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Abstract. For a compact n-dimensional manifold a critical point metric of the total
scalar curvature functional satisfies the critical point equation (1) below, if the functional is
restricted to the space of constant scalar curvature metrics of unit volume. The right-hand
side in this equation is nothing but the adjoint operator of the linearization of the total scalar
curvature acting on functions. The structure of the kernel space of the adjoint operator plays
an important role in the geometry of the underlying manifold.

In this paper, we study some geometric structure of a given manifold when the kernel
space of the adjoint operator is nontrivial. As an application, we show that if there are two
distinct solutions satisfying the critical point equation mentioned above, then the metric should
be Einstein. This generalizes a main result in [6] to arbitrary dimension.

1. Introduction. Hilbert proved that on a given compact n-dimensional manifold M

Einstein metrics are the critical points of the total scalar curvature functional, namely

g →
∫

M

sgdvg .

Here, sg is the scalar curvature, dvg is the volume form determined by the metric and orien-
tation, and the functional is restricted to metrics whose volume is fixed, say equal to 1.

In the 1970s, N. Koiso found the following refinement by taking the smaller domain of
this functional ([7]). He introduces the space C of metrics with constant scalar curvature and
total volume 1. Then the restriction of the total scalar curvature functional to C is just the
function g �→ sg . With this restriction, at least formally, g is a critical point if there exists a
function f such that

(1) zg = s′∗
g (f ) ,

which is called the critical point equation (CPE in short). Here zg is the traceless Ricci tensor
of g , and s′∗

g is given by

(2) s′∗
g (f ) = Dgdf − (�gf )g − f rg ,
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where Dgd and �g denote the Hessian and the (negative) Laplacian, respectively, and rg is
the Ricci curvature of g . We remark that by taking the trace of (2), we have

�gf = − sg

n − 1
f .

Thus, if sg is negative, then the eigenfunction f should be trivial. The linear operator s′∗
g is,

in fact, the L2 adjoint of the linearization s′
g of the scalar curvature sg given by

s′
g (h) = −�g tr h + δgδgh − g(h, rg )

(c.f. [1, 1.174, p. 63]), where h is any symmetric bilinear form on M and δ is the divergence
operator.

When g is Einstein, (1) is equivalent to Obata’s equation and so such a solution is isomet-
ric to a standard n-sphere ([10]). It can be conjectured that this is the only possible case ([1]).
Since zg = 0 if and only if g is Einstein, (1) is related to the kernel space, ker s′∗

g , of s′∗
g . There

are some results on the CPE with ker s′∗
g �= 0. One of basic fact due to J. P. Bourguignon ([2])

is that if ker s′∗
g �= 0, then either (M, g) is Ricci-flat and ker s′∗

g = R ·1, or the scalar curvature
is a strictly positive constant and sg/(n − 1) is an eigenvalue of the Laplacian. J. Lafontaine
([9]) has shown that if a 3-dimensional compact manifold (M, g) satisfies dim ker s′∗

g ≥ 2,

then M is isometric to a standard product S1 × S2, S1 × RP
2 or to the standard 3-sphere.

By combining this result with the fact that a CPE solution cannot be realized on a (warped)
product metric space ([3]), it is easy to see that a three-dimensional solution metric of CPE
with dim ker s′∗

g ≥ 2 is Einstein. On the other hand, the authors ([6]) have shown that if a
3-dimensional solution metric g of the CPE satisfies ker s′∗

g �= 0 and H2(M,Z) = 0, then
(M, g) is isometric to a standard sphere.

In this paper, we study some properties for functions in ker s′∗
g and their relations to

the geometric structure of underlying manifold. The zero set of a function in ker s′∗
g has

generically a special property. More precisely, if ϕ ∈ ker s′∗
g , then the zero set ϕ−1(0) is

a totally geodesic hypersurface in the underlying manifold, and on the zero set ϕ−1(0), the
Ricci tensor rg (X,∇ϕ) = 0 for any tangent vector X to ϕ−1(0). Using this property, we show
that the norms of the Ricci tensor and the traceless Ricci tensor are constants on the zero set
ϕ−1(0). From this fact together with the maximum principle, we can show that zg (ν, ν) =
0 on the set ϕ−1(0), where ν is a unit normal vector field on ϕ−1(0). Thus we have the
following.

THEOREM 1.1. Let (g, f ) be a nontrivial solution of the critical point equation on a
compact n-dimensional manifold M with n ≥ 3. If ker s′∗

g �= 0, then (M, g) is isometric to a
standard sphere Sn when sg > 0, and (M, g) is Ricci-flat when sg = 0. In the latter case, f

should be constant.

As an application, we prove that if the CPE has two distinct solutions satisfying (1), then
(M, g) is Einstein. Note that there exists two distinct solutions satisfying the critical point
equation if and only if ker s′∗

g �= 0. Finally, we would like to mention that our result works for
arbitrary dimension n ≥ 3 rather than n = 3, generalizing previous results.
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2. Structural properties of functions in ker s′∗
g . In this section we derive several

important identities involving the Ricci tensor rg or the traceless Ricci tensor zg and their
derivatives when ker s′∗

g �= 0.
First, we fix our convention as follows. Throughout the paper, the Riemann curvature

tensor is given by

R(X, Y )Z = DY DXZ − DXDY Z + D[X,Y ]Z
and the Ricci curvature is

r(X, Y ) =
n∑

i=1

〈R(X,Ei)Y,Ei〉

as in [1]. However, the Laplacian of a function f is defined to be �f = −δdf ; there is a
difference in sign between [1] and ours.

We will focus our attention on δdDrg and δdDzg and the structure of zero-level sets of
functions in ker s′∗

g . The differential operator dD of C∞(S2M) into Λ2M ⊗ T ∗M is defined
as

dDη(X, Y,Z) = (DXη)(Y,Z) − (DY η)(X,Z)

for sections of symmetric 2-tensors η ∈ C∞(S2M) and the operator δ is its formal adjoint.
We also define an interior product ĩ to the final factor by

ĩξω(X, Y,Z) = ω(X, Y,Z, ξ)

for a 4-tensor ω and a vector field ξ .
Let ϕ be a nontrivial function in ker s′∗

g so that ϕ satisfies the following equation:

(3) ϕzg = Dgdϕ + sgϕ

n(n − 1)
g .

First of all, note that there are no critical points of ϕ in the set Γ := ϕ−1(0) ([4]). Moreover
on the set Γ := ϕ−1(0), we have Ddϕ = 0 and so any connected component of Γ := ϕ−1(0)

is totally geodesic. From now on, we denote sg by s, rg by r , and zg by z unless confused.
Then, from (3) we have the following structure equation.

LEMMA 2.1. If ϕ ∈ ker s′∗
g , we have

(4) ϕ dDr = ĩ∇ϕW − n − 1

n − 2
dϕ ∧ z − 1

n − 2
i∇ϕz ∧ g .

Here W is the Weyl tensor of the metric g and iX is the (usual) interior product with respect
to a vector field X.

PROOF. Applying dD to both sides of (3) and using the Ricci identity

dDDdϕ(X, Y,Z) = R(X, Y,Z,∇ϕ)

for any vector fields X,Y,Z on M , we obtain

(dϕ ∧ z + ϕ dDz)(X, Y,Z) = R(X, Y,Z,∇ϕ) + s

n(n − 1)
(dϕ ∧ g)(X, Y,Z) .
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Here dϕ ∧ η is defined as

(dϕ ∧ η)(X, Y,Z) = dϕ(X)η(Y,Z) − dϕ(Y )η(X,Z)

for η ∈ C∞(S2M). From the curvature decomposition (c.f. [1, 1.116, p. 48])

R(X, Y,Z,W) =W(X, Y,Z,W) + 1

n − 2
(g(X,Z)r(Y,W) + g(Y,W)r(X,Z)

−g(Y,Z)r(X,W) − g(X,W)r(Y,Z))

− s

(n − 1)(n − 2)
(g(X,Z)g(Y,W) − g(Y,Z)g(X,W)) ,

we obtain

ĩ∇ϕR = ĩ∇ϕW − 1

n − 2
i∇ϕr ∧ g − 1

n − 2
dϕ ∧ r + s

(n − 1)(n − 2)
dϕ ∧ g .

By combining these results together with z = r − (s/n)g , we obtain (4). �

As an application of Lemma 2.1, we have the following property: Let X be a vector field
which is tangent to Γ so that 〈X,∇ϕ〉 = 0. Substituting the triple (X,∇ϕ,∇ϕ) into (4), we
obtain

0 = ĩ∇ϕW(X,∇ϕ,∇ϕ) + z(∇ϕ,X)|∇ϕ|2
on the set Γ . Consequently, we have, for a vector X tangent to Γ ,

z(X,∇ϕ) = 0(5)

on the set Γ = ϕ−1(0).

COROLLARY 2.2. Let ϕ ∈ ker s′∗
g \{0}. Then ϕ−1(0) is a collection of totally geodesic

hypersurfaces in M , and for a vector X which is tangent to ϕ−1(0),

z(X,∇ϕ) = 0

on the set ϕ−1(0).

For any two symmetric 2-tensors h, k, the composition h ◦ k is defined by

h ◦ k(X, Y ) = 〈h(X), k(Y )〉 =
n∑

i=1

h(X,Ei) k(Y,Ej )

for any vectors X,Y and an orthonormal frame {Ei}.
LEMMA 2.3. We have

ϕ δdDr + T = 3D∇ϕz − sϕ

n − 1
z − n

n − 2
ϕ z ◦ z + 1

n − 2
ϕ|z|2g ,(6)

where T is a symmetric 2-tensor defined by

T (X, Y ) = DXz(∇ϕ, Y ) + DY z(∇ϕ,X) − ϕ(W̊z)(X, Y )

with

(W̊z)(X, Y ) =
n∑

i=1

z(W(X,Ei)Y,Ei)
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for an orthonormal frame {Ei}.
PROOF. Let {Ei} be an orthonormal frame. Taking the divergence of (4), the left-hand

side becomes

δ(ϕdDr) = ϕ δdDr − i∇ϕdDr

= ϕ δdDr − i∇ϕdDz

since sg is constant. Next, identifying the sections of T ∗M ⊗ Λ2M with sections of Λ2M ⊗
T ∗M , we have ([1, 16.3, p. 435] )

δW(X, Y,∇ϕ) = −n − 3

n − 2
dDr(Y,∇ϕ,X)

for any tangent vectors X,Y (cf. [1]). Here, dD(sg) = 0 since s is constant. Thus, from the
fact

∑n
i=1 W(Ei,X, Y,Ei) = 0 and (3), we have

δ ĩ∇ϕW(X, Y ) = −
∑

i

DEi ĩ∇ϕW(Ei,X, Y )

= −n − 3

n − 2
dDr(Y,∇ϕ,X) −

∑
i

W(Ei,X, Y,DEi ∇ϕ)

= −n − 3

n − 2
dDr(Y,∇ϕ,X) + ϕ(W̊z)(X, Y )

= −n − 3

n − 2
DY r(∇ϕ,X) + n − 3

n − 2
D∇ϕr(Y,X) + ϕ(W̊z)(X, Y ) .

Also we can compute

δ(dϕ ∧ z) = s

n − 1
ϕ z − D∇ϕz + Ddϕ ◦ z

= s

n
ϕ z − D∇ϕz + ϕz ◦ z

and

δ(i∇ϕz ∧ g)(X, Y ) = −〈Ddϕ, z〉g(X, Y ) + Ddϕ ◦ z(X, Y ) + DY z(∇ϕ,X)

= −ϕ|z|2g(X, Y ) + ϕ z ◦ z(X, Y )

+DY z(∇ϕ,X) − s

n(n − 1)
ϕz(X, Y ) .

Substituting these into the divergence of (4), we obtain (6). �

As a direct consequence of Lemma 2.3, we have

COROLLARY 2.4. On Γ = ϕ−1(0), for any vector X and Y (not necessarily tangent
to Γ ),

3D∇ϕz(X, Y ) = DY z(∇ϕ,X) + DXz(∇ϕ, Y ) .

Since the set of all regular values is open, the vector field ν := ∇ϕ/|∇ϕ| is well-defined
near a tubular neighborhood of Γ = ϕ−1(0) and is a unit normal vector field on Γ . Now we
will compute δdDr(ν, ν) in two different ways near a tubular neighborhood of Γ . We will
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obtain one from function properties in ker s′∗
g together with Lemma 2.3. The second identity

follows from a general fact described in [1] and (5). On the other hand, we will obtain another
identity for δdDr(ν, ν) by using the CPE (1) and some function properties in ker s′∗

g .
Let ρ = z(ν, ν). First, substituting (ν, ν) into (6) and taking ν-directional derivative, we

have

|∇ϕ|δdDr(ν, ν) + ϕν(δdDz(ν, ν))

= 3ν(D∇ϕz(ν, ν)) − 2ν(Dνz(∇ϕ, ν)) + |∇ϕ|(W̊z)(ν, ν)

− s|∇ϕ|
n − 1

ρ − n|∇ϕ|
n − 2

ρ2 + |∇ϕ|
n − 2

|z|2 − ϕ · ν(Q(ν, ν))

on a tubular neighborhood of Γ . Here

Q = s

n − 1
z + n

n − 2
z ◦ z − 1

n − 2
|z|2g − W̊z .

Note that on the set Γ = ϕ−1(0), ν(|∇ϕ|) = 〈Dν∇ϕ, ν〉 = 0 and Dνν = 0 by (5). It is clear
that

D∇ϕz(ν, ν) = Dνz(∇ϕ, ν)

on the tubular neighborhood of Γ . Thus we obtain

δdDr(ν, ν) = 1

|∇ϕ|ν(D∇ϕz(ν, ν)) − s

n − 1
ρ(7)

− n

n − 2
ρ2 + 1

n − 2
|z|2 + (W̊z)(ν, ν)

on Γ . Moreover, since 〈DνD∇ϕν, ν〉 = ν〈D∇ϕν, ν〉 = 0 on Γ = ϕ−1(0), we have

ν(D∇ϕz(ν, ν)) = ν(∇ϕ(z(ν, ν)) − 2ν(z(D∇ϕν, ν))

= ν〈∇ϕ,∇ρ〉 − 2z(DνD∇ϕν, ν) = 〈Dν∇ρ,∇ϕ〉
since D∇ϕν = 0. Also, by (4) and (5), we have, on Γ

W̊z(ν, ν) = 1

|∇ϕ|
∑
i,j

W(Ei, ν,Ej ,∇ϕ) z(Ei,Ej )

= 1

|∇ϕ|
(

n

n − 2

∑
i

|∇ϕ|z(ν,Ei)
2 − n − 1

n − 2
|∇ϕ||z|2

)

= n

n − 2
ρ2 − n − 1

n − 2
|z|2 .(8)

Thus we obtain the first identity for δdDr(ν, ν) by substituting these into (7).

LEMMA 2.5. On Γ = ϕ−1(0), we have

δdDr(ν, ν) = 〈Dν∇ρ, ν〉 − s

n − 1
ρ − |z|2 .

For the second identity for δdDr(ν, ν), we first observe the following lemma.
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LEMMA 2.6 ([1, 4.71, p. 134]). We have

δdDr = D∗Dr + 1

2
Dds + r ◦ r − R̊r .(9)

Note that the value of δdDr in [1] should be divided by 2. Since the scalar curvature s is
constant, and

r ◦ r = z ◦ z + 2s

n
z + s2

n2
g ,

we have, from (9)

δdDr = D∗Dz + z ◦ z + 2s

n
z + s2

n2 g − R̊ r .

Thus, by the identity relation given by

R̊ r = W̊ z + 1

n − 2
|z|2g + (n − 2)s

n(n − 1)
z − 2

n − 2
z ◦ z + s2

n2 g ,

we have

δdDr = D∗Dz + n

n − 2
z ◦ z + s

n − 1
z − 1

n − 2
|z|2g − W̊z .(10)

Therefore, by substituting (8) into (10), we obtain the following.

LEMMA 2.7. On Γ we have

δdDr(ν, ν) = −�ρ + s

n − 1
ρ + |z|2 .

REMARK 2.8. Comparing Lemma 2.5 with Lemma 2.7, we have

1

2
�′ρ = 〈Dν∇ρ, ν〉 + s

n − 1
ρ + |z|2

on Γ .

3. The CPE and derivative of zg (ν, ν). In this section, we will derive another iden-
tity for δdDr(ν, ν) and investigate its relation to the critical point equation. Let f be a solution
of the critical point equation (1). First, we start with the following observation from the critical
point equation

(1 + f ) z(ν, ν) = −�′f − s

n
f(11)

on Γ . In fact, it follows from (1) that �f = − s
n−1f and so

(1 + f )zg = Ddf + sgf

n(n − 1)
g .(12)

Since Γ is totally geodesic,

− s

n − 1
f = �f = �′f + Ddf (ν, ν)

= �′f + (1 + f )ρ − s

n(n − 1)
f ,

which implies (11).
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LEMMA 3.1 ([5]). Assume that f is a solution to the CPE and ϕ ∈ ker s′∗
g \ {0}. Then

|∇ϕ|2 and c := 〈∇f,∇ϕ〉/|∇ϕ|2 are constants on each connected component of Γ = ϕ−1(0).

LEMMA 3.2. Assume that f is constant on a connected open subset U of Γ . Then
ρ = z(ν, ν) and |z|2 are constants on U .

PROOF. Suppose that f is constant on an open subset U of Γ . Since �′f = 0 on U , it
follows from (11) that 1 + f cannot be zero and so

ρ = z(ν, ν) = − s

n

f

1 + f
.(13)

In other words, ρ is constant on U if f is constant on U .
Next, we claim that |z|2 is constant on U . By the Bochner formula and (1),

(1 + f )2|z|2 = |Ddf |2 − s2f 2

n(n − 1)2

= 1

2
�|∇f |2 − ρ|∇f |2 + s

n(n − 1)
|∇f |2 − s2f 2

n(n − 1)2 .

Since

|∇f |2 = c2|∇ϕ|2 = 〈∇f, ν〉2 ,

it follows from Lemma 3.1 that |∇f |2 is constant on U .
Using the fact that

(1 + f ) ρ = − s

n
f = Ddf (ν, ν) + sf

n(n − 1)

on U and

|∇f |ν(|∇f |) = 1

2
ν(|∇f |2) = 〈Dν∇f,∇f 〉 ,

we have

1

2
�|∇f |2 = 1

2
�′|∇f |2 + 1

2
〈Dν∇|∇f |2, ν〉

= ν〈Dν∇f,∇f 〉 = ν

[
ν(f )

(
(1 + f )ρ − sf

n(n − 1)

)]

= s2f 2

(n − 1)2
+ |∇f |2ρ + (1 + f ) ν(f ) ν(ρ) − s

n(n − 1)
|∇f |2 ,

where we used the fact that (ν(f ))2 = |∇f |2 and

ν(ν(f )) = 〈Dν∇f, ν〉 = Ddf (ν, ν) = − sf

n − 1

on U in the last equality, since f is constant and Ddϕ = 0 on U . Thus, we obtain

(1 + f )2|z|2 = s2f 2

n(n − 1)
+ (1 + f ) ν(f ) ν(ρ)
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on U . However, ν(ρ) = 0 on Γ since 3D∇ϕz(ν, ν) = 2Dνz(∇ϕ, ν) on Γ by Corollary 2.4.
Therefore, on U we obtain

|z|2 = s2f 2

n(n − 1)(1 + f )2 = n

n − 1
ρ2 ,(14)

which implies that |z|2 is constant on U since f and ρ are constants. �

REMARK 3.3. Let ξ := ∇f − c ∇ϕ which is the tangential component of ∇f to
Γ = ϕ−1(0), and consider an open subset O of Γ defined by O = {x ∈ Γ : ξ(x) �= 0}.
By definitions of O and c, it is clear that f is not constant on O. Recall that c is constant
on Γ , and so if ∇f is orthogonal to ∇ϕ at a point in Γ , then ∇f is orthogonal to ∇ϕ on all
of Γ . From this fact, we may assume, without loss of generality, that c �= 0 on a connected
component of Γ . In fact, if c = 0 on Γ , then a new function f̃ = f + k ϕ with a non-zero
constant k is again a solution of (1) and satisfies

c̃ = 〈∇f̃ ,∇ϕ〉
|∇ϕ|2 = k �= 0 .

The following property plays a crucial role in investigating geometric structure of Γ :=
ϕ−1(0) and properties for ρ = z(ν, ν).

PROPOSITION 3.4. On Γ , for ξ := ∇f − c ∇ϕ with c := 〈∇f,∇ϕ〉/|∇ϕ|2 �= 0, we
have

ξ(ρ) = −2ρ

(
(1 + f )ρ − sf

n(n − 1)

)
.(15)

PROOF. It follows from Corollary 2.4 that

D∇ϕz(∇ϕ,∇ϕ) = 0 .(16)

Since |∇ϕ| is constant and Ddϕ = 0 on Γ , it is easy to see from (16) that

ξ(ρ) = ξ(z(ν, ν)) = 1

|∇ϕ|2 D∇f z(∇ϕ,∇ϕ) .(17)

By Corollary 2.4 again, we have

2D∇ϕz(∇f,∇ϕ) = 2D∇ϕz(ξ,∇ϕ)(18)

= Dξz(∇ϕ,∇ϕ) = D∇f z(∇ϕ,∇ϕ) .

Since ξ is tangent to Γ and Ddϕ = 0, we have z(∇ϕ, ξ) = 0 by Coroallary 2.2. Thus

Dξz(∇ϕ, ξ) = 0

and

3 D∇ϕz(ξ, ξ) = 2 Dξz(∇ϕ, ξ) = 0 .(19)

Moreover, since

z(D∇ϕ∇f, ξ) = z(D∇ϕξ, ξ) = 〈D∇ϕ∇f, ν〉z(ν, ξ) = 0 ,



290 G. YUN, J. CHANG AND S. HWANG

we obtain

0 = D∇ϕz(ξ, ξ) = ∇ϕ(z(ξ, ξ)) − 2 z(D∇ϕξ, ξ) = ∇ϕ(z(ξ, ξ)) .

By (16) and (18),

0 = D∇ϕz(ξ, ξ) = D∇ϕz(∇f,∇f ) − 2c D∇ϕz(∇f,∇ϕ)

= D∇ϕz(∇f,∇f ) − c D∇f z(∇ϕ,∇ϕ) .

In other words,

D∇ϕz(∇f,∇f ) = c D∇f z(∇ϕ,∇ϕ) .(20)

Therefore, since z(ξ, ξ) = z(∇f,∇f ) − c2z(∇ϕ,∇ϕ), it follows from (16) and (20),

0 = ∇ϕ(z(ξ, ξ)) = ∇ϕ(z(∇f,∇f ))

= c D∇f z(∇ϕ,∇ϕ) + 2 z(D∇ϕ∇f,∇f ) .(21)

Finally, it follows from (1) that

(1 + f )z = Ddf + sf

n(n − 1)
g .(22)

By Corollary 2.2 and (22), Ddf (ξ,∇ϕ) = 0 and z(D∇ϕ∇f, ξ) = 0 on Γ and so

z(D∇ϕ∇f,∇f ) = z(D∇ϕ∇f, ξ) + c z(D∇ϕ∇f,∇ϕ)

= c 〈D∇ϕ∇f,∇ϕ〉 z(ν, ν)

= c |∇ϕ|2
(

(1 + f )z(ν, ν) − sf

n(n − 1)

)
z(ν, ν) .(23)

Substituting this into (21), from the assumption c �= 0, we may conclude that

1

2
D∇f z(∇ϕ,∇ϕ) +

(
(1 + f )z(ν, ν) − sf

n(n − 1)

)
z(∇ϕ,∇ϕ) = 0 ,

which proves our proposition by (17). �

We remark that ξ may be trivial in Proposition 3.4. As an immediate consequence, we
obtain the following interesting result:

COROLLARY 3.5. Suppose that f is constant on an open subset U of Γ . Then we have
f = ρ = |z|2 = 0 on U .

PROOF. Since f is constant on U , by (13)

ρ = − s

n
· f

1 + f
.

It is clear that ξ = 0 on U , since ∇f is parallel to ∇ϕ. Thus, by Proposition 3.4

0 = −2

(
sf

n − 1

)
· s

n
· f

1 + f
= − 2s2f 2

n(n − 1)(1 + f )
,

which implies that f = ρ = 0. By (14), |z|2 is also constant and equal to zero on U . �
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Now assume that f is a solution to (1). A similar computation as Lemma 2.1 shows that

(1 + f ) dDr = ĩ∇fW − n − 1

n − 2
df ∧ z − 1

n − 2
i∇f z ∧ g .

Thus, similarly as in Lemma 2.3, we obtain

(1 + f ) δdDr + S = 3D∇f z − sf

n − 1
z(24)

− n

n − 2
(1 + f )z ◦ z + 1

n − 2
(1 + f )|z|2g ,

where
S(X, Y ) = DXz(∇f, Y ) + DY z(∇f,X) − (1 + f ) (W̊z)(X, Y ) .

By (18),
2Dνz(∇f, ν) = D∇f z(ν, ν) .

Also, it is easy to see that

Dξz(ν, ν) = D∇f z(ν, ν) = ∇f (ρ) − 2 z(D∇f ν, ν) = ∇f (ρ) .

Therefore, by (8) and (24) we have on Γ

2ξ(ρ) = (1 + f ) δdDr(ν, ν) + sf

n − 1
ρ + (1 + f )|z|2 .(25)

It follows from Proposition 3.4 and (25) that the following third identity for δdDr(ν, ν) holds.

LEMMA 3.6. On Γ ,

δdDr(ν, ν) = −4ρ2 − (n − 4)

n(n − 1)
· sfρ

1 + f
− |z|2 .(26)

Consider a connected component Σ of Γ and we may assume that c �= 0 by Remark 3.3.
Since �ρ = �′ρ + 〈Dνdρ, ν〉, combining Lemma 2.5, Lemma 2.7, and Lemma 3.6 gives the
following result:

THEOREM 3.7. On a connected component Σ of Γ with c �= 0, we have

1

2
�′ρ = |z|2 + 4ρ2 + (n − 4)

n(n − 1)
· sfρ

1 + f
.

4. Structure of fibers and non-positivity of zg(ν, ν). Let ϕ ∈ ker s′∗
g \ {0}. Recall

that ϕ−1(0) is a collections of connected totally geodesic hypersurfaces in M . In this section,
we will prove that ρ = z(ν, ν) is non-positive on each connected component of ϕ−1(0) by
using the maximun principle, and conclude that ρ, in fact, vanishes on each component. Then
using this fact together with the divergence theorem, we will prove our main theorem.

Let Σ be a connected component of Γ = ϕ−1(0). We decompose Σ into three disjoint
subsets as follows: For a unit normal vector field ν = ∇ϕ/|∇ϕ| on Σ ,

ΣA = {x ∈ Σ : ∇f is parallel to ν with ∇f �= 0 at x} ,

ΣB = {x ∈ Σ : ∇f is not parallel to ν with ∇f �= 0 at x} ,

ΣC = {x ∈ Σ : ∇f (x) = 0} .
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Recalling ξ := ∇f − c∇ϕ with c = 〈∇f,∇ϕ〉/|∇ϕ|2, the tangential component of ∇f to Σ ,
it is clear that ΣB = {x ∈ M : ξ(x) �= 0}. We have also seen in the previous section that for
the unit normal vector field ν on Γ , 〈∇f, ν〉 is constant on Γ (cf. [5]). Note that 〈∇f, ν〉 �= 0
on ΣA since ∇ϕ �= 0 on Σ , and obviously 〈∇f, ν〉 = 0 on ΣC . Thus if there exists a point
x ∈ Σ such that 〈∇f, ν〉(x) = 0, then 〈∇f, ν〉 = 0 on the whole Σ , and so Σ = ΣB ∪ ΣC .
Consequently, we have either Σ = ΣA ∪ΣB or Σ = ΣB ∪ΣC . Furthermore, for the case in
which Σ = ΣB ∪ ΣC , ∇f is tangent to ΣB because ΣA = ∅, 〈∇f, ν〉 is constant on Σ , and
is equal to zero on ΣC . Thus considering a new function f̄ = f +c ϕ which is also a solution
to (1) and satisfies that ∇f̄ �= 0, the latter case is reduced to the first case. In fact, we gave in
this case, ΣB = {x ∈ Σ : ∇f̄ is not parallel to ν with ∇f̄ �= 0 at x} and ΣC = {x ∈ Σ : ∇f̄

is parallel to ν with ∇f̄ �= 0 at x}. Therefore, we may assume that Σ = ΣA ∪ ΣB .
To prove Theorem 1.1, we shall first show that ρ = 0 on Σ (Theorem 4.2). To do this,

we need the following lemma which shows that ρ = z(ν, ν) is nonnegative on the set Σ .

LEMMA 4.1. The maximum of ρ is zero on Σ .

PROOF. By Remark 3.3, we may assume that c �= 0 on Σ . Let ρ(x0) = maxx∈Σ ρ(x).
First we consider the case in which the (n − 1)-dimensional measure of ΣA is zero so that
Σ = ΣB and x0 ∈ ΣB . Since ξ(ρ)(x0) = 〈ξ,∇ρ〉(x0) = 0, by Proposition 3.4, we have
ρ(x0) = 0 or

ρ(x0) = sf (x0)

n(n − 1)(1 + f )(x0)
.

Recall that (1 + f )(x0) �= 0 by (15). For either case, by Theorem 3.7

1

2
�′ρ(x0) = |z|2(x0) + nρ2(x0) ≥ 0 .

Since �′ρ ≤ 0 at the maximum point x0, we have

ρ(x0) = |z|2(x0) = 0 ,

which proves our lemma in the first case.
Now we consider the case when the (n − 1)-dimenisonal measure of ΣA is not zero. In

this case, since |∇f |, |∇ϕ| and c are all constants, and ∇f = c∇ϕ, f is constant on each
connected component of ΣA. Thus, by Corollary 3.5, ρ = f = |z|2 = 0 on Γ . �

The following shows that ρ is identically zero on Γ .

THEOREM 4.2. On Γ we have ρ ≡ 0.

PROOF. Let Σ be a connected component of Γ . By Remark 3.3, we may assume that
c �= 0 on Σ . First we derive the following equation:∫

Σ

(1 + f ) |z|2 = 0 .(27)

By (11),

sfρ

n
= −(1 + f )ρ2 − ρ�′f .(28)
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Thus, by Theorem 3.7,

1

2

∫
Σ

(1 + f )�′ρ =
∫

Σ

(1 + f )|z|2 + 4 (1 + f )ρ2 + (n − 4)

(n − 1)

sfρ

n

=
∫

Σ

(1 + f )|z|2 + 3n

n − 1
(1 + f )ρ2 − n − 4

n − 1
ρ �′f .

Note that ∫
Σ

(1 + f )�′ρ = −
∫

Σ

〈(∇f )T ,∇ρ〉Σ =
∫

Σ

ρ �′f ,

where 〈 , 〉Σ is the induced metric of g on Σ . Thus we obtain

3(n − 3)

2(n − 1)

∫
Σ

ρ �′f =
∫

Σ

(1 + f )|z|2 + 3n

n − 1
(1 + f )ρ2 .(29)

We observe that the tangential part (∇f )T of ∇f to Σ is equal to ξ . Thus, by Proposition 3.4
together with (28) we have∫

Σ

ρ �′f = −
∫

Σ

ξ(ρ) =
∫

Σ

2(1 + f )ρ2 − 2sfρ

n(n − 1)

=
∫

Σ

2n

n − 1
(1 + f )ρ2 + 2

n − 1
ρ �′f ,

which implies that

(n − 3)

∫
Σ

ρ�′f = 2n

∫
Σ

(1 + f )ρ2 .(30)

Hence, by (29) and (30), we obtain ∫
Σ

(1 + f )|z|2 = 0 .

In particular, we may conclude that if 1 + f > 0 or 1 + f < 0 on Σ , |z|2 = ρ = 0 on Σ .
We claim that ρ ≡ 0 on all of Σ . Suppose, on the contrary, that ρ is not identically

zero on Σ . Recall that ρ ≤ 0 on Σ by Lemma 4.1. Let x1 be a minimum point of ρ in Σ

so that ρ(x1) < 0. It is clear that x1 cannot lie in an open subset U of ΣA since ρ = 0 on
U by Corollary 3.5. Therefore x1 ∈ ΣB and so ξ(x1) �= 0. By Proposition 3.4, we have
ξ(ρ)(x1) = 0 and so

ρ(x1) = s

n(n − 1)

f (x1)

(1 + f )(x1)
< 0 .

In particular, −1 < f (x1) < 0.
Now consider the subset Ω = {x ∈ Σ : (1 + f )(x) > 0} of Σ so that x1 ∈ Ω �= ∅. If

Ω = Σ , then ρ = 0 on Σ by argument above. Thus, we may assume that Ω � Σ . Note that
if 1 + f = 0 at some point in Σ , then, by (26), we must have ρ = 0 at the point. Thus, ρ = 0
on ∂Ω .

For a sufficiently small ε, letting

Ωε = {x ∈ Ω : 0 < (1 + f )(x) < ε} ⊂ Ω ,
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we have

ξ(ρ) = −2ρ

(
(1 + f )ρ − sf

n(n − 1)

)
≥ −2ρ

(
ερ + s(1 − ε)

n(n − 1)

)
≥ 0 .

However, since ρ = 0 on ∂Ω and maxΣ ρ = 0 by Lemma 4.1, ξ(ρ) cannot be positive on
Ωε . Therefore, ξ(ρ) ≡ 0 on Ωε, implying that ρ ≡ 0 on Ωε.

Now, for −1 ≤ a ≤ f (x1), let La = f −1(a) ∩ Ω , where Ω = Ω ∪ ∂Ω . Clearly, by
definition of Ω , La = ∅ if a < −1. In terms of La , we have x1 ∈ Lf (x1) with ρ(x1) < 0, and
any y ∈ L−1 satisfies ρ(y) = 0. Therefore, considering integral curves of −ξ = −(∇f )T

from x1 to ∂Ω , there exists x2 in some integral curve such that x2 ∈ {x ∈ La : −1 < a <

f (x1)} and ρ(x2) < 0 and ρ is decreasing at x2 in the direction of ξ = (∇f )T . In other
words, ξ(ρ)(x2) < 0. Moreover, we may take x2 such that ρ(x2) and so (1 +f (x2))ρ(x2) are
very close to zero. Thus, since f (x2) < f (x1) < 0,

(1 + f (x2))ρ(x2) − s

n(n − 1)
f (x2) > 0 .

However, by Proposition 3.4, we have ξ(ρ) > 0, which is a contradiction.
This contradiction shows that ρ(x1) = minΣ ρ = 0, and consequently ρ ≡ 0 on Σ . This

completes the proof of Theorem 4.2. �

THEOREM 4.3. Let (g, f ) be a nontrivial solution of the critical point equation on a
compact n-dimensional manifold M with n ≥ 3. If ker s′∗

g �= 0, then (M, g) is isometric to a
standard sphere Sn when sg > 0, and (M, g) is Ricci flat when sg = 0. In the latter case, f

should be constant.

PROOF. Due to the result of Bouruignon mentioned in the introduction, it suffices to
prove Theorem 4.3 only when sg > 0.

For a function ϕ ∈ ker s′∗
g \ {0}, let us denote

M0,ϕ = {x ∈ M : ϕ(x) < 0} .

Since sg is constant and so δrg = δzg = − 1
2dsg = 0, we have, from (3)

δ(zg (∇ϕ, ·)) = −〈zg ,Ddϕ〉 = −ϕ|zg |2 .

By divergence theorem and Theorem 4.2, we have∫
M0,ϕ

ϕ|z|2 =
∫

ϕ−1(0)

ρ|∇ϕ| = 0 .

This implies that z is identically zero on M0,ϕ . This argument also can be used to prove that
z = 0 on M0

ϕ := {x ∈ M : ϕ(x) > 0}. Thus, g is Einstein and so (M, g) is isometric to a
standard sphere Sn. �
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