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ON THE STRUCTURE OF JORDAN *-DERIVATIONS

BY

MATEJ BR E ŠAR (MARIBOR) AND BORUT ZALAR (LJUBLJANA)

1. Introduction. Let R be a ∗-ring, i.e., a ring with involution ∗. An
additive mapping E from R to R is called a Jordan ∗-derivation if

E(x2) = E(x)x∗ + xE(x) for all x ∈ R .

Note that the mapping x → ax∗ − xa, where a is a fixed element in R, is a
Jordan ∗-derivation; such Jordan ∗-derivations are said to be inner.

The study of Jordan ∗-derivations has been motivated by the problem
of the representativity of quadratic forms by bilinear forms (for the results
concerning this problem we refer to [8, 12, 14–16]). It turns out that the
question whether each quadratic form can be represented by some bilinear
form is intimately connected with the question whether every Jordan ∗-
derivation is inner, as shown by Šemrl [14].

In [4] Brešar and Vukman studied some algebraic properties of Jordan
∗-derivations. As a special case of [4; Theorem 1] we have that every Jordan
∗-derivation of a complex algebra A with unit element is inner. Clearly,
the requirement that A must contain the unit element cannot be omitted—
for example, if A is a self-adjoint ideal in an algebra B, then the mapping
x → bx∗ − xb, where b ∈ B, is a Jordan ∗-derivation of A which is not nec-
essarily inner. In this paper we prove that Jordan ∗-derivations of a rather
wide class of complex ∗-algebras (in general without unit) can be represented
by double centralizers (Theorem 2.1). As an application we obtain a result
on automatic continuity of Jordan ∗-derivations (Corollary 2.3). As another
application we determine the structure of Jordan ∗-derivations on the alge-
bra of all compact linear operators on a complex Hilbert space (Corollary
2.4).

Roughly speaking, it is much more difficult to study Jordan ∗-derivations
on real algebras than on complex algebras. Nevertheless, in [13] Šemrl
showed that every Jordan ∗-derivation of B(H), the algebra of all bounded
linear operators on a real Hilbert space H (dim H > 1), is inner. In the
present paper, using a completely different approach, we give a new proof of
this result. Our proof is based on two well-known results. The first is from
algebra (due to Martindale, concerning Jordan derivations of the symmetric
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elements of a ∗-ring), while the second is from analysis (due to Chernoff,
stating that all derivations on B(H) are inner). In fact, throughout this
paper we combine algebraic and analytic methods.

2. Jordan *-derivations of complex *-algebras. Let A be an
algebra (resp. a ring). A linear (resp. additive) mapping T from A to A is
called a left centralizer of A if T (xy) = T (x)y for all x, y ∈ A. Analogously,
a linear (resp. additive) mapping S from A to A satisfying S(xy) = xS(y)
for all x, y ∈ A is called a right centralizer of A. For T a left centralizer of A
and S a right centralizer of A, the pair (S, T ) is called a double centralizer
of A if xT (y) = S(x)y for all x, y ∈ A.

Let A be a ∗-ring. Note that every double centralizer (S, T ) of A induces
a Jordan ∗-derivation E, defined by E(x) = T (x∗) − S(x). In the following
theorem we show that in certain complex ∗-algebras all Jordan ∗-derivations
are induced in such a way.

Theorem 2.1. Let A be a complex ∗-algebra such that Aa = 0 or aA = 0
(where a ∈ A) implies a = 0. If E is a Jordan ∗-derivation of A then there
exists a unique double centralizer (T, S) such that E(x) = T (x∗)− S(x) for
all x ∈ A.

Obviously, as a special case of Theorem 2.1 we obtain the known result
stating that all Jordan ∗-derivations of a complex ∗-algebra with unit are
inner.

P r o o f o f T h e o r e m 2.1. Define an additive mapping S1 of A by
S1(x) = 2E(ix) + 2iE(x). We have

S1(x2)− xS1(x)
= 2E(ix2) + 2iE(x2)− 2xE(ix)− 2ixE(x)

= E((1 + i)2x2) + 2iE(x)x∗ + 2ixE(x)− 2xE(ix)− 2ixE(x)

= E(x + ix)(x∗ − ix∗) + (x + ix)E(x + ix) + 2iE(x)x∗ − 2xE(ix)

= {E(x)x∗ + xE(x)− iE(ix)x∗ + ixE(ix)}

+ i{E(x)x∗ + xE(x)− iE(ix)x∗ + ixE(ix)}

Expanding the identity E(x2) = −E((ix)2) we obtain

E(x)x∗ + xE(x) = iE(ix)x∗ − ixE(ix) ,

and therefore S1(x2) = xS1(x). In a similar fashion we see that the mapping
T1 of R, defined by T1(x) = 2iE(x∗) − 2E(ix∗), satisfies T1(x2) = T1(x)x.
Now, define T = − 1

4 iT1 and S = 1
4 iS1. Clearly, E(x) = T (x∗) − S(x) for

every x in A. We claim that (T, S) is a double centralizer of A. Let us first
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verify that xT (x∗) = S(x)x∗ for all x ∈ A. We have

xT (x∗)− S(x)x∗ = xE(x) + xS(x)− T (x∗2) + T (x∗)x∗ − S(x)x∗

= xE(x)− (−S(x2) + T (x∗2)) + (T (x∗)− S(x))x∗

= xE(x)− E(x2) + E(x)x∗ = 0 .

Linearizing xT (x∗) = S(x)x∗ (i.e., replacing x by x + y) we get

(1) xT (y∗) + yT (x∗) = S(x)y∗ + S(y)x∗ .

From the definition of S and T we see that S(ix) = iS(x) and T (ix) = iT (x)
for all x ∈ A. Therefore, replacing y by iy in (1) we obtain

−ixT (y∗) + iyT (x∗) = −iS(x)y∗ + iS(y)x∗ .

Comparing this identity with (1) we see that xT (y) = S(x)y for all x, y ∈ A.
Consequently,

xT (yz) = S(x)yz = xT (y)z ,

that is, A(T (yz) − T (y)z) = 0. By hypothesis, this implies that T (yz) =
T (y)z. Similarly we see that T is linear; namely, xT (λy) = S(x)λy =
xλT (y). Thus T is a left centralizer of A. Analogously one shows that S is
a right centralizer of A. Thus the pair (T, S) is a double centralizer of A.

In order to prove that T and S are uniquely determined we assume that
L(x∗) = R(x) where L is a left and R is a right centralizer of A. Then

L(y∗)x∗ = L(y∗x∗) = L((xy)∗) = R(xy)

for all x, y ∈ R. Replacing y by iy yields −iL(y∗)x∗ = iR(xy). But then,
comparing the last two relations we obtain L(y∗)x∗ = 0 for all x, y ∈ A, that
is, L(A)A = 0, which yields L = 0, and, therefore, R = 0. This completes
the proof of the theorem.

As an immediate consequence of Theorem 2.1 we obtain the following
result which can be compared with [4; Corollary 1].

Corollary 2.2. Let A be a complex ∗-algebra such that Aa = 0 or
aA = 0 implies a = 0. Then every Jordan ∗-derivation of A is real linear.

Corollary 2.3. Let A be a complex Banach ∗-algebra such that Aa = 0
or aA = 0 implies a = 0. If the involution is continuous then every Jordan
∗-derivation of A is continuous.

We remark that every semisimple Banach ∗-algebra satisfies the require-
ments of Corollary 2.3 (see [1; p. 191]).

P r o o f o f C o r o l l a r y 2.3. By Theorem 2.1, it suffices to show that
every one-sided centralizer of A is continuous. Let T be a left centralizer.
Suppose that xn, y ∈ A with limn→∞ xn = 0, limn→∞ T (xn) = y. By the
closed graph theorem, it is enough to prove that y = 0. Given any a ∈ A,
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we have ay = limn→∞ aT (xn) = limn→∞ S(a)xn = 0. Hence y = 0. In a
similar fashion one shows that every right centralizer of A is continuous.

Combining Theorem 2.1 with [6; Theorem 3.9] we obtain

Corollary 2.4. Let A be the algebra of all compact linear operators on
a complex Hilbert space H. Then every Jordan ∗-derivation of A is of the
form x → ax∗ − xa for some bounded linear operator a on H.

It is an open question whether Corollary 2.4 remains true in the real
case.

In the proof of Theorem 2.1, there occur additive mappings S, T satisfy-
ing S(x2) = xS(x), T (x2) = T (x)x. The question arises whether S (resp. T )
is then necessarily a right (resp. left) centralizer. Using a similar approach
to [2, 3, 5], where some Jordan mappings are considered, we now prove

Proposition 2.5. Let R be a prime ring of characteristic not 2. If an
additive mapping T : R → R satisfies T (x2) = T (x)x for all x ∈ R, then
T is a left centralizer of R. Similarly , if an additive mapping S : R → R
satisfies S(x2) = xS(x) for all x ∈ R, then S is a right centralizer of R.

Recall that a ring R is said to be prime if aRb = 0 implies a = 0 or
b = 0.

P r o o f o f P r o p o s i t i o n 2.5. Linearizing T (x2) = T (x)x we get

(2) T (xy + yx) = T (x)y + T (y)x for all x, y ∈ R .

In particular,

T (x(xy + yx) + (xy + yx)x) = T (x)(xy + yx) + (T (x)y + T (y)x)x .

But on the other hand,

T (x(xy + yx) + (xy + yx)x) = T (x2y + yx2) + 2T (xyx)
= T (x2)y + T (y)x2 + 2T (xyx) = T (x)xy + T (y)x2 + 2T (xyx) .

Comparing the last two relations we arrive at 2T (xyx) = 2T (x)yx. Since
the characteristic of R is not 2, it follows that

(3) T (xyx) = T (x)yx for all x, y ∈ R .

A linearization of (3) gives

(4) T (xyz + zyx) = T (x)yz + T (z)yx for all x, y, z ∈ R .

Now, analogously to [2; Theorem 3], [3; Lemma 2.1] and [5; Proposition 3]
we consider W = T (xyzyx + yxzxy). According to (3) we have

W = T (x(yzy)x) + T (y(xzx)y) = T (x)yzyx + T (y)xzxy .
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On the other hand, we see from (4) that

W = T ((xy)z(yx) + (yx)z(xy)) = T (xy)zyx + T (yx)zxy .

Comparing the two expressions for W and applying (2), we then get

(5) (T (xy)− T (x)y)z(xy − yx) = 0 for all x, y, z ∈ R .

Since R is prime, for any x, y ∈ R we have either T (xy) = T (x)y or xy = yx.
In other words, given x ∈ R, R is the union of its subsets Gx = {y ∈ R |
T (xy) = T (x)y} and Hx = {y ∈ R | xy = yx}. Clearly Gx and Hx are
additive subgroups of R. However, a group cannot be the union of two
proper subgroups, therefore either Gx = R or Hx = R. Thus we have
proved that R is the union of its subsets G = {x ∈ R | T (xy) = T (x)y for
all y ∈ R} and H = {x ∈ R | xy = yx for all y ∈ R}. Of course, G and
H are also additive subgroups of R. Hence either G = R, i.e., T is a left
centralizer, or H = R, i.e., R is commutative.

Thus, we may assume that R is commutative. Then, of course, R is
a domain. Following the proofs of [9; Lemma 2.2] and [5; Theorem 2] we
consider V = 2T (x2y). By (3) we have V = 2T (xyx) = 2T (x)yx. However,
from (2) we see that V = T (x2y+yx2) = T (x)xy+T (y)x2. Comparing both
expressions we obtain (T (x)y−T (y)x)x = 0. Since R is a domain it follows
that x = 0 or T (x)y = T (y)x; in any case T (x)y = T (y)x. Therefore, (2)
yields 2T (xy) = 2T (x)y. Since the characteristic of R is not 2, this means
that T is a left centralizer.

Similarly one proves that S is a right centralizer.

3. Jordan *-derivations of B(H). Throughout this section, H will
be a Hilbert space such that dim H > 1. We denote by B(H) the algebra of
all bounded linear operators on H, and by S(H) the set of all self-adjoint
operators in B(H). Our main purpose in this section is to give a new proof
of the following theorem of Šemrl [13].

Theorem 3.1. If H is a real Hilbert space then every Jordan ∗-derivation
of B(H) is inner.

Recall that an additive mapping D of a ring R into itself is called a
derivation if it satisfies D(xy) = D(x)y + xD(y) for all x, y ∈ R. If R is an
algebra and D is a derivation of R which is not necessarily homogeneous,
then D will be called an additive derivation; otherwise we call D a linear
derivation.

O u t l i n e o f t h e p r o o f o f T h e o r e m 3.1. Let E be a Jordan
∗-derivation of B(H). Using the theorem of Martindale quoted below, we
show that there exists an additive derivation D of B(H) such that the
restrictions of D and E to S(H) coincide. It turns out that D is in fact
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linear, therefore, by the well-known theorem of Chernoff [7], D is inner, i.e.,
D(A) = TA−AT for some T ∈ B(H). Finally, we show that there is a real
number µ such that E(A) = (T + µI)A∗ −A(T + µI) for all A ∈ B(H).

Let R be a ∗-ring, and let S denote the set of all symmetric elements
of R. A Jordan derivation d of S into R is an additive mapping of S into
R such that d(s2) = d(s)s + sd(s) for all s ∈ S (we will only deal with
2-torsion free rings, i.e., ones where 2a = 0 implies a = 0; in such rings our
definition of Jordan derivations coincides with the definition in [10]). Our
proof of Theorem 3.1 is based on the fact that the restriction of a Jordan
∗-derivation to the set of symmetric elements is a Jordan derivation.

In [10; Corollary 3, Theorem 4] Martindale proved

Theorem M. Let R be a 2-torsion free ∗-ring with unit element 1. Sup-
pose that either

(i) R contains nonzero orthogonal symmetric idempotents e1, e2 and e3

such that e1 + e2 + e3 = 1 and ReiR = R for i = 1, 2, 3, or
(ii) R is simple and it contains nonzero orthogonal idempotents e1 and

e2 such that e1 + e2 = 1.

Then every Jordan derivation of R into S can be uniquely extended to a
derivation of R.

R e m a r k 3.2. Let us show that the algebra B(H) (H real or complex)
satisfies the requirements of Theorem M. First, if H is finite-dimensional,
then B(H) satisfies (ii). Now suppose H is infinite-dimensional. Then there
exists an orthonormal basis in H of the form {eα, fα, gα; α ∈ A}. Let H1

be the subspace generated by {eα; α ∈ A}, and let E1 be the orthogonal
projection with range H1. Analogously we define the subspaces H2, H3,
and projections E2, E3. Of course, E1 + E2 + E3 = I, the identity on H.
We claim that B(H)EiB(H) = B(H), i = 1, 2, 3. Indeed, there exists a
one-to-one bounded linear operator B on H with range contained in Hi.
Note that there is A ∈ B(H) such that AEiB = AB = I. But then
B(H)EiB(H) = B(H).

In order to determine the structure of Jordan derivations of S(H) into
B(H) we also need the following simple lemma.

Lemma 3.3. If A,B ∈ B(H) are such that ASB = 0 for all S ∈ S(H)
then either A = 0 or B = 0.

P r o o f. It suffices to prove that if a, b are nonzero vectors in H, then
there exists S ∈ S(H) such that Sb = λa for some nonzero scalar λ. If a and
b are not orthogonal then this condition is satisfied by the operator a ⊗ a
(we denote by u⊗ v the operator (u⊗ v)x = 〈x, v〉u where 〈·, ·〉 is the inner
product); otherwise take S = a⊗ b + b ⊗ a.
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We are now in a position to prove

Theorem 3.4. Let H be a (real or complex ) Hilbert space. If a Jordan
derivation d of S(H) into B(H) is real linear then there exists T ∈ B(H)
such that d(S) = TS − ST for all S ∈ S(H).

P r o o f. By Theorem M (and Remark 3.2) there is an additive derivation
D of B(H) such that D|S(H) = d. Since every linear derivation of B(H) is
inner [7], the theorem will be proved by showing that D is linear.

Let us first show that D is real linear. For A ∈ B(H) we may write A =
W + K where W ∗ = W and K∗ = −K. By assumption, D(λW ) = λD(W )
for every real λ, therefore it suffices to show that D(λK) = λD(K). Given
any S ∈ S(H), we have KSK ∈ S(H). Therefore,

D(λKSK) = d(λKSK) = λd(KSK) = λD(KSK)
= λD(K)SK + λKD(S)K + λKSD(K) ;

on the other hand,

D(λKSK) = D((λK)SK) = D(λK)SK + λKD(S)K + λKSD(K) .

Comparing the above expressions for D(λKSK), we arrive at (D(λK) −
λD(K))SK = 0 for all S ∈ S(H). By Lemma 3.3 we conclude that
D(λK) = λD(K).

Now suppose H is a complex space. Since D is real linear it suffices to
show that D(iA) = iD(A) for every A ∈ B(H). We have D(I) = 0. Hence

0 = D((iI)2) = D(iI)iI + iID(iI) = 2iD(iI) .

Thus D(iI) = 0. But then for any A ∈ B(H) we have

D(iA) = D((iI)A) = D(iI)A + iID(A) = iD(A) ,

which completes the proof.

For the proof of Theorem 3.1 we also need the following lemma which is
similar to [11; Theorem 1].

Lemma 3.5. If A,B ∈ B(H) are such that ABS = BSA for all S ∈
S(H), and if B 6= 0, then A = λB for some scalar λ.

P r o o f. For all x, y ∈ H we have A(y ⊗ y)Bx = B(y ⊗ y)Ax; that is,
〈Bx, y〉Ay = 〈Ax, y〉By. Consequently,

〈Bx, y〉〈By, z〉Az = 〈Bx, y〉〈Ay, z〉Bz = 〈〈Bx, y〉Ay, z〉Bz

= 〈〈Ax, y〉By, z〉Bz = 〈Ax, y〉〈By, z〉Bz .

Thus 〈By, z〉{〈Bx, y〉Az−〈Ax, y〉Bz} = 0 for all x, y, z ∈ H. Hence for any
y, z ∈ H we have either 〈By, z〉 = 0 or 〈Bx, y〉Az = 〈Ax, y〉Bz for all x ∈ H.
Using the fact that a group cannot be the union of two proper subgroups
(cf. the proof of Proposition 2.5) one can easily show that either 〈By, z〉 = 0
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for all y, z ∈ H or 〈Bx, y〉Az = 〈Ax, y〉Bz for all x, y, z ∈ H. Since we have
assumed that B 6= 0 it follows at once that A = λB for some λ.

R e m a r k 3.6. It is easy to see [4; Lemma 2] that every Jordan ∗-de-
rivation E satisfies E(xyx) = E(x)y∗x∗ + xE(y)x∗ + xyE(x).

P r o o f o f T h e o r e m 3.1. Let E be a Jordan ∗-derivation of B(H).
By [4; Corollary 1], E is linear. Since the restriction of E to S(H) is a
Jordan derivation of S(H) to B(H), it follows from Theorem 3.4 that there
exists T ∈ B(H) such that

(1) E(S) = TS − ST for all S ∈ S(H) .

Pick K ∈ B(H) such that K∗ = −K. For every S ∈ S(H) we have KSK ∈
S(H). Therefore,

E(KSK) = TKSK −KSKT .

On the other hand, using Remark 3.6 we obtain

E(KSK) = −E(K)SK −KE(S)K + KSE(K)
= −E(K)SK −K(TS − ST )K + KSE(K)

Comparing both expressions we get

(E(K) + KT + TK)SK = KS(E(K) + KT + TK)

for all S ∈ S(H). Now Lemma 3.5 yields

(2) E(K) + KT + TK = λ(K)K

for some real λ(K). We claim that λ(K) is a constant. Pick K1,K2 ∈ B(H)
with K∗

1 = −K1, K∗
2 = −K2. We claim that λ(K1) = λ(K2). First assume

that K1 and K2 are linearly independent. In view of (2) we have

E(K1 + K2) = λ(K1 + K2)(K1 + K2)− T (K1 + K2)− (K1 + K2)T .

On the other hand,

E(K1 + K2) = E(K1) + E(K2)
= λ(K1)K1 − TK1 −K1T + λ(K2)K2 − TK2 −K2T .

Comparing we get

(λ(K1 + K2)− λ(K1))K1 + (λ(K1 + K2)− λ(K2))K2 = 0 .

Since K1 and K2 are linearly independent we obtain λ(K1) = λ(K1 +K2) =
λ(K2).

If K1 and K2 are linearly dependent, then for any K ∈ B(H) with
K∗ = −K which is linearly independent from both K1 and K2, we have
λ(K1) = λ(K) and λ(K2) = λ(K). Thus λ(K1) and λ(K2) are also equal
in this case. This means that λ(K) is a constant λ, so that

(3) E(K) = λK −KT − TK
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for every K ∈ B(H) with K∗ = −K.
Take A ∈ B(H). We have A = S + K, where S∗ = S, K∗ = −K. Using

(1) and (3) we then get

E(A) = E(S) + E(K) = TS − ST + λK −KT − TK

= (T − 1
2λI)(S −K)− (S + K)(T − 1

2λI)
= (T − 1

2λI)A∗ −A(T − 1
2λI) .

Thus E(A) = T1A
∗ − AT1 for all A ∈ B(H), where T1 = T − 1

2λI. This
proves the theorem.
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