connected Hopf algebras with 
commutative comultiplication are groups in the category d. 

If we let T denote the category of topological spaces with base point, then 
if K is a field, there is a natural functor H*( , K): Tx C which to every space 
X assigns its singular homology with coefficients in K. The comultiplication 
H*(X, K) - H*(X, K) 0 H*(X, K) is the morphism induced by the diagonal 
A: X X x X. Note that if P is a point, H*(P, K) = K. Thus P* X 
induces K - H* (X; K) and X P induces H* (X; K) )K. The functor 

H*( , K): T a C preserves products, sends monoids into monoids, and groups 
into groups. Indeed it sends connected H-spaces with homotopy associative 
multiplication into groups. If G is a group in fT and G operates on X on the 
left, thenG x XXinducesH*(G; K)0H*(X, K) -H*(X, K), andH*(X, K) 
becomes a module coalgebra over the Hopf algebra H*(G, K). We assume the 
usual associativity conditions etc. for the operation of G on X. 

We will conclude this section by showing one more analogy between con- 
nected Hopf algebras with commutative comultiplication and groups; namely, 
that in this case, there is just one notion of normal subalgebra (3.3). 

8.10. PROPOSITION. If B is a connected Hopf algebra with commutative- 
comultiplication, and A is a sub Hopf algebra of B, then the following ara 
equivalent: 

( 1 ) A is a left normal subalgebra of B, 
(2) A is a right normal subalgebra of B. and 
(3) A is a normal subalgebra of B. 
PROOF. It suffices to show that, if I(A)B c BI(A), then I(A)B = BI(A).. 

Applying the conjugation operation, we have C(I(A)B) c C(BI(A)). However, 
C(I(A)B) = C(B)C(I(A)) = BI(A), and C(BI(A)) = C(I(A))C(B) = I(A)B by 8.7 
and 8.8, which proves the proposition. 

Appendix. The characteristic zero homology of H-spaces 

By Corollary 4.18 we have that, if A is a connected Hopf algebra over a 
field K of characteristic zero, then it is primitively generated if and only if the 
comultiplication in A is commutative. Applying 5.18, we have that such a Hopf 
algebra is the universal enveloping algebra of the Lie algebra of its own primi- 
tive elements, i.e., A = U(P(A)). 

Now if G is an H-space with unit and homotopy associative multiplication, 
then H*(G; K) is a Hopf algebra. Moreover G is connected if and only if 
H*(G; K) is connected. Assuming G connected, we have that H*(G; K) is 
primitively generated, since the fact that the diagonal A: G o G x G is com- 
mutative, implies that the comultiplication in H*(G; K) is commutative. Thus 
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H*(G, K) = U(P(H*(G; K))). In this situation it is possible to give P(H*(G; K)) 
a more geometric interpretation. We now proceed to indicate how this is done. 

If G satisfies the above conditions, and Wuq(G) stands for the q' th homotopy 
group of G based at the identity element of G, there is defined a pairing 

[ , ]: 7w,(G) 0} 7Wq(G) 7rp+q(G) 

having the following properties: 
( 1 ) if x e 11p(G), and y C 7Wq(G), then [x, y] - (_ )Pq+l[y, x], 
( 2 ) if x e 11p(G), y C 7rq(G), z C 7r(G), then 

( rI)X, [y, z]] + (_ 1)P [y, [z, x]] + (_ 1)q[z, [x, y]] = 0 

and 
(3) if x c 11(G), y C Wq(G) and Xn: wr(G) -+Hn(G) is the Hurewicz morphism, 

then 

Xp+q[X, Y] = Xp(X)Xq(Y) - ()PqXq(y)Xp(X) 

Consequently K being of characteristic zero, the graded vector space 7w(G; K) 
such that wn(G; K) =wrT"(G) 0& K becomes a Lie algebra over K, and the induced 
morphism X: wu*(G; K) - H*(G, K) is a morphism of Lie algebras. Details 
concerning the preceding may be found in several places, e.g., [8] or [9]. The 
Lie product in w*(G; K) is frequently called the Samelson product. 

Now one has that the image of X is contained in P(H*(G; K)). It is in fact 
exactly P(H*(G; K)) as has been proved by Cartan and Serre. The proof is most 
easily carried out by looking at the natural Postnikov system of G [7], and 
observing that at each stage the fibre is totally non-homologous to zero. This 
last fact is obtained by observing that each stage of this Postnikov system is 
a principal fibration with fibre, base, and total space all H-spaces of the type 
under consideration. It results that the characteristic zero k invariant of the 
fibration is zero due to its being a primitive element of a degree such that the 
space of primitive elements of this degree is zero by inductive hypothesis. 
Combining these facts there results the following theorem. 

THEOREM. If G is a pathwise connected homotopy associative H-space with 
unit, and X: wu(G; K) - H*(G; K) is the Hurewicz morphism of Lie algebras, 
then the induced morphism x: U(wu(G; K)) - H*(G; K) is an isomorphism of 
Hopf algebras. 

Note that if G is a pathwise connected topological group, then the conditions 
of the theorem obtain. 

PRINCETON UNIVERSITY 
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