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1, Introduction

The primary purpose of this paper is to state and prove a
structure theorem for time invariant multivariable linear systems. The
theorem can be used for controlier design and synthesis and is applied
here to the problems of realization ([1]) and decoupling ([2], [3]).

We consider systems of the form

(1)
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where x is an n-vector, called the state, u is an m-vector, called
the input, ¥ is a p-vector, called the output, and A, B, C are con-
stant matrices of the apprecpriate dimension. We assume that the matrices
B and C are of full rank. Now, it is well-known ([4], [5]) that if
the pair “(A,B} 1is controllable, then there is a ILyapunov transforma-
tion Q such that the system

(2) £=9AQ2+QBu , x=¢Qz

is in "companion& form. The systems (1) and (2) are equivalent and
have the samc transfer matrix I(s). In section 2, we shall show that
if state variable feedback of the form w=F x +¥ (or u = F Q 2+%)
is applied to (1) (or (2)), then the resulting transfer matrix If¥s)

- o ~ a A
is of the form C §(s)§E (s)gm where g,gm are constant matrices,

S(s) is a matrix of single term monic polynomials in s, and 5%65)

is a matrix of polynomials in s whose coefficients depend on A+B F.




This result is generalized to systems which are not completely controll-
able in section 3 and applicd to the problems of realization (section k)

and decoupling (section 5).

2. A Structure Theorem for Controllable Systems

Suppose that the system (1) is completely controllable. Let
K=(B ABy+---,A"'B]. Then the n X mm matrix K has rank n and
it is possible to define a "lexicographic" basis for Rn consisting
of the first n lincarly independent columns of K possibly reordered
(ef. [5]). We let L be the matrix whose columns are the elements of
the "lexicographic" basis so that

(3) E® [Rysk Brporesl® RysBagesral © 0 onlp )

'e’lov,

where bl""’Em are the columns of B. Setting

() 4, =0, & % Lo,  Xwld B, .M
and letting L& be the dk-th row of k-l, we can sec that the matrix

Q egiven by

4
(5) g=| :
4' fa-d
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-




gencrates a Lyapunov transformation for which (2) is in "companion" form

([4], [5])). More precisely, if we let E =Q A 9;1, E =Q B, and :(:; =

~

c g'l, then (2) becomes
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where E = (aij) is a block-matrix of the form

- — 1
£11 sea Alm
(1) A= | f1 fon
_‘*Aml ot '-e-‘mm_
with b'ii a o, b4 oy companion matrix give§ by ‘
"0 1 — o |
_ 0 0 o 0
~ . . L] L]
(8) A, = | : - :
P 0 0 0 1l
a ) a ' 8 8
[ %a,,8, 41 Pdy,d, 42 a,,4,-1  “dy,4,-
and éi;] & 0 X UJ matrix given by
o LN O T
(9) i = |° :
3 0 0
8 - 8
b di’d,j-fl di’d:j




for 1 #J and with :1:3' = (Sid) an n X m matrix given by
0 0 (o} e eoe O
1 b b b
(0) B=|0 © 0 0
o 1 b b
. A 453 Jdy,m
0 o} 0 1
"

We now have

PROFOSITION 2.1 Let E.= Fx+u-= i z + y where i =F Q'l. Then

~

the transfer matrices of the systems X = (&ﬂl‘%_ E)yg ¥, Yy=Cx and

£=(ABD 28w y=Cz are the same,

L d ~
L

Proof: Simply note that G(sI-A-BE) B =CQ R(sI-A-B B RRB -

-1 -1 e S A AAaa 1A
etz 4 g e B E AR B = YsL-AR DL

Since E as given by (10) has zero rows except for the d,-th,

dy-th,... »d -th rows, we need only calculate the corresponding columns
of (sL—_\K'-E fj'l in order to obtain the transfer matrix I'E( s) =
¢(sI-A-B E)'lg = é( s;['-a-ﬁ E)'lé Moreover, ii has zero rows except
for the dl-th, da-th,...,dm-th rows and so E-&if_ is again a block .
matrix of exactly the same form as 3_. In other words, E-rﬁ E = (.i J)

is a block matrix of the form
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where 211 is a o, X 04 conpanion matrix given by

0 | eee O 0 W
0 0 eee O 0
(2) oy ; : :
O o LN 0 1
¢ ¢ eee ¢ ¢
- Tag,dy 41 Tdg,dy (42 Agdysd  Apity”
and 213 is a oy X UJ matrix given by
K 0 vee O
(13) o . . >
213 0 0 eee ' O
¢ . N [N ] .
) di,dj_l+1 di’ddfl+2 di’dd_

for 1 f j. These two simple observations are basic to the structure

theorem 2.2,

THEOREM 2,2 Suppose that the pair (Q,g).'ii controllable and let

zgﬁs) = ¢(sI-A-B E)'lg be the transfer matrix of the system % =

(MR ExB ¥, ¥y =Cx Then




(24) 1(s) = & ()5 ()R,

where § =C g'l, S(s) is the n xm matrix given by

1 0 “ o 0 -—‘

B 0 L '] 0

lal-l (o} 0
(15) 8(s) = 0 1 0 g

0 R 0 ;

0 0 Op-1

Q_E(a) is the m X m matrix (BF,U(&)) with entries given by 51?,11(') =

ﬂi-l‘

detloly,fy) 2md B g0 - -‘dis‘l,d-l+l-.’di:d.‘j-'l+2 TR Taye

for 14, and ﬁm is the m X m matrix given by

1
- RO

100 c e
d12 Adlm
~ 0 1l U B ] b
LO 0 1 i

vhere ﬁ =QB= (313).

Proof: 1In view of proposition 2,1, we need only show that §(|;-E-§ i)']ﬁ =

§ 8(s) Qil(s)ﬁm. To do this, it will be sufficient to show that




(17) (s1-8-8 DB = (905 (9)f,
or, equivalently, that
(18) (s2-A-8 Ds(s) = B §78.(s)

But (18) is an immediate consequence of the definitjons of 8(s) and
QF( 8). Thus the theorem is established.

This seemingly innocuous and easily proved theorem has, as
we shall see, a number of significant consequences. For a beginning,

we have

COROLIARY 2.3  The matrices §, S(s) and ﬁm are invariant under

state variable feedback (i.e. do not depend on 1‘). Moreover, only the

dk-ﬂ, k'=1,...,m, rows of g =QA g'l can be altered by state vari-

able feedback.

Proof: An immediate consequence of (15), (16) and the definition of

Qg(s)-

COROLIARY 2,1 Let p=m and C*(s) = C §(s). Then the inverse sys-

tem ([6]) to (1) exists if and only if g*(s) is nonsingular.

Proof': Tbe inverse system exists if dna vuiy ir the transfer matrix
T(s) 1is nonsingular and so the corollary follows from the theorem

as ﬁn and QQ(s) are nonsingular,

- ——
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COROLLARY 2.5 Let 4n(s) = det(si-&-g E). Then A(s) = aet(gx(s)) and

if p=m

(19) det T(s) = (det £X(s))/4(s)

where I"E(s) = EE(B)/L\T(S) (i.e. L{E(s) is the numerator of the trans-

fer matrix).

Proof: By the definition of 2£(8)' we have EE( 8) = N’E( s)/AF(s). It

follows from the theorem that 1
Bp(s)  gr(oIR()f, 1
CRO N C X O

where 9%1() -QE(S)/det(;E(s)). However, AF(B) and det(gz(s)) are

(20)

both monic polynomials of degree n and the entries in !'E( s) are

polynomials of at most degree n-1, It follows that AF( s) = det(%( s))

and hence, that (19) holds (since det(gil(g)) = l/det(gz(a)) and

det ﬁm = 1),
COROLLARY 2.6 _QE(S) = gg(s)-ﬁmf_- S(s).

Proof: From (18), it follows that ﬁﬁ;ng( 5) - ﬁig(s) = ﬁi;l _QE( 8).

Equating the-nonzero rows in this equality gives us the corollary.

We observe that entirely analogous results can be obtained

for observable systems by a consideration of the dual system ([1], (7))
(22) z"é'ﬁ-bg'x, i.nlz
which is controllable if and only if (1) is observable, While we shall

not derive the results for observable systems here, we shall use them

without further ado in the sequel. _

Bt o ma s e aaiea =L )




3. A General Structurc Theorem

Consider the system (1) and again let K = [B,A E,””‘&n-lm.
However, we no longer assume that (1) #s controllable and so, the n X nm
matrix K has rank r with r & n. To obtain a structurs theorem in
this general context, we shall consider a conurollable extension of (1)
and apply theorem 2,2, With this in mind, we let q = n.r and W be
the r-dimensional subspace of Rn spanned by the columns of K. Denot-
ing the orthogonal complement of W by Hl so that Rn =W 9&1" and

1
letting Ql’""éq be a basis of W , we consider the system

(22) k=Ax+BY, y=€x

where B, is the n X (m+q) matrix given by B, = (B Ql-..@q]. The
system (22) is controllable and there is a Lyapun'o{r transformation -
which carries (22) into block companion form. We note that Q‘e is a

nonsingular n X n matrix, It follows that the system

(23) b=hz+Bu, y=%z

where i - Q;lé Re? ﬁ = QB, and @ =C 9;1 is equivalent to (1), More-
over, the matrix 3 is in block companion form, the last n-r rows of
B ere Q, and the lover left-hand n-r X r block of A 1s Q. Thus,
the last n-r rows of 3_ cannot be altered by state variable feedback

of the form i 2 Z+We We now haves
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THEOREM 3.1 Let IF( s) = C(sI-A-B E)'lg be the transfer matrix of the

~

system % = (A+B F)xB v, y =C x. Then

(24) 2,(5) = & 65)y ()8

)

&)

where § =C g;l, S(s) is the n xm matrix given by

1 0 s e D
s 0 0
Wt g 0
0 1 0
(25) - 8(s) =| : : :
0 g72-1 0
0 0 Jul
0 0 0

~]?

(with b., A s ...,Qal'lgl,...,fm'l_tgm a "lexicographic" basis of the
m

range of K so that 1’51“1 =r), Az,u(s)'- det EF,u(s)’ QE(s) is the

(m+q) X (m+q) matrix (SF ij(as)) with entries given by
A ———— ’ e e

oy-1

det(sI-9.,) and &, . .(s) = -¢ cesen 8 1770
) 2 O 44 dg,d, ;41 4,4,

% 3t8) =

for 1 £}
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k
vhere d, = izlai, 0. =1 for i =m+l,...,mq, and A+B F = (o) =
[9;;) so that

6?,11(8) e bF,lm( 5) 1 6F,],m+1(3) e BF,]P"Q(S)

(26) 8(s) = [%m(®) e Bpp(s) -
) :&F,m],ms*l(s)'“ 5?,m+],m+q()
I .
e ; i

|5F’m+q"n+1(s)... F m+qn+q

(s)

and where ﬁm is the m X m matrix consisting of the nonzero rows of

~ 1

B.

Proof: Clearly we need only show that §( sI-A-B E)'lﬁ =
g S( S)Az,u s)~£’c( s)B where E =F Q;l. We shall do this by considering

D)

the completely controllable system

>

+
)
WX
F)

(27) t= -

. with Ee'= QB end applying theorem 2.2,

+ -§E_’cu( s) involves only constant terms and the off-diagonal terms in Qb“( s)

are constant.
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. E s IE
Iet Eeggeg"el where Ee:o so that gez 5 . Since

Since B, =[B Ql,...,gq], we have, by the definition of Q,

~ ~ o
Bt B
[
. | Iq
|
and BF =B F., It follows that (sI-A-BF) = (“5‘&'%&) and hence,
that the transfer matrix of (27) under the feedback y = F x+w 1is given

_~AOA A

by §( sI-A-B g)'l:ﬁ‘e. However, (27) is controllable and thus, by theorem

~

2.2,
-~ A A A A s T —l- =
(28) (188 D78, = & 8008 (ke meq

where §e(s) is given by

() =| 89 ¢

S
~e

~

‘Ee,mq' - =k - -

By equating the appropriate blocks in (28) and noting that




135

| (aet B ()20 Bp o(5) | =(ad) B (D)8, ., (e)(ad] By |
(29) Qil(s)=---—-—_--—--:- T
9 | (et B (9))ads 8 (s)

t >
det ngu(s) det Ez’c(s)

where adj( ) denotes the adjoint of a matrix, we deduce (24). Thus,

the theorem is established.

COROLIARY 3.2 %u{ s) 1is independent of F and the uncontrollable poles

of the system % = (A+B F)x+B ¥, y =C x are the zeros of étr“(S)[= ég,u(s)].
Corollary 3.2 is simply a statement of the fact that the un-

controllable poles cannot be altered by state variable feedback. We also

note that the factorization (24) involves the well-known pole-zero can-

cellation of the uncontrollable porticn of the system ([8]).

COROLLARY 3.3 The matrices §, S(s) and Em are invariant under state

variable feedback,

COROLLARY 3.4 Let p=m and C*(s) = § S(s). Then the inverse sys-

tem to (1) exists if and only if C*(s) is nonsingular,

COROLLARY 3.5 Let p =m and let AE(S) = det E£(8)° Then det(gg(s)) =
(det Gx(s))(Ay, (5))/As) where &g(s) = & (s)ay (5).-

We again observe that entirely analogous results can be ob-
tained for systems which are not observable by a consideration of the
dual system (21). We use these results without further ado in the se-

quel,
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L, The Problem of Realization

We now apply the structure theorem to obtain an algorithm for
solving the problem of realization ([1], [9]). More precisely, we con-

sider the following

REALIZATION PROBLEM: Let T(s) be a p Xm matrix whose entries Ti,j(s)

are rational functions of s. Suppose that Ti;](s) = nij(s)/di:j(s)

where nij(s) and d:lj(s) are relatively prime end degree nij(s) <

degree dij(s)' Then, determine a triple (A,B,C} of matrices such that

(30) 2(s) = g(sI-A)"'B

and (A,B}] is controllable and (A,C} 4is observable. Such a triple

is called a minimal realization of T(s) ([1],[9]).

Kalman and Ho ([9]) proved that th;a realization problem has a
solution and provided a constructive prqcedure for determining a minimal
realization, Here, we present an alternate constructive algorithm for
determining minimal realizations. A computer program has been developed
for applying the algorithm, |

The basic steps in the algorithm are

STEP 1 Calculation of the least common multiple of the denominator

polynomials (dlé(s)’"_"dp.‘l(sn in each coilumn of T(s).

STEP 2 - Construction of a standard controllable realization (A ,B ,C )
X e

(not necessarily mini.mal);



STEP 3 Construction of a minimal realization by applying a suitable
1 1 1
transforuation to (A!,C!,B!}.
We shall examine each of these steps in detail paying particu-

lar attention to step 2,
Now let g J(B) be the least common multiple of the denominator

polynomials 1‘1( s),...,dpd(s)) (which are assumed, for convenience,

to be monic), Let h, denote the degree of 53( s) and let T*(s) be

J
the pX m matrix given by

£()/6y(5) . .. mi(s)/gy(s)

(31) T*(s) = .
n*l(s)/gl(s) R n;n(s)/gm(S)

vhere n} (s) =n (s)gd(s)/dn(s) In other words, T*(s) is obtained
from g(s) by multiplying each numerat.c.:r nu( s) by 8.1( s)/dij(s)
and replacing each denominator d, J(s) by gJ( s). The construction of
T*(s) completes step 1s

Let n:L B ;jglh"’ and p, = ? hj. Since gd(s) is the least
common multiple of (dl;j(s)"“’dpj(sn and degree nu(s) < degree dij(s)

and the d, 3(5) are- assumed monic, we have

hJ hj-l
(32) -sj(s) =AY s rjhj
hd-‘l hJ-E
(33) J(s) = V48 + Vg8 T aeees vith

for all i,j and suitable constants Tier Yije Let Acd be a com-
)

panion matrix corresponding to g J(s) so that
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- .
0 1 0
0 0 0
24 Ay = |8 :
0 0 0
"T -'r . o -
h h,-1 1
jng  "Toh, 3
- —
and let éc be the n, X0y block diagonal matrix given by
Ae,1 0 :
A
~,2
(35) A, - .
0 A
- v ~e,n
If B, is the n, Xm matrix with zero entries in all but the p, -th

rows, each of which is zero except for a 1 in the k-th column, then

the pajr (Qc,gc] is controllable. We now have

PROFOSITION 4.1 Let g.c be the m X n, matrix given by

De She 1
= Vv v 'Iv' ' v v ' e @ v -
nh, ‘un-l 0t Ymay Yaze, c 0t Y21ttt Yim
I
Vorn. Voin..1 **° Yann, Yen, c°° Vam1, Voml
y 1 2
(36 ¢ - . . o, | .
4 . = I . | s
i

L ] L ] L ] v v

valhl Ypin -1 Ypii + Vpeh, PRl P -

Then [L\c,gc,gc] is a controllable realization of T(s).
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Proof: Since [&c’-%c] is controllable, it follows from the structure

theorem 2.2 and the definitions of » that

A,B,C
e il il o
(37) ColsZ-4) R, = (I IR,

where ﬁc,m =I, g;l(s) = diag[l/gl(s),...,l/gm(s)], and C*(s) =
(n*i*d(s)). Since nIJ(s)/gJ(s) = nij(s)/dij(s)’ we deduce that

(ni.‘l(s)/dij(s)) = T(s). Thus, the proposition is established.

AC Wi B
This proposition completes the description of step 2,
As regards step 3, we consider the triple {&::,gé,gé) and
apply a Lyapunov transformaticn Q. ©f the type used in section 3 to
n,-1

it. Letting n be the rank of (Ce &égc'"écl g(':] and setting 'A:: =

-1 Yy =
QAL B - 9 B - g, ve have

o - - l -
. Q' é" :l-
(38) & - ,  ALs -
gﬂ- Qn_ ) !
1“’PJ 1R
- - l J

and ié = (B *mpl_n] where C' is nXxp, A' is nXxn and B' is
m X n., Since I(s) = gc(s'{-&c)'lgc; it follows that T'(s) = :ﬁé(sz-&)']g =
E‘(sl—.y)'lg' or, equivalently, that %(s) = g(a;—g)-lﬁ. Thus,

(A,B,C) is a realization of T(s). But (A,B,C}] is both controllable

and observable and hence, is a minimal realization ([9]5. The triple

(A,B,C) is in "observable canonical form". The actual available program

also produces a minimal realization in "controllable canonical form" as

well as all the relevant Lyapunov transformations. A sample of the com-
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puter program printout for an example of Kalman's ([1) p. 182) is given
in the appendix, A detailed write up and listing of the program can be

obt.aiﬁed from the authors,

5. The Problem of Decoupling

<He now apply the structure theorem to obtain some results re-
lated to the problem of decoupling. This problem has been examined
previously by a number of authors (e.g. [2], [3]) and a number of rele-
vant questions have been resolved. Here, our main emphasis will be on
the question of pole assignability, More precisely, consider the fol-

lowing

DECOUPLING PROBLEM Let % = A x+Bu, y =C x be an m-input, m-output

system, Does there exist a pair of matrices (F,G} such that the

transfer matrix .

(39) QoA DR € * Iy o(o)

is diagonal and nonsingular? (i.e. does the state variable feedback

~u = F x+G w "decouple" the system?).

A necessary and sufficient condition for the existence of a
decoupling pair was first given in {2]. In particular, it has been

shown that the system

(ko) E=Ax+By X=gx
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can be decoupled if and only if B* is nonsingular where B* is the

m X m matrix given by

o f -
S R l§
(41) B* = .
£
cA™s
i~ &
with &40 the i-th row of C, and ri = min[ (J: gigjg f 0),n-1]. B* and the
f, can also be characterized in the following way (ef. [3]): 1let
s) be the i-th row of the transfer matrix s)s then f, =
Zp,6,1(*) ey trix ZTp,o(e); then 1
min[ (j: lim s** T, (s) #0),n-1] and PB*G= lim A(s) (s) where s)
i b F,G,1i Ql, ey B . _.Olg EF,G é(

is a diagonal matrix with entries s . It can be shown ([2], [3])

that g* and the f, are invariant under state variable feedback.

i
. Here, we shall use the structure theorem to answer the fol-

lowing questions:

QUESTION 1 Assuming that (40) can be decoupled, what is the maximum
number of closed loop poles which can be arbitrarily specified while

simultaneously decoupling the system?

QUESTION 2 Assuming that (40) can be decoupled, yhich closed loop poles

are invariant under decoupling state variable feedback?

QUESTION 3 How can a decoupling pair which specifies the maximum number

of closed loop poles be implemented?

While these questions are to some degree resolved in [2] and




[3], we provide a complete and elementary answer to them here,

Let 1( s) be the transfer matrix of (40). Then T(s) =
c*(s) Et—)- (s)pm where (C*(s) = C S(s) by the structure theorem
Jede We recall that C*(s) and %(s) are invariant under state
variable feedback. Now we let pi(s) be the greatest common divisor
of the polynomials which are the entries in the i-th row QI( s) of
¢*(s). We note that pi( s) 4is invariant under state variable feedback.
We let r, be the degree of pi( s) and we use the notation ap to

denote the degree of a polynomial (thus, ry = ap ). We now have
i

THEOREM 5.1 Suppose that the system (L40) can be decoupled. Then (1)

the maximum number v p_f closed loop poles which can be arbitrarily

specified while decoupling is given by

(42) Ve 2 (r +fi+1) '
i=1

and (11) the invariant poles under decoup]ing feedback are the zeros of

Af(®) = (det s*(sn/v RADE

Proof: Let (F,G) be any decoupling pair. Then 1, G(s) =
S(sI-A-BE)T'B G is & dlagonal matrix vith entries ny(s)/4,,(s)

vhere nn( s) and dn(s) are relatively prime, We note that, since
e min(§: m s (s =3, -f,-1. It follows from
e oy a0 £93, =3y f L

corollary 3.5 and the definition of the pi( s) that

*Note that B* 1s nonsingular .
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m nﬂ(s) n

ql
(43) th). = T pi( s)det C (s)-TE-(—-)- det G

wvhere C* (s) is the matrix with rows 9&,1( é) = p_lf's'T g;_(s). Since
i
Aﬁ(') = .%(a)abc(s), we have

n
(k) O, . = L (r +f +1)+d%
Foe 4 174 I

vhere aﬁ is the degree of det gﬁ(s) ard BF’ o 18 the degree of

At'c(s). Now, it is clear from theorem 3.1 that

(45) Tp g, 105 8, (5) = gi(o)

and hence, that nn(s) is a common divisor of the entries in Q_I(s)
(since ng (s) and d, ( s) are relatively prime). In other words,

(s) must divide pi( s) and so, Bn Er,. Since no more than
ii.

ia poles are assignable through [E,Q] and z ad =

1-1 ii i=1 i1

n
Z (a +f,+1), we deduce that at most v = (ry+f,+41) poles are
1=l P44 ' i=1
assignable while decoupling.

Writing (s) as a diagonal matrix with entries q:li(')/"\z( s) =

bE
nu(n)/du(l), we deduce that qu(l) must divide pi(a)AE(l) or,

equivalently, that -

q.,(s) p,(s)
As) " 478

(46)
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i7i
lows that det IE Q(s) = Tr (ni(s))/ ™ (q (s)) and hence, from (43) that
i=1

for 1 =1,,.,.,m eand polynomials qi(s) with aqi = r,+f,+1. It fol-

: m
(1) 4(s) = set giy(s) a(o)tet g 7 a,(s)
| ﬁ-—g—lq‘(s)detg T q(s)
171P3(5)

Since s) 1s invariant under decoupling feedback, it follows that
11 ’

the zeros of qu( s) and det g‘ﬁ(s) are invariant poles under decoupling

feedback,
Thus, to complete the proof we need only construct a decoupling

pair (F,G] such that the resulting polynomials qi( s) are arbitrary

polynomials of degree r1+f1f1. To begin with, we note that the transfer

. ’ (3) -1 a Au( s) -1 A
matrix T(s) = C¥( s)m gg,c( .'.v.).!ém = ,lz(s)gl(s)-q-;m §Q',c( s)}gm where
Ks) isa diagona.l matrix with entries pi(s). Setting

w w0 iR 0 -




we can easily see that r +f, = min(j: lim s'jug I i(s) # 0) and that
’

i I
§ 2
Bi; = sl-i..mnéh( s)zn.(s) = B* where AII( s) is a diagonal matrix with
ri+fi+l
entries s (Note that the pi(s) are monic). Moreover, as

C*(s) is given by §§( s) and pi(s) is the greatest common divisor

of the entries in g{( s), we can write gﬁ( s) in the form §II§(S)

~

for some constant matrix gII

other words, EII(s) is the transfer matrix of the system % = A x+B u,

(where $(s) is given by (25)). In

Y11 = QII‘JS' where EII = §II = '@IIQ (and Q is the Lyapunov transformation
corresponding to (40)). Since P(s) is diagonal, it will be sufficient

to construct a decoupling pair (F,G} for the system

(49) $=AxBuy

such that the closed loop poles are arbitrarily placed. However, let-

ting d, = ri-l-fi and applying the synthesis‘procedure of [2] p. 655,

we find that (49) can be decoupled and all its clog.ed loor poles
. d,+1 i
assigned. To be more explicit, if q,(s) = s -'JE.Om;s'jf then the

decoupling pair is given by

d
= B YT M c AR ax , G=p#1
(50) £ ...1tot;kﬁ,..l L

. i
where d = max d;, the M are diagonal matrices with entries m

d,+1
1 m i -
(i.e. M = dias[mk,...,mk]), a:dﬂ&* = Q'II,i& ) (i.e. the i-th
row of A* is given by QI[, A A ). This completes the proof.

+
Clearly, it is enough to consider the case of a monic q_l( s).
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Appendix

A sample of the computer print-out for an example of Kalman's

([1])) is given here. The transfer matrix is given by

3(s+3)(s+9 6(s+1 2s+7 2545 é
ls+§$ls+25(s+ﬂj s+2)(s+ (s+93)(s+8) (s+2)(s+3) !
: 1 2( s+5E 8(s+2) 3
Xe) 2| e ] stI)(s+2)(s+3) (s+D)(s+5)(s43) | ©
2 2
2(s"+7s+18) -2s 1 2(5s +27s434)
(s+1)(s3)(s+D) G+ (s+3) 545 G+ D) (5+3)(5 ) |
- _ st}

([1]) p. 182).
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