COLLOQUIUM MATHEMATICUM

VOL. LXIII

ON THE STRUCTURE OF JORDAN *-DERIVATIONS

 $_{\rm BY}$

MATEJ BREŠAR (MARIBOR) AND BORUT ZALAR (LJUBLJANA)

1. Introduction. Let R be a *-ring, i.e., a ring with involution *. An additive mapping E from R to R is called a *Jordan* *-*derivation* if

 $E(x^2) = E(x)x^* + xE(x)$ for all $x \in R$.

Note that the mapping $x \to ax^* - xa$, where a is a fixed element in R, is a Jordan *-derivation; such Jordan *-derivations are said to be *inner*.

The study of Jordan *-derivations has been motivated by the problem of the representativity of quadratic forms by bilinear forms (for the results concerning this problem we refer to [8, 12, 14–16]). It turns out that the question whether each quadratic form can be represented by some bilinear form is intimately connected with the question whether every Jordan *derivation is inner, as shown by Šemrl [14].

In [4] Brešar and Vukman studied some algebraic properties of Jordan *-derivations. As a special case of [4; Theorem 1] we have that every Jordan *-derivation of a complex algebra A with unit element is inner. Clearly, the requirement that A must contain the unit element cannot be omitted for example, if A is a self-adjoint ideal in an algebra B, then the mapping $x \rightarrow bx^* - xb$, where $b \in B$, is a Jordan *-derivation of A which is not necessarily inner. In this paper we prove that Jordan *-derivations of a rather wide class of complex *-algebras (in general without unit) can be represented by double centralizers (Theorem 2.1). As an application we obtain a result on automatic continuity of Jordan *-derivations (Corollary 2.3). As another application we determine the structure of Jordan *-derivations on the algebra of all compact linear operators on a complex Hilbert space (Corollary 2.4).

Roughly speaking, it is much more difficult to study Jordan *-derivations on real algebras than on complex algebras. Nevertheless, in [13] Šemrl showed that every Jordan *-derivation of B(H), the algebra of all bounded linear operators on a real Hilbert space H (dim H > 1), is inner. In the present paper, using a completely different approach, we give a new proof of this result. Our proof is based on two well-known results. The first is from algebra (due to Martindale, concerning Jordan derivations of the symmetric elements of a *-ring), while the second is from analysis (due to Chernoff, stating that all derivations on B(H) are inner). In fact, throughout this paper we combine algebraic and analytic methods.

2. Jordan *-derivations of complex *-algebras. Let A be an algebra (resp. a ring). A linear (resp. additive) mapping T from A to A is called a *left centralizer* of A if T(xy) = T(x)y for all $x, y \in A$. Analogously, a linear (resp. additive) mapping S from A to A satisfying S(xy) = xS(y) for all $x, y \in A$ is called a *right centralizer* of A. For T a left centralizer of A and S a right centralizer of A, the pair (S,T) is called a *double centralizer* of A if xT(y) = S(x)y for all $x, y \in A$.

Let A be a *-ring. Note that every double centralizer (S, T) of A induces a Jordan *-derivation E, defined by $E(x) = T(x^*) - S(x)$. In the following theorem we show that in certain complex *-algebras all Jordan *-derivations are induced in such a way.

THEOREM 2.1. Let A be a complex *-algebra such that Aa = 0 or aA = 0(where $a \in A$) implies a = 0. If E is a Jordan *-derivation of A then there exists a unique double centralizer (T, S) such that $E(x) = T(x^*) - S(x)$ for all $x \in A$.

Obviously, as a special case of Theorem 2.1 we obtain the known result stating that all Jordan *-derivations of a complex *-algebra with unit are inner.

Proof of Theorem 2.1. Define an additive mapping S_1 of A by $S_1(x) = 2E(ix) + 2iE(x)$. We have

$$S_{1}(x^{2}) - xS_{1}(x)$$

$$= 2E(ix^{2}) + 2iE(x^{2}) - 2xE(ix) - 2ixE(x)$$

$$= E((1+i)^{2}x^{2}) + 2iE(x)x^{*} + 2ixE(x) - 2xE(ix) - 2ixE(x)$$

$$= E(x+ix)(x^{*} - ix^{*}) + (x+ix)E(x+ix) + 2iE(x)x^{*} - 2xE(ix)$$

$$= \{E(x)x^{*} + xE(x) - iE(ix)x^{*} + ixE(ix)\}$$

$$+ i\{E(x)x^{*} + xE(x) - iE(ix)x^{*} + ixE(ix)\}$$

Expanding the identity $E(x^2) = -E((ix)^2)$ we obtain

$$E(x)x^* + xE(x) = iE(ix)x^* - ixE(ix),$$

and therefore $S_1(x^2) = xS_1(x)$. In a similar fashion we see that the mapping T_1 of R, defined by $T_1(x) = 2iE(x^*) - 2E(ix^*)$, satisfies $T_1(x^2) = T_1(x)x$. Now, define $T = -\frac{1}{4}iT_1$ and $S = \frac{1}{4}iS_1$. Clearly, $E(x) = T(x^*) - S(x)$ for every x in A. We claim that (T, S) is a double centralizer of A. Let us first verify that $xT(x^*) = S(x)x^*$ for all $x \in A$. We have

$$xT(x^*) - S(x)x^* = xE(x) + xS(x) - T(x^{*2}) + T(x^*)x^* - S(x)x^*$$

= $xE(x) - (-S(x^2) + T(x^{*2})) + (T(x^*) - S(x))x^*$
= $xE(x) - E(x^2) + E(x)x^* = 0.$

Linearizing $xT(x^*) = S(x)x^*$ (i.e., replacing x by x + y) we get

(1)
$$xT(y^*) + yT(x^*) = S(x)y^* + S(y)x^*$$

From the definition of S and T we see that S(ix) = iS(x) and T(ix) = iT(x) for all $x \in A$. Therefore, replacing y by iy in (1) we obtain

$$-ixT(y^*) + iyT(x^*) = -iS(x)y^* + iS(y)x^*.$$

Comparing this identity with (1) we see that xT(y) = S(x)y for all $x, y \in A$. Consequently,

$$xT(yz) = S(x)yz = xT(y)z$$

that is, A(T(yz) - T(y)z) = 0. By hypothesis, this implies that T(yz) = T(y)z. Similarly we see that T is linear; namely, $xT(\lambda y) = S(x)\lambda y = x\lambda T(y)$. Thus T is a left centralizer of A. Analogously one shows that S is a right centralizer of A. Thus the pair (T, S) is a double centralizer of A.

In order to prove that T and S are uniquely determined we assume that $L(x^*) = R(x)$ where L is a left and R is a right centralizer of A. Then

$$L(y^*)x^* = L(y^*x^*) = L((xy)^*) = R(xy)$$

for all $x, y \in R$. Replacing y by iy yields $-iL(y^*)x^* = iR(xy)$. But then, comparing the last two relations we obtain $L(y^*)x^* = 0$ for all $x, y \in A$, that is, L(A)A = 0, which yields L = 0, and, therefore, R = 0. This completes the proof of the theorem.

As an immediate consequence of Theorem 2.1 we obtain the following result which can be compared with [4; Corollary 1].

COROLLARY 2.2. Let A be a complex *-algebra such that Aa = 0 or aA = 0 implies a = 0. Then every Jordan *-derivation of A is real linear.

COROLLARY 2.3. Let A be a complex Banach *-algebra such that Aa = 0 or aA = 0 implies a = 0. If the involution is continuous then every Jordan *-derivation of A is continuous.

We remark that every semisimple Banach *-algebra satisfies the requirements of Corollary 2.3 (see [1; p. 191]).

Proof of Corollary 2.3. By Theorem 2.1, it suffices to show that every one-sided centralizer of A is continuous. Let T be a left centralizer. Suppose that $x_n, y \in A$ with $\lim_{n\to\infty} x_n = 0$, $\lim_{n\to\infty} T(x_n) = y$. By the closed graph theorem, it is enough to prove that y = 0. Given any $a \in A$, we have $ay = \lim_{n \to \infty} aT(x_n) = \lim_{n \to \infty} S(a)x_n = 0$. Hence y = 0. In a similar fashion one shows that every right centralizer of A is continuous.

Combining Theorem 2.1 with [6; Theorem 3.9] we obtain

COROLLARY 2.4. Let A be the algebra of all compact linear operators on a complex Hilbert space H. Then every Jordan *-derivation of A is of the form $x \to ax^* - xa$ for some bounded linear operator a on H.

It is an open question whether Corollary 2.4 remains true in the real case.

In the proof of Theorem 2.1, there occur additive mappings S, T satisfying $S(x^2) = xS(x), T(x^2) = T(x)x$. The question arises whether S (resp. T) is then necessarily a right (resp. left) centralizer. Using a similar approach to [2, 3, 5], where some Jordan mappings are considered, we now prove

PROPOSITION 2.5. Let R be a prime ring of characteristic not 2. If an additive mapping $T : R \to R$ satisfies $T(x^2) = T(x)x$ for all $x \in R$, then T is a left centralizer of R. Similarly, if an additive mapping $S : R \to R$ satisfies $S(x^2) = xS(x)$ for all $x \in R$, then S is a right centralizer of R.

Recall that a ring R is said to be *prime* if aRb = 0 implies a = 0 or b = 0.

Proof of Proposition 2.5. Linearizing $T(x^2) = T(x)x$ we get (2) T(xy + yx) = T(x)y + T(y)x for all $x, y \in R$.

In particular,

$$T(x(xy + yx) + (xy + yx)x) = T(x)(xy + yx) + (T(x)y + T(y)x)x.$$

But on the other hand,

$$T(x(xy + yx) + (xy + yx)x) = T(x^2y + yx^2) + 2T(xyx)$$

= $T(x^2)y + T(y)x^2 + 2T(xyx) = T(x)xy + T(y)x^2 + 2T(xyx)$.

Comparing the last two relations we arrive at 2T(xyx) = 2T(x)yx. Since the characteristic of R is not 2, it follows that

(3)
$$T(xyx) = T(x)yx$$
 for all $x, y \in R$.

A linearization of (3) gives

(4)
$$T(xyz + zyx) = T(x)yz + T(z)yx \quad \text{for all } x, y, z \in \mathbb{R}.$$

Now, analogously to [2; Theorem 3], [3; Lemma 2.1] and [5; Proposition 3] we consider W = T(xyzyx + yxzxy). According to (3) we have

$$W = T(x(yzy)x) + T(y(xzx)y) = T(x)yzyx + T(y)xzxy$$

On the other hand, we see from (4) that

$$W = T((xy)z(yx) + (yx)z(xy)) = T(xy)zyx + T(yx)zxy$$

Comparing the two expressions for W and applying (2), we then get

(5)
$$(T(xy) - T(x)y)z(xy - yx) = 0 \quad \text{for all } x, y, z \in R$$

Since R is prime, for any $x, y \in R$ we have either T(xy) = T(x)y or xy = yx. In other words, given $x \in R$, R is the union of its subsets $G_x = \{y \in R \mid T(xy) = T(x)y\}$ and $H_x = \{y \in R \mid xy = yx\}$. Clearly G_x and H_x are additive subgroups of R. However, a group cannot be the union of two proper subgroups, therefore either $G_x = R$ or $H_x = R$. Thus we have proved that R is the union of its subsets $G = \{x \in R \mid T(xy) = T(x)y\}$ for all $y \in R\}$ and $H = \{x \in R \mid xy = yx \text{ for all } y \in R\}$. Of course, G and H are also additive subgroups of R. Hence either G = R, i.e., T is a left centralizer, or H = R, i.e., R is commutative.

Thus, we may assume that R is commutative. Then, of course, R is a domain. Following the proofs of [9; Lemma 2.2] and [5; Theorem 2] we consider $V = 2T(x^2y)$. By (3) we have V = 2T(xyx) = 2T(x)yx. However, from (2) we see that $V = T(x^2y+yx^2) = T(x)xy+T(y)x^2$. Comparing both expressions we obtain (T(x)y - T(y)x)x = 0. Since R is a domain it follows that x = 0 or T(x)y = T(y)x; in any case T(x)y = T(y)x. Therefore, (2) yields 2T(xy) = 2T(x)y. Since the characteristic of R is not 2, this means that T is a left centralizer.

Similarly one proves that S is a right centralizer.

3. Jordan *-derivations of B(H). Throughout this section, H will be a Hilbert space such that dim H > 1. We denote by B(H) the algebra of all bounded linear operators on H, and by S(H) the set of all self-adjoint operators in B(H). Our main purpose in this section is to give a new proof of the following theorem of Šemrl [13].

THEOREM 3.1. If H is a real Hilbert space then every Jordan *-derivation of B(H) is inner.

Recall that an additive mapping D of a ring R into itself is called a *derivation* if it satisfies D(xy) = D(x)y + xD(y) for all $x, y \in R$. If R is an algebra and D is a derivation of R which is not necessarily homogeneous, then D will be called an *additive derivation*; otherwise we call D a *linear derivation*.

Outline of the proof of Theorem 3.1. Let E be a Jordan *-derivation of B(H). Using the theorem of Martindale quoted below, we show that there exists an additive derivation D of B(H) such that the restrictions of D and E to S(H) coincide. It turns out that D is in fact linear, therefore, by the well-known theorem of Chernoff [7], D is inner, i.e., D(A) = TA - AT for some $T \in B(H)$. Finally, we show that there is a real number μ such that $E(A) = (T + \mu I)A^* - A(T + \mu I)$ for all $A \in B(H)$.

Let R be a *-ring, and let S denote the set of all symmetric elements of R. A Jordan derivation d of S into R is an additive mapping of S into R such that $d(s^2) = d(s)s + sd(s)$ for all $s \in S$ (we will only deal with 2-torsion free rings, i.e., ones where 2a = 0 implies a = 0; in such rings our definition of Jordan derivations coincides with the definition in [10]). Our proof of Theorem 3.1 is based on the fact that the restriction of a Jordan *-derivation to the set of symmetric elements is a Jordan derivation.

In [10; Corollary 3, Theorem 4] Martindale proved

THEOREM M. Let R be a 2-torsion free *-ring with unit element 1. Suppose that either

(i) R contains nonzero orthogonal symmetric idempotents e_1 , e_2 and e_3 such that $e_1 + e_2 + e_3 = 1$ and $Re_iR = R$ for i = 1, 2, 3, or

(ii) R is simple and it contains nonzero orthogonal idempotents e_1 and e_2 such that $e_1 + e_2 = 1$.

Then every Jordan derivation of R into S can be uniquely extended to a derivation of R.

R e m a r k 3.2. Let us show that the algebra B(H) (H real or complex) satisfies the requirements of Theorem M. First, if H is finite-dimensional, then B(H) satisfies (ii). Now suppose H is infinite-dimensional. Then there exists an orthonormal basis in H of the form $\{e_{\alpha}, f_{\alpha}, g_{\alpha}; \alpha \in A\}$. Let H_1 be the subspace generated by $\{e_{\alpha}; \alpha \in A\}$, and let E_1 be the orthogonal projection with range H_1 . Analogously we define the subspaces H_2 , H_3 , and projections E_2 , E_3 . Of course, $E_1 + E_2 + E_3 = I$, the identity on H. We claim that $B(H)E_iB(H) = B(H)$, i = 1, 2, 3. Indeed, there exists a one-to-one bounded linear operator B on H with range contained in H_i . Note that there is $A \in B(H)$ such that $AE_iB = AB = I$. But then $B(H)E_iB(H) = B(H)$.

In order to determine the structure of Jordan derivations of S(H) into B(H) we also need the following simple lemma.

LEMMA 3.3. If $A, B \in B(H)$ are such that ASB = 0 for all $S \in S(H)$ then either A = 0 or B = 0.

Proof. It suffices to prove that if a, b are nonzero vectors in H, then there exists $S \in S(H)$ such that $Sb = \lambda a$ for some nonzero scalar λ . If a and b are not orthogonal then this condition is satisfied by the operator $a \otimes a$ (we denote by $u \otimes v$ the operator $(u \otimes v)x = \langle x, v \rangle u$ where $\langle \cdot, \cdot \rangle$ is the inner product); otherwise take $S = a \otimes b + b \otimes a$. We are now in a position to prove

THEOREM 3.4. Let H be a (real or complex) Hilbert space. If a Jordan derivation d of S(H) into B(H) is real linear then there exists $T \in B(H)$ such that d(S) = TS - ST for all $S \in S(H)$.

Proof. By Theorem M (and Remark 3.2) there is an additive derivation D of B(H) such that D|S(H) = d. Since every linear derivation of B(H) is inner [7], the theorem will be proved by showing that D is linear.

Let us first show that D is real linear. For $A \in B(H)$ we may write A = W + K where $W^* = W$ and $K^* = -K$. By assumption, $D(\lambda W) = \lambda D(W)$ for every real λ , therefore it suffices to show that $D(\lambda K) = \lambda D(K)$. Given any $S \in S(H)$, we have $KSK \in S(H)$. Therefore,

$$D(\lambda KSK) = d(\lambda KSK) = \lambda d(KSK) = \lambda D(KSK)$$
$$= \lambda D(K)SK + \lambda KD(S)K + \lambda KSD(K);$$

on the other hand,

$$D(\lambda KSK) = D((\lambda K)SK) = D(\lambda K)SK + \lambda KD(S)K + \lambda KSD(K).$$

Comparing the above expressions for $D(\lambda KSK)$, we arrive at $(D(\lambda K) - \lambda D(K))SK = 0$ for all $S \in S(H)$. By Lemma 3.3 we conclude that $D(\lambda K) = \lambda D(K)$.

Now suppose H is a complex space. Since D is real linear it suffices to show that D(iA) = iD(A) for every $A \in B(H)$. We have D(I) = 0. Hence

$$0 = D((iI)^2) = D(iI)iI + iID(iI) = 2iD(iI).$$

Thus D(iI) = 0. But then for any $A \in B(H)$ we have

$$D(iA) = D((iI)A) = D(iI)A + iID(A) = iD(A),$$

which completes the proof.

For the proof of Theorem 3.1 we also need the following lemma which is similar to [11; Theorem 1].

LEMMA 3.5. If $A, B \in B(H)$ are such that ABS = BSA for all $S \in S(H)$, and if $B \neq 0$, then $A = \lambda B$ for some scalar λ .

Proof. For all $x, y \in H$ we have $A(y \otimes y)Bx = B(y \otimes y)Ax$; that is, $\langle Bx, y \rangle Ay = \langle Ax, y \rangle By$. Consequently,

$$\begin{split} \langle Bx,y\rangle\langle By,z\rangle Az &= \langle Bx,y\rangle\langle Ay,z\rangle Bz = \langle \langle Bx,y\rangle Ay,z\rangle Bz \\ &= \langle \langle Ax,y\rangle By,z\rangle Bz = \langle Ax,y\rangle\langle By,z\rangle Bz \,. \end{split}$$

Thus $\langle By, z \rangle \{ \langle Bx, y \rangle Az - \langle Ax, y \rangle Bz \} = 0$ for all $x, y, z \in H$. Hence for any $y, z \in H$ we have either $\langle By, z \rangle = 0$ or $\langle Bx, y \rangle Az = \langle Ax, y \rangle Bz$ for all $x \in H$. Using the fact that a group cannot be the union of two proper subgroups (cf. the proof of Proposition 2.5) one can easily show that either $\langle By, z \rangle = 0$

for all $y, z \in H$ or $\langle Bx, y \rangle Az = \langle Ax, y \rangle Bz$ for all $x, y, z \in H$. Since we have assumed that $B \neq 0$ it follows at once that $A = \lambda B$ for some λ .

Remark 3.6. It is easy to see [4; Lemma 2] that every Jordan *-derivation E satisfies $E(xyx) = E(x)y^*x^* + xE(y)x^* + xyE(x)$.

Proof of Theorem 3.1. Let E be a Jordan *-derivation of B(H). By [4; Corollary 1], E is linear. Since the restriction of E to S(H) is a Jordan derivation of S(H) to B(H), it follows from Theorem 3.4 that there exists $T \in B(H)$ such that

(1)
$$E(S) = TS - ST$$
 for all $S \in S(H)$.

Pick $K \in B(H)$ such that $K^* = -K$. For every $S \in S(H)$ we have $KSK \in S(H)$. Therefore,

$$E(KSK) = TKSK - KSKT$$

On the other hand, using Remark 3.6 we obtain

$$E(KSK) = -E(K)SK - KE(S)K + KSE(K)$$

= -E(K)SK - K(TS - ST)K + KSE(K)

Comparing both expressions we get

$$(E(K) + KT + TK)SK = KS(E(K) + KT + TK)$$

for all $S \in S(H)$. Now Lemma 3.5 yields

(2)
$$E(K) + KT + TK = \lambda(K)K$$

for some real $\lambda(K)$. We claim that $\lambda(K)$ is a constant. Pick $K_1, K_2 \in B(H)$ with $K_1^* = -K_1, K_2^* = -K_2$. We claim that $\lambda(K_1) = \lambda(K_2)$. First assume that K_1 and K_2 are linearly independent. In view of (2) we have

$$E(K_1 + K_2) = \lambda(K_1 + K_2)(K_1 + K_2) - T(K_1 + K_2) - (K_1 + K_2)T.$$

On the other hand,

$$\begin{split} E(K_1 + K_2) &= E(K_1) + E(K_2) \\ &= \lambda(K_1)K_1 - TK_1 - K_1T + \lambda(K_2)K_2 - TK_2 - K_2T \,. \end{split}$$

Comparing we get

$$(\lambda(K_1 + K_2) - \lambda(K_1))K_1 + (\lambda(K_1 + K_2) - \lambda(K_2))K_2 = 0.$$

Since K_1 and K_2 are linearly independent we obtain $\lambda(K_1) = \lambda(K_1 + K_2) = \lambda(K_2)$.

If K_1 and K_2 are linearly dependent, then for any $K \in B(H)$ with $K^* = -K$ which is linearly independent from both K_1 and K_2 , we have $\lambda(K_1) = \lambda(K)$ and $\lambda(K_2) = \lambda(K)$. Thus $\lambda(K_1)$ and $\lambda(K_2)$ are also equal in this case. This means that $\lambda(K)$ is a constant λ , so that

(3)
$$E(K) = \lambda K - KT - TK$$

for every $K \in B(H)$ with $K^* = -K$.

Take $A \in B(H)$. We have A = S + K, where $S^* = S$, $K^* = -K$. Using (1) and (3) we then get

$$\begin{split} E(A) &= E(S) + E(K) = TS - ST + \lambda K - KT - TK \\ &= (T - \frac{1}{2}\lambda I)(S - K) - (S + K)(T - \frac{1}{2}\lambda I) \\ &= (T - \frac{1}{2}\lambda I)A^* - A(T - \frac{1}{2}\lambda I) \,. \end{split}$$

Thus $E(A) = T_1 A^* - AT_1$ for all $A \in B(H)$, where $T_1 = T - \frac{1}{2}\lambda I$. This proves the theorem.

REFERENCES

- [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973.
- [2] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003–1006.
- [3] —, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218–228.
- M. Brešar and J. Vukman, On some additive mappings in rings with involution, Aequationes Math. 38 (1989), 178-185.
- [5] —, —, Jordan (Θ, φ) -derivations, Glasnik Mat., to appear.
- [6] R. C. Busby, Double centralizers and extensions of C^{*}-algebras, Trans. Amer. Math. Soc. 132 (1968), 79–99.
- [7] P. R. Chernoff, Representations, automorphisms and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 257–289.
- [8] S. Kurepa, Quadratic and sesquilinear functionals, Glasnik Mat. Fiz.-Astronom. 20 (1965), 79–92.
- [9] A. Leroy et J. Matczuk, Quelques remarques à propos des S-dérivations, Comm. Algebra 13 (1985), 1229-1244.
- [10] W. S. Martindale, Jordan homomorphisms of the symmetric elements of a ring with involution, J. Algebra 5 (1967), 232-249.
- [11] —, Prime rings satisfying a generalized polynomial identity, ibid. 12 (1969), 576– 584.
- [12] P. Šemrl, On quadratic functionals, Bull. Austral. Math. Soc. 37 (1988), 27–28.
- [13] —, On Jordan *-derivations and an application, Colloq. Math. 59 (1990), 241–251.
- [14] —, Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157– 165.
- P. Vrbová, Quadratic functionals and bilinear forms, Časopis Pěst. Mat. 98 (1973), 159–161.
- J. Vukman, Some functional equations in Banach algebras and an application, Proc. Amer. Math. Soc. 100 (1987), 133-136.

DEPARTMENT OF MATHEMATICS	DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MARIBOR	UNIVERSITY OF LJUBLJANA
PF, KOROŠKA 160	SF, MURNIKOVA 2
62000 MARIBOR, SLOVENIA	61000 LJUBLJANA, SLOVENIA

Reçu par la Rédaction le 26.11.1990