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Introduction.

This is the second part of the study of polarized manifolds $(M, L)$ with
$\Delta(M, L)=1$ . In this part we consider those with $d(M, L)=5$ and we prove the

following

THEOREM. Any polarized manifold $(M, L)$ with $\Delta(M, L)=1,$ $d(M, L)=5$ is

isomorphjc to a linear section of $Gr(5,2)$ embedded by the Plucker coordinate.

Here $Gr(5,2)$ denotes the Grassmann variety $paramet\dot{n}\dot{z}ng$ 2-dimensional linear

subspaces of $C^{5}$ .

Notation, convention and terminology.

We use the same notation as in the first part [5] except a few new symbols

listed below. In particular, vector bundles are confused with locally free sheaves.

Tensor products of line bundles are denoted by additive notation.
Example of symbols in the same use as in [5].

$\{Z\}$ : The homology class defined by an analytic subset $Z$.
$|L|$ : The complete linear system associated with a line bundle $L$ .
$L_{T}$ : The pull back of $L$ to a space $T$ by a given morphism.

However, when there is no danger of confusion, we OFTEN write $L$ instead

of $L_{T}$ .
$[\Lambda]$ : The line bundle defined by a linear system $\Lambda$ .
$ Bs\Lambda$ : The intersection of all the members of $\Lambda$ .
$\rho_{\Lambda}$ : The rational mapping defined by $\Lambda$ .
$K^{M}$ : The canonical bundle of a manifold $M$.
$Q_{c}(M)$ : The blowing up of $M$ with center $C$ .
$E_{c}$ ; The exceptional divisor on $Q_{c}(M)$ over $C$.
$E^{}$ : The dual bundle of a vector bundle $E$ .
$\mathcal{F}[E]:=\mathcal{F}\otimes_{0}\mathcal{E}$ for a coherent sheaf $\mathcal{F}$ , where $\mathcal{E}$ is the locally free sheaf of

sections of $E$ .
$P(E):=E^{v}-\{0- section\}/C^{\times}$ .
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$H^{E}$ : The relatively ample tautological line bundle on $P(E)$ .
$H_{\alpha},$ $H_{\beta},$ $\cdots$ : The line bundles defined by hyperplane sections on projective spaces

$P_{\alpha},$ $P_{\beta},$ $\cdots$ indicated by the same suffixes.
$d(M, L):=(c_{1}(L))^{n}\{M\}$ , where $n=\dim M$.
$\Delta(M, L):=n+d(M, L)-h^{0}(M, L)$ .

Symbols introduced in this part.
$\Lambda^{*Y}$ : The sub-linear system of $\Lambda$ consisting of $ D\in\Lambda$ such that $D\supset Y$, where

$Y$ is an analytic subset.
$T^{M}$ : The tangent bundle of $M$.
$\Omega_{M}$ : The cotangent bundle $(T^{M})^{\vee}$ of $M$.
$N^{C\backslash M}$ : The normal bundle of a submanifold $C$ in $M$.
$\Omega_{C\backslash M}$ : The conormal bundle $(N^{C\backslash M})^{}$ .
$b_{i}(M)$ : The i-th Betti number of $M$.
$s_{j}(E)$ : The j-th Segre class of $E^{\vee}$ .

Preliminaries.

Here, for the convenience of the reader, we review a couple of known

results used (often without referring explicitly) in this paper.
(P. 1) Let $E$ be a vector bundle. Then the total Segre class $s(E)=\sum_{j}s_{j}(E)$

is related to Chern classes by the formula $s(E)c(E^{\vee})=1$ . One can take this to

be a definition of $s(E)$ . From this formula we see $s_{1}(E)=c_{1}(E),$ $s_{2}(E)=c_{1}(E)^{2}$

$-c_{2}(E)$ , and so on. (For details, see [10]. But our notation is different from

that of [10].)

(P. 2) If $E$ is a direct sum of line bundles, then $s_{n}(E)$ is the sum of all the

monomials of degree $n$ of their Chern classes. For example, $s_{2}(A\oplus B\oplus C)=$

$\alpha^{2}+\beta^{2}+\gamma^{2}+\beta\gamma+\gamma\alpha+\alpha\beta$ and $s_{3}(A\oplus B)=\alpha^{3}+\alpha^{2}\beta+\alpha\beta^{2}+\beta^{3}$ , where $\alpha=c_{1}(A)$ ,

$\beta=c_{1}(B)$ and $\gamma=c_{1}(C)$ .
(P. 3) The cohomology ring $H^{*}(P(E);Z)$ of $P(E)$ is generated by $c_{1}(H^{E})$

as a $H^{*}(S;Z)$-module where $S$ is the base space. The following formula is
very useful for the calculation of intersection numbers.

(P. 4) $(H^{E})^{a+r-1}\alpha\{P(E)\}=s_{a}(E)\alpha\{S\}$ for any $\alpha\in H^{2(n- a)}(S;Z)$ where $n=$

dim $S$ and $r=rankE$ .
(P. 5) A vector bundle $F$ on $P(E)$ comes from a vector bundle on $S$ if and

only if the restriction of $F$ to each fiber of $P(E)\rightarrow S$ is trivial.
(P. 6) For any vector bundle $V$ on $S$ we have $H^{p}(S, V\otimes S^{k}E)\cong H^{p}(P(E)$ ,

$V[kH^{E}])$ , where $k$ is a non-negative integer and $S^{k}E$ denotes the k-tb sym-

metric product of $E$ .
(P. 7) $H^{p}(P(E), V[-kH^{E}])=0$ for $1\leqq k\leqq r-1$ .
(P. 8) Suppose that $S$ is smooth and let $T^{P(E)/S}$ be the relative tangent
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bundle $Ker(T^{P(E)}\rightarrow T^{s_{P(E)}})$ . Then there is a natural exact sequence $ 0\rightarrow[0]\rightarrow$

$E^{}[H^{E}]\rightarrow T^{P(E)/S}\rightarrow 0$ . From this follows the formula: $K^{P(E)}=-rH^{E}+$

$[K^{s}+\det E]_{P(E)}$ .
(P. 9) Let $C$ be a submanifold of a manifold $M$. Let $\tilde{M}=Q_{c}(M)$ be the

blowing up of $M$ with center $C$ and let $E_{c}$ be the exceptional divisor over $C$ .
Then $(E_{c}, [-E_{c}])\cong(P(\Omega), H^{\Omega})$ where $\Omega=\Omega_{C\backslash M}$ is the conormal bundle of $C$ in $M$.

(P. 10) The cohomology ring of $\tilde{M}$ is generated by $c_{1}(E_{C})$ and $H^{*}(M;Z)$ .
Intersection numbers can be calculated by (P. 9) and (P. 4).

(P. 11) A vector bundle $F$ on $\tilde{M}$ comes from a vector bundle on $M$ if and
only if the restriction of $F$ to each fiber of $E_{C}\rightarrow C$ is trivial.

(P. 12) $K^{\overline{M}}=K^{M}+(r-1)E_{c}$ where $r=co\dim C$.
(P. 13) On $\tilde{M}$ we have the following exact sequence: $0\rightarrow O_{\overline{M}}(T^{\overline{M}})\rightarrow O_{\overline{M}}(T_{\overline{M}}^{M})$

$\rightarrow O_{E_{C}}(T^{E_{C}/C}[E_{c}])\rightarrow 0$ . So, combining (P. 7), (P. 8) and (P. 9), we obtain an exact

sequence $0\rightarrow H^{0}(\tilde{M}, T^{\overline{M}})\rightarrow H^{0}(M, T^{M})\rightarrow H^{0}(C, N^{C\backslash M})\rightarrow H^{1}(\tilde{M}, T^{\overline{M}})\rightarrow H^{1}(M, T^{M})$

$\rightarrow H^{1}(C, N^{C\backslash M})\rightarrow\cdots$ .
(P. 14) Let $D$ be a smooth divisor on a manifold $M$. Suppose that $D$ is a

$P^{r-1}$-bundle over a manifold $B$ and that the restriction of $[D]$ to each fiber of
$D\rightarrow B$ is $O(-1)$ . Then there is a manifold $N$ containing $B$ as a submanifold
such that $Q_{B}(N)\cong M$, where the isomorphism induces $E_{B}\cong D$ preserving the
$P^{r-1}$ -bundle structure over $B$ .

\S 7. Examples of Del Pezzo manifolds of degree five and statement of

main results.

(7.1) Let $M$ be the Grassmann variety of two-dimensional linear subspaces

of $C^{5}$ . Let $L$ be the hyperplane section associated with the Pl\"ucker embedding.

Then dim $M=6,$ $d(M, L)=5$ and $h^{0}(M, L)=10$ . So $\Delta(M, L)=1$ . Hence $(M, L)$

is a Del Pezzo manifold (see (1.13) and (1.6)).

(7.2) When $(M, L)$ is a Del Pezzo manifold, any smooth member of $|L|$ is

also a Del Pezzo manifold. Hence we obtain Del Pezzo manifolds with $d=5$ by

taking hyperplane sections of $Gr(5,2)$ successively.

(7.3) Let $S$ be a smooth hyperquadric in $P=P_{\alpha}^{3}$ . Then $S\cong P_{\sigma}^{1}\times P_{\tau}^{1}$ with
$[H_{\alpha}]_{S}=H_{\sigma}+H_{\tau}$ . Let $C$ be a smooth member of $H.+3H_{\tau}|$ on $S$ . Let $\tilde{P}=Q_{c}(P)$

be the blowing up of $P$ with center $C$ and let \S be the proper transform of $S$ .
Then $S\cong S\cong P_{\sigma}^{1}\times P_{\tau}^{1}$ and $ N^{S\backslash \tilde{P}}=[S]-[E_{c}]=2H_{\alpha}-(H_{\sigma}+3H_{\tau})=H_{\sigma}\sim$ –H.. Consider-

ing $S$ as a $P^{1}$-bundle over $P_{\sigma}^{1}$ , we aPply (P. 14) to obtain a manifold $M$ which

contains a submanifold $B\cong P_{\sigma}^{1}$ such that $(Q_{B}(M), E_{B})\cong(\tilde{P},\tilde{S})$ . By (P. 11) we

infer that $3H_{\alpha}-E_{C}=L_{\tilde{P}}$ for some $L\in Pic(M)$ . We see easily that $2L-[S]=$

$4H_{\alpha}-E_{c}=L+H_{\alpha}$ is ample on $\tilde{P}$ . Moreover, $LB=LgH_{\tau}\{S\}=2H_{\sigma}H_{\tau}\{P_{\sigma}^{1}\times P_{\tau}^{1}\}=2$ .

So [4, (5.7)] applies to the effect that $L$ is ample on M. $K^{M}+2L=K^{\tilde{P}}-E_{B}+2L=0$
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in $Pic(\check{P})$ . This implies that $(M, L)$ is a Del Pezzo manifold. Finally we infer
$d(M, L)=L^{3}\{\tilde{P}\}=(3H_{\alpha}-E_{c})^{3}=27H_{\alpha}^{3}-27H_{a}^{2}E_{c}+9H_{a}E_{c}^{2}-E_{c}^{3}=5$ , since $H_{\alpha}^{3}=1$ ,
$H_{\alpha}^{2}E_{c}=0,$ $H_{\alpha}E_{c}^{2}=-H_{\alpha}(-E_{c})\{E_{c}\}=-H_{\alpha}\{C\}=-(H_{\sigma}+H_{\tau})(H_{\sigma}+3H_{\tau})\{P_{\sigma}^{1}\times P_{\tau}^{1}\}=$

$-4$ and $E_{c}^{3}=(-E_{c})^{2}\{E_{C}\}=s_{1}(\Omega_{C\backslash P})=-(2H_{\alpha}+H_{\sigma}+3H_{\tau})(H_{\sigma}+3H_{\tau})\{P_{\sigma}^{1}\times P_{\tau}^{1}\}=-14$

(see (P. 4) and (P. 9)).

Thus $(M, L)$ is a Del Pezzo 3-fold with $d=5$ .
REMARK (not used in the following sections). Taking a smooth member of

$|aH_{\sigma}+3H_{\tau}|$ with $a=0,2,3$ instead of $C$, we obtain a prepolarized manifold
$(M, L)$ by a similar procedure as above. $L$ is ample on $M$ if $a\leqq 2$ and $d(M, L)$

$=6-a,$ $\Delta(M, L)=1$ . $M\cong P^{1}\times P^{1}\times P^{1}$ if $a=0$ . $M$ is a complete intersection of
type $(2, 2)$ when $a=2$ . When $a=3,$ $L$ is not ample because $LB=0$ . But $B\cong P^{1}$

can be contracted to an ordinary double point and we get a hypercubic. Of course
$L$ is the pull back of the hyperplane section bundle.

(7.4) Let $Q$ be a smooth hyperquadric in $P_{\alpha}^{4}$ . Let $S$ be a smooth hyper-

plane section. Then $S\cong P_{\sigma}^{1}\times P_{\tau}^{1}$ with $[H_{\alpha}]_{S}=H_{\sigma}+H_{\tau}$ . Let $C$ be a smooth
member of $H_{\sigma}+2H_{\tau}|$ on S. $C$ is a Veronese curve of degree three in the
hyperplane in $P_{\alpha}^{4}$ containing $S$ . Let $\tilde{Q}$ be the blowing up $Q_{c}(Q)$ and let $\tilde{S}$ be

the proper transform of $S$ . Then $\tilde{S}\cong S$ and $ N^{S\backslash Q}=H_{\alpha}-E_{C}=-H_{\tau}\sim\sim$ . Regarding $S$

to be a $P^{1}$-bundle over $P_{\sigma}^{1}$ , we blow down $S$ to $l\cong P^{1}$ and we get a manifold
$M$ containing 1 such that $(Q_{l}(M), E_{l})\cong(\tilde{Q},\tilde{S})$ . As in (7.3), 2$H_{\alpha}-E_{C}=L_{Q}$ for

some $L\in Pic(M)$ . $2L-E_{l}=3H_{\alpha}-E_{c}$ is ample on $\tilde{Q}$ and $L\{1\}=1$ . Therefore $L$

is ample on M. $ K^{M}+2L=K^{Q}-E_{l}+2L=(-3H_{\alpha}+E_{c})-(H_{a}-E_{c})+2(2H_{\alpha}-E_{c})=0\sim$

on $\tilde{Q}$ . This implies that $(M, L)$ is a Del Pezzo manifold. Finally we see
$d(M, L)=(2H_{a}-E_{c})^{3}\{\tilde{Q}\}=8H_{\alpha}^{3}-12H_{\alpha}^{2}E_{c}+6H_{\alpha}E_{c}^{2}-E_{c}^{3}=5$ , since $H_{\alpha}^{3}=2$ , $H_{\alpha}^{2}E_{C}$

$=0$, $H_{\alpha}E_{C}^{2}=-H_{a}\{C\}=-(H_{\sigma}+H_{\tau})(H_{\sigma}+2H_{\tau})\{S\}=-3$ and $E_{c}^{3}=-s_{1}(N^{C\backslash Q})=$

$-(H_{\alpha}+H_{\sigma}+2H_{\tau})(H_{\sigma}+2H_{\tau})\{S\}=-7$ .
Thus we construct a Del Pezzo 3-fold with $d=5$ .
(7.5) Let $Q$ be a smooth hyperquadric in $P_{\alpha}^{4}$ . Let $D$ be a hyperplane section

with one ordinary double point $p$ . Let $Q_{1}$ be the blowing up $Q_{p}(Q)$ and let $D_{1}$

be the proper transform of $D$ . Then $[D_{1}]=H_{\alpha}-2E_{p}$ in $Pic(Q_{1})$ and $D_{1}\cong\Sigma_{2}=$

$\{((\zeta_{0} : \zeta_{1} : \zeta_{2}), (\xi_{0} : \xi_{1}))\in P_{\zeta}^{2}\times P_{\xi}^{1}|\zeta_{0} : \zeta_{1}=\xi_{0}^{2} : \xi_{1}^{2}\}$ . $\Delta=D_{1}\cap E_{p}$ is the subset $\{\zeta_{0}=\zeta_{1}=0\}$

of $\Sigma_{2}$ , which defines a section of $\Sigma_{2}\rightarrow P_{\xi}^{1}$ such that $\Delta^{2}=-2$ . Let $C$ be a smooth

member of $|H_{\zeta}+H_{\xi}|$ on $D_{1}$ and let $Q_{2}$ be the blowing up $Q_{C}(Q_{1})$ . $C$ intersects

$E_{p}$ transversally at a point $q$ since $E_{p}C=(H_{(}-2H_{\xi})(H_{\zeta}+H_{\xi})\{\Sigma_{2}\}=1$ . So the

proper transform $\tilde{E}$ of $E_{p}\cong P_{\beta}^{2}$ on $Q_{2}$ is isomorphic to $Q_{q}(E_{p})$ . $|H_{\beta}-E_{q}|$ makes
$\tilde{E}$ a $P^{1}$-bundle over $P^{1}$ , and $\tilde{E}$ can be blown down with respect to this structure

because $[\tilde{E}]_{E}^{\sim=}-H_{\beta}$ . Thus we obtain a manifold $\tilde{Q}$ . Let $D$ be the image of the

proper transform $D_{2}$ of $D_{1}$ by the morphism $Q_{2}\rightarrow\tilde{Q}$ . Then it is easy to see
$ D_{\leftarrow D_{2\rightarrow}D_{1}\cong\Sigma_{2}}^{\sim}\sim$ .

A simpler way to construct $\tilde{Q}$ is this: Let $C^{\prime}$ be the image of $C$ on $Q$ .
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Then $C^{\prime}$ is a Veronese curve of degree three in the hyperplane of $P_{\alpha}^{4}$ containing
$D$ . It is easy to see that $\tilde{Q}$ is nothing other than $Q_{C^{\prime}}(Q)$ and that $\tilde{D}$ is the
proper transform of $D$ on $\tilde{Q}$ . (From this view point, however, it is not so easy

to see that $\tilde{D}$ can be blown down.)

Any way, we see $\tilde{D}\cong\Sigma_{2}$ and $[\tilde{D}]_{\tilde{D}}=-H_{\zeta}+H_{\xi}$ . So $\tilde{D}$ can be blown down

to $l\cong P^{1}$ and we obtain a manifold $M\supset l$ such that $(Q_{l}(M), E_{l})\cong(\tilde{Q},\tilde{D})$ . $2H_{\alpha}-$

$E_{C^{\prime}}=L_{Q}$ for some $L\in Pic(M)$ and $L$ is shown to be ample on $M$ as in (7.4).

Moreover, similarly as in (7.4), we see $K^{M}+2L=0$ and $d(M, L)=5$ . Thus $(M, L)$

is a Del Pezzo 3-fold with $d=5$ .
(7.6) We have constructed Del Pezzo 3-folds with $d=5$ in several ways

described in (7.2), (7.3), (7.4) and (7.5). However, they turn to be isomorphic to

each other. Indeed, in \S 9, we prove the following

THEOREM (Iskovskih [7]). All the Del Pezzo 3-folds with $d=5$ are isomorphjc

to each other.
(7.7) Now we explain a 4-dimensional version of the construction (7.5). Let

$Q$ be the smooth hyperquadric in $P_{\alpha}^{6}=(\alpha_{0}$ : $\cdots$ : $\alpha_{5})$ defined by $\alpha_{0}\alpha_{5}-\alpha_{1}\alpha_{4}+\alpha_{2}\alpha_{3}=0$ .
Let $D$ be the hyperplane section $\alpha_{5}=0$ , which has an ordinary double point
$p=($1: $ 0:\cdots$ : $0)$ . Let $Q_{1}=Q_{p}(Q)$ and let $D_{1}$ be the proper transform of $D$ on
$Q_{1}$ . Then $D_{1}\cong Z$, here $Z=$ { $($ ( $\zeta_{0}$ : $\ldots$ : $\zeta_{4}$), $(\xi_{1}$ : $\ldots$ : $\xi_{4}))\in P_{\zeta}^{4}\times P_{\xi}^{3}|\zeta_{1}$ : $\zeta_{2}$ : $\zeta_{3}$ : $\zeta_{4}=$

$\xi_{1}$ : $\xi_{2}$ : $\xi_{3}$ : $\xi_{4},$ $\zeta_{1}\zeta_{4}=\zeta_{2}\zeta_{3},$ $\xi_{1}\xi_{4}=\xi_{2}\xi_{3}$} $=\{((\zeta_{0} :... : \zeta_{4}), (\sigma_{0} ; \sigma_{1}),$ $(\tau_{0} ; \tau_{1}))\in P_{\zeta}^{4}\times P_{\sigma}^{1}\times P_{\tau}^{1}|$

$\zeta_{1}$ : $\zeta_{2}=\zeta_{3}$ : $\zeta_{4}=\sigma_{0}$ ; $\sigma_{1},$
$\zeta_{1}$ : $\zeta_{3}=\zeta_{2}$ : $\zeta_{4}=\tau_{0}$ ; $\tau_{1}$}. Note that $[H_{\alpha}]_{Z}=H_{\zeta}$ and $E_{p}\cap D_{1}$

$=\{\zeta_{1}=\zeta_{2}=\zeta_{3}=\zeta_{4}=0\}\subset Z$. This defines a section of the natural $P^{1}$-bundle struc-

ture $Z\rightarrow P_{\sigma}^{1}\times P_{\tau}^{1}$ . Moreover we have $(Z, H_{\zeta})\cong(P(E), H^{E})$ , where $E$ is the vector

bundle $[0]\oplus[H_{\sigma}+H_{\tau}]$ on $P_{\sigma}^{1}\times P_{\tau}^{1}$ .
Let $C$ be smooth member of $|H_{\zeta}+H_{\sigma}|$ on $D_{1}$ and let $Q_{2}=Q_{C}(Q_{1})$ . Let $E_{2}$

and $D_{2}$ be proper transforms of $E_{p}$ and $D_{1}$ on $Q_{2}$ respectively. Note that $C\cap E_{p}$

is a line 1’ on $E_{p}\cong P_{\xi}^{3}$ since $[C]_{E_{p}\cap D_{1}}=H_{\sigma}$ . We may assume that $l^{\prime}=\{\xi_{1}=\xi_{3}=0\}$

$\subset E_{p}$ by taking a linear change of coordinate if necessary. Then $E_{2}\cong Q_{l^{l}}(E_{p})$

$\cong\{((\xi_{1} : \ldots : \xi_{4}), (\tau_{0} ; \tau_{1}))\in P_{\xi}^{3}\times P_{\tau}^{1}|\xi_{1} : \xi_{3}=\tau_{0} ; \tau_{1}\}$ . This is a $P^{2}$-bundle over $P^{1}$

and $l^{\prime}$ defines a section of it. We have $[E_{2}]_{E_{2}}=[E_{p}]_{E_{2}}=-H_{\xi}$ . So (P. 14) applies

to the effect that $E_{2}$ can be blown down to 1’. Thus $(Q_{2}, E_{2})\cong(Q_{l^{l}}(\tilde{Q}), E_{l^{\prime}})$ for

a manifold $\tilde{Q}$ containing 1’ as a submanifold. Let $D$ be the image of $D_{2}$ on $\tilde{Q}$ .
Then we see $D\cong Z^{\prime}=\{((\zeta_{0} : \ldots : \zeta_{4}), (\tau_{0} ; \tau_{1}))\in P_{\zeta}^{4}\times P_{\tau}^{1}|\zeta_{1} : \zeta_{3}=\zeta_{2} : \zeta_{4}=\tau_{0} ; \tau_{1}\}$ .

A simpler way to obtain $\tilde{Q}$ is this: Let $C^{\prime}$ be the image of $C$ on Q. $l^{\prime}=$

$C\cap E_{p}$ is an exceptional curve on the surface $C$ and $C^{\prime}$ is the blowing down of
it. Moreover we see that $(C^{\prime}, H_{a})$ is a polarized manifold with $d=3,$ $\Delta=0$ .
Hence $C^{\prime}\cong\Sigma_{1}$ , the blowing up of $P^{2}$ with center being a point. Similarly as in
(7.5), $\tilde{Q}$ is nothing other than the blowing up $Q_{C^{\prime}}(Q)$ and $\tilde{D}$ is the proper trans-

form of $D$ .
Now we see $[\tilde{D}]_{D_{2}}=[D_{2}+E_{l^{\prime}}]_{D_{2}}=(H_{\alpha}-2E_{p})-(H_{(}+H_{\sigma})+E_{p}=H_{\tau}-H_{\zeta}$ in
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$Pic(Z),$ $Slnce_{-}[E_{p}]_{Z}=H_{(}-H_{\xi}$ . So $ N^{D\backslash Q}=H_{\tau}-H_{\zeta}\sim\sim$ . Hence $\tilde{D}$ can be blown down to
$l\cong P_{\tau}^{1}$ with respect to the $P^{2}$-bundle structure $D\cong Z^{\prime}\rightarrow P_{\tau}^{1}$ . Thus we have a
manifold $M\supset l$ such that $(Q_{l}(M), E_{l})\cong(\tilde{Q},\tilde{D})$ . We see easily $[E_{C^{\prime}}]_{D}^{\sim}=2H_{\zeta}-H_{\tau}$

and $2H_{\alpha}-E_{C^{\prime}}\in Pic(\tilde{Q})$ comes from $L\in Pic(M)$ . We have $L=[D]+H_{\alpha}$ on $\tilde{Q}$

and $L_{D}^{\sim}=H_{\tau}$ . So it is easy to see that $L$ is ample on $M$ by [4, Appendix

$B]$ . Moreover we have $K^{M}+3L=K^{Q}-2E_{l}+3L=(-4H_{\alpha}+E_{C^{\prime}}\sim)-2(H_{\alpha}-E_{C^{\prime}})+$

$3(2H_{\alpha}-E_{C^{\prime}})=0$ on $\tilde{Q}$ . This implies that $(M, L)$ is a Del Pezzo manifold.

Finally we calculate $d=d(M, L)=(2H_{a}-E_{p}-E_{c})^{4}\{Q_{2}\}$ . Putting $A=2H_{\alpha}-E_{p}$ ,

we have $d=A^{4}-4A^{3}E_{c}+6A^{2}E_{c}^{2}-4AE_{c}^{3}+E_{c}^{4}$ . Easily we have $A^{4}=(2H_{\alpha})^{4}+E_{p}^{4}$

$=31$ and $A^{3}E_{c}=0$ . Recalling that $(Z, H_{(})\cong(P(E), H^{E})$ with $E=[0]\oplus[H_{\sigma}+H_{\tau}]$

on $P_{\sigma}^{1}\times P_{\tau}^{1}$ and that $A_{Z}=2H_{\zeta}-(H_{(}-H_{\xi})=H_{\zeta}+H_{\xi}$, we infer $A^{2}E_{c}^{2}=-A^{2}C=$

$-(\zeta+\xi)^{2}(\zeta+\sigma)\{Z\}=-(\zeta^{3}+(3\sigma+2\tau)\zeta^{2}+4\sigma\tau\zeta)=-(s_{2}(E)+(3\sigma+2\tau)s_{1}(E)+4\sigma\tau)$

$\{P_{\sigma}^{1}\times P_{\tau}^{1}\}=-(\sigma+\tau)^{2}-(3\sigma+2\tau)(\sigma+\tau)-4\sigma\tau=-11$ , where $\zeta,$ $\xi,$ $\sigma$ and $\tau$ are the

Chern classes of $H_{(},$ $H_{\xi},$ $H_{\sigma}$ and $H_{\tau}$ . Using the exact sequence $0\rightarrow N^{C\backslash D_{1}}\rightarrow N^{C\backslash Q_{1}}$

$\rightarrow N^{D_{1}\backslash Q_{1}}\rightarrow 0$, we get $c(N^{C\backslash Q_{1}})=(1+\zeta+\sigma)(1+2\xi-\zeta)$ . So $s_{1}(\Omega_{C\backslash Q_{1}})=-2\xi-\sigma=$

$-3\sigma-2\tau$ and $ s_{2}(\Omega_{C\backslash Q_{1}})=(\zeta+\sigma)^{2}+(\zeta+\sigma)(2\xi-\zeta)+(2\xi-\zeta)^{2}=\zeta^{2}-(\sigma+2\tau)\zeta+10\sigma\tau$ .
Hence $AE_{C}^{3}=As_{1}(\Omega_{C\backslash Q_{1}})\{C\}=-(\zeta+\xi)(3\sigma+2\tau)(\zeta+\sigma)\{Z\}=-(3\sigma+2\tau)\zeta^{2}-7\sigma\tau\zeta=$

$-((3\sigma+2\tau)(\sigma+\tau)+7\sigma\tau)\{P_{\sigma}^{1}\times P_{\tau}^{1}\}=-12$ and $ E_{C}^{4}=-s_{2}(\Omega_{C\backslash Q_{1}})\{C\}=-(\zeta^{2}-(\sigma+2\tau)\zeta$

$+10\sigma\tau)(\zeta+\sigma)\{Z\}=-\zeta^{3}+2\tau\zeta^{2}-8\sigma\tau\zeta=(-(\sigma+\tau)^{2}+2\tau(\sigma+\tau)-8\sigma\tau)\{P_{\sigma}^{1}\times P_{\tau}^{1}\}=-8$ .
Now, putting things together, we obtain $d=5$ .

(7.8) We construct a Del Pezzo 4-fold with $d=5$ in another way. Let $P=$

$P_{\alpha}^{4}=(\alpha_{0}$ ; $\cdots$ : $\alpha_{4})$ and let $D$ be the hyperplane $\{\alpha_{4}=0\}$ . Let $C$ be a Veronese
curve of degree three in $D$ , for example, $\{\alpha_{0}\alpha_{2}=\alpha_{1}^{2}, \alpha_{0}\alpha_{3}=\alpha_{1}\alpha_{2}, \alpha_{1}\alpha_{3}=\alpha_{2}^{2}\}\cong P_{\sigma}^{1}$

with $[H_{\alpha}]_{C}=3H_{\sigma}$ . Let $\tilde{P}$ be the blowing up of $P$ with center $C$ and let $D$ be

the proper transform of $D$ on $P$ . Then, by definition of $C,$ $\alpha_{0}\alpha_{2}-\alpha_{1}^{2},$
$\alpha_{0}\alpha_{3}-\alpha_{1}\alpha_{2}$ ,

and $\alpha_{1}\alpha_{3}-\alpha_{2}^{2}$ dePne a linear system $\Lambda$ on $\tilde{D}\cong Q_{C}(D)$ such that $[\Lambda]=2H_{\alpha}-E_{c}$

and $ Bs\Lambda=\emptyset$ . So we have a morphism $\rho_{\Lambda}$ : $\tilde{D}\rightarrow P_{\xi}^{2}$ .
We claim that $\rho_{\Lambda}$ makes $\tilde{D}$ a $P^{1}$-bundle over $P_{\xi}^{2}$ . Indeed, every fiber $Y$ of

$\rho_{\Lambda}$ is shown to be isomorphic to $P^{1}$ as follows: There are two hyperquadrics
$Q_{1},$ $Q_{2}$ in $D$ containing $C$ such that $Y$ is the intersection of their proper trans-

forms. Both $Q_{1}$ and $Q_{2}$ are irreducible since $C$ cannot be contained in any

hyperplane in $D$ . Hence $Q_{1}\cap Q_{2}$ must be a curve of degree 4, and so $Q_{1}\cap Q_{2}$

$=C\cup l$ , where $l$ is a line. It is easy to see that $Y$ maps isomorphically onto $l$

by $\tilde{D}\rightarrow D$ .
We have $[2H_{a}-E_{C}]_{Y}=0$ and $[D]_{Y}=[H.-E_{C}]_{Y}=-H.$ . Therefore $D$ can be

blown down with respect to $\rho_{\Lambda}$ Let $M$ be the manifold containing $S\cong P_{\xi}^{2}$ such
that $(Q_{S}(M), E_{S})\cong(\tilde{P},\tilde{D})$ . Then $2H_{\alpha}-E_{c}=L_{\tilde{P}}$ for some $L\in Pic(M)$ . Using

[4, Appendix $B$], we show $L$ to be ample on $M$ as before. $K^{M}+3L=K^{\tilde{P}}-D+3L$

$=(-5H_{\alpha}+2E_{c})-(H_{\alpha}-E_{c})+3(2H_{\alpha}-E_{c})=0$ . So $(M, L)$ is a Del Pezzo 4-fold.

Finally we have $d(M, L)=(2H_{\alpha}-E_{c})^{4}\{\tilde{P}\}=16H_{a}^{4}-32H_{\alpha}^{3}E_{C}+24H_{\alpha}^{2}E_{c}^{2}-8H_{\alpha}E_{c}^{3}$
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$+E_{c}^{4}=5$ , since $H_{\alpha}^{4}=1,$ $H_{a}^{3}E_{c}=H_{\alpha}^{2}E_{c}^{2}=0,$ $H_{\alpha}E_{C}^{3}=H_{\alpha}C=3$ and $E_{c}^{4}=-(-E_{c})^{3}\{E_{c}\}$

$=-s_{1}(\Omega_{C\backslash P})=-(K^{P}C-K^{C}C)=13$ .
(7.9) The Del Pezzo 4-folds constructed in (7.7) and (7.8) are isomorphic to

each other. Moreover, we prove in \S 10 the following

THEOREM. All the Del Pezzo 4-folds with $d=5$ are isomorphic to each

other.
(7.10) We describe a five dimensional version of (7.8). Let $P=P_{\alpha}^{5}=$

$\{$ ( $\alpha_{0}$ : $\ldots$ : $\alpha_{5}$ ) $\}$ , let $D$ be the hyperplane $\{\alpha_{5}=0\}$ and let $C\subset D$ be the subspace
$\{\alpha_{0}\alpha_{2}=\alpha_{1}^{2}, \alpha_{0}\alpha_{4}=\alpha_{1}\alpha_{3}, \alpha_{1}\alpha_{4}=\alpha_{2}\alpha_{3}\}$ . It is easy to see that $(C, H_{\alpha})\cong(P(E), H^{E})$ ,

where $E$ is the vector bundle $[2H_{\sigma}]\oplus[H_{\sigma}]$ on $P_{\sigma}^{1}$ . Let $\tilde{P}$ be the blowing up
$Q_{c}(P)$ and let $\tilde{D}$ be the proper transform of $D$ . Similarly as in (7.8), we see
that $\alpha_{0}\alpha_{2}-\alpha_{1}^{2},$

$\alpha_{0}\alpha_{4}-\alpha_{1}\alpha_{3},$ $\alpha_{1}\alpha_{4}-\alpha_{2}\alpha_{3}$ define a linear system $\Lambda$ on $D\cong Q_{c}(D)$

such that $[\Lambda]=2H_{\alpha}-E_{c}$ and $ Bs\Lambda=\emptyset$ . $\rho_{\Lambda}$ makes $D$ a $P^{2}$-bundle over $P_{\xi}^{2}$ .
Moreover, $D$ is blown down with respect to $\rho_{\Lambda}$ . So $(\tilde{P},\tilde{D})\cong(Q_{S}(M), E_{s})$ for a
manifold $M$ and $S(\subset M)\cong P_{\xi}^{2}$ . $2H_{\alpha}-E_{C}=L_{\tilde{P}}$ for some $L\in Pic(M)$ . Similarly as
in (7.8), we see that $(M, L)$ is a Del Pezzo manifold. Finally, using $L_{\tilde{D}}^{3}=0$ , we
infer $d(M, L)=L^{5}=L^{3}(D+H_{\alpha})^{2}=L^{3}H_{\alpha}^{2}=H_{\alpha}^{2}(2H_{\alpha}-E_{c})^{3}=8H_{\alpha}^{5}-H^{2}{}_{a}C=5$ .

(7.11) In \S 11 we prove the following

THEOREM. All the Del Pezzo 5-folds with $d=5$ are isomorphic to each

other.
(7.12) Now we outline a six dimensional version of (7.8). Let $P=P_{a}^{6}=$

$\{$ ( $\alpha_{0}$ ; $\ldots$ : $\alpha_{6}$ ) $\}$ , let $D$ be the hyperplane $\{\alpha_{6}=0\}$ and let $C\subset D$ be the subspace
$\{\alpha_{0}\alpha_{3}=\alpha_{1}\alpha_{2}, \alpha_{2}\alpha_{5}=\alpha_{3}\alpha_{4}, \alpha_{0}\alpha_{5}=\alpha_{1}\alpha_{4}\}$ . Then $(C, H_{\alpha})\cong(P_{\sigma}^{1}\times P_{\tau}^{2}, H_{\sigma}+H_{\tau})$ . Let $\tilde{P}$

be the blowing up $Q_{c}(P)$ and let $\tilde{D}$ be the proper transform of $D$ . Then
$\alpha_{0}\alpha_{3}-\alpha_{1}\alpha_{2},$ $\alpha_{2}\alpha_{5}-\alpha_{3}\alpha_{4},$ $\alpha_{0}\alpha_{5}-\alpha_{1}\alpha_{4}$ define a linear system $\Lambda$ on $D\cong Q_{c}(D)$ such

that $[\Lambda]=2H_{\alpha}-E_{C}$ and $ Bs\Lambda=\emptyset$ . $\rho_{\Lambda}$ makes $D$ a $P^{3}$-bundle over $P_{\xi}^{2}$ . $\tilde{D}$ is

blown down with respect to $\rho_{\Lambda}$ and we have $(\tilde{P},\tilde{D})\cong(Q_{s}(M), E_{S})$ for $M\supset S\cong P_{\xi}^{2}$ .
Moreover $2H_{\alpha}-E_{C}=L_{P}$ for some $L\in Pic(M)$ and $(M, L)$ becomes a Del Pezzo
6-fold. Using $L_{D}^{3}\sim=0$ , we infer $d(M, L)=5$ as in (7.10).

(7.13) In \S 12 we prove the following

THEOREM. All the Del Pezzo 6-folds with $d=5$ are isomorphic to each

other, hence isomorphic to $Gr(5,2)$ .
(7.14) Recalling [6, (5.2)], we prove the following

COROLLARY. There exists no Del Pezzo manifold $(M, L)$ with dim $M\geqq 7$

and $d(M, L)=5$ .
(7.15) Combining (7.2), (7.6), (7.9), (7.11), (7.13) and (7.14) we get the Theo-

rem stated in the introduction.
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\S 8. Projective geometry on Del Pezzo manifolds.

Throughout this section $M$ is an n-dimensional submanifold of $P\cong P_{\xi}^{N}$ , which
is not contained in any hyperplane on $P$. Put $L=[H_{\xi}]_{M}$ .

(8.1) PROPOSITION. Let $C$ be a linear submanifold of $P$ lying on M. Then
$ Bs|L-E_{C}|=\emptyset$ on $M_{1}=Q_{C}(M)$ .

PROOF. Clearly $ Bs|H_{\xi}-E_{C}|=\emptyset$ on $\tilde{P}=Q_{C}(P)$ . Our assertion follows from

this since $M_{1}$ is the proper transform of $M$ on $\tilde{P}$ .
(8.2) COROLLARY. Let 1 be a line in $P$ lying on M. Then deg $F\geqq-1$ for

any quotient line bundle $F$ of the conormal bundle $\Omega_{l\backslash M}$ of 1 in $M$.
PROOF. Let $\tilde{P}$ and $M_{1}$ be as above. Then $M_{1}\cap E_{l}=P(\Omega_{l\backslash M})$ and $[-E_{l}]_{E_{l}}$

$=H^{\Omega_{l\backslash M}}$ . $\Omega_{l\backslash M}\otimes[H_{\xi}]$ is semipositive since $ Bs|L-E_{l}|=\emptyset$ . Hence so is $F\otimes[H_{\xi}]$ ,

which proves the assertion.
(8.3) PROPOSITION. $SuPPose$ in addition that $(M, L)$ is a Del Pezzo mani-

fold with $d=d(M, L)$ . Let $W$ be the image of $\rho_{|L-E_{1}|}$ : $M_{1}\rightarrow P_{\eta}^{\dim|L-E_{l}|}$ . Then
$d(W, H_{\eta})=d-3$ and $\Delta(W, H_{\eta})=0$ if $d\geqq 4$ . In particular, $W$ is a hyperquadric

if $d=5$ .
PROOF. $(L-E_{l})^{n}\{M_{1}\}=L^{n}+nL(-E_{l})^{n-1}+(-E_{l})^{n}=d-3$ since $L^{n}=d$ ,

$L(-E_{l})^{n-1}=-L\{1\}=-1$ and $(-E_{l})^{n}=-(-E_{l})^{n-1}\{E_{l}\}=-s_{1}(\Omega_{l\backslash M})=-K^{M}\cdot l+K^{l}\cdot 1$

$=n-3$ . Hence dim $W=n$ if $d\geqq 4$ . Put $w=\deg W$ . Then $ d-3=w\cdot\deg\rho$ On
the other hand, $0\leqq\Delta(W, H_{\eta})\leqq n+w-(\dim|L-E_{l}|+1)=3+w-d$ . Combining

them we obtain $w=d-3$ , deg $\rho=1$ and $\Delta(W, H_{\eta})=0$ .
(8.4) PROPOSITION. Let $T$ be a linear submanifold of $P$ such that dim $T+$

$\dim(T\cap M)<\dim$ M. Then any general member of $\Lambda=|H_{\xi}|_{M}^{*\tau}$ is smooth.
PROOF. dim $\Lambda=N-1-\dim T$ where $N=\dim P$. Note that $Bs\Lambda=T\cap M$ and

that any general member of $\Lambda$ is smooth in the outside of $T\cap M$. For any
$x\in T\cap M$ let $A_{x}=$ { $D\in\Lambda|D$ is singular at $x$ }. Then dim $\Lambda_{x}\leqq N-1-\dim M$.
So dim $\Lambda>\dim(U_{x\in T\cap M}\Lambda_{x})$ . Hence any general member of $\Lambda$ is smooth at each
$x\in T\cap M$, too.

(8.5) Let $C$ be a smooth curve in $P$ and let $x\in C\cap M$. We define the

intersection multiplicity $\mu_{x}(C\cdot M)$ at $x$ as follows.
Let $P_{1}$ be the blowing up $Q_{x}(P)$ and let $M_{1}$ and $C_{1}$ be the proper transforms

of $M$ and C. $C_{1}\cap E_{x}$ is a point $x_{2}$ on $P_{1}$ . If $x_{2}\not\in M_{1}$ , then we define $\mu_{x}(C\cdot M)$

$=1$ . If $x_{2}\in M_{1}$ , then let $P_{2}=Q_{x_{2}}(P_{1})$ and let $M_{2},$ $C_{2}$ be the proper transforms
of $M_{1},$ $C_{1}$ . $C_{2}\cap E_{x_{2}}$ is a point $x_{3}$ . If $x_{3}\not\in M_{2}$ , then we define $\mu_{x}(C\cdot M)=2$ . If
$x_{3}\in M_{2}$ , then we consider $P_{3}=Q_{x_{3}}(P_{2})$ and make the similar procedure. Sooner
or later we have $x_{k+1}\not\in\lrcorner\lambda f_{k}$ unless $C\subset M$. Then we define $\mu_{x}(C\cdot M)=k$ . If $C\subset M$,

then $\mu_{x}(C\cdot M)=\infty$ .
(8.6) THEOREM. Let 1 be a line in $P$ such that $l\not\subset M$. Put $\mu=\Sigma_{x\in l\cap M\mu_{x}}(l\cdot M)$ .

If $\mu\geqq 2\Delta(M, L)-d(M, L)+5$, then $g(M, L)\leqq\Delta(M, L)-\mu+2$ unless $M$ is a hyper-

$su$ rface.
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PROOF. Over each $x\in l\cap M$ we blow up $\mu_{x}(l\cdot M)$-times successively in order

to separate the proper transforms of 1 and $M$. Viewed on $M$, this is nothing

other than the procedure of the elimination of base points of $|H_{\xi}|_{M}^{*l}$ . Thus we
obtain a manifold $\tilde{M}$ and a linear system $\Lambda^{\prime}$ on $\tilde{M}$ such that $\tilde{M}$ is a $\mu$-times

successive blowing up of $M$ with center being a point at each step, namely,

$\tilde{M}=Q_{p_{\mu}}\cdots Q_{p_{1}}(M),$ $ Bs\Lambda^{\prime}=\emptyset$ , dim $\Lambda^{\prime}=\dim|H_{\xi}|^{*l}=N-2$ and $[\Lambda^{\prime}]=H_{\xi}-E_{p_{1}}-\cdots$

$-E_{p_{\mu}}$ . Then we have $d(\tilde{M}, \Lambda^{\prime})=d(M, L)-\mu,$ $g(\tilde{M}, \Lambda^{\prime})=g(M, L)$ and $h^{0}(\tilde{M}, [\Lambda^{\prime}])$

$=h^{0}(M, L)-2$ . Hence $\Delta(\tilde{M}, \Lambda^{\prime})=\Delta(M, L)-\mu+2$ . So $\mu\geqq 2\Delta(M, L)-d(M, L)+5$

implies that $d(\tilde{M}, \Lambda^{\prime})\geqq 2\Delta(\tilde{M}, \Lambda^{\prime})+1$ . Therefore $g(\tilde{M}, \Lambda^{\prime})\leqq\Delta(\tilde{M}, \Lambda^{\prime})=\Delta(M, L)$

$-\mu+2$ unless $d(\tilde{M}, \Lambda^{\prime})=0$ (cf. [3, Theorem 4.1, $c$)]).

If $d(\tilde{M}, \Lambda^{\prime})=0$ , then dim $W<n$ where $W=\rho_{\Lambda},(M)$ . On the other hand,

$[\Lambda^{\prime}]^{n-1}\{E_{p_{\mu}}\}=1$ . Therefore $\rho_{\Lambda},$ $(E_{p_{\mu}})$ is a linear subspace $V\cong P^{n- 1}$ . Clearly
$W\supset V$ and $W$ is irreducible. Hence $W=V$. This implies dim $\Lambda^{\prime}=n-1$ and

$\dim|L|=n+1$ . So $M$ is a hypersurface.

(8.7) COROLLARY. Let 1, $M,$
$\mu$ be as in (8.6). SuPpose in addition that $M$

is a Del Pezzo manifold. Then $\mu\leqq 2$ unless $M$ is a hypercubic.

PROOF. $d(M, L)\geqq 4$ if $M$ is not a hypercubic. So $\mu\geqq 3$ would imply $g(M, L)$

$\leqq 1-\mu+2\leqq 0$ by (8.6).

\S 9. Del Pezzo 3-folds with $d=5$ .
Throughout this section let $(M, L)$ be a Del Pezzo threefold with $d(M, L)$

$=5$ . By $\rho_{|L|}$ we regard $M$ to be a submanifold in $P\cong P_{\xi}^{6}$ . Note that $[H_{\xi}]_{M}=L$ .
(9.1) LEMMA. $Pic(M)$ is generated by $L$ .
PROOF. Let $S$ be a general member of $|L|$ and let $\lambda$ be the monodromy

action on $\mathfrak{L}(S)$ induced by $|L|$ (cf. [5; (4.6), (4.23)]). Let $\Gamma$ be the envelope of
${\rm Im}(\lambda)$ . Then $F\in Pic(S)$ comes from $Pic(M)$ if and only if $x\cdot c_{1}(F)=0$ for any
$ x\in\Gamma$. So it suffices to show that $\Re(S)=\Gamma$. Note that $\mathfrak{L}(S)\cong\Lambda_{4}$ (cf. [5, (4.11)])

and let $\{h, e_{1}, \cdots , e_{4}\}$ be a normal base of $\mathfrak{L}(S)$ as in (4.12).

Claim a). No exceptional cycle comes from $Pic(M)$ .
Indeed, if $c_{1}(F_{S})$ is an exceptional cycle for $F\in Pic(M)$ , then $(M, F)\cong$

$(Q_{p}(N), E_{p})$ for a manifold $N$ and $p\in N$ by (5.5). Moreover $L+E_{p}=L_{M}^{\prime}$ for
$L^{\prime}\in Pic(N)$ and $(N, L^{\prime})$ is a Del Pezzo three-fold with $d(N, L^{\prime})=6$ . But then

there exists a line on $N$ which passes $P$ by (5.16). Then $L\cdot t=0$ for the proper

transform $f$ of this line. Hence $L$ cannot be ample. This contradiction proves

our claim.
Claim b). $h$ does not come from $Pic(M)$ .
Assume that $h=c_{1}(H_{S})$ for some $H\in Pic(M)$ . $c_{1}(L-H)_{S}=2h-e_{1}-e_{2}-e_{3}-e_{4}$

and $\rho_{|L-H|}$ makes $S$ a $P^{1}$-ruled surface over $P^{1}$ . By [4, (2.8)] we obtain a
holomorphic mapping $\rho_{|L-H|}$ : $M\rightarrow P^{1}$ . On the other hand $|H|_{S}=|H_{S}|$ by [4,
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(2.3)]. Hence $ Bs|H|\cap S=Bs|H_{S}|=\emptyset$ . So $Bs|H|$ is a finite set and hence $H$

is semipositive. However, $H^{3}\{M\}=H^{3}+(L-H)^{3}=L^{3}-3L^{2}H+3LH^{2}=$

$(L^{2}-3LH+3H^{2})\{S\}=5-9+3<0$ . This contradiction proves our claim.

Claim $c$ ). $h-e_{l}$ does not come from $Pic(M)$ for $i=1,$ $\cdots$ , 4.
Assume that $h-e_{4}=c_{1}(F_{S})$ for some $F\in Pic(M)$ . Then $c_{1}(L-F)_{S}=$

$2h-e_{1}-e_{2}-e_{3}$ and $\rho_{|L-F|}$ makes $S$ a blowing up of $P^{2}$ with center being four
points. Therefore we can derive a contradiction quite similarly as in Claim b).

$\Re(S)\subset\Gamma$ follows from the above three claims. To see this, recall that $\Re(S)$

$=\{\pm(h-e_{i}-e_{j}-e_{k})\}_{i<J<k}\cup\{(e_{i}-e_{j})\}_{i\neq j}$ . By claim b), $xh\neq 0$ for some $x\in\Gamma\cap\Re(S)$ .
So we may assume $ h-e_{1}-e_{2}-e_{3}\in\Gamma$ by changing the numbering if necessary.

Note that $\alpha\in\Gamma$ if and only if $\alpha+(h-e_{1}-e_{2}-e_{3})\in\Gamma$. By claim a), $ye_{4}\neq 0$ for

some $y\in\Gamma\cap\Re(S)$ . So $ e_{i}-e_{4}\in\Gamma$ for some $i=1,2,3$ . We may assume $i=3$ .
Again by claim a), $z(h-e_{3}-e_{4})\neq 0$ for some $z\in\Gamma\cap\Re(S)$ . So $ e_{j}-e_{k}\in\Gamma$ for some
$j=1,2$ and $k=3,4$ . We may assume $ e_{2}-e_{3}\in\Gamma$ without loss of generality.

Hence $ e_{m}-e_{n}\in\Gamma$ if $m\neq 1\neq n$ . By claim c), $(h-e_{1})u\neq 0$ for some $u\in\Gamma\cap\Re(S)$ .
So $ e_{1}-e_{n}\in\Gamma$ for some $n=2,3,4$ . Now it is easy to see $\Re(S)\subset\Gamma$.

Only the integral multiples of $c_{1}(L)$ are orthogonal to all the roots of $\mathfrak{L}(S)$ .
So $F\in Pic(S)$ comes from $Pic(M)$ only when $F=mL$ for some $m\in Z$. This
proves the Lemma.

(9.2) $M$ contains many lines. Indeed, any general member of $|L|$ is a Del
Pezzo surface and each exceptional curve on it is a line in $P$ (cf. (5.3)).

(9.3) Let $l$ be a line on $M$. Then Bsl $ L-E_{\iota}|=\emptyset$ on $M_{1}=Q_{l}(M)$ and

$\rho_{a}=\rho_{|L-E_{1}|}$ is a birational morphism onto a hyperquadric $Q$ in $P_{\alpha}^{4}$ (cf. (8.3)).

(9.4) $(L-E_{l})^{2}L=L^{3}-L\cdot 1=4$ and $(L-E_{l})^{2}E_{l}=2$ . On the other hand,
$h^{0}(E_{l}, L-E_{l})=h^{0}(l, \Omega_{l\backslash M}\otimes[L])=4$ . Hence $\rho_{\alpha}(E_{l})$ is a hyperquadric and is a
hyperplane section of $Q$ .

(9.5) LEMMA. $|aL-bE_{l}|\neq\emptyset$ only if $a\geqq 0$ and $2a\geqq b$ .
PROOF. Suppose a $ L-bE_{l}|\neq\emptyset$ . Then $0\leqq L^{2}(aL-bE_{l})=5a$ . Similarly $ 0\leqq$

$(L-E_{l})^{2}(aL-bE_{l})=4a-2b$ since $L-E_{l}$ is semipositive.

(9.6) Let $H$ be the hyperplane on $P_{\alpha}^{4}$ such that $H\cap Q=\rho_{\alpha}(E_{l})$ (see (9.4)).

Then $\rho^{*}{}_{\alpha}H=E_{l}+R$ for some $R\in|L-2E_{l}|$ . By (9.1), $Pic(M_{1})$ is generated by $L$

and $E_{l}$ . Using (9.5), we infer that $R$ is irreducible and reduced.

(9.7) Put $C=\rho_{\alpha}(R)$ . $(L-E_{l})^{2}\{R\}=(L-E_{l})^{2}(L-2E_{l})=0$ implies dim $C<2$ .
On the other hand, $C$ is not contained in any hyperplane of $P_{\alpha}^{4}$ other than $H$,

because otherwise $2\leqq\dim Ker(H^{0}(M_{1}, L-E_{l})\rightarrow H^{0}(R, L-E_{l}))=h^{0}(M_{1}, E_{l})=1$ . So
$C$ is a curve and $h^{0}(C, H_{\alpha})\geqq 4$ .

Put $w=\deg C=H_{\alpha}C$. Let $X$ be a general fiber of $R\rightarrow C$. Then $wLX=$

$L(L-E_{l})\{R\}=L(L-E_{l})(L-2E_{l})=3$ . Clearly $w>1$ since $h^{0}(C, H_{\alpha})\geqq 4$ . So $w=3$

and $LX=1$ . Hence $C$ is a Veronese curve of degree three in $H\cong P^{3}$ .
For any fiber $Y$ of $R\rightarrow C$, $L_{Y}$ is ample since $L_{Y}=[E_{l}]_{Y}$ and $tL-E_{l}$ is
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ample on $M_{1}$ for $t\gg O$ . Hence $LY=LX=1$ implies that $Y\cong P^{1}$ . Thus $R$ is a
$P^{1}$-bundle over $C$ . Moreover, $[R]_{Y}=-LY=-1$ implies that $R$ can be blown

down with respect to this bundle structure.

(9.8) Let $W$ be a manifold containing $C\cong P^{1}$ such that $(M_{1}, R)\cong(Q_{C}(W), E_{C})$ .
Then $L-E_{l}=A_{M_{1}}$ for some $A\in Pic(W)$ . $A$ is ample on $C$ and $3A-E_{C}=$

$L+(L-E_{l})$ is ample on $M_{1}$ . Hence $A$ is ample on $W$ by [4, (5.7)]. Moreover
$K^{W}=K^{M_{1}}-E_{C}=-2L+E_{l}-(L-2E_{l})=-3A$ . Therefore $(W, A)$ is a hyperquadric

by [2, Theorem 2.2]. So $W$ is naturally isomorphic to $Q\subset P_{\alpha}^{4}$ .
(9.9) Now we consider how is $\rho_{a}(E_{l})=H\cap Q$ . We have det $N^{l\backslash M}=0$ since

$K^{M}=-2H_{\xi}$ . So $N^{1\backslash M}=[H_{\xi}]\oplus[-H_{\xi}]$ or $[0]\oplus[0]$ by (8.2). 1 is said to be of

special type (resp. non-special type) in the former (resp. latter) case.
(9.10) If $l$ is of special type, then $E_{l}\cong\Sigma_{2}$ and we see easily that $\rho_{\alpha}(E_{l})$ is

a cone over a plane curve of degree two. Hence, in this case, the above pro-

cedure from $M$ to $W=Q$ via $M_{1}$ is the inverse of the construction (7.5).

If 1 is of non-special type, then $E_{l}\cong P^{1}\times P^{1}$ and $\rho_{\alpha}(E_{l})$ is a smooth hyper-

quadric. In this case the procedure (9.7) and (9.8) is the inverse of (7.4).

(9.11) Now we have the following

PROPOSITION. Let $l$ be a line on a Del Pezzo 3-fold $(M, L)$ with $d(M, L)$

$=5$ . Then $ Bs|L-E_{l}|=\emptyset$ on $M_{1}=Q_{l}(M)$ and $W=\rho_{|L-E_{l}|}(M_{1})$ is a smooth hyper-

quadric in $P^{4}$ . $\rho_{|L-E_{l}|}(E_{l})$ is a hyperplane section of $W$ and this is smooth if
and only if $l$ is of non-specjal tyPe. In any case $M_{1}$ is the blowing up of $W$

with center being a Veronese curve of degree three.
(9.12) On any Del Pezzo 3-fold with $d=5$ , there exists a line of non-special

type (Iskovskih). Using this, he proved the following

THEOREM. Every Del Pezzo threefold with $d=5$ is isomorphic to each

other and is constructed as in (7.4).

For a proof, see [7].

(9.13) COROLLARY. Let $(M, L)$ be a Del Pezzo threefold with $d=5$ . Then
$H^{1}(M, T^{M})=0$ .

PROOF. $h^{2}(M, T^{M})=h^{1}(M, \Omega_{M}^{1}\otimes[K^{M}])=0$ since $-K^{M}$ is ample (see $[0]$ or
[11]). So any infinitesimal deformation of $M$ is not obstructed. On the other
hand, by [9], one can easily see that any small deformation of a Del Pezzo
manifold is also a Del Pezzo manifold. Combining them we obtain $h^{1}(M, T^{M})=0$

from (9.12).

One can prove this by an elementary ($=without$ deformation theory) method
based on (P. 13), too. Details are left to the reader.
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\S 10. Del Pezzo 4-folds with $d=5$ .
Let $(M, L)$ be a Del Pezzo 4-fold with $d(M, L)=5$ . We regard $\Lambda f$ to be a

submanifold in $P_{\xi}^{7}$ by $\rho_{|L|}$ as before.
(10.1) LEMMA. $M$ contains a plane.

We divide the proof into several steps. Assuming to $the_{\sim}^{Y}contrary$ , we
derive a contradiction in (10.8).

(10.2) Clearly $M$ contains a line. Let 1 be a line on $M$. Then $Bs|L-E_{l}|$

$=\emptyset$ on $M_{1}=Q_{l}(M)$ and $p_{\eta}=\rho_{|L-E_{l}|}$ is a birational morphism onto a hyperquadric
$W$ in $P_{\eta}^{5}$ . In view of $(L-E_{l})^{3}E_{l}=2$ we infer that $\rho_{\eta}(E_{l})$ is a hyperplane section
of $W$ as in (9.4).

(10.3) Let $H$ be the hyperplane such that $H\cap W=\rho_{\eta}(E_{l})$ . Then $\rho_{\eta}^{*}H=E_{l}+R$

for some $R\in|L-2E_{l}|$ . $R$ is irreducible and reduced as in (9.6). Put $C=\rho_{\eta}(R)$ .
(10.4) We claim that $W$ is smooth. Indeed, let $x$ be any point on $W\subset P_{\eta}^{5}$ .

This defines a plane $S$ in $P_{\xi}^{7}$ containing 1 in a natural manner so that $|H_{\xi}|_{M}^{*S}$

corresponds $|H_{\eta}|^{*x}$ . A general member $T$ of $|H_{\xi}|_{M}^{*S}$ is smooth by (8.4) since
we assume that $M$ does not contain any plane. $T$ is a Del Pezzo threefold and
$l\subset T\subset M$. Let $T_{1}$ be the proper transform of $T$ on $M_{1}$ . Then $\rho_{\eta}(T_{1})=Q$ is a
hyperplane section of $W$ such that $x\in Q$ . In view of (9.11) we infer that $Q$ is
smooth. This implies that $W$ is smooth at $x$ .

(10.5) We claim that $C$ is a smooth surface with $\Delta(C, H_{\eta})=0,$ $d(H, H_{\eta})=3$ .
Let $x$ be any point on $C\subset P_{\eta}^{5}$ . Let $S$ be the plane in $P_{\xi}^{7}$ corresponding $x$

and let $T$ be a smooth member of $|H_{\xi}|_{M}^{*S}$ . Then $\rho_{\eta}(T_{1})\ni x$ where $T_{1}$ is the
proper transform of $T$ on $M_{1}$ . In view of (9.11) we infer that $C\cap\rho_{\eta}(T_{1})=$

$\rho_{\eta}(R\cap T_{1})$ is a Veronese curve of degree three. So $C$ is smooth at $x$ . Thus $C$

is shown to be smooth. $d(C, H_{\eta})=3$ and $\Delta(C, H_{\eta})=0$ is now easy to prove.
(10.6) We claim that $R$ is a $P^{1}$ -bundle over $C$. This follows from a similar

argument as before since $R\cap T_{1}\rightarrow C\cap\rho_{\eta}(T_{1})$ is a $P^{1}$ -bundle for any $T_{1}$ with
$T\in|L|$ being smooth.

(10.7) $M_{1}$ is the blowing up of $W$ with center $C$ .
This is an easy consequence of the above observations and (P. 14). This

procedure is the inverse of (7.7).

(10.8) Combining (10.5) and [2, Theorem 3.8], we infer that $(C, H_{\eta})\cong$

$(P(E), H^{E})$ for the vector bundle $E=[H_{\sigma}]\oplus[2H_{\sigma}]$ on $P_{\sigma}^{1}$ . So $C$ contains a
smooth rational curve $F$ such that $F^{2}=-1$ and $H_{\eta}F=1$ . $0\rightarrow\Omega_{C\backslash W}\rightarrow\Omega_{F\backslash W}\rightarrow\Omega_{F\backslash C}\rightarrow 0$

is exact on $F$. Hence $c_{1}(\Omega_{C\backslash W})_{F}=c_{1}(\Omega_{F\backslash W})+c_{1}(N^{F\backslash C})=(K_{F}^{W}-K^{F})+F^{2}=-3$ . There-
fore $L^{2}\{\rho_{\eta}^{-1}(F)\}=(2H_{\eta}-E_{c})^{2}\{\rho_{\eta}^{-1}(F)\}=4H_{\eta}F+s_{1}(\Omega_{C\backslash W})_{F}=1$ . This implies that the

image of $\rho_{\overline{\eta}^{1}}(F)$ in $M$ is a plane. Thus we have proved (10.1).

(10.9) Let $S$ be a plane in $P=P_{\xi}^{7}$ lying on $M$. Then $ Bs|L-E_{s}|=\emptyset$ on
$M_{1}=Q_{S}(M)$ by (8.1). So we have a morphism $\rho_{\alpha}$ $:=\rho_{1L-E_{S\}}}$ : $M_{1}\rightarrow P_{\alpha}^{4}$ . We say
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that $S$ is of vertex type (resp. non-vertex type) if $\rho_{\alpha}$ is not surjective (resp.

surjective).

(10.10) For a while, till (10.17), suppose $S$ to be a plane of non-vertex type.

Namely $\rho_{\alpha}$ : $M_{1}=Q_{S}(M)\rightarrow P_{\alpha}^{4}$ is surjective.
$h^{p}(M_{1}, -2E_{s})=h^{4-P}(M_{1}, K^{M_{1}}+2E_{S})=h^{4-p}(M_{1}, -3L+3E_{s})=0$ for any $P$ by

Ramanujam’s vanishing theorem. Similarly we have $H^{p}(M_{1}, -E_{s})=0$ . Hence
$H^{p}(E_{S}, -E_{s})=0$ since $H^{p}(M_{1}, -E_{S})\rightarrow H^{p}(E_{S}, -E_{S})\rightarrow H^{p+1}(M_{1}, -2E_{S})$ is exact.

So $0=x(E_{S}, -E_{S})=\chi(S, \Omega_{S\backslash M})=2\chi(S, O)+2^{-1}c_{1}(\Omega_{S\backslash M})c_{1}(S)+2^{-1}(c_{1}(\Omega_{S\backslash M})^{2}-$

$2c_{2}(\Omega_{S\backslash M}))=2-c_{2}(\Omega_{S\backslash M})$ since $c_{1}(\Omega_{S\backslash M})=c_{1}(\Omega_{M})-c_{1}(\Omega_{S})=0$ . Therefore $c_{2}(N^{S\backslash M})=$

$c_{2}(\Omega_{S\backslash M})=2$ .
(10.11) We have $(L-E_{S})^{4}\{M_{1}\}=L^{4}-4L^{3}E_{S}+6L^{2}E_{S}^{2}-4LE_{s}^{3}+E_{s}^{4}=1$ since

$L^{4}=5$ , $L^{3}E_{s}=0$ , $L^{2}E_{S}^{2}=-L^{2}S=-1$ , $LE_{s}^{3}=L(-E_{s})^{2}\{E_{S}\}=L\cdot s_{1}(\Omega_{S\backslash M})=0$ and
$E_{s}^{4}=-(-E_{s})^{3}\{E_{S}\}=-s_{2}(\Omega_{s\backslash M})=c_{2}-c_{1}^{2}=2$ . Therefore $p_{\alpha}$ is a birational morphism.

(10.12) We have $(L-E_{S})^{3}L=2$ and $(L-E_{s})^{3}E_{s}=1$ as in (10.11). This
implies that $H=\rho_{\alpha}(E_{s})$ is a hyperplane on $P_{a}^{4}$ . So we have $\rho^{*}{}_{\alpha}H=E_{S}+R$ for
$R\in|L-2E_{S}|$ .

(10.13) Using Lefschetz Theorem and (9.1), we infer that $Pic(M)$ is gener-

ated by $L$ . So $Pic(M_{1})$ is generated by $L$ and $E_{S}$ . On the other hand, $a$ $L-bE_{S}|$

$=\emptyset$ unless $a\geqq 0$ and $2a\geqq b$ because $L-E_{S}$ is semipositive (compare (9.5)). Hence
$R$ is irreducible and reduced as in (9.6).

(10.14) Let $C=\rho_{\alpha}(R)$ . $C$ is not contained in any hyperpIane of $P_{\alpha}^{4}$ other

than $H$. Indeed, if otherwise, $ 2\leqq\dim$ Ker $(H^{0}(M_{1}, H_{a})\rightarrow H^{0}(R, H_{\alpha}))=h^{0}(M_{1}, E_{S})$ .
So $h^{0}(C, H_{\alpha})\geqq 4$ .

$H_{\alpha}^{2}L\{R\}=(L-E_{S})^{2}L(L-2E_{S})=0$ proves that dim $C<2$ . So $C$ is an irreduci-

ble curve. Let $X$ be a general fiber of $R\rightarrow C$ and put $w=\deg C$ . Then $wL^{2}X$

$=H.L^{2}\{R\}=(L-E_{S})L^{2}(L-2E_{S})=3$ . So $w=3$ since $C$ is not a line. Thus we
infer that $C$ is a Veronese curve of degree three in $H\cong P^{3}$ . Moreover $L^{2}X=1$ .

(10.15) For any fiber $Y$ of $R\rightarrow C$ we have $L^{2}Y=L^{2}X=1$ . Moreover $L_{Y}$ is
ample since $L_{Y}=[E_{S}]_{Y}$ and $tL-E_{s}$ is ample on $M_{1}$ for $t\gg O$ . Therefore we
infer $Y\cong P^{2}$ . Thus $R$ is a $P^{2}$-bundle over $C$.

(10.16) $[R]_{Y}=[L-2E_{S}]_{Y}=-L_{Y}$ implies that $R$ can be blown down to $C$ by

(P. 14). It is easy to see that $M_{1}$ is the blowing up of $P_{\alpha}^{4}$ with center $C$. The

above procedure is the inverse of (7.8). Thus we have proved the following

(10.17) LEMMA. If $S$ is a plane of non-vertex type on $M$, then $ Q_{S}(M)\cong$

$Q_{C}(P_{\alpha}^{4})$ and $M$ is of type(7.8).

(10.18) In order to know whether a plane lying on $M$ is of vertex type or
not, we have the following

LEMMA. Let $S$ be a plane lying on $M$ and let 1 be a line in S. Let $M^{\prime}=$

$Q_{l}(M)$ and $W=\rho_{|L-E_{l}|}(M^{\prime})\subset P_{\eta}^{5}$ (note that $W$ is a hyPerquadric by (8.3)). Let $S^{\prime}$

be the Proper transform of $S$ on $M^{\prime}$ . Then $X=\rho_{IL-E_{l}1}(S^{\prime})$ is a point on $W$.
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$Mo$ reover, $S$ is of vertex type if and only if $x$ is a vertex of $W$.
PROOF. Obviously $\rho_{1L-E_{l}1}(S^{\prime})$ is a point since $S^{\prime}\cong S$ and $[L-E_{l}]_{S^{\prime}}=0$ . Let

$\pi$ be the projection $ P_{\eta}^{5}\rightarrow$ { $lines$ passing through $x$ } $\cong P_{\alpha}^{4}$ . Then $\pi\circ\rho_{|L- E_{l}|}=p_{1L-E_{S^{l}}}$

as rational mappings from $M$. So, $\rho_{|L-E_{S}|}$ is degenerate if and only if $\pi_{W}$ is so,

and $\pi_{W}$ is degenerate if and only if $x$ is a vertex of $W$.
(10.19) COROLLARY. Let $S_{1}$ and $S_{2}$ be planes on $M$ such that $S_{1}\cap S_{2}=l$ is

a line. Then either $S_{1}$ or $S_{2}$ is of non-vertex type.

PROOF. Let $M^{\prime}=Q_{l}(M)$ and $W=\rho_{|L-E_{l}|}(M^{\prime})$ . By (8.4) there is a smooth
member $T$ of $|L|$ such that $l\subset T$ . Let $T^{\prime}$ be the proper transform of $T$ on
$M^{\prime}$ . Then $\rho_{|L-E_{l}|}(T^{\prime})$ is a hyperplane section of $W$ and is a smooth hyper-

quadric by (9.11). Hence $W$ is a hyperquadric with at most finite singular points.

So $W$ can have at most only one vertex. Therefore our assertion follows from
(10.18).

(10.20) For a while, till (10.25), let $S$ be a plane on $M$ of vertex type. Then
$0=(L-E_{S})^{4}\{M_{1}\}$ for $M_{1}=Q_{S}(M)$ . $L^{4}=5,$ $L^{3}E_{S}=0,$ $L^{2}E_{S}^{2}---1$ and $LE_{S}^{3}=0$ as
in (10.11). So we have $1=E_{S}^{4}=c_{2}(\Omega_{S\backslash M})$ . Combining this with (10.10) we obtain

the following

LEMMA. $S$ is of vertex type if and only if $c_{2}(\Omega_{S\backslash M})=1$ , and $S$ is of non-
vertex tyPe if and only if $c_{2}(\Omega_{S\backslash M})=2$ .

(10.21) Again $S$ is a plane of vertex type and let $V=p_{1L-E_{S^{1}}}(M_{1})\subset P_{\alpha}^{4}$ . Then
$V$ is a smooth hyperquadric.

PROOF. Let $T$ be a general member of $|L|$ on $M$ and let $T_{1}$ be the proper

transform of $T$ on $M_{1}$ . Then $T_{1}\cong Q_{l}(T)$ where $l$ is the line $S\cap T$ . $W=$

$\rho_{1L-E_{S^{1}}}(T_{1})$ is a smooth hyperquadric in $P_{\alpha}^{4}$ by (9.11). Clearly $V\supset W$, dim $V<4$

and $V$ is irreducible. So $V=W$ .
(10.22) There exists a fiber $Y$ of $\rho_{|L-E_{S}|}$ : $M_{1}\rightarrow V$ such that dim $Y\geqq 2$ .
PROOF. If otherwise, dim $Y=1$ for every fiber Y. $2LY=LH_{\alpha}^{3}\{M_{1}\}=$

$L(L-E_{S})^{3}=2$ implies $LY=1$ . $L_{Y}$ is ample since $tL-E_{S}$ is ample on $M_{1}$ for
$t\gg O$ . Therefore we infer that $Y\cong P^{1}$ . So $M_{1}$ is a $P^{1}$-bundle over $V$. Hence
$c_{4}(M_{1})=c_{1}(P^{1})c_{3}(V)=8$ . So $c_{4}(M)=c_{4}(M_{1})-c_{3}(E_{S})+c_{2}(S)=5$ . This contradicts the

following

(10.23) LEMMA. $b_{j}(M)=1$ for $j=0,2,6,8$ and $b_{4}(M)\geqq 2$ and $b_{j}(M)=0$ for
other $j$ .

PROOF. Let $T$ be a smooth member of $|L|$ . $T$ is a Del Pezzo 3-fold with
$d=5$ . So by \S 9 we have $b_{i}(T)=1$ for $i=0,2,4,6$ and $b_{i}(T)=0$ for other $i$ . By

Lefschetz Theorem $H_{p}(T)\rightarrow H_{p}(M)$ is surjective for $p\leqq 3$ . So $b_{0}(M)=b_{2}(M)=1$ ,

$b_{1}(M)=b_{3}(M)=0$ . By duality we obtain $b_{6}(M)=b_{8}(M)=1$ and $b_{5}(M)=b_{7}(M)=0$ .
Assume that $b_{4}(M)=1$ . Then the free part of $H^{4}(M;Z)$ is isomorphic to $Z$.
Let $\gamma$ be the integral base of it such that $(c_{1}(L))^{2}=k\gamma$ for a positive integer $k$ .

By the Poincare duality we infer that $\gamma^{2}=\pm 1$ since $H^{4}(M;Z)$ is self-dual by
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the intersection pairing. But then $5=L^{4}=(k\gamma)^{2}=\pm k^{2}$ . This is absurd. Thus

we infer $b_{4}(M)\geqq 2$ .
(10.24) Let $Y$ be a fiber of $\rho_{IL-E_{S}1}$ : $M_{1}\rightarrow V$ over $y\in V$ such that dim $Y\geqq 2$ .

$y$ corresponds to a three-dimensional linear subspace $B$ in $P_{\xi}^{7}$ such that $S\subset B$ .
Note that $B$ a $M$ since $Pic(M)$ is generated by $L$ . Let $B_{1}$ be the proper trans-

form of $B$ in $Q_{S}(P_{\xi}^{7})$ . Then $B_{1}\cong B\cong P^{3}$ and $Y=B_{1}\cap M_{1}$ . By (8.7) we have
$\mu(l\cdot M)\leqq 2$ for any line $l$ in $B$ with la $M$. From this we infer that $Y$ is a
plane in $B_{1}$ , because $\mu(l\cdot M)\geqq l_{1}\cdot Y+1$ where $l_{1}$ is the proper transform of 1 and
$l_{1}\cdot Y$ is the intersection number in $B_{1}\cong P^{3}$ . So $Y$ maps onto a plane on $M$.

(10.25) Assume that $Y$ maps onto $S$ . Then $Y=E_{S}\cap B_{1}$ and this defines a
section of $E_{S}\rightarrow S$ . This corresponds a sub-bundle of $N^{S\backslash M}$ of rank one. This

gives a splitting of $N^{S\backslash M}$ into line bundles since $S\cong P^{2}$ . But this is impossible

since $c_{1}(\Omega_{S\backslash M})=0$ and $c_{2}(\Omega_{S\backslash M})=1$ by (10.20). Thus we conclude that $Y(rE_{S}$ and
$Y\cap E_{S}$ is a line in $B_{1}$ . Putting things together we get the following

LEMMA. $Y$ maps onto a plane $Y^{\prime}$ on $M$ such that $Y^{\prime}\cap S$ is a line.

(10.26) Now we can prove the following

THEOREM. Any Del Pezzo 4-fold $(M, L)$ with $d(M, L)=5$ can be obtained

as in (7.8).

PROOF. By (10.1) $M$ contains a plane $S$ . If $S$ is of non-vertex type, then
(10.17) applies. If $S$ is of vertex type, then by (10.25), there is a plane $Y^{\prime}$ such

that $Y^{\prime}\cap S$ is a line. By (10.19), $Y^{\prime}$ is of non-vertex type. Hence (10.17) applies.

(10.27) COROLLARY. All the Del Pezzo 4-folds with $d(M, L)=5$ are isomor-

phic to each other.

PROOF. All the pairs $(C, D)$ each of which consists of a hyperplane $D$ in
$P^{4}$ and of a Veronese curve $C$ of degree three in $D$ are projectively equivalent

to each other. Hence all the Del Pezzo 4-folds constructed as in (7.8) are
isomorphic to each other.

(10.28) COROLLARY. $H^{1}(M, T^{M})=0$ for any Del Pezzo 4-fold $(M, L)$ with
$d(M, L)=5$ .

Proof is similar to that of (9.13).

(10.29) Let $S$ be a plane of non-vertex type. Then $Q_{S}(M)=M_{1}\cong Q_{c}(P^{4})$

where $C$ is a Veronese curve of degree three. Each fiber of $E_{c}\rightarrow C$ maps onto

a plane on $M$. They are easily seen to be of vertex type.

On the other hand, one can see that any plane on $M$ other than $S$ is of the

above type. In particular, $S$ is the unique plane of non-vertex type on $\Lambda f$. We

can also show that $H^{0}(N^{S\backslash M})=0$ and that $S$ has no infinitesimal non-trivial dis-

placement.

Proofs of the above facts are omitted since we don’t use them in the follow-

ing sections.
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\S 11. Del Pezzo 5-folds with $d=5$ .
Let $(M, L)$ be a Del Pezzo 5-fold with $d(M, L)=5$ . We regard $M$ to be a

submanifold of $P_{\xi}^{8}$ by $p_{1LI}$ as before.
(11.1) LEMMA. Let $\Gamma$ be a smooth member of $|L|$ and let $S$ be a plane on

$\Gamma$. Then $S$ is of non-vertex type on $\Gamma$ if and only if $c_{2}(N^{S\backslash M})=2$ .
This follows from Lemma (10.20).

(11.2) Suppose, for a while, $S$ to be a plane of the above type. Let $M_{1}=$

$Q_{S}(M)$ . Then $p_{\alpha}=p_{1L-E_{S^{1}}}$ : $M_{1}\rightarrow P_{\alpha}^{5}$ is a birational morphism.

Indeed, we have $(L-E_{S})^{5}\{M_{1}\}=(L-E_{S})^{4}\{\Gamma_{1}\}=1$ for the proper transform
$\Gamma_{1}$ of $\Gamma$, where $\Gamma$ is a smooth member of $|L|^{*S}$ .

(11.3) We can easily see $L(L-E_{S})^{4}\{M_{1}\}=2$ . So $(L-E_{S})^{4}E_{s}=1$ . This im-
plies that $H=\rho_{\alpha}(E_{S})$ is a hyperplane on $P_{\alpha}^{5}$ . Hence $\rho^{*}{}_{\alpha}H=E_{S}+R$ for some
$R\in|L-2E_{S}|$ . $R$ is shown to be irreducible and reduced similarly as in (10.13).

(11.4) Let $W=\rho_{\alpha}(R)$ . $LH_{\alpha}^{3}\{R\}=L(L-E_{s})^{3}(L-2E_{s})=L^{5}-5L^{4}E_{s}+9L^{3}E_{s}^{2}-$

$7L^{2}E_{S}^{3}+2LE_{S}^{4}=0$ since $L^{5}=5$ , $L^{4}E_{S}=L^{s}E_{S}=0$ , $L^{2}E_{S}^{3}=L^{2}S=1$ and $LEb=$

$-L(-E_{S})^{3}\{E_{S}\}=-L\cdot s_{1}(\Omega_{S\backslash M})=1$ . This implies dim $W<3$ . On the other hand,

$L^{2}H_{\alpha}^{2}\{R\}=L^{2}(L-E_{S})^{2}(L-2E_{S})=3$ . So we infer that dim $W=2$ .
(11.5) $W$ cannot be contained in any hyperplane in $P_{\alpha}^{5}$ other than $H$,

because otherwise $2\leqq\dim$ Ker $(\Gamma(M_{1}, H_{a})\rightarrow\Gamma(R, H_{\alpha}))=h^{0}(M_{1}, E_{S})$ . Therefore
$h^{0}(W, H_{\alpha})\geqq 5$ .

(11.6) Put $w=\deg W$ and let $X$ be a general fiber of $R\rightarrow W$ . Then $3=$

$L^{2}H_{\alpha}^{2}\{R\}=\iota oL^{2}X$. $w>1$ by (11.5). So $w=3$ and $L^{2}X=1$ . From this we infer
$\Delta(W, H_{\alpha})=0$ .

(11.7) Now we come to the crucial step of showing $W$ to be smooth. First

we prove the following

LEMMA. There exists no linear threefold $T$ such that $S\subset T\subset M$.
Assume that such a threefold $T$ exists. Let $M^{\prime}$ be the blowing up of $M$

with center $T$ and let $\rho_{\eta}=p_{1L-E_{T}I}$ : $M^{\prime}\rightarrow P_{r_{1}}^{4}$ be the morphism as in (8.1). We

claim that this is surjective.

To see this, take a smooth member $\Gamma$ of $|L|$ such that $ S=T\cap\Gamma$. Let $\Gamma^{\prime}$

be the proper transform of $\Gamma$ on $M^{\prime}$ . Then $\Gamma^{\prime}\cong Q_{S}(\Gamma)$ since $T\cap\Gamma=S$ . $S$ is of

non-vertex type on $\Gamma$ by (11.1). Hence $\rho_{\eta}(\Gamma^{\prime})=P_{\eta}^{4}$ . So of course $\rho_{\eta}(M^{\prime})=P_{\eta}^{4}$ .
Thus $\rho_{\eta}$ is surjective.

Let $X$ be a general fiber of $\rho_{\eta}$ Then $LX=L(L-E_{T})^{4}\{M^{\prime}\}=(L-E_{s})^{4}\{\Gamma^{\prime}\}$

$=1$ . So $X\cong P^{1}$ since $ Bs|L|=\emptyset$ . On the other hand, $\deg K^{X}=K^{M^{\prime}}\cdot X=$

$(-4L+E_{T})X=-3LX=-3$ . This absurdity proves the non-existence of $T$ .
(11.8) In order to show that $W$ is smooth, it suffices to show that $W$ is not a

cone, since $\Delta(W, H_{a})=0$ (cf. [2, Corollary 4.7]). So assume to the contrary and

let $x$ be a vertex of $W$ . Let $T$ be the linear threefold containing $S$ corresponding
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$x$ . In particular, $\pi_{x^{Q}}p_{1L-E_{S^{1}}}=\rho_{\Lambda}$ as rational mappings on $M$, where $\Lambda=|H_{\xi}|^{*T}$

and $\pi_{x}$ is the projection $ P_{\alpha}^{5}\rightarrow$ {lines passing through $x$ } $\cong P^{4}$ .
(11.9) $\tau_{(\ddagger M}$ by (11.7). Let $T_{1}$ be the proper transform of $T$ in $P_{1}=Q_{S}(P_{\xi}^{8})$ .

Then we have $T_{1}\cap M_{1}=\rho_{a}^{-1}(x)$ , which we denote by $Y$.
(11.10) $Y$ is a plane on $T_{1}\cong T\cong P^{3}$ . Indeed, for any line 1 on $T$ with $l(rM$,

we have $2\geqq\mu(l\cdot M)\geqq 1+l_{1}\cdot Y$ by (8.7), where $l_{1}$ is the proper transform of $l$ in
$T_{1}$ . This implies deg $Y=1$ . dim $Y=2$ is clear since $Y$ is a fiber of $R\rightarrow W$ .

(11.11) Let $P_{2}=Q_{Y}(P_{1})$ be the blowing up of $P_{1}$ with center $Y$ and let $M_{2}$ ,

$T_{2}$ be the proper transforms of $M_{1},$ $T_{1}$ . Then $ T_{2}\cap M_{2}=\emptyset$ . Indeed, if $T_{2}\cap M_{Z}$

$\ni u$ , we can find a line 1 on $T$ such that $l\not\subset M$ and $l_{2}\ni u$ for the proper trans-

form $l_{2}$ of $l$ in $P_{2}$ . Then $\mu(l\cdot M)\geqq 2+\mu(l_{2}\cdot M_{2})>2$ . This contradicts (8.7).

(11.12) $ Bs|L-E_{S}-E_{Y}|=\emptyset$ on $M_{2}$ .
Indeed, $\Lambda=|H_{\xi}|^{*T}$ corresponds $|L-E_{S}-E_{Y}|$ on $P_{2}$ and Bsl $L-E_{S}-E_{Y}|=T_{2}$ .

So this assertion follows from $ T_{2}\cap M_{2}=\emptyset$ .
(11.13) Let $\rho_{\beta}=\rho_{1L-E_{S^{-}}E_{Y}1}$ : $M_{2}\rightarrow P_{\beta}^{4}$ be the morphism. In view of $(L-E_{S})_{Y}$

$=0$ , we infer $0=H_{\beta}^{5}=(L-E_{S}-E_{Y})^{6}=(L-E_{S})^{5}-E_{Y}^{5}$ . So $E_{Y}^{5}=(L-E_{s})^{5}=1$ .
(11.14) Let $R_{2}$ be the proper transform of $R$ on $M_{2}$ . Then $[R_{2}]=L-2E_{S}$

$-\delta E_{Y}$ with $\delta>0$ since $Y\subset R$ .
(11.15) $s_{1}(\Omega_{Y\backslash M_{1}})=K_{Y}^{M_{1}}-K^{Y}=(-4L+2E_{S})-(-3L)=L_{Y}$ . Hence $LE_{Y}^{4}=$

$-L(-E_{Y})^{3}\{E_{Y}\}=-1$ . Using $(L-E_{S})_{Y}=0$ , we obtain $(L-2E_{s})(L-E_{S}-E_{Y})^{4}=$

$(L-2E_{s})(L-E_{s})^{4}-LE_{Y}^{4}=1$ . We have also $(L-E_{S}-E_{Y})^{4}E_{Y}=E_{Y}^{5}=1$ by (11.13).

Therefore $ H_{\beta}^{4}\{R_{2}\}=(L-E_{S}-E_{Y})^{4}(L-2E_{S}-\delta E_{Y})=1-\delta$ . So $\delta=1$ since $H_{\beta}$ is
semipositive.

(11.16) REMARK. We have not yet used the assumption that $x$ is a vertex

of $W$ .
(11.17) $\pi_{x}\circ\rho_{IL-E_{S^{1}}}=\rho_{\Lambda}=\rho_{|L-E_{S}-E_{Y}|}$ as rational mappings on $M$ (cf. (11.8)).

Since $x$ is a vertex of $W$ and $\pi_{x}(W)$ is a curve, we infer that $\rho_{\beta}(R_{2})$ is a curve
in $P_{\beta}^{4}$ . However we have $L^{2}H_{\beta}^{2}\{R_{2}\}=L^{2}(L-E_{S}-E_{Y})^{2}(L-2E_{S}-E_{Y})=L^{2}(L-E_{s})^{2}$

$(L-2E_{S})+L^{2}(-E_{Y})^{3}=2>0$ . This contradiction proves the smoothness of $W$ .
(11.18) By (11.16) and (11.10) we infer that $R$ is a $P^{2}$-bundle over $W$ .

$[R]_{Y}=[L-2E_{S}]_{Y}=-L_{Y}$ for any fiber $Y$ of $R\rightarrow W$ . So $R$ can be blown down

with respect to this structure. Now it is easy to see that $\rho_{\alpha}$ gives an isomor-
phism $M_{1}\cong Q_{W}(P_{\alpha}^{5})$ .

(11.19) Clearly the above procedure from $M$ to $P_{\alpha}^{5}$ via $M_{1}$ is the inverse
of (7.10). Thus we prove the following

THEOREM. Let $(M, L)$ be any Del Pezzo 5-fold with $d(M, L)=5$ . Then
$M,$ $L$ ) can be constructed as in (7.10).

(11.20) COROLLARY. All the Del Pezzo 5-folds with $d=5$ are isomorphic

to each other.

Proof is similar to that of (10.27). Note that any polarized smooth surface
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$(W, H_{\alpha})$ with $\Delta(W, H_{\alpha})=0,$ $d(W, H_{\alpha})=3$ is isomorphic to $(P(E), H^{E})$ , where $E$

is the vector bundle $[H_{\sigma}]\oplus[2H_{\sigma}]$ on $P_{\sigma}^{1}$ (cf. [2, Theorem 3.8]).

(11.21) COROLLARY. $H^{1}(M, T^{M})=0$ .
Proof is similar to that of (9.13). Using (P. 13), one can prove this without

deformation theory, too.

\S 12. Del Pezzo 6-folds with $d=5$ .

Let $(M, L)$ be a Del Pezzo 6-fold with $d(M, L)=5$ . We regard $M$ as a
submanifold in $P_{\xi}^{9}$ by $p_{|L|}$ as before. The argument in this section is very

similar to that in \S 11. So we just sketch the outline of it.
(12.1) LEMMA. Let $D$ be a smooth member of $|L|$ and let $\Gamma$ be a smooth

member of $|L|_{D}$ . Let $S$ be a plane on $\Gamma$. Then $S$ is of non-vertex type on $\Gamma$

if and only if $c_{2}(N^{S\backslash M})=3$ .
Proof is easy.

(12.2) LEMMA. Let $S$ be a Plane on $M$ such that $c_{2}(N^{S\backslash M})=3$ . Then there

exists no linear threefold $T$ such that $S\subset T\subset M$.
PROOF. Assume that such a threefold $T$ exists. We see that $p_{\eta}$ $:=\rho_{|L-E_{T}|}$ :

$M^{\prime}=Q_{T}(M)\rightarrow P_{\eta}^{6}$ is surjective as in (11.7). For a general fiber $X$ of $\rho_{\eta}$ we have
$LX=1$ and $degK^{X}=-3$ as in (11.7). This is absurd.

(12.3) From now on let $S$ be a plane on $M$ as in (12.2). Let $M_{1}=Q_{S}(M)$ .
Then $\rho_{\alpha}=\rho_{IL-E_{S^{1}}}$ : $M_{1}\rightarrow P_{\alpha}^{6}$ is a birational morphism.

(12.4) We have $(L-E_{S})^{6}=1$ , $L(L-E_{s})^{5}=2$ and $(L-E_{S})^{5}E_{S}=1$ . So $H=$

$\rho_{\alpha}(E_{S})$ is a hyperplane on $P_{\alpha}^{6}$ . Hence $\rho^{*}{}_{\alpha}H=E_{S}+R$ for $R\in|L-2E_{S}|$ . $R$ is

irreducible and reduced as in (10.13).

(12.5) Let $W=\rho_{\alpha}(R)$ . Then $LH^{4}\{R\}=0$ implies dim $W<4$ . On the other

hand $L^{2}H_{\alpha}^{3}\{R\}=3$ . So dim $W=3$ .
(12.6) $W$ cannot be contained in any hyperplane other than $H$. Therefore

$h^{0}(W, H_{\alpha})\geqq 6$ . Hence $w=degW>1$ . Moreover, as in (11.6), we have $w=3$ ,

$\Delta(W, H_{\alpha})=0$ and $L^{2}X=1$ for a general fiber $X$ of $R\rightarrow W$ .
(12.7) Let $x$ be a point on $W$ and let $T$ be the corresponding linear three-

fold containing $S$ as in (11.8). Then $T\not\subset M$ by (12.2).

(12.8) Let $T_{1}$ be the proper transform of $T$ in $P_{1}=Q_{S}(P_{\xi}^{9})$ . Then $T_{1}\cap M_{1}$

$=p_{\alpha}^{-1}(x)$ , which we denote by Y. $Y$ is a plane on $T_{1}\cong P^{3}$ similarly as in (11.10).

(12.9) $ Bs|L-E_{S}-E_{Y}|=\emptyset$ on $M_{2}=Q_{Y}(M_{1})$ .
Proof is similar to that of (11.12).

(12.10) Let $\rho_{\beta}=\rho_{1L-E_{S}-E_{Y}1}$ : $M_{2}\rightarrow P_{\beta}^{5}$ be the morphism. Then we have $H_{\beta}^{6}=0$

and $E_{Y}^{6}=-1$ as in (11.13).

(12.11) Let $R_{2}$ be the proper transform of $R$ on $M_{2}$ . Then we have $[R_{2}]$

$=L-2E_{S}-E_{Y},$ $H_{\beta}^{5}(L-2E_{S})=1$ and $H_{\beta}^{5}E_{Y}=1$ as in (11.15).
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(12.12) We have $L^{2}H_{\beta}^{3}\{R_{2}\}=2>0$ . This implies dim $\rho_{\beta}(R_{2})=\dim\pi(W)=3$ ,

where $\pi$ is the rational mapping $ P_{\alpha}^{6}\rightarrow$ { $lines$ passing through $x$ } $\cong P^{5}$ . Hence $x$

is not a vertex of $W$ .
(12.13) The above argument $(12.7)\sim(12.12)$ proves that $W$ is not a cone.

Hence $W$ is smooth because $\Delta(W, H_{\alpha})=0$ . Moreover we see $(W, H_{\alpha})\cong(P_{\sigma}^{1}\times P_{\tau}^{2}$,
$H_{\sigma}+H_{\tau})$ by [2, Corollary 3.9].

(12.14) $R$ is a $P^{2}$-bundle over $W$ as in (11.18). Moreover $\rho_{\alpha}$ gives an
isomorphism $M_{1}\cong Q_{W}(P_{\alpha}^{6})$ .

(12.15) The above procedure is the inverse of (7.12). Thus we show that
any Del Pezzo 6-fold with $d=5$ can be constructed as in (7.12). Moreover they

are all isomorphic to each other as in (11.20). Now, in view of (7.1), we obtain
the following

(12.16) THEOREM. Any Del Pezzo 6-fold with $d=5$ is isomorphic to $Gr(5,2)$ .
(12.17) COROLLARY. There exists no Del Pezzo manifold $(M, L)$ with

$d(M, L)=5$ and dim $M\geqq 7$ .
PROOF. Suppose to the contrary and let $\{D_{i}\}$ be a smooth ladder of $(M, L)$

with $\dim D_{i}=i$ . Then $D_{6}$ is an ample divisor on $D_{7}$ and $D_{6}\cong Gr(5,2)$ by (12.16).

This contradicts [6, (5.2)].

(12.18) THEOREM. Any Del Pezzo manifold with $d=5$ is a linear section

of $Gr(5,2)$ .
For a proof, combine (7.1), (7.2), (9.12), (10.27), (11.20), (12.16) and (12.17).
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