COLLOQUIUM MATHEMATICUM
 VOL. LXIII $1992 \quad$ FASC. 2

ON THE STRUCTURE OF JORDAN *-DERIVATIONS
MATEJ BREŠAR (MARIBOR) And BORUT ZALAR (LJUBLJANA)

1. Introduction. Let R be a *-ring, i.e., a ring with involution *. An additive mapping E from R to R is called a Jordan *-derivation if

$$
E\left(x^{2}\right)=E(x) x^{*}+x E(x) \quad \text { for all } x \in R
$$

Note that the mapping $x \rightarrow a x^{*}-x a$, where a is a fixed element in R, is a Jordan *-derivation; such Jordan *-derivations are said to be inner.

The study of Jordan *-derivations has been motivated by the problem of the representativity of quadratic forms by bilinear forms (for the results concerning this problem we refer to $[8,12,14-16]$). It turns out that the question whether each quadratic form can be represented by some bilinear form is intimately connected with the question whether every Jordan *derivation is inner, as shown by Šemrl [14].

In [4] Brešar and Vukman studied some algebraic properties of Jordan *-derivations. As a special case of [4; Theorem 1] we have that every Jordan *-derivation of a complex algebra A with unit element is inner. Clearly, the requirement that A must contain the unit element cannot be omittedfor example, if A is a self-adjoint ideal in an algebra B, then the mapping $x \rightarrow b x^{*}-x b$, where $b \in B$, is a Jordan *-derivation of A which is not necessarily inner. In this paper we prove that Jordan *-derivations of a rather wide class of complex *-algebras (in general without unit) can be represented by double centralizers (Theorem 2.1). As an application we obtain a result on automatic continuity of Jordan *-derivations (Corollary 2.3). As another application we determine the structure of Jordan *-derivations on the algebra of all compact linear operators on a complex Hilbert space (Corollary 2.4).

Roughly speaking, it is much more difficult to study Jordan *-derivations on real algebras than on complex algebras. Nevertheless, in [13] Šemrl showed that every Jordan *-derivation of $B(H)$, the algebra of all bounded linear operators on a real Hilbert space $H(\operatorname{dim} H>1)$, is inner. In the present paper, using a completely different approach, we give a new proof of this result. Our proof is based on two well-known results. The first is from algebra (due to Martindale, concerning Jordan derivations of the symmetric
elements of a ${ }^{*}$-ring), while the second is from analysis (due to Chernoff, stating that all derivations on $B(H)$ are inner). In fact, throughout this paper we combine algebraic and analytic methods.
2. Jordan *-derivations of complex *-algebras. Let A be an algebra (resp. a ring). A linear (resp. additive) mapping T from A to A is called a left centralizer of A if $T(x y)=T(x) y$ for all $x, y \in A$. Analogously, a linear (resp. additive) mapping S from A to A satisfying $S(x y)=x S(y)$ for all $x, y \in A$ is called a right centralizer of A. For T a left centralizer of A and S a right centralizer of A, the pair (S, T) is called a double centralizer of A if $x T(y)=S(x) y$ for all $x, y \in A$.

Let A be a *-ring. Note that every double centralizer (S, T) of A induces a Jordan ${ }^{*}$-derivation E, defined by $E(x)=T\left(x^{*}\right)-S(x)$. In the following theorem we show that in certain complex *-algebras all Jordan *-derivations are induced in such a way.

Theorem 2.1. Let A be a complex ${ }^{*}$-algebra such that $A a=0$ or $a=0$ (where $a \in A$) implies $a=0$. If E is a Jordan *-derivation of A then there exists a unique double centralizer (T, S) such that $E(x)=T\left(x^{*}\right)-S(x)$ for all $x \in A$.

Obviously, as a special case of Theorem 2.1 we obtain the known result stating that all Jordan *-derivations of a complex *-algebra with unit are inner.

Proof of Theorem 2.1. Define an additive mapping S_{1} of A by $S_{1}(x)=2 E(i x)+2 i E(x)$. We have

$$
\begin{aligned}
S_{1}\left(x^{2}\right) & -x S_{1}(x) \\
= & 2 E\left(i x^{2}\right)+2 i E\left(x^{2}\right)-2 x E(i x)-2 i x E(x) \\
= & E\left((1+i)^{2} x^{2}\right)+2 i E(x) x^{*}+2 i x E(x)-2 x E(i x)-2 i x E(x) \\
= & E(x+i x)\left(x^{*}-i x^{*}\right)+(x+i x) E(x+i x)+2 i E(x) x^{*}-2 x E(i x) \\
= & \left\{E(x) x^{*}+x E(x)-i E(i x) x^{*}+i x E(i x)\right\} \\
& \quad+i\left\{E(x) x^{*}+x E(x)-i E(i x) x^{*}+i x E(i x)\right\}
\end{aligned}
$$

Expanding the identity $E\left(x^{2}\right)=-E\left((i x)^{2}\right)$ we obtain

$$
E(x) x^{*}+x E(x)=i E(i x) x^{*}-i x E(i x),
$$

and therefore $S_{1}\left(x^{2}\right)=x S_{1}(x)$. In a similar fashion we see that the mapping T_{1} of R, defined by $T_{1}(x)=2 i E\left(x^{*}\right)-2 E\left(i x^{*}\right)$, satisfies $T_{1}\left(x^{2}\right)=T_{1}(x) x$. Now, define $T=-\frac{1}{4} i T_{1}$ and $S=\frac{1}{4} i S_{1}$. Clearly, $E(x)=T\left(x^{*}\right)-S(x)$ for every x in A. We claim that (T, S) is a double centralizer of A. Let us first
verify that $x T\left(x^{*}\right)=S(x) x^{*}$ for all $x \in A$. We have

$$
\begin{aligned}
x T\left(x^{*}\right)-S(x) x^{*} & =x E(x)+x S(x)-T\left(x^{* 2}\right)+T\left(x^{*}\right) x^{*}-S(x) x^{*} \\
& =x E(x)-\left(-S\left(x^{2}\right)+T\left(x^{* 2}\right)\right)+\left(T\left(x^{*}\right)-S(x)\right) x^{*} \\
& =x E(x)-E\left(x^{2}\right)+E(x) x^{*}=0 .
\end{aligned}
$$

Linearizing $x T\left(x^{*}\right)=S(x) x^{*}$ (i.e., replacing x by $x+y$) we get

$$
\begin{equation*}
x T\left(y^{*}\right)+y T\left(x^{*}\right)=S(x) y^{*}+S(y) x^{*} . \tag{1}
\end{equation*}
$$

From the definition of S and T we see that $S(i x)=i S(x)$ and $T(i x)=i T(x)$ for all $x \in A$. Therefore, replacing y by $i y$ in (1) we obtain

$$
-i x T\left(y^{*}\right)+i y T\left(x^{*}\right)=-i S(x) y^{*}+i S(y) x^{*}
$$

Comparing this identity with (1) we see that $x T(y)=S(x) y$ for all $x, y \in A$. Consequently,

$$
x T(y z)=S(x) y z=x T(y) z,
$$

that is, $A(T(y z)-T(y) z)=0$. By hypothesis, this implies that $T(y z)=$ $T(y) z$. Similarly we see that T is linear; namely, $x T(\lambda y)=S(x) \lambda y=$ $x \lambda T(y)$. Thus T is a left centralizer of A. Analogously one shows that S is a right centralizer of A. Thus the pair (T, S) is a double centralizer of A.

In order to prove that T and S are uniquely determined we assume that $L\left(x^{*}\right)=R(x)$ where L is a left and R is a right centralizer of A. Then

$$
L\left(y^{*}\right) x^{*}=L\left(y^{*} x^{*}\right)=L\left((x y)^{*}\right)=R(x y)
$$

for all $x, y \in R$. Replacing y by $i y$ yields $-i L\left(y^{*}\right) x^{*}=i R(x y)$. But then, comparing the last two relations we obtain $L\left(y^{*}\right) x^{*}=0$ for all $x, y \in A$, that is, $L(A) A=0$, which yields $L=0$, and, therefore, $R=0$. This completes the proof of the theorem.

As an immediate consequence of Theorem 2.1 we obtain the following result which can be compared with [4; Corollary 1].

Corollary 2.2. Let A be a complex ${ }^{*}$-algebra such that $A a=0$ or $a A=0$ implies $a=0$. Then every Jordan ${ }^{*}$-derivation of A is real linear.

Corollary 2.3. Let A be a complex Banach *-algebra such that $A a=0$ or $a A=0$ implies $a=0$. If the involution is continuous then every Jordan *-derivation of A is continuous.

We remark that every semisimple Banach *-algebra satisfies the requirements of Corollary 2.3 (see [1; p. 191]).

Proof of Corollary 2.3. By Theorem 2.1, it suffices to show that every one-sided centralizer of A is continuous. Let T be a left centralizer. Suppose that $x_{n}, y \in A$ with $\lim _{n \rightarrow \infty} x_{n}=0, \lim _{n \rightarrow \infty} T\left(x_{n}\right)=y$. By the closed graph theorem, it is enough to prove that $y=0$. Given any $a \in A$,
we have $a y=\lim _{n \rightarrow \infty} a T\left(x_{n}\right)=\lim _{n \rightarrow \infty} S(a) x_{n}=0$. Hence $y=0$. In a similar fashion one shows that every right centralizer of A is continuous.

Combining Theorem 2.1 with [6; Theorem 3.9] we obtain
Corollary 2.4. Let A be the algebra of all compact linear operators on a complex Hilbert space H. Then every Jordan *-derivation of A is of the form $x \rightarrow a x^{*}-x a$ for some bounded linear operator a on H.

It is an open question whether Corollary 2.4 remains true in the real case.

In the proof of Theorem 2.1, there occur additive mappings S, T satisfying $S\left(x^{2}\right)=x S(x), T\left(x^{2}\right)=T(x) x$. The question arises whether S (resp. T) is then necessarily a right (resp. left) centralizer. Using a similar approach to $[2,3,5]$, where some Jordan mappings are considered, we now prove

Proposition 2.5. Let R be a prime ring of characteristic not 2. If an additive mapping $T: R \rightarrow R$ satisfies $T\left(x^{2}\right)=T(x) x$ for all $x \in R$, then T is a left centralizer of R. Similarly, if an additive mapping $S: R \rightarrow R$ satisfies $S\left(x^{2}\right)=x S(x)$ for all $x \in R$, then S is a right centralizer of R.

Recall that a ring R is said to be prime if $a R b=0$ implies $a=0$ or $b=0$.

Proof of Proposition 2.5. Linearizing $T\left(x^{2}\right)=T(x) x$ we get

$$
\begin{equation*}
T(x y+y x)=T(x) y+T(y) x \quad \text { for all } x, y \in R \tag{2}
\end{equation*}
$$

In particular,

$$
T(x(x y+y x)+(x y+y x) x)=T(x)(x y+y x)+(T(x) y+T(y) x) x
$$

But on the other hand,

$$
\begin{aligned}
& T(x(x y+y x)+(x y+y x) x)=T\left(x^{2} y+y x^{2}\right)+2 T(x y x) \\
& \quad=T\left(x^{2}\right) y+T(y) x^{2}+2 T(x y x)=T(x) x y+T(y) x^{2}+2 T(x y x) .
\end{aligned}
$$

Comparing the last two relations we arrive at $2 T(x y x)=2 T(x) y x$. Since the characteristic of R is not 2 , it follows that

$$
\begin{equation*}
T(x y x)=T(x) y x \quad \text { for all } x, y \in R . \tag{3}
\end{equation*}
$$

A linearization of (3) gives

$$
\begin{equation*}
T(x y z+z y x)=T(x) y z+T(z) y x \quad \text { for all } x, y, z \in R \tag{4}
\end{equation*}
$$

Now, analogously to [2; Theorem 3], [3; Lemma 2.1] and [5; Proposition 3] we consider $W=T(x y z y x+y x z x y)$. According to (3) we have

$$
W=T(x(y z y) x)+T(y(x z x) y)=T(x) y z y x+T(y) x z x y .
$$

On the other hand, we see from (4) that

$$
W=T((x y) z(y x)+(y x) z(x y))=T(x y) z y x+T(y x) z x y .
$$

Comparing the two expressions for W and applying (2), we then get

$$
\begin{equation*}
(T(x y)-T(x) y) z(x y-y x)=0 \quad \text { for all } x, y, z \in R \tag{5}
\end{equation*}
$$

Since R is prime, for any $x, y \in R$ we have either $T(x y)=T(x) y$ or $x y=y x$. In other words, given $x \in R, R$ is the union of its subsets $G_{x}=\{y \in R \mid$ $T(x y)=T(x) y\}$ and $H_{x}=\{y \in R \mid x y=y x\}$. Clearly G_{x} and H_{x} are additive subgroups of R. However, a group cannot be the union of two proper subgroups, therefore either $G_{x}=R$ or $H_{x}=R$. Thus we have proved that R is the union of its subsets $G=\{x \in R \mid T(x y)=T(x) y$ for all $y \in R\}$ and $H=\{x \in R \mid x y=y x$ for all $y \in R\}$. Of course, G and H are also additive subgroups of R. Hence either $G=R$, i.e., T is a left centralizer, or $H=R$, i.e., R is commutative.

Thus, we may assume that R is commutative. Then, of course, R is a domain. Following the proofs of [9; Lemma 2.2] and [5; Theorem 2] we consider $V=2 T\left(x^{2} y\right)$. By (3) we have $V=2 T(x y x)=2 T(x) y x$. However, from (2) we see that $V=T\left(x^{2} y+y x^{2}\right)=T(x) x y+T(y) x^{2}$. Comparing both expressions we obtain $(T(x) y-T(y) x) x=0$. Since R is a domain it follows that $x=0$ or $T(x) y=T(y) x$; in any case $T(x) y=T(y) x$. Therefore, (2) yields $2 T(x y)=2 T(x) y$. Since the characteristic of R is not 2 , this means that T is a left centralizer.

Similarly one proves that S is a right centralizer.
3. Jordan *-derivations of $B(H)$. Throughout this section, H will be a Hilbert space such that $\operatorname{dim} H>1$. We denote by $B(H)$ the algebra of all bounded linear operators on H, and by $S(H)$ the set of all self-adjoint operators in $B(H)$. Our main purpose in this section is to give a new proof of the following theorem of Šemrl [13].

Theorem 3.1. If H is a real Hilbert space then every Jordan *-derivation of $B(H)$ is inner.

Recall that an additive mapping D of a ring R into itself is called a derivation if it satisfies $D(x y)=D(x) y+x D(y)$ for all $x, y \in R$. If R is an algebra and D is a derivation of R which is not necessarily homogeneous, then D will be called an additive derivation; otherwise we call D a linear derivation.

Outline of the proof of Theorem 3.1. Let E be a Jordan *-derivation of $B(H)$. Using the theorem of Martindale quoted below, we show that there exists an additive derivation D of $B(H)$ such that the restrictions of D and E to $S(H)$ coincide. It turns out that D is in fact
linear, therefore, by the well-known theorem of Chernoff [7], D is inner, i.e., $D(A)=T A-A T$ for some $T \in B(H)$. Finally, we show that there is a real number μ such that $E(A)=(T+\mu I) A^{*}-A(T+\mu I)$ for all $A \in B(H)$.

Let R be a ${ }^{*}$-ring, and let S denote the set of all symmetric elements of R. A Jordan derivation d of S into R is an additive mapping of S into R such that $d\left(s^{2}\right)=d(s) s+s d(s)$ for all $s \in S$ (we will only deal with 2 -torsion free rings, i.e., ones where $2 a=0$ implies $a=0$; in such rings our definition of Jordan derivations coincides with the definition in [10]). Our proof of Theorem 3.1 is based on the fact that the restriction of a Jordan *-derivation to the set of symmetric elements is a Jordan derivation.

In [10; Corollary 3, Theorem 4] Martindale proved
Theorem M. Let R be a 2-torsion free ${ }^{*}$-ring with unit element 1. Suppose that either
(i) R contains nonzero orthogonal symmetric idempotents e_{1}, e_{2} and e_{3} such that $e_{1}+e_{2}+e_{3}=1$ and $R e_{i} R=R$ for $i=1,2,3$, or
(ii) R is simple and it contains nonzero orthogonal idempotents e_{1} and e_{2} such that $e_{1}+e_{2}=1$.

Then every Jordan derivation of R into S can be uniquely extended to a derivation of R.

Remark 3.2. Let us show that the algebra $B(H)$ (H real or complex) satisfies the requirements of Theorem M. First, if H is finite-dimensional, then $B(H)$ satisfies (ii). Now suppose H is infinite-dimensional. Then there exists an orthonormal basis in H of the form $\left\{e_{\alpha}, f_{\alpha}, g_{\alpha} ; \alpha \in A\right\}$. Let H_{1} be the subspace generated by $\left\{e_{\alpha} ; \alpha \in A\right\}$, and let E_{1} be the orthogonal projection with range H_{1}. Analogously we define the subspaces H_{2}, H_{3}, and projections E_{2}, E_{3}. Of course, $E_{1}+E_{2}+E_{3}=I$, the identity on H. We claim that $B(H) E_{i} B(H)=B(H), i=1,2,3$. Indeed, there exists a one-to-one bounded linear operator B on H with range contained in H_{i}. Note that there is $A \in B(H)$ such that $A E_{i} B=A B=I$. But then $B(H) E_{i} B(H)=B(H)$.

In order to determine the structure of Jordan derivations of $S(H)$ into $B(H)$ we also need the following simple lemma.

Lemma 3.3. If $A, B \in B(H)$ are such that $A S B=0$ for all $S \in S(H)$ then either $A=0$ or $B=0$.

Proof. It suffices to prove that if a, b are nonzero vectors in H, then there exists $S \in S(H)$ such that $S b=\lambda a$ for some nonzero scalar λ. If a and b are not orthogonal then this condition is satisfied by the operator $a \otimes a$ (we denote by $u \otimes v$ the operator $(u \otimes v) x=\langle x, v\rangle u$ where $\langle\cdot, \cdot\rangle$ is the inner product); otherwise take $S=a \otimes b+b \otimes a$.

We are now in a position to prove
Theorem 3.4. Let H be a (real or complex) Hilbert space. If a Jordan derivation d of $S(H)$ into $B(H)$ is real linear then there exists $T \in B(H)$ such that $d(S)=T S-S T$ for all $S \in S(H)$.

Proof. By Theorem M (and Remark 3.2) there is an additive derivation D of $B(H)$ such that $D \mid S(H)=d$. Since every linear derivation of $B(H)$ is inner [7], the theorem will be proved by showing that D is linear.

Let us first show that D is real linear. For $A \in B(H)$ we may write $A=$ $W+K$ where $W^{*}=W$ and $K^{*}=-K$. By assumption, $D(\lambda W)=\lambda D(W)$ for every real λ, therefore it suffices to show that $D(\lambda K)=\lambda D(K)$. Given any $S \in S(H)$, we have $K S K \in S(H)$. Therefore,

$$
\begin{aligned}
D(\lambda K S K) & =d(\lambda K S K)=\lambda d(K S K)=\lambda D(K S K) \\
& =\lambda D(K) S K+\lambda K D(S) K+\lambda K S D(K)
\end{aligned}
$$

on the other hand,

$$
D(\lambda K S K)=D((\lambda K) S K)=D(\lambda K) S K+\lambda K D(S) K+\lambda K S D(K)
$$

Comparing the above expressions for $D(\lambda K S K)$, we arrive at $(D(\lambda K)-$ $\lambda D(K)) S K=0$ for all $S \in S(H)$. By Lemma 3.3 we conclude that $D(\lambda K)=\lambda D(K)$.

Now suppose H is a complex space. Since D is real linear it suffices to show that $D(i A)=i D(A)$ for every $A \in B(H)$. We have $D(I)=0$. Hence

$$
0=D\left((i I)^{2}\right)=D(i I) i I+i I D(i I)=2 i D(i I)
$$

Thus $D(i I)=0$. But then for any $A \in B(H)$ we have

$$
D(i A)=D((i I) A)=D(i I) A+i I D(A)=i D(A)
$$

which completes the proof.
For the proof of Theorem 3.1 we also need the following lemma which is similar to [11; Theorem 1].

Lemma 3.5. If $A, B \in B(H)$ are such that $A B S=B S A$ for all $S \in$ $S(H)$, and if $B \neq 0$, then $A=\lambda B$ for some scalar λ.

Proof. For all $x, y \in H$ we have $A(y \otimes y) B x=B(y \otimes y) A x$; that is, $\langle B x, y\rangle A y=\langle A x, y\rangle B y$. Consequently,

$$
\begin{aligned}
\langle B x, y\rangle\langle B y, z\rangle A z & =\langle B x, y\rangle\langle A y, z\rangle B z=\langle\langle B x, y\rangle A y, z\rangle B z \\
& =\langle\langle A x, y\rangle B y, z\rangle B z=\langle A x, y\rangle\langle B y, z\rangle B z .
\end{aligned}
$$

Thus $\langle B y, z\rangle\{\langle B x, y\rangle A z-\langle A x, y\rangle B z\}=0$ for all $x, y, z \in H$. Hence for any $y, z \in H$ we have either $\langle B y, z\rangle=0$ or $\langle B x, y\rangle A z=\langle A x, y\rangle B z$ for all $x \in H$. Using the fact that a group cannot be the union of two proper subgroups (cf. the proof of Proposition 2.5) one can easily show that either $\langle B y, z\rangle=0$
for all $y, z \in H$ or $\langle B x, y\rangle A z=\langle A x, y\rangle B z$ for all $x, y, z \in H$. Since we have assumed that $B \neq 0$ it follows at once that $A=\lambda B$ for some λ.

Remark 3.6. It is easy to see [4; Lemma 2] that every Jordan *-derivation E satisfies $E(x y x)=E(x) y^{*} x^{*}+x E(y) x^{*}+x y E(x)$.

Proof of Theorem 3.1. Let E be a Jordan ${ }^{*}$-derivation of $B(H)$. By [4; Corollary 1], E is linear. Since the restriction of E to $S(H)$ is a Jordan derivation of $S(H)$ to $B(H)$, it follows from Theorem 3.4 that there exists $T \in B(H)$ such that

$$
\begin{equation*}
E(S)=T S-S T \quad \text { for all } S \in S(H) \tag{1}
\end{equation*}
$$

Pick $K \in B(H)$ such that $K^{*}=-K$. For every $S \in S(H)$ we have $K S K \in$ $S(H)$. Therefore,

$$
E(K S K)=T K S K-K S K T
$$

On the other hand, using Remark 3.6 we obtain

$$
\begin{aligned}
E(K S K) & =-E(K) S K-K E(S) K+K S E(K) \\
& =-E(K) S K-K(T S-S T) K+K S E(K)
\end{aligned}
$$

Comparing both expressions we get

$$
(E(K)+K T+T K) S K=K S(E(K)+K T+T K)
$$

for all $S \in S(H)$. Now Lemma 3.5 yields

$$
\begin{equation*}
E(K)+K T+T K=\lambda(K) K \tag{2}
\end{equation*}
$$

for some real $\lambda(K)$. We claim that $\lambda(K)$ is a constant. Pick $K_{1}, K_{2} \in B(H)$ with $K_{1}^{*}=-K_{1}, K_{2}^{*}=-K_{2}$. We claim that $\lambda\left(K_{1}\right)=\lambda\left(K_{2}\right)$. First assume that K_{1} and K_{2} are linearly independent. In view of (2) we have

$$
E\left(K_{1}+K_{2}\right)=\lambda\left(K_{1}+K_{2}\right)\left(K_{1}+K_{2}\right)-T\left(K_{1}+K_{2}\right)-\left(K_{1}+K_{2}\right) T
$$

On the other hand,

$$
\begin{aligned}
E\left(K_{1}+K_{2}\right) & =E\left(K_{1}\right)+E\left(K_{2}\right) \\
& =\lambda\left(K_{1}\right) K_{1}-T K_{1}-K_{1} T+\lambda\left(K_{2}\right) K_{2}-T K_{2}-K_{2} T .
\end{aligned}
$$

Comparing we get

$$
\left(\lambda\left(K_{1}+K_{2}\right)-\lambda\left(K_{1}\right)\right) K_{1}+\left(\lambda\left(K_{1}+K_{2}\right)-\lambda\left(K_{2}\right)\right) K_{2}=0
$$

Since K_{1} and K_{2} are linearly independent we obtain $\lambda\left(K_{1}\right)=\lambda\left(K_{1}+K_{2}\right)=$ $\lambda\left(K_{2}\right)$.

If K_{1} and K_{2} are linearly dependent, then for any $K \in B(H)$ with $K^{*}=-K$ which is linearly independent from both K_{1} and K_{2}, we have $\lambda\left(K_{1}\right)=\lambda(K)$ and $\lambda\left(K_{2}\right)=\lambda(K)$. Thus $\lambda\left(K_{1}\right)$ and $\lambda\left(K_{2}\right)$ are also equal in this case. This means that $\lambda(K)$ is a constant λ, so that

$$
\begin{equation*}
E(K)=\lambda K-K T-T K \tag{3}
\end{equation*}
$$

for every $K \in B(H)$ with $K^{*}=-K$.
Take $A \in B(H)$. We have $A=S+K$, where $S^{*}=S, K^{*}=-K$. Using (1) and (3) we then get

$$
\begin{aligned}
E(A) & =E(S)+E(K)=T S-S T+\lambda K-K T-T K \\
& =\left(T-\frac{1}{2} \lambda I\right)(S-K)-(S+K)\left(T-\frac{1}{2} \lambda I\right) \\
& =\left(T-\frac{1}{2} \lambda I\right) A^{*}-A\left(T-\frac{1}{2} \lambda I\right) .
\end{aligned}
$$

Thus $E(A)=T_{1} A^{*}-A T_{1}$ for all $A \in B(H)$, where $T_{1}=T-\frac{1}{2} \lambda I$. This proves the theorem.

REFERENCES

[1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973.
[2] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
[3] -, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228.
[4] M. Brešar and J. Vukman, On some additive mappings in rings with involution, Aequationes Math. 38 (1989), 178-185.
[5] -, -, Jordan (Θ, φ)-derivations, Glasnik Mat., to appear.
[6] R. C. Busby, Double centralizers and extensions of C^{*}-algebras, Trans. Amer. Math. Soc. 132 (1968), 79-99.
[7] P. R. Chernoff, Representations, automorphisms and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 257-289.
[8] S. Kurepa, Quadratic and sesquilinear functionals, Glasnik Mat. Fiz.-Astronom. 20 (1965), 79-92.
[9] A. Leroy et J. Matczuk, Quelques remarques à propos des S-dérivations, Comm. Algebra 13 (1985), 1229-1244.
[10] W. S. Martindale, Jordan homomorphisms of the symmetric elements of a ring with involution, J. Algebra 5 (1967), 232-249.
[11] -, Prime rings satisfying a generalized polynomial identity, ibid. 12 (1969), 576584.
[12] P. Šemrl, On quadratic functionals, Bull. Austral. Math. Soc. 37 (1988), 27-28.
[13] -, On Jordan *-derivations and an application, Colloq. Math. 59 (1990), 241-251.
[14] -, Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157165.
[15] P. Vrbová, Quadratic functionals and bilinear forms, Časopis Pěst. Mat. 98 (1973), 159-161.
[16] J. Vukman, Some functional equations in Banach algebras and an application, Proc. Amer. Math. Soc. 100 (1987), 133-136.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARIBOR UNIVERSITY OF LJUBLJANA
PF, KOROŠKA 160 SF, MURNIKOVA 2
62000 MARIBOR, SLOVENIA
61000 LJUBLJANA, SLOVENIA

